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Abstract One of the central problems in contem-

porary ecology and conservation biology is the

drastic change of landscapes induced by anthropo-

genic activities, resulting in habitat loss and

fragmentation. For many wild living species, local

extinctions of fragmented populations are common

and recolonization is critical for regional survival.

Successful recolonization depends on the availability

of dispersing individuals and the degree of landscape

connectivity. The obvious implications of landscape

connectivity for conservation biology have led to a

proliferation of connectivity measures. However,

general relationships between landscape connectivity

and landscape structure are lacking, and so are the

relationships between different connectivity metrics.

Consequently, there is a need to develop landscape

metrics that more accurately characterize the land-

scape with an emphasis on the underlying processes.

Here we review various definitions of landscape

connectivity, explain their mathematical connota-

tions, and make some unifying conclusions and

suggestions for future research.

Keywords Conservation biology � Habitat
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Introduction

One of the central problems in ecology and contem-

porary conservation biology is the drastic change of

landscapes due to anthropogenic pressures, which

entails habitat loss and fragmentation for many wild

living species (Benton et al. 2003). For such species,

local extinctions of fragmented populations are com-

mon (Fahrig and Merriam 1994) and recolonization is

critical for regional survival (Levin 1974; Hastings

1980; Fahrig and Merriam 1994; Hanski 1999a). This

means that the species are likely to survive only within

networks of patches that are sufficiently connected by

dispersing individuals (Fahrig and Merriam 1985;

Adler and Nuernberger 1994; Hanski 1999a; Bowne

and Bowers 2004). Whether or not patches can be

recolonized depends on the availability of dispersing

individuals and the ease with which these individuals

can move about within the landscape. The latter is

usually called ‘‘landscape connectivity’’ (Merriam

1984) and is therefore considered to be of paramount

importance for species survival (Fahrig and Merriam

1994; Moilanen and Hanski 1998; Pain et al. 2000;

Ricketts 2001; Briers 2002).
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Habitat loss tends to increase habitat inter-patch

distances and decrease habitat patch sizes (Turner

and Ruscher 1988; Saunders et al. 1993). Both effects

will tend to decrease landscape connectivity, as

greater inter-patch distances are harder to cross (Laan

and Verboom 1990; Vos and Stumpel 1995) and

smaller habitat patches are harder to find (Kareiva

1985). The rest of landscape after exclusion of habitat

patches is usually called ‘‘matrix’’. The matrix thus

consists of patches of non-habitat elements and its

composition can also influence movement behavior

(Baars 1979; Johnson et al. 1992a, b; Matthysen et al.

1995; Pither and Taylor 1998; Jonsen and Taylor

2000; Goodwin and Fahrig 2002a) and movement

risk (Sakai and Noon 1997; Zollner and Lima 1999;

Hanski et al. 2000). Landscapes dominated by matrix

patches that facilitate movement will have high

connectivity while landscapes dominated by matrix

patches that impede movement will have low

connectivity. Similarly, certain configurations of

matrix patches might reduce landscape connectivity

(e.g., when impassable patches encircle all habitat

patches) or increase landscape connectivity (e.g.,

when impassable patches are clumped and far from

habitat).

The potential for landscape connectivity to

impact populations in heterogeneous landscapes,

and the obvious implications for conservation biol-

ogy, have led to an increasing interest in landscape

connectivity (Goodwin 2003) and a proliferation of

connectivity measures (Tischendorf and Fahrig

2000a, b). However, general relationships between

landscape connectivity and landscape structure,

necessary for predicting the impact of landscape

change on its connectivity, are lacking, and so are

the relationships between different connectivity

metrics which in turn would allow the results from

different studies of landscape connectivity to be

compared. Moilanen and Hanski (2001) conclude

that the connection between connectivity measures

and the fundamental processes determining species

distributions often seems unclear. Some connectivity

measure is necessary for assessing the capacity of

fragmented landscapes to support viable populations

(Moilanen and Hanski 2001). Consequently, there is

a need to develop landscape metrics that can

adequately characterize the landscape with relevance

to the underlying processes. Here we review various

definitions of landscape connectivity, provide

mathematical explanations of these definitions, and

make some unifying conclusions and suggestions for

future research.

From intuitive definitions to basic categorization

The way authors define the term ‘‘connectivity’’ is

often vague (e.g., Brotons et al. 2003; Thies et al.

2003). Connectivity has been described as ‘‘the

degree to which landscape facilitates or impedes

movement of organisms among patches’’ (Taylor

et al. 1993; Tischendorf and Fahrig 2000b; Schooley

and Wiens 2003; ‘‘the functional relationship among

habitat patches due to their spatial distribution and

the movement of organisms in response to landscape

structure’’ (Taylor et al. 1993; With et al. 1997); or

‘‘the ease with which these individuals can move

about within the landscape’’ (this study). However, in

order to compare results of different studies and to

make quantitative predictions, we need more precise

definitions.

Two basic groups of definitions can be distin-

guished: structural connectivity where connectivity

is based entirely on landscape structure (e.g., Green

1994; With et al. 1997; Metzger and Décamps 1997;

Tiebout and Anderson 1997; Girvetz and Greco

2007), with no direct link to any behavioral

attributes of organisms (Green 1994; With et al.

1997; Metzger and Décamps 1997; Collinge and

Forman 1998; Collinge 2000), and functional con-

nectivity which considers organisms’ behavioral

responses to individual landscape elements (patches

and edges) and the spatial configuration of the entire

landscape (Doak et al. 1992; Demers et al. 1995;

Gustafson and Gardner 1996; Schumaker 1996;

Ruckelshaus et al. 1997; Pither and Taylor 1998;

Tischendorf and Fahrig 2000b; Sweeney et al.

2007). Consequently, functional connectivity covers

situations where organisms venture into non-habitat

(matrix), where they may (1) face higher mortality

risks (e.g., Gaines and McGlenaghan 1980; Henein

and Merriam 1990; Poole 1997; Sakai and Noon

1997), (2) express different movement patterns (e.g.,

Baars 1979; Wallin and Ekbom 1988; Wegner and

Merriam 1990; Hansson 1991; Johnson et al. 1992a;

Andreassen et al. 1996b; FitzGibbon et al. 2007),

and (3) cross boundaries (e.g., Mader 1984; Wiens

et al. 1985; Duelli et al. 1990; Mader et al. 1990;

Mauremooto et al. 1995; Sakai and Noon 1997;
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Walker et al. 2007). Goodwin (2003) subdivides

these two basic groups further into 10 subcategories,

which are: presence or absence of corridors, dis-

tances, amount of habitat, contagion or percolation,

dispersal success, graph theory, movement proba-

bility, searching time for a new habitat, re-

observation of displaced individuals, immigration

rate. Calabrese and Fagan (2004) subdivide func-

tional connectivity measures into two: the potential

type with limited information about dispersal ability

and the actual type related to the observation of

individuals moving in or out focal patches. This

permits the differentiation of functional measures

that are empirically based from those that combine

field data with modeling. These two types corre-

spond to what we call here structural and functional

connectivity, as we define connectivity as a measure

of easiness of movement.

The recent debate between landscape ecologists and

metapopulation biologists (Tischendorf and Fahrig

2000b; Moilanen and Hanski 2001; Tischendorf and

Fahrig 2001) seems to suggest that it is advisable to

distinguish between ‘‘landscape connectivity’’, in

which connectivity is seen as a property of an entire

landscape, and ‘‘patch connectivity’’, which identifies

connectivity as an attribute of a patch and is typically

used in metapopulation ecology (Tischendorf and

Fahrig 2001).

Structural definitions

Measures based on presence, absence,

or configuration of corridors

and stepping-stones

Corridors are narrow, continuous strips of habitat

that structurally connect two otherwise non-contig-

uous habitat patches. The corridor concept (e.g.,

Forman 1983; Merriam 1991; Saunders and Hobbs

1991; Lindenmayer and Nix 1993; Merriam and

Saunders 1993; Noss 1993; Bennett et al. 1994;

Bonner 1994; Dawson 1994; Rosenberg et al. 1997;

Tischendorf 1997; Haddad 1999; Brooker et al.

1999; Graves et al. 2007; Ockinger and Smith

2007) originated from the generalized assumption

that organisms do not venture into non-habitat.

Some authors equate connectivity to the presence

and absence of corridors between small fragments

(e.g., Hess 1996; Swart and Lawes 1996; Anderson

and Danielson 1997; Ims and Andreassen 1999;

Danielson and Hubbard 2000; Hunter 2002), with

corridor width (Andreassen et al. 1996a), length

(Haddad 2000) or corridor continuity (Andreassen

et al. 1996b). Thus no assumption is made about a

particular animal, only the percentage of corridors

between patches out of the possible number of

corridors is considered as a measure of connectivity.

Measures based on distances

Structural connectivity is often measured by means of

Euclidean shortest distance measures, starting from

simple measures such as nearest-neighbor-distance,

to more complex ones where all surrounding patches

within dispersal distance of a patch contribute to its

connectivity (Moilanen and Hanski 2001; Moilanen

and Nieminen 2002). These include fractal dimen-

sion, patch contagion, or patch isolation (Turner

1989; Wiens et al. 1993; Schumaker 1996; Gustafson

1998; Hargis et al. 1998). Such approaches do not

incorporate the characteristics of the landscape

between the patches (Hof and Flather 1996; Hess

1996), and therefore might inappropriately use the

same movement rules in both habitat and matrix

elements (Schumaker 1996; Gustafson 1998). Most

of these measures are based on the formula

S ¼
Xn

i¼1

Ac
i

X

j6¼i

Dðdij; aÞAb
j

(Moilanen and Hanski 2001), where Ai is the area of

patch i (=1, 2,…, n); parameters b and c scale area,

patch i being the target and patch j being the source

of migration; D(dij, a) scales the effect of distance on

migration rate; dij is the distance between patches i

and j and a is a vector of species-specific parameters

describing the dispersal ability of the species.

This formula is used in many modifications, like

ESLI (ecologically scaled landscape indices) by Vos

et al. (2001), buffer-connectivity index by Cabeza

(2003), IFM-connectivity index (Incidence Function

Model) by Moilanen and Nieminen (2002). Topog-

raphy is also sometimes considered (Swanson et al.

1998; Turner 1989; Dorner et al. 2002).
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Measures based on graph theory

Graph theory is sometimes used to describe connec-

tivity (e.g., Bunn 2000; Bunn et al. 2000; van

Langevelde 2000; Ferrari et al. 2007; Jordan et al.

2007; Treml et al. 2007) and presents a combination

of the previous two categories. Two commonly used

connectivity measures include area-weighted dis-

persal flux and traversability:

F ¼
Xn

i

Xn

j;i 6¼j

pijsi

pij ¼ �eðh�dijÞ

where si is the size of node i, h [ 0 is an extinction

coefficient, and dij are the functional distances

between patches i and j.

If a graph’s diameter, d(G), is defined as the

longest path between any two nodes in the graph,

where the path length between those nodes is itself

the shortest possible length, then traversability is

calculated as the average diameter of the largest

component in the graph formed by the removal of one

randomly chosen patch: T = d(G0), where G0 is the

largest component of G.

Measures based on the amount of habitat

in the landscape

In some studies, the area of specific linear elements

within a buffer around the patch, for example the

length or area of hedgerows closer to the habitat patch

in question than some predefined distance, was used as

a measure of connectivity (e.g., Verboom and Van

Apeldoorn 1990; Vos and Chardon 1998). Another

measure is the ‘‘ring statistic’’ (Wiegand et al. 1999).

Its basic idea is to place rings with radius r around each

cell of a given habitat type 1 (e.g., cells with good-

quality habitat) and calculate the mean density of cells

within these rings that are of habitat type 2 (e.g., cells

with bad habitat). This statistic is supposed to charac-

terize spatial structure as a function of the animal’s

perception of habitat types located at a critical distance

from the animal’s current location.

Measures based on contagion or percolation

In this approach, the landscape is again considered to

be a two-dimensional grid, in which the grid cells are

classified as either habitat or matrix cells. Landscape

connectivity is then understood as the spatial conta-

gion of habitat. This means that habitat is understood

as connected, if each habitat cell is joined with a

neighboring habitat cell along at least one horizontal

or vertical edge. Thus any organism capable of using

the habitat should be able to traverse across this

landscape (With and Crist 1995). As the habitat

becomes dissected into smaller and smaller parcels,

such landscape connectivity may abruptly become

disrupted. Thus landscapes may exhibit critical

thresholds in this type of connectivity, often with

serious ecological consequences (Gardner et al. 1987;

Krummel et al. 1987; O’Neill et al. 1988). Percola-

tion theory (Orbach 1986; Stauffer and Aharony

1991) has recently been used to predict where these

critical thresholds occur and thus how landscape

structure might affect ecological processes (Gardner

et al. 1987; O’Neill et al. 1988).

Functional definitions

Functional definitions consider the behavioral

responses of organisms to landscape pattern. Let us

first introduce the variables used in the formulas in

this section:

np, nc, and nb, number of patches, cells, or

individuals in the landscape;

pp
ij; the probability of moving from patch i to

patch;

pc
ij; the probability of moving from cell i to cell j;

vp
i and vc

i ; the number of patches or cells visited by

individual i;

mp
i and mc

i ; the number of immigrants into patch i

or cell i.

Measures based on the probability of moving

between patches

Connectivity based on organism movements has been

measured as mean probability of moving between

pairs of patches, also referred to as emigration or

dispersal success (Andreassen et al. 1996a; Gustafson

and Gardner 1996; Schumaker 1996; Ruckelshaus

et al. 1997; Tischendorf and Fahrig 2000a; Tischen-

dorf 2001). It can be calculated as patch transition

probability,
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Pnp

i¼1

Pnp

j¼1

pp
ij

npðnp � 1Þ ; i 6¼ j

or cell transition probability:

Pnc

i¼1

Pnc

j¼1

pc
ij

ncðnc � 1Þ ; i 6¼ j

Another aspect is represented by the multi-state

models (Nichols and Kendall 1995; White and

Burnham 1999).

Measures based on the amount of time spent

searching for a new habitat patch

Search time is the average number of movement steps

necessary for a randomly placed individual to reach a

habitat patch. The average is usually calculated over

all successful movements of all individuals between

any two different habitat patches (Doak et al. 1992;

Tischendorf and Fahrig 2000a; Tischendorf 2001).

Measures based on the rate of re-observation

of displaced individuals

Connectivity based on organism movements has been

measured as re-observation after displacement (Pither

and Taylor 1998; Castellón and Sieving 2006).

Measures based on immigration rates

Dispersal success is the total number of immigration

events into all habitat patches in the landscape,

divided by the initial number of individuals. Usually

only the first time an individual entered a habitat

patch is counted as an immigration event for that

individual (Demers et al. 1995; Schumaker 1996;

Tischendorf and Fahrig 2000a; Tischendorf 2001):

the lower the immigration rate, the more isolated is

the patch. Immigration rate depends on (1) the

amount of occupied habitat surrounding the focal

patch, (2) the number of emigrants leaving the

surrounding habitat, (3) the nature of the intervening

matrix, (4) the movement and perceptual abilities of

the organism, and (5) the mortality risk of dispersers

(Wiens et al. 1993). Some studies equate patch

isolation with connectivity (Hjermann and Ims 1996;

Grashof-Bokdam 1997; Ault and Johnson 1998).

Measures of dispersal success include:

Patch immigration:

Pnp

i¼1

mp
i

np

Cell immigration:

Pnc

i¼1

mc
i

nc

Patch visits:

Pnb

i¼1

tp
i

nb

Cell visits:

Pnb

i¼1

tc
i

nb

Measures based on matrix permeability

One of the main determinants for movement behavior

of the species under question is the resistance of the

landscape matrix: land use types can hinder (roads,

bare soil) or enhance (hedgerows—Gelling et al.

2007; Michel et al. 2007) movement (Dawson 1994;

Debinski and Holt 2000). Thus Moilanen and Hanski

(1998) used species-specific migration coefficients

for the different land use types in the matrix between

patches. They define connectivity of patch i as

Ci ¼
P

j

pje
�adij Ab

j , where pj [ 0, a [ 0, 0 \ b B 1

are parameters, Aj is area of patch j and dij is distance

between patches i and j. Ricketts (2001) introduced

another measure of permeability: If Tjk is the number

of individuals transferring from site k to site j, Dijk is

the distance of the route across habitat i, and a and z

are fitted constants, then resistance parameters, r1,

r2,…, for habitats 1, 2,… can be fitted from the

equation Tjk ¼ a

P
i

riDijk

� �z

:

Baudry et al. consider a realistic assumption that

movement is differentially difficult in different types of

habitat. Chardon et al. (2003) compared the cost-

distance measure that incorporates the resistance of the
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landscape matrix to movement with the Euclidean

distance and show that the former is better. Species-

specific dispersal capacity may also depend on

habitatspecific mortality, food availability, and edge

permeability among different types of habitat (Hein

et al. 2003).

Dynamical landscapes

Landscape spatial structure is not constant but

changes over time. Temporal heterogeneity (habitat

life span) is variability over time in the extent and/or

quality of the habitat. Rapidly changing landscape

structure can result in increased distance and rate of

dispersal. If the rate of change in dispersal is not as

fast as the rate of change in the landscape, the

regional population will not survive (Fahrig and

Merriam 1994). Thus if patch lifetime becomes too

small, metapopulation extinction becomes inevitable.

Therefore, for a given life history, a threshold for

metapopulation extinction exists not only for the

amount of suitable habitat, but also for patch turnover

(Keymer et al. 2000; Fischer 2001). Thus the higher

the rate of landscape change, the lower the probabil-

ity of regional population survival.

By focusing on temporal components of landscape

structure, Marquet and Velasco-Hernández (1997)

and Brachet et al. (1999) studied the effects of

landscape dynamics upon metapopulation persis-

tence. These studies agree about the importance of

dynamic properties of the landscape in determining

metapopulation persistence. Fahrig (1992) compared

the relative effects of temporal and spatial scales

upon metapopulation persistence of a single species.

She found that the effect of temporal scale far

outweighed the effect of spatial scale on population

persistence. Generally, if habitat is very ephemeral,

particulars about spatial parameters, such as dispersal

distance and inter-patch distance, may be ignored

(Fahrig 1992). Travis and Dytham (1999) show how

higher dispersal rates evolve in ephemeral habitats in

response to fluctuating habitat availability.

Relationship between different measures

of landscape connectivity

Goodwin and Fahrig (2002b) compared patch transi-

tion probability, cell transition probability, patch

immigration, cell immigration, patch visits and cell

visits. Their simulations revealed that all of them were

influenced by different aspects of landscape structure,

suggesting that: (1) landscape connectivity is a poorly

defined concept, and (2) the same landscape may have

different landscape connectivity values when different

measures of landscape connectivity are used. There

were two general predictions that held over all

measures of landscape connectivity: (1) increasing

inter-patch distance significantly decreased landscape

connectivity and (2) the influence of matrix elements

on landscape connectivity was small in comparison to

the influence of habitat elements.

Metapopulation models have been criticized for

ignoring the characteristics of the non-habitat

(‘‘matrix’’) portion of the landscape (Tischendorf

and Fahrig 2001). In contrast, landscape models often

assume that movement through matrix depends on

attributes of the matrix, which may influence dis-

persal mortality and/or movement direction (e.g.,

Tischendorf and Fahrig 2000a). Therefore, in meta-

population ecology, movement between patches

depends only on the distance between patches and

the inherent ‘‘dispersal ability’’ of the organism (as

captured in the colonization rate parameter). In

landscape models, movement through the landscape

is assumed to depend on the interaction between

characteristics of the matrix and the movement

behavior of the organism (Tischendorf and Fahrig

2001). There is a recent trend toward including

population size and matrix effects in metapopulation

models (e.g., Heino and Hanski 2001; Moilanen and

Hanski 2001; Moilanen and Nieminen 2002), how-

ever. Spatially explicit models of metapopulations,

on the other hand, have shown that landscape

structure and patch dynamics can affect metapopula-

tion dynamics and persistence (Bascompte and Solé

1996; Bevers and Flather 1999), and the outcome of

species interaction (Tilman et al. 1997; Dytham 1995;

Huxel and Hastings 1998; Klausmeier 1998).

Measuring connectivity based on patch immigration

leads to the counter-intuitive result that connectivity is

zero (no successful dispersal, or infinite search time)

when there is only one habitat patch in a landscape.

This goes counter to the assumption that a landscape

containing a single contiguous habitat patch should

have higher connectivity than a landscape with the

same amount of habitat occurring in many disjoint

patches (Tischendorf and Fahrig 2000b). This is
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sometimes attributed to the fact that these measures

completely ignore within-patch movements (Tischen-

dorf and Fahrig 2000b). However, if the patch-level

connectivity measure takes into account the expected

number of migrants, which in the simplest case scales

linearly with patch area, increasing fragmentation does

not necessarily increase patch connectivity (Moilanen

and Hanski 2001).

Modeling approaches

Random pixel-to-pixel movement

Many models simulate movement as random walks

(Doak et al. 1992; Schumaker 1996; With et al. 1997;

Ruckelshaus et al. 1997; With and King 1999). In this

approach, the step length (length of movement during

one step) is usually chosen from a negative exponential

distribution with a defined average. The direction of

movement is usually chosen from the uniform or

normal probability distribution, for a random and

directed walk, respectively (Schumaker 1996;

Tischendorf et al. 1998; Goodwin and Fahrig 2002b).

This, however, tends to ignore many of the complex-

ities of movement behavior in landscapes (Travis and

French 2000). Thus differential mortality in different

environments (e.g., habitat, hospitable matrix, inhos-

pitable matrix), and/or differential permeability of

boundaries can also be assumed (Tischendorf et al.

1998; Tischendorf and Fahrig 2000a).

Landscape submodel

A landscape is either randomly created or obtained

from GIS, usually consisting of habitat, hospitable

matrix and an inhospitable matrix (Tischendorf and

Fahrig 2000a, b). One way to create a random

landscape is as follows: Three-dimensional surfaces

with different degrees of topographic ‘‘ruggedness’’

(i.e., spatial autocorrelation in elevational displace-

ment) are created by superposing two-dimensional

Gaussian functions

f x~ð Þ ¼ h
1ffiffiffiffiffiffiffiffi
2pr
p exp

1

2

x~� x~0j j2

r2

 !
;

where x~0 denotes random locations, and h and r are

real numbers. Placing horizontal planes at two (one

positive and one negative) elevations along the

elevational gradient within the three-dimensional

maps produces three elevational zones in the land-

scape: high, intermediate, and low. High elevations

are then associated with one type of habitat (e.g.,

good habitat), low elevations with another type of

habitat, and intermediate elevations with the matrix

(Wiegand et al. 1999).

Connectivity calculation

A set of individuals is randomly distributed in the

landscape and let to move according to the defined

rules. The rules differ greatly among modeling

studies and therefore Tischendorf and Fahrig

(2000b) argue for more consistency in describing

movement in connectivity-related models. Various

connectivity measures can then be calculated. One

advantage of simulation models is that functional

connectivity can be explicitly modeled.

Discussion

What is the way forward for landscape connectivity

research? Because there are many connectivity met-

rics in the literature and because most studies use

only a single metric, there is an urgent need for

comparing and generalizing studies of landscape

connectivity. Models should incorporate more realis-

tic movement behavior to determine which aspects of

behavior have a large effect on landscape connectiv-

ity (Goodwin 2003). We also need more research

interrelating various connectivity metrics. Few stud-

ies to date have compared multiple measures of

connectivity, suggesting that relating such metrics to

one another may be difficult (Goodwin 2003).

Because present measures of structural connectivity

are not suitable for incorporating the role of the

matrix, new measures are needed that adopt a more

functional approach (Knaapen et al. 1992; Gustafson

and Gardner 1996; Hanski 1999b).

Whether it is possible to extrapolate information

about organism’s movement behavior on small scales

toward larger scales in space and time by movement

modeling is a crucial question in landscape ecology.

This observation is not new. The need to insert more

animal behavior into landscape ecology was sug-

gested by Lima and Zollner (1996), echoed by

Landscape Ecol (2008) 23:879–890 885

123



Haddad (1999), and discussed in depth by Bélisle

(2005). Experimental studies of trapping or tracing

organisms are restricted in different ways. First, such

experiments are constrained by space and time.

Second, tracing studies, which provide the best

insight into the movement behavior of individual

organisms are protracted and labor intensive and

therefore limited to a small number of organisms.

Finally, field studies are carried out in one specific

landscape configuration, yet conservation plans need

information about the consequences of changing

landscape structures on movements and their out-

comes. Thus, modeling movement behaviors within

heterogeneous landscapes could build a bridge

between experimental studies and management deci-

sions. So far, however, only few modeling attempts

have been made towards this goal (Kareiva and

Shigesada 1983; McCulloch and Cain 1989; Johnson

et al. 1992a; Wiens et al. 1997). Spatially explicit

models require fine-scale data on movement and

demography. Acquiring these data depends on the

dispersal distance (as capture-recapture methods and

radio-tracking methods are difficult to use for long

distance dispersers), mobility type, and body size of

organisms of interest.

We should abandon the common belief that each

landscape is associated with a certain connectivity

value. It is not. Connectivity has two dimensions:

landscape and the organism considered. Only a

combination of these two will yield a meaningful

value of connectivity. Thus, different landscapes may

have different degrees of connectivity for the same

species, and the same landscape may have different

degrees of connectivity for different species or even

for the same species at different times. Landscape

connectivity also changes with the choice of mea-

sures. For example, connectivity measures based on

distances may be appropriate for birds as the matrix

and corridors may not be of great importance in this

case. Measures based on the amount of corridors in

the landscape may be appropriate for small mammals

(e.g., carabid beetles) whose movement is affected by

matrix permeability. Evidently, each of these mea-

sures will give us a different connectivity for the

same landscape.

Thus, we should move from the idea of ‘‘Connec-

tivity = f(landscape)’’ to the approach of ‘‘Connectivity =

f(landscape, organism)’’. To achieve this goal,

more functional connectivity measures need to be

developed to reflect broad categories of organisms

and their biological traits. In other words, a major

challenge in connectivity research today is to develop

functional connectivity measures that incorporate

both species-specific movement behavior and land-

scape structure, and that are relatively simple to

calculate.
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