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Abstract In order to be able to draw inferences about real world phenomena from a
representation expressed in a digital computer, it is essential that the representation should
have a rigorously correct algebraic structure. It is also desirable that the underlying algebra be
familiar, and provide a close modelling of those phenomena. The fundamental problem
addressed in this paper is that, since computers do not support real-number arithmetic, the
algebraic behaviour of the representation may not be correct, and cannot directly model a
mathematical abstraction of space based on real numbers. This paper describes a basis for the
robust geometrical construction of spatial objects in computer applications using a complex
called the “Regular Polytope”. In contrast to most other spatial data types, this definition
supports a rigorous logic within a finite digital arithmetic. The definition of connectivity
proves to be non-trivial, and alternatives are investigated. It is shown that these alternatives
satisfy the relations of a region connection calculus (RCC) as used for qualitative spatial
reasoning, and thus introduce the rigor of that reasoning to geographical information systems.
They also form what can reasonably be termed a “Finite Boolean Connection Algebra”. The
rigorous and closed nature of the algebra ensures that these primitive functions and predicates
can be combined to any desired level of complexity, and thus provide a useful toolkit for data
retrieval and analysis. The paper argues for a model with two and three-dimensional objects
that have been coded in Java and which implement a full set of topological and connectivity
functions which is shown to be complete and rigorous.
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Abbreviations
RCC Region Connection Calculus
BCA Boolean Connection Algebra

1 Introduction

1.1 Motivation

The question of connectivity between spatial regions is crucial in the query, analysis and
manipulation of spatial data, but at present there is considerable variation in the approaches
taken by different software suppliers [1, 2]. This is exacerbated by the fact that often the
definitions used rely on the assumption of real number arithmetic, leaving the interpretation
within the finite computational arithmetic and storage undefined. In rare but significant
cases, the use of finite arithmetic causes the breakdown of the fundamental algebra of
space, leading to gross changes of the value of a predicate. For example in Fig. 1, A
connected to B should imply that A is connected to B∪C.

The topological relationships between spatial objects is considered to be of fundamental
importance to spatial information environments, but these rely on precise definitions of set
membership, and of the relationships between sets and adjoining sets. The finite nature of
the computational arithmetic raises the need to manage potential problems such as that
pictured in Fig. 1, and various approaches have been tried over the years (with some
described in Section 1.2). It is clear that the implementation of a mathematical theory of
space, based on real number arithmetic, on a computer using a finite approximation to that
arithmetic (such as floating point) is not a trivial exercise.

A construct, referred to as a Regular Polytope and described herein, has been researched to
resolve issues of the mismatch between the mathematical theory and its implementation in a
finite digital computer [3], and in particular, to study the issue of connectivity. It has been
shown [4] that a fully rigorous algebra can be supported without the assumption of infinite
precision by the Regular Polytope approach, and that a useful toolkit of predicates and
functions can be provided. These tools can be used with confidence in any combination,
with no possibility of failure caused by overflow, underflow or co-incidence of values.

Note that the word “Regular” in this context is used in the topological sense—of a set which
is equal to the interior of its closure (in the case of open-regular) or equal to the closure of its
interior (in the case of closed-regular). In effect, it means that the set has no singularities—
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Fig. 1 Connectivity is not necessarily conserved in calculations. Here A is strongly connected to B, but due
to limited accuracy of calculations (shown exaggerated), A is not connected to B∪C

Geoinformatica



spikes or gaps. The term should not be confused with the geometric term “regular polytope”
meaning a polyhedral object with identical faces, generalised into n dimensons.

1.2 The research

This paper explores issues raised by the question of connectivity, using the concept of
“domain-restricted rational number” calculations—which are computable on current
hardware, and do not suffer the problem of unconstrained precision requirements, as do
implementations requiring true rational numbers [5]. It is shown that the full set of
functions of the region connection calculus (RCC) [6] can be satisfied. The RCC has been
chosen as a basis for reviewing the logic because it provides a consistent and useful set of
predicates for the investigation of connectivity, without the complications caused by
defining a boundary as a (finite) point set.

The conventional approach to this issue is the use of topological encoding of regions and
networks [7–9], combined with a form of normalisation to prevent situations arising where
imprecise calculations can cause difficulties [10]. This normalisation is often combined with the
validation process, but may in itself lead to breakdown of the spatial algebra. That is to say, once
the data has been validated and normalised (the process described as topologically cleaning the
data), a rigorous logic applies, but the cleaning process is not well understood [11].

An alternative approach is based on the use of rational numbers. This recognises that the
most common operation to cause imprecision is division. By representing numbers as a pair
of integers I, J, interpreted as I/J, the actual division operation is avoided [12]. An
appealing variant of this is the concept of homogeneous integer coordinates [13] as used in
the LEDA library [14]. It must be born in mind that this approach requires that the size of
the integers is not constrained. That is to say that it is mandated that overflow cannot occur
in any arithmetic operation. It has been shown that the sizes of integers that can be
generated in a sequence of calculations tend to become very large indeed (see Section 5.1),
and so a database built on such a structure will grow and slow with time [15].

The “Realms” approach handles the imprecision problem directly, by constraining lines to
remain within an envelope based on the grid size of the integer representation [16]. While this
is shown to support a rigorous algebra (ROSE), it is not a trivial exercise to extend to three
dimensions [15]. The “Dual Grid” [17] approach addresses the issue of finite precision
calculations using what are, in effect, domain-restricted rational numbers equivalent to
those defined in Section 2.1. In 2D, the dual grid has much to recommend it (including
support for the ROSE algebra), but the extension to 3D is far from obvious, and may have
significant difficulties.

The remainder of the paper is structured as follows. Section 2 contains a summary of the
definition of the regular polytope, based on Thompson (2005) [3]. Section 3 explores some
desiderata in the definition of connectivity. The derivation of a computable definition of
connectivity is addressed in Section 4, along with a discussion of the algebras supported.
Section 5 contains the conclusions, a comparison with alternate approaches, and a brief
description of a “proof of concept” implementation.

2 The regular polytope

A regular polytope representation of spatial objects is defined as the union of a finite set of
(possibly overlapping) “convex polytopes”, which are in turn defined as the intersection of
a finite set of half spaces (in 3D, half planes in 2D). These half spaces (planes) are defined by
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finite precision integer parameters (3 values in 2D, 4 values in 3D etc.). Although the definitions
of the half spaces use integral coordinates, the points within them (and therefore the point sets
defined by regular polytopes) are interpreted as domain-restricted rational points.

No notational distinction is made in this paper between computational operations +,−, ., =, etc,
and the mathematical operations they implement, since the integer and rational number arithmetic
available in computers is exact within its domain. There is however, a distinction to be made (for
example, it must be remembered that A+B as a computational operation can result in overflow).
By contrast, floating point is not exact, and it cannot be asserted that following the operations
a := b*c; (a multiplication and assignment) then a = bc (as a mathematical equation).

2.1 Domain-restricted rational numbers

In order to exactly calculate and represent the vertices of any convex polytope the concept
of dr-rational numbers was introduced. Given two large positive integers N′ and N″, a dr-
rational number r can be defined as an ordered pair of computational integers (–N″ ≤ I ≤ N″,
0 < J ≤ N′), interpreted as having a value of I/J. (The meanings and values of N″ and N′ are
given in section 2.4). The reason for the name “domain-restricted rational” (dr-rational) is that
the values of I and J are constrained to a finite range of possible values. Like floating point
numbers, dr-rational numbers do not form a field (in contrast to the true rational numbers)
[18], and therefore, by definition, cannot span a vector space. There are a number of other
counter-intuitive properties of dr-rational numbers, for example that the sum of two dr-rational
numbers may not be a dr-rational number. In the following discussion, the requirement J>0 is
not explicitly addressed in every case. It is assumed that in any operation that leads to a
rational number r = (I/J) with J < 0 will be converted to a valid dr-rational number (-I/-J).

In 3D, a dr-rational point is defined in terms of integral homogenous coordinates, as an
ordered 4-tuple of integers p = (X, Y, Z, Q), Q ≠ 0. This point could also be represented as a
triple of dr-rational numbers p = (x, y, z) with x = X/Q, y = Y/Q and z = Z/Q. The
homogenous coordinate form is to be preferred as it highlights the common denominator Q.
Note that there are also counter-intuitive properties possessed by dr-rational points—e.g. it
cannot be assumed that the mid-point between two dr-rational points is a dr-rational point.
The advantage possessed by the dr-rational representation is that it is directly
implementable in computer hardware, and does not lead to a system that slows with age
(as a potentially infinite rational representation will) [11, 15].

2.2 Half space definition

In 3D a half space H(A, B, C, D) is defined as the set of all dr-rational points p = (X, Y, Z,
Q): Q > 0, -M ≤ X/Q, Y/Q, Z/Q < M1 for which computational evaluation of the following
inequalities yields these results:

AX þ BY þ CZ þ DQð Þ > 0 or
AX þ BY þ CZ þ DQð Þ ¼ 0 andA > 0½ � or
BY þ CZ þ DQð Þ ¼ 0 andA ¼ 0 andB > 0½ � or

½ CZ þ DQð Þ ¼ 0 andA ¼ 0; B ¼ 0 andC > 0�
ðdef1Þ

1 This shorthand is taken to mean -M ≤ X/Q < M ∧ -M ≤ Y/Q < M ∧ -M ≤ Z/Q < M. Where there is no danger
of confusion, this will be used throughout.
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where M is the limit of values allowed for point representations, and A, B, C and D are
integers. We place the restrictions that:

–M < A, B, C < M, -3M2 < D < 3M2 in 3D applications,
–M < A, B < M, -2M2 < D < 2M2 in 2D (C is not required in 2D).

The complement of a half space is defined as:

H ¼def �A;�B;�C;�Dð Þ; whereH ¼ A;B;C;Dð Þ: ðdef2Þ
The form of the definition of a half space, with four parts rather than just (AX + BY + CZ +

DQ) > 0, is chosen so as to ensure a clean definition of complement, in effect ensuring that no
points will test as “on the boundary”. That is H \ H is empty, thus eliminating the special
cases that arise with boundary points. This is further discussed in Sections 2.4 and 2.6.

Equality of half spaces is defined as:

H1 ¼ H2 ¼def p 2 H1 , p 2 H2: ðdef3Þ
Two special half spaces are defined,

HO= ¼ H 0; 0; 0;�1ð Þ Fempty_ i:e: points for whichD > 0; whereD ¼ �1ð Þ ðdef4Þ

H1 ¼ H 0; 0; 0; 1ð Þ Feverything_ i:e: points for whichD > 0; whereD ¼ 1ð Þ ðdef5Þ
H(0, 0, 0, 0) is not a permitted half space.

2.3 Regular polytope definition

Figure 2 shows how a region (known as a “convex polytope”) can be defined as the
intersection of a number of half spaces. Formally, C = {Hi: i=1..n}, notated as C ¼ \

i¼1::n
Hi.

A regular polytope O is defined as the union of a finite set of (possibly overlapping) non
empty convex polytopes, O = {Cj: j = 1..m}, notated as O ¼ [

j¼1::m
Cj. See Fig. 3, in which

C1 and C2 are 2D convex polytopes which are in turn defined as the intersection of half
spaces H1a to H1d and H2a to H2d [3]. A regular polytope may consist of disconnected parts,
and parts may overlap. Points coincident with the boundaries shown as dashed in Figs. 2
and 3 do not belong to the regions they define. In Figure 3, H2a ¼ H1d , and points that lie

H 1 H 2

H 3  

H 4

H5  

Fig. 2 A convex region defined
by a set of half spaces (in 3D)
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along the common boundary are within C2 but not C1 (and therefore are within the regular
polytope O).

The natural definitions of the union, intersection, and complement of regular polytopes
are used, so that the meanings are exactly equivalent to the point set interpretations. For
example: for O1 = {Cj: j=1..m} and O2 = {C′k, k=1..l}:

O1 [ O2 ¼def Cj : j ¼ 1::m;C0
k ; k ¼ 1::l

� �
: ðdef6Þ

Which leads to: ∀ p: p ∈ O1∪O2 ⇔ p ∈ O1 ∨ p ∈ O2.

2.4 DR_rational point-set interpretation of the regular polytope

The half space H(A, B, C, D) can be interpreted as the set of dr-rational points (X, Y, Z, Q),
–MQ ≤ X, Y, Z < MQ that satisfy the relations (def1). By this interpretation the set of all dr-
rational points in any regular polytope is finite. Note that since A, B, C, D and X, Y, Z, Q are
integers, (def1) can be rewritten, using small perturbations after the style of “Simulation of
Simplicity” [19] (to prevent the degenerate cases) as:

A X þ "að Þ þ B Y þ "bð Þ þ C Z þ "cð Þ þ DQ > 0 ðdef1aÞ

where εa, εb and εc are small numbers, such that: 1/M2 < εa < 1/M, 1/M3 < εb < 1/M2, 0 < εc <
1/M3. These coefficients can be used in place of the four part definition (def1) to ensure that
no dr-rational point (X, Y, Z, Q) can ever fall exactly on the plane of the half space. They
would not actually be used in the computation.

In 3D, the point of intersection of three planes defined by A1x + B1y + C1z + D1 = 0, A2x +
B2y + C2z + D2 = 0, A3x + B3y + C3z + D3=0, can be shown to be at point P = (X, Y, Z, Q)
where:

Q ¼
A1 A2 A3

B1 B2 B3

C1 C2 C3

������

������
; X ¼

�D1 �D2 �D3

B1 B2 B3

C1 C2 C3

������

������
; Y ¼

A1 A2 A3

�D1 �D2 �D3

C1 C2 C3

������

������
;

Z ¼
A1 A2 A3

B1 B2 B3

�D1 �D2 �D3

������

������
:

C1 

C2 

H1a 

H1b 

H1c 

H1d 

H2a 

H2b 

H2c 

H2d 

Fig. 3 Regular polytope O de-
fined as the union of two convex
polytopes C1 and C2. This and
other figures are drawn as 2D
cases for the ease of presentation
where there is an obvious exten-
sion to 3D. By contrast, the text
and mathematics are generally
expressed in 3D
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For a valid half space |Ai|, |Bi|, |Ci| < M, |Di|<3M
2 (where |A| is the absolute value of A),

therefore, |Q|<6M3, and |X|, |Y|, |Z|<18M4. Therefore 3D applications use for the domain of
the dr-rational numbers:

N 0 ¼ 6M 3;N 00 ¼ 18M 4: ð1Þ
Similarly, 2D applications use:

N 0 ¼ 2M 2; N00 ¼ 4M 3: ð2Þ
It follows from the above that any three valid half spaces which intersect do so at a point with

homogeneous coordinates (X, Y, Z, Q), and that if –MQ ≤ X, Y, Z < MQ, then (X, Y, Z, Q) will
be a valid dr-rational point. That is to say, a regular polytope can be considered to be a set of
dr-rational points, with no dr-rational boundary points. It is assumed that integer arithmetic is
available, and is accurate within its range of validity.

2.5 Properties of the regular polytope

It is relatively simple to show that the space O spanned by the regular polytopes is a
topology [4, 15] based on the definition of regular polytope as an open set. It is also a non
Euclidean metric space. The set of n-tuples of real numbers (x1, x2, … xn), denoted Rn,
defines a Euclidean space, however although the points spanned by the regular polytopes
can be described by a tuple of numbers, these are not real numbers but a finite
representation, and the space is not Euclidean. (This is true of any finite representation,
whether the point coordinates be stored as integers, floating point or dr-rational numbers).

It is readily apparent that for any regular polytope O, 8p; p 2 O , p=2O, and that: O [
O ¼ O1 and O \ O ¼ OO= , where O∅ and O∞ are the empty and universal regular
polytopes respectively. Thus no points exist between O and O, in contrast with most
conventional approaches where (in the mathematical model) space is partitioned into a
region’s interior R°, exterior R and boundary δR, with ∀p, p 2 R� _ p 2 R _ p ∈ δR. A
further consequence is that the axioms of a Boolean algebra [20] are satisfied (leading to the
development of the concept of a Boolean connection calculus—see section 4.7).

Note—there are conceptual differences between conventional polyhedra and polytopes.
The latter may be unbounded, and a polytope partitions space into two sets (interior and
exterior) rather than three (interior, boundary and exterior). For example, in Fig. 4, both
examples are not fully bounded, and points coincident with the boundaries shown as dashed
do not belong to the regions.

2.6 The regular polytope as a closed and open set

The space O, spanned by the regular polytopes is a finite point set. Thus all regular
polytopes are both open and closed, and therefore fit the definition of a “regular set” as
described by Lemon & Pratt [5]. This is not to be confused with the partially open region
(or closed-open region) often referred to in topology texts. By contrast, the regular polytope
is fully open and fully closed, and is thus considered to be a boundary-free representation.
This is possible because 1. The definition of half space does not admit any boundary point
set to exist (as described in Section 2.4) and 2. The finite nature of the point-sets ensures
that the set reaches its limit points along the edges.

In Fig. 5, note that all points are either inside or outside the regular polytope, and no
distinction for points lying on the boundary lines is necessary. An alternate view of the
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boundary-free nature of the regular polytope is to consider the definition of a boundary in a
metric space. In a metric space, an open set may possess a boundary, but the boundary points do
not belong to the set. A closed set contains its boundaries. For example, in the one dimensional
case, a closed interval I=[0, 1], and an adjacent open interval J=(1, 2) share a common
boundary, but it belongs to the closed interval only. The upper bound of I is defined as min
{r: r ≥ i ∀ i ∈ I}, while the lower bound of J is defined as max{s: s ≤ j ∀ j ∈ J}. Clearly these
bounds are both equal to 1.

If the same intervals are considered in dr-rational numbers, the upper boundary of I is
still 1, but the greatest lower boundary of J, by this definition is 1+γ where γ is the
minimum representable interval. Thus the interval J is closed, and does not share a
common boundary with I. Similarly in Fig. 5, it is possible to define an eastern (and
northern) boundary for the set depicted, which contains some points that belong to the set,
but this boundary does not match the half spaces shown (dotted lines).

Fig. 5 Point set definition of a
regular polytope (as an open and
closed region)

 
 

Fig. 4 Convex polytopes, not fully bounded (left 2D, right 3D)
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2.7 Regular polytope overlap

Two regular polytopes are defined to overlap if their intersection is not empty:

OV O1;O2ð Þ ¼def O1 \ O2 6¼ OO= ðdef7Þ
The inequality test in this definition is problematic because equality of two regular

polytopes is defined in point-set terms (O = O′ = def p∈O ⇔ p∈ O′), and is therefore difficult
to implement. Rather than the more general “equals” (or not_equals) relation, it is more
convenient to implement a specialized “Empty” function, re-stating (def7) as: for
O1 ¼

S
i¼1::n1

C1i, O2 ¼
S

j¼1::n2

C2j, OV can be defined as:

OV O1;O2ð Þ ¼def 9C1i 2 O1;C2j 2 O2 : :Empty C1i \ C2j

� �
: ðdef8Þ

Since the intersection of two convex polytopes is itself a convex polytope, the
computability of overlap depends on the definition of a convex polytope “Empty” test. It
has been shown that this test is computable using dr-rational numbers [15].

The definition of overlap can be used to define further computable predicates—as follows:

PartOf : P O1;O2ð Þ ¼def :OV O1;O2

� �
: ðdef9Þ

Equals : EQ O1;O2ð Þ ¼def P O1;O2ð Þ and P O2;O1ð Þ: ðdef10Þ
These can be readily verified to correspond to the usual point set definitions—e.g.:

OV O1;O2ð Þ , 9 p 2 O1 \ O2 ð3Þ

P O1;O2ð Þ , 8p; p 2 O1 ) p 2 O2 ð4Þ

EQ O1;O2ð Þ , 8p; p 2 O1 , p 2 O2 ð5Þ
The regular polytopes can be shown to span a topological space [4, 15].

3 Connectivity of geometric objects

One of the more important properties of geometric objects is that of connectivity.
Intuitively, this can be thought of as the property that a geometric object has if it is “in one
piece”; see Fig. 6. It is the aim of this research to formalise this definition for regular
polytopes in order to support robust determination of connectivity.

In the polygon representation, as defined by standards such as ISO 19107 [21], the
connectivity of a polygon is mandated by requiring one (or zero) outer boundary, with zero
or more inner boundaries. This does require further qualification to cover cases of tangential
connectivity. A fuller discussion can be found in [1] with the following condition
recommended for a valid polygon: “any point inside or on the boundary of the polygon can
be reached through the interior of the polygon from any other point inside or on the
boundary of the polygon, that is, it defines one connected area” (assuming Euclidean
space). The polygons in Fig. 6 are connected, but more problematic examples can be seen
in Figs. 7 and 9.
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Frequently, where more than one outer boundary can exist, the geometry is known
as a “multi-polygon” [2]. The regions in Fig. 7 would not normally be considered
continuous—or at least their interiors are not continuous, but they are each defined using
a single outer boundary. Egenhofer et al. [22] discuss the type of geometry, where a hole
is strongly connected to the outer boundary (Fig. 7, left region), and do consider it to be
connected.

It is clear that the connected region alone cannot provide a basis for a topological
space, because the union or intersection of two connected regions need not be
connected. That is to say the operations of union and intersection are not closed
because, for example, the union of two connected regions need not be a connected
region—see Fig. 8.

3.1 Alternative definitions of connectivity

The topological definition of connectivity is: “A connected set is a set that cannot be
partitioned into two nonempty subsets which are open in the relative topology induced on
the set. Equivalently, it is a set which cannot be partitioned into two nonempty subsets such

Fig. 7 Discontinuous regions with single outer boundaries. (The circled points are supposed to co-inside
exactly, but have been drawn slightly separated for clarity)

a b c

Fig. 6 Examples of connected polygons
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that each subset has no points in common with the set closure of the other” [23]. This is not
a useful definition in the context of the finite digital computer for which the regular
polytope is designed, since any half space that cuts a regular polytope, by definition cuts it
into two non-overlapping, open regions, each equal to its closure (see section 4.1).

In order to provide a rigorous and useful definition of connectivity in the realm of
regular polytopes, it is important first to decide what we wish to mean by “connected”. It is
suggested, following the OGC Simple Feature Specification [2] usage, that regions such as
those pictured in Fig. 7 should not be considered to be connected, but note that these
regions are not regular in the topological sense (see Section 4). A more difficult issue is
whether shapes such as those in Fig. 9, where the contact occurs through a region of lower
dimensionality, should be considered to be connected.

Cohn and Varzi [24] identify twelve varieties of connection, based on two criteria. The
first criterion is determined by whether the interiors of the regions connect, the closures of
the regions, or the regions themselves. This is not an issue with the Regular Polytope
representation, since a regular polytope has no boundary points. Thus only the second
criterion needs to be considered, reducing the varieties of connection to four, represented as
Ca, Cb, Cc and Cd in Fig. 10.

A   B  not
connected

A   B  not connected

A  
A

B

B

Fig. 8 Non-closure of union and intersection

Fig. 9 Marginal ‘connectivity’
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The regions used in Fig. 10 to illustrate Ca to Cd do not themselves overlap, (i.e. in the Cc

and Cd cases, y has a hole the exact size of x). The definitions can be expressed loosely as:

Ca if the regions touch (at one or more points).
Cb if the regions touch at a surface in 3D (line in 2D). (See also Fig. 11)
Cc if the regions touch at the entire boundary of one region (in this case x completely
fills a hole in y).
Cd if one region completely surrounds the other (x completely fills a hole in y and the
inner and outer boundaries of y do not touch).
OV if one region completely or partially overlaps the other.

The Cc and Cd varieties of connection are clearly too strong for most practical uses.
These would normally be characterized by the word “enclosure” rather than “connection”.
The Cb form of connection is clearly useful, and can be called “strong connection”; it is the
Ca form (“weak connection”) which is more problematic. Borgo et al. [25] use the concept
of strong connection (Cb) to restrict the definition to what is intuitively a “physical
connection” rather than mere contact. The analogy used is that a worm should be able to
pass from one region to the other without exposing itself to the outside world. This is the
form suggested by van Oosterom, Quak and Tijssen [1].

Connectivity may also be described in terms of the dimensionality of the region of
contact [26], i.e. whether the region of contact is a point, line, surface or solid. In 3D, point
and line connectivity are cases of Ca, surface connectivity is Cb while solid “contact” is
overlap. The interrelation of these approaches in shown in Fig. 11.

y 

x 

y 

Ca 

y 

x 

y 

x x 

y 
x 

Cb
Cc

Cd
OV 

Fig. 10 Connection relations Ca to Cd [21], with overlap (OV) depicted

Weak Connection

Ca

Cb ⇒ Ca

OV ⇒ Cb ⇒ Ca  

Strong Connection Overlap 

0D meet  1D meet 2D meet 3D overlap 

2 3 4 5 6
7 

1 

Fig. 11 Modes of Connectivity in 3D
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Commercial GIS and spatial DBMS products, ISO 19107 [21] and the OGC Simple
Feature Specification [2] are at considerable variance in their approaches to this question,
and indeed, are often internally inconsistent (e.g. allowing contact between points on inner
rings but not outer boundaries) [1]. Ultimately, the decision as to what variety of
connectivity should be supported should be based on the “usefulness” of the result, with
both forms being useful in different contexts.

In this paper, Ca and Cb are taken to be implied by overlap. Thus:

Ca if the regions touch (at least at one point) or overlap.
Cb if the regions touch at a surface (line in 2D) or overlap.
Therefore: OV ⇒ Cb ⇒ Ca.

3.2 Arguments for weak connectivity—Ca

In the Cadastral information domain, connectivity of type Ca is argued for on the basis that any
change in the definition of a parcel will affect all neighbours, including the “corner” neighbours.

The fact that a parcel is defined by a point which also is part of the definition of another
parcel, could be taken as a reason to assert that the parcels are connected. In Fig. 12, the
point p participates in the definition of parcels A, B, C and D, therefore its re-definition by a
resurvey will affect all these parcels. (A and C, and B and D are weakly Ca connected).

3.3 Difficulties with weak connectivity

Although counter-intuitive, it is possible for twoCa connected regions to cross each other without
their interiors intersecting—for example, see Fig. 13. This seems to be an undesirable property.

Returning to Fig. 12, a property consisting of the amalgamation of parcels A and C
would be Ca connected, as would the amalgamation of B and D, and these two properties
would cross without overlapping.

It is clear that neither Ca nor Cb provides the complete answer in all cases, so the algebra
should be explored using both forms. As a result, two complementary, but different
connection algebras are discussed in this paper. The subscript will be used to make this
distinction. In Fig. 12, the weak connection between B and D is notated as Ca(B, D) while
the strong connection between A and D is notated as Cb(A, D).

A 

D 

B 

C 

p 

E 
Road

Fig. 12 Cadastral parcels. A re-
survey of parcel A could affect
parcel C as well as B, D and E
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4 Defining connectivity in the regular polytope

In order to remove arbitrary distinctions between regions, based on concepts that have no
real-world importance, “… it is nonsense to ask whether a physical object occupies an open
or a closed region of space, or who owns the mathematical line along a property frontier”
(Lemon & Pratt page 10) [5], Lemon & Pratt invoke the concept of a “regular set”. A
regular set is readily shown to be equal to the interior of its closure. In particular, the
interior of the closure of any set is a regular set (possibly empty or disconnected).

The process of forming a regular region in this way removes some kinds of pathological
connection such as those in Fig. 7. See the result of these two cases in Fig. 14. However
this operation (‘make regular’) does not solve the point wise tangentiality issues in Fig. 6(c)
and the polygons in Fig. 9.

The critical question with regular polytopes is whether a rigorous definition of connectivity
can be formed.

Fig. 13 Two Ca connected
regions crossing without
intersecting

Fig. 14 The shapes from Figs. 7 and 9 regularised

Geoinformatica



4.1 Half space connectivity issues

In defining connectivity, it is essential that if a connected region is bisected by a half space
(and its complement), then the two regions so created are connected to one another.

For example, in Fig. 15, if O is a regular polytope, and is divided by a half space H, then
if OH ¼ O \ H , and OH ¼ O \ H,

OH [ OH ¼ ðO \ HÞ [ O \ H
� �

¼ O \ H [ H
� �

¼ O by the definition of complement of a half spaceð Þ
Thus any definition of connectivity must require that CðOÞ , C OH [ OH

� �
Note that,

since no point can belong to a half space and its complement, it must be possible for convex
polytopes to be connected without overlapping.

4.2 Regular polytope definition of Ca

The concept of a domain-restricted rational point set interpretation of a regular polytope
allows the definition of “pseudo-closure” of a regular polytope. The pseudo-closure of a
half-space, H(A, B, C, D), Hpc, is defined as the set of all dr-rational points (X, Y , Z, Q),
–MQ ≤ X, Y, Z ≤ MQ (extending the range which was –MQ ≤ X, Y, Z < MQ) such that point
(X, Y , Z, Q) ∈ Hpc if AX + BY + CZ + DQ ≥ 0. (Note the equal sign, which includes all
boundaries). The pseudo-boundary of a half space H(A, B, C, D) is the set of all dr_rational
points (X, Y , Z, Q) such that AX + BY + CZ + DQ=0.

The pseudo-closure C pc of a convex polytope C is defined as:

Cpc ¼ \
i¼1::n

Hpc
i whereC ¼ \

i¼1::n
Hi: ðdef11Þ

The pseudo-closure O pc of a regular polytope O is defined as:

O pc ¼
[

i¼1::m

Cpc
i whereO ¼

[

i¼1::m

Ci ðdef12Þ

The pseudo-closures form the basis of an alternative closed-set topology on the set of dr-
rational points.

Two regular polytopes O1 and O2 are considered to be Ca connected if a dr-rational point
p exists such that p is within O1

pc and within O2
pc, i.e. if their pseudo-closures overlap. This

will be denoted as Ca(O1, O2).

Fig. 15 A regular polytope
bisected by a half space and its
complement
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4.3 Regular polytope definition of Cb

By contrast, the definition of Cb does not use the pseudo-closure. Instead, an axiomatic
definition is used:

Cb C1;C2ð Þ ¼def 9C : C � C1 [ C2 ^ C \ C1 6¼ CO= ^ C \ C2 6¼ CO= : ðdef13Þ

Note that C1 and C2 do not need to overlap, but a convex polytope must fit within the
union of C1 and C2 and must cross the boundary, as shown in Fig. 16. The actual
implementation of Cb takes a slightly different form from this definition, but can be shown
to be equivalent.

If C1 and C2 overlap, i.e. C1∩C2 ≠ C∅, then letting C = C1∩C2, it is clear that C ⊆
C1∪C2, C∩C1 ≠ C∅ and C∩C2 ≠ C∅. Therefore OV ⇒ Cb.

The implementation of the Cb predicate takes this form (see Fig. 17):
If C1 and C2 overlap, then Cb(C1, C2) - done.
Otherwise, if there exists one mutually anti-equal pair of half spaces (one half space

from each convex polytope) Hi∈C1, Hj∈C2, Hi ¼ Hj, then
Form the intersection of all the remaining half spaces:

C ¼ Hk 2 C1 : Hk 6¼ Hi;Hl 2 C2 : Hl 6¼ Hj

� �
:

If this convex polytope is cut by Hi and Hj, that is to say,C∩Hi ≠ C∅ and C∩Hj ≠ C∅,
then Cb(C1, C2) - done.

(Clearly, from this definition: C ⊆ C1∪C2, and C∩Hi = C∩C1 ≠ C∅ and C∩Hj = C∩C2 ≠
C∅).

Otherwise ¬Cb(C1, C2) - done
Equivalently - for C1 = {Hi, i=1..n}, C2 = {Hj, j=1..m}

Cb C1;C2ð Þ ¼def OV C1;C2ð Þ _ 9Hi 2 C1;Hj 2 C2 : Hi ¼ Hj ^ C \ Hi 6¼ CO= ^ C \ Hj 6¼ CO=

� �
;

whereC ¼ Hk 2 C1 : Hk 6¼ Hi;Hl 2 C2 : Hl 6¼ Hj

� �
:

If there is no anti-equal pair of half spaces, and C1 and C2 do not overlap, then they
cannot be Cb connected. If more than one pair of anti-equal half spaces exists, then the
convex polytopes definitely are not Cb connected.

In Fig. 17, for example, the region C (shown dotted) can be formed in each case by
forming the intersection of the two convex polytopes (omitting the anti-equal half space
pair), but only in the left hand case does the half space divide C.

For regular polytopes O1 ¼
S

i¼1::n1

C1i;O2 ¼
S

j¼1::n2

C2j;Cb can be defined as:

Cb O1;O2ð Þ ¼def 9C1i 2 O1;C2j 2 O2 : Cb C1i;C2j

� �
: ðdef14Þ

C1

C2

C

Fig. 16 C lies within C1 ∪ C2,
and overlaps C1 and C2
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4.4 Properties of Ca and Cb

It is clear that:

Ca O1;O1ð Þ for O1 6¼ OO= and Ca O1;O2ð Þ ) Ca O2;O1ð Þ:
and that the same applies to Cb.

That is to say that both Ca and Cb obey the axioms for the definition of the “connects
with” relation of the basic RCC theory [27]. It is also clear that

OV O1;O2ð Þ ) Cb O1;O2ð Þ; and that Cb O1; O2ð Þ ) Ca O1; O2ð Þ:
It is important to note that the details of the definitions, and in particular the use of dr-

rational numbers and pseudo-closure are in some sense “under the covers”. To the outside
observer, the definition of half space, and therefore convex and regular polytopes is in terms
of integers (A, B, C and D). It is only when connection or overlap is to be determined that
dr-rational arithmetic is required.

4.5 Internal connectivity of regular polytopes

Neither Ca(O1, O2) nor Cb(O1, O2) imply that O1 or O2 are internally connected. For
example, in Fig. 18, regular polytopes A (hashed) and B (shaded) are Cb connected to each
other, but B is not internally connected.

A regular polytope can be defined as “Ca connected” by induction as follows:
A Ca connection S is defined as a set of convex polytopes S = {Ci: i=1..j} such that:

S is a Ca connection if j=1 and ¬Empty(Cj).
∀C∈O, S′ = {C, Ci: i=1..j} is a Ca connection if {Ci: i=1..j} is a Ca connection , and
∃ i ≤ j such that Ca(C, Ci).
(Note—this implies ¬Empty(C)).

C1 

C2 

C1 

C2 

Hi Hj 

C1 

C2 C 

C1 

C2 
C 

Hi 
Hj 

Hj 

Cb(C1,C2) Cb(C1,C2) 

Hi 
Hj 

⎤

Fig. 17 Forming the connection region from convex polytopes
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Figure 19 shows a regular polytope consisting of seven convex polytopes. These are
grouped into three Ca connections. A Ca connection is by definition a regular polytope, and
a regular polytope is said to be Ca connected if it is a Ca connection.

Internal Cb connectivity can be defined in the same way for regular polytopes. Note that
the regular polytope in Fig. 19 has four Cb connections, with the connection marked 2
being composed of 2a and 2b which are separated as Cb connections. Note also that if a
regular polytope contains any empty convex polytopes in its definition, then it cannot be Ca

or Cb connected (by the above definition). This is the reason that a regular polytope is
defined as a set of non-empty convex polytopes in Section 2.3.

4.6 Defining the connection relations

The implementation strategy for regular polytope connection predicates proceeds as follows:

& Intersection, union and negation on regular polytopes are defined as described in
Section 2.3.

& Define Empty(C) on convex polytopes to implement: Empty(C) = def ∀p, p∉C.
& Use this to define OV(A, B) and Empty(A) on regular polytopes A, B.

A 

B 

B

B

Fig. 18 Regular polytope
connectivity

1
2

3

2b

2a 

Fig. 19 Regular Polytope con-
taining three Ca connections
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& Use these to define A ⊆ B =def Empty (A \ B) (denoted P(A, B) in the RCC – see
Section 5)

& Define equals (A = B) =def (A ⊆ B) ∧ (B ⊆ A) (denoted EQ(A, B)).
& Define connection as Ca and/or Cb as required.
& Define all remaining Region Connection Calculus relations (see Table 1).

This is the approach that was used to implement a set of Java classes in 2D and 3D [28],
and rigorously defines all the relations, but is not the sequence of definitions as given in [6],
since that approach is not compatible with a finite topological space. The original approach
was to define the “part of” relation P(A, B) (defined as A ⊆ B above) in terms of the
connection relation. The definition was:

P A;Bð Þ ¼def 8Z C Z;Að Þ ! C Z;Bð Þ½ �
This had the unwanted and surprising side effect that it required the space to be non-atomic.

Randell, Cui and Cohn [6] discussed the possibility of an “atomic” RCC theory, defining:

PROP REGIONðAÞ ¼def 9Z : NTPP Z;Að Þ
It was shown by Düntsch et al. [29, 34], however, that this definition is redundant, and

that all regions in an RCC must be proper. Roy and Stell [30] discuss this in a context of a
discrete space, and conclude that this definition cannot be maintained. The approach they
use defines a dual pseudo-complement, but this is unnecessary in the case of the regular
polytope topology, since the issue of boundaries and closure has been addressed by the
definition of half space used. Instead, it can be shown that the space of regular polytopes
forms what could be called a “Finite Boolean Connection Algebra”.

4.7 Regular polytopes as a Boolean connection algebra

It can be verified readily that the axioms of a Boolean Algebra [20] are satisfied by the set
of regular polytopes, with the role of the zero (0) being fulfilled by the empty regular
polytope O∅, and 1 by the universal regular polytope O∞. The Boolean operations “and”
(∧) and “or” (∨) are represented by the intersection (∩) and union (∪) operations as defined
for regular polytopes. The proof of this assertion can be found in [15], and follows directly
from the definitions of intersection, union and complement.

Predicates Description

C(A, B) A connects to B (implementing Ca or Cb)

DC(A, B) A is disconnected from B [=def ¬C(A, B)]

OV(A, B) A ∩ B ≠ 8 (overlaps)

P(A, B) A � B part ofð Þ ¼def :OV A;B
� �� �

]

PP(A, B) A ⊂ B (proper part) [=def P(A, B) ∧ ¬P(B, A)]

EQ(A, B) A = B (equality) [=def P(A, B) ∧ P(B, A)]

EC(A, B) C(A, B) ∧ ¬OV(A, B) (externally connected)

TPP(A, B) A � B ^ C A;B
� �

(tangential proper part)

NTPP(A, B) A � B ^ :C A;B
� �

(non-tangential proper part)

PO(A, B) OV(A, B) ∧ ¬P(A, B) ∧ ¬P(B, A) (proper overlap)

Table 1 The basic relations of
RCC theory [6]
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Roy and Stell [30] also add axioms equivalent to the following to define connectivity,
thus creating a Boolean Connection Algebra:

(B1) C(A, B) ⇒ C(B, A)
(B2) C(A, A) for A ≠ O∅
(B3) 8A A 6¼ OO= ;O1

� �
: C A;A

� �

(B4) ∀ A ≠ O∅, B ≠ O∅, C ≠ O∅: C(A, B∪C) ⇔ [C(A, B) or C(A, C)].
(B5) ∀ A ≠ O∞ , ∃ B ≠ O∅ : ¬C(A, B).

It has been shown [15] that the space spanned by regular polytopes satisfies these
axioms apart from the final “non-atomic” axiom (B5), using strong (Cb) or weak (Ca)
connectivity. It is also shown that the closely related axioms of a weak proximity space [31]
are satisfied.

The final axiom (B5) and the equivalent “strong” axiom of the Proximity space, in effect
state that for any proper subset of the space, there exists another subset which is not
connected to it. It is readily shown that this cannot be satisfied by a finite space [30, 34].

Consider A to be an atomic set, A ≠ O∅, such that A′ ⊆ A ⇒ A′ = A or A′ = O∅.
Consider A, the complement of A:
A 6¼ O1 ) 9B 6¼ OO= : :C A;B

� �
. (by (B5).

But :C A;B
� � ) B � A. Contradiction.

Therefore there can be no atomic set in a space that satisfies (B5).

Without this axiom, the space spanned by regular polytopes can be called a Finite
Boolean Connection Algebra, or a Weak Proximity Space.

5 Conclusion

Using the regular polytope, it is possible to rigorously define connectivity, overlap, and equality
of regions. This allows the full set of RCC relations to be defined as follows (Table 1).

At first sight, this seems to be a small number of relations compared to the 512 that
can be identified using the Egenhofer 3×3 matrix [32], but as has been shown by
Zlatanova [33], only eight of them are distinct and applicable to pairs of surfaces in 2D, or
pairs of solids in 3D. All of the predicates in Table 1 are derivable from those eight. Note
also that for all of the predicates which are defined in terms of C, there are two varieties—
based on Ca and Cb, thus the predicates DCa, DCb, ECa, ECb, TPPa, TPPb, NTPPa and
NTPPb can be defined.

It has been shown [4, 15] that the space of regular polytopes obeys the axioms of the
Region Connection Calculus [6] based on the definitions given in section 2, and that it
forms a Weak Proximity Space [31]; and a Boolean Connection Algebra [30]. It is
important to remember that it is the computational representation that satisfies the axioms,
not an abstraction which is approximated by the computational representation. Thus it is
possible to computationally apply the operations in any combination with complete
confidence that no logic failure can result.

The regular polytope has been shown to be a viable and robust model for the
representation of spatial objects. This representation has been shown to possess a useful,
complete, rigorous and closed logic, in the computational domain. It is important to note
that the logic is applied to the representation itself. The representation is not just an
approximation of a mathematical model which displays the logic. Thus the programming
can proceed without generating a large number of special cases (or surprises).
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5.1 Comparison with other approaches

In common with the infinite precision rational number approach, the Regular Polytope objects
cannot be rotated through an arbitrary angle with exact results. This is also true of objects stored
using integers or floating point numbers. It is given that, in a limited precision computer, there
must be approximations [11], with the variation being in the frequency and impact of these
approximations. The important fact, and that which makes the Regular Polytope and infinite
precision rational approaches so valuable is that the underlying spatial algebra is rigorous (in
common also with the Realms and Dual Grid approaches in 2D).

The differentiation between this and the infinite precision rational number approach is to be
found in the precision requirements. The probability that a randomly selected rational number
can be simplified (by determining a common factor between numerator and denominator and
dividing through) is only about 40% (actually 1-6/π2) [15,35]. Thus it cannot be expected that
there will be any appreciable savings to be gained by simplifying rational numbers.

In 2D, the increase in precision requirements in the infinite precision rational number
approach is fairly modest, but this is not true of the 3D case. If the intersection of two
polyhedra is calculated, the new points generated can require seven times the storage space
of the original points [15]. Thus, assuming ordinary 32bit integers for the first generation,
any derived objects may require 224bit integers to store. This continues through subsequent
generations—1568bit, 10968 etc.

This is not true of the Regular Polytope. The storage requirements do not increase, and
there is no loss of computational power over time, no matter what the depth of the
computational complexity. Ordinary 32 and 64 bit integers are sufficient to store the half

Function Description

complement A�
union A ∪ B

intersection A ∩ B

Table 2 Topological functions

The partOf predicate: 

/** Determines if this regular polytope is within the other 
    * @param other The other regular polytope 
    * @return True if this regular polytope is within the other */
public boolean PartOf(Polytope other) { 
  Polytope otherM = other.inverse(); 
  otherM = otherM.intersection(this); 
  return  (otherM.convexPolys.size() == 0);  } 

The equals predicate: 

/** Determines if this regular polytope is equal to the other 
    * @param other The other regular polytope 
    * @return True if every point in this regular polytope is 
    *  within the other and vice versa.   */ 
public boolean equals(Polytope other) { 
  return (this.isWithin(other) && other.isWithin(this));  } 

Fig. 20 Java implementation of partOf and equals
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space definitions, and, although more precision is needed internally to calculate predicates
such as “isEmpty”, there is no need to store these higher precision numbers.

5.2 Implementation in Java

A demonstration suite of software has been written in Java, which implements all of the basic
functions listed in Tables 1 and 2. This has been demonstrated with practical volumes (about
1000 parcels) of real Cadastral data [28]. In many of the cases such as those in Fig. 20, the
predicates defined in Java are defined exactly in terms of their theoretical definitions.

In this paper the important issue of connectivity has been discussed and though not
trivial two alternate definitions been given, the later having advantages in robustness. It has
been shown that the regular polytope representation can support the Relation Connection
Calculus, and could appropriately be referred to as a Finite Boolean Connection Algebra.

The technique has been shown to be computable, both theoretically—using rigorous
proofs, and practically—using demonstration Java programs.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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