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ABSTRACT 

An explicit expression is derived for the connectivity of circulant digraphs. 

1. INTRODUCTION 

A digraph D consists of a finite set of vertices V ( D )  and a set of arcsA(D) which 
is a subset of all ordered pairs (u ,  u), u ,  u E V ( D ) ,  and u # u. If (u,  u) E A ( D ) ,  
then u is a predecessor of u and u is a successor of u. 

For a subset U C V ( D ) ,  D - U denotes the subgraph of D induced by 
V ( D )  - U .  Furthermore, the set 

6,(U) = {U  E V ( D )  - U :  (u,u) E A ( D )  for some u E U }  

is called the outset of U in D .  If U = {u}  we write 0, ( u )  instead of OD({u}). Also, 
if E is a subgraph of D we write O,(E) instead of O,(V(E)). 

A cut-set C of D is a proper subset of V ( D )  such that D - C either is not 
strongly connected or consists of a single vertex. C is a minimum cut-set if any 
other cut-set of D has at least IC( vertices. The size of a minimum cut-set is 
denoted by K ( D )  and called the connectivity of D .  Clearly, K ( D )  5 IV(D)I - 1 
with equality subsisting only if D is complete. 

For a fixed integer n > 0 and set S C {1,2, . . . , n - 1) we construct a di- 
graph D = D(n ,S)  with vertices vot u I ,  . . . , u,-, as follows: (ui, u j )  E A(D) if 
and only i f j  - i s(mod n )  for some s E S. Any digraph that can be constructed 
in the above manner is called a circulant digraph (or directed star polygon). In 
this note we derive an explicit expression for the connectivity K ( D )  of a circulant 
digraph D = D ( n , S )  in terms of its order n and its symbol S. 
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For any vertex u E V ( D )  of a circulant digraph D = D ( n , S )  one has 

so that an upperbound for the connectivity of D is given by 

since removal of Ofl(u)  from D disrupts all directed paths from u to any other 
vertex in D - Ofl(u).  If equality holds in (2) the circulant digraph D is said to 
be K-optimal. It is of interest in network design studies to be able to identify 
the class of circulant digraphs which are K-optimal. Our basic result on the 
connectivity of circulant digraphs, which is stated in Section 3, enables us to 
perform this identification. It will subsequently be shown that the known suf- 
ficient conditions for K-optimality of circulant digraphs follow readily from our 
result. Section 2 contains some preliminary results. 

If the symbol of a circulant digraph D = D(n,S) is such that s E S <=> 
n - s E S, so that the arc (u,, u,) E A(D) if and only if (u,, u , )  E A(D), we can 
replace D(n ,  S) by the corresponding graph G(n,  S) in which u, is adjacent to u, 
if and only if the pair of arcs (u, , u,) and (u,, u , )  are in A @ ) .  Any graph that can 
be obtained in this way is a circulant graph. Defining connectivity for graphs in 
the usual way [7], a circulant graph and its corresponding digraph have the same 
connectivity. The recently obtained necessary and sufficient condition for 
K-optimality of circulant graphs [4] and all previously known sufficient condi- 
tions (see the references in 141) can therefore be obtained from our result by 
thinking of such a graph as the corresponding digraph. 

In what follows circulant stands for circulant digraph. When we consider 
labeled circulants it is always tacitly understood that the labeling corresponds to 
the construction rule for circulants. For concepts used but not defined here we 
refer to Harary’s book [7]. 

2. MODULES AND ATOMIC TRAPS 

We consider a circulant D = D ( n , S )  with vertices uo, u I ,  . . . , u , , - ~ .  Let r 
be a divisor of n (notation: r l n ) .  For i = 0, 1,. . . , r - 1 we denote by 
F :  = F:(D)  the subgraph of D which is induced by the set of vertices V(F:)  = 
{ u I ,  u,+,, u , + z ~ ,  . . . , u ~ + , , - ~ } .  Any such subgraph F :  will be called a module of D 
(of order n / r ) .  We next define 

M ( r , S )  = {I: 1 5 1 < r and 1 E s(mod r)  for some s E S}, (3) 

so that, in particular, M ( n , S )  = S and M(1,S) = 8. 

Lemma 1. For any r l n  and i E {0,1,. . . , r  - I} one has 
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Proof. It is clear that if V(F',) contains a successor of a vertex in V(F: ) ,  i + j ,  
then each vertex of V(F',) is a successor of a vertex in V(F:) .  Hence, 10D(F:)l is 
n / r  times the number of modules F!, j # i, which contain successors of a vertex 
in F:.  But then, one has ( u , + ~ , ,  u,+,,) E A ( D )  for some k and 1 (0 5 k ,  I < n / r )  
if and only if either j > i and j - i E M ( r , S )  or j < i and r + j - i E 
M(r, S ) ,  whence this number of modules equals lM(r, S)l. I 

If (O,(FI)I < n - n/r ,  or, equivalently, (M(r ,  S)l < r - 1 ,  then OD(F:)  con- 
stitutes a cut-set. We can therefore state the following. 

Lemma 2. For each r I n such that IM(r, S)l < r - 1 one has 

(5) 
n 

K ( D )  5 - l M ( r , S ) ( .  
r 

In what follows we will show that equality holds in ( 5 )  for some r 1 n. The main 
obstacle in establishing this result is a proof for the fact that D contains a 
minimum cut-set which is the outset of a module of D .  The remainder of this 
section will be dedicated to this task. We start off with some terminology. 

The strongly connected components of the subgraph D - C of a digraph D ,  
where C is a minimum cut-set of D ,  are called parts of D with respect to C .  A 
part T of D with respect to C whose vertices have no successors outside T in the 
subgraph D - C will be called a trap of D with respect to C .  Clearly, for each 
minimum cut-set of D there is at least one trap. Furthermore, it is readily verified 
that if T is a trap of D with respect to the minimum cut-set C ,  then C consists 
precisely of the successors of the vertices in T which are outside T, that is, 
C = O,(T). A trap T of D with the property that IV(T)l does not exceed the order 
of any other trap of D is an atomic trap. The order of an atomic trap will be 
denoted by a(D ) . 

We will investigate the structure of an atomic trap of a circulant. It will be 
convenient, however, to first consider self-converse digraphs, that is, digraphs 
D = ( V ( D ) , A ( D ) )  with the property that D is isomorphic to its converse D '  = 
(V(D ' ) , A ( D  ')), where V(D ') = V ( D )  and A(D ') = {(u, u): (u, u)  E A ( D ) } .  The 
next lemma, which is easy to verify (cf. the proof of Proposition 3 in [ l]), shows 
that this context is more general. 

Lemma 3. A circulant is self-converse. 

If D is a self-converse digraph and P is a part of D with respect to the cut-set 
C such that the vertices of P have no predecessors outside P in the subgraph 
D - C ,  then P is a trap of D '  with respect to C ,  whence (V(P)(  2 a ( D ' )  = 
a ( D ) .  Therefore, we can invoke Proposition 1 of [6]  to conclude the following. 
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Lemma 4. In a self-converse digraph distinct atomic traps are disjoint. 

We are now ready to state the key result of this section. 

Lemma 5. An atomic trap of a circulant D is a module of D. 

Proof. Let V ( D )  = {uo, u , ,  . . . , un-,} be the vertex set of the circulant D and 
let T be an atomic trap of D. If IV(T)I = 1 then the lemma is trivially true, 
therefore assume IV(T)l > 1. Since rr = (uou, * * * u ~ - ~ )  E Aut(D), the sub- 
graph of D induced by rr'(V(T)) is an atomic trap of D for any i. Moreover, by 
Lemmas 3 and 4, either rr'(V(T)) = .rr'(V(T)) or rr'(V(T)) f l  .rr'(V(T)) = 0. 
Thus {a ' (V(T) ) :  i = 0,1, . . . , n - 1) is an imprimitive block system for (rr), 
the group generated by rr. Since blocks of (rr) are vertex sets of modules, T is 
a module. 1 

3. CONNECTIVITY OF CIRCULANTS 

By Lemma 5 an atomic trap of the circulant D = D(n ,S )  is a module of D of 
order a = a(D).  Since the minimum cut-set corresponding to an atomic trap is 
the outset of that atomic trap, it follows by Lemma 1 that 

If D is complete, then a = 1 and K ( D )  = n - 1. On the other hand, if D is not 
complete, then removal of the minimum cut-set corresponding to an atomic trap 
leaves at least two parts, whence K ( D )  < n - a, i.e., lM(n/a,S)I < n/a - 1. 
Lemma 2 subsequently yields our main result. 

Theorem 1. The connectivity K ( D )  of a circulant D = D ( n , S )  which is not 
complete is given by 

lM(r,S)l:  r l n  and lM(r ,S ) \  < r - 1 (7) 

Example. 
the results of Table I. 

The circulant D( 12, { 1,4,5,9}) has connectivity 3 as appears from 

Some corollaries to Theorem 1 will now be derived. First we will give a 
condition for a circulant D to be strongly connected, i.e., K ( D )  2 1, which was 
mentioned earlier in [2]. 

Corollary 1. The circulant D ( n , S ) ,  where S = {sl, s2, .  . . ,s,q} is strongly 
connected if and only if g.c.d. (n, s,, s2, . . . , sw) = 1. 
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TABLE 1. Connectivity analysis for the circulant of order n = 12 with symbol 
S = {1,4,5,9} 

Proof. By Theorem 1 we have K(D) 1 1 if and only if IM(r, S)l > 0 for all 
r I n,  r > 1. The statement follows readily. I 

The most important problem pertaining to connectivity of circulants is to 
determine whether a given circulant D(n, S) is K-optimal. A simple sufficient 
condition is given in the next corollary. 

Corollary 2. The circulant D(n,S) is K-optimal if g.c.d.(n,s) = 1 for all 
s E S. 

Proof. Let T be an atomic trap of D = D(n,S) and assume uo E V ( T ) .  
If [V(T)I = a(D) = 1, then, by (6), K(D) = lM(n,S)I = IS[, so that D is 
K-optimal. Next suppose (V(T)I > 1. T is strongly connected, whence there 
exists an s E S such that u, E V ( T ) .  Since g.c.d.(n,s) = 1 and T is a module 
of D, it follows that T = D, which is a contradiction. I 

In particular, D(n,S) is K-optimal if n is prime. 
The next sufficient condition for K-optimality was stated (without proof) in 151 

and (with an incorrect proof) in [8]. (rxl denotes the smallest integer greater than 
or equal to x . )  

Corollary 3. If the circulant D(n,S) is such that i E S for i = 1,2,. . . , 
r[S)/21, then D ( n , S )  is K-optimal. 

Proof. If r I n and n > r > r(S(/21, then IM(r, S ) (  2 (Sl/2. Since n/r 2 2 ,  
it follows that (n/r)lM(r,S)I 2 1SI. If, on the other hand, r 5 rlS1/21, 
then I M ( r , S ) [  = r - 1 .  By Theorem 1 we therefore have K ( D )  = 
IM(n,S)I = (Sl. I 

We finally remark that K-optimality for the more special case where 
S = {1 ,2 , .  . . , IS/} was proven in [3]. 
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