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Abstract

Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian
subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity
between populations. While significant conservation effort has been invested in increasing tiger population size, few
initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have
on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this
issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-
invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic
assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial
analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and
host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape
and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger
corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to
maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current
economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve
wild tigers in the Indian subcontinent.
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Introduction

Habitat loss, prey depletion and poaching have severely affected

wild tiger populations. Around 3,600 adult tigers occur in less than

7% of their historical range [1]. Despite drastic decline in their

habitat and numbers, the Indian subcontinent remains the

stronghold for long-term tiger persistence, and harbours nearly

60% of the global population of wild tigers [2–4]. Most of these

individuals currently exist in small and isolated Protected Areas

(PAs); which are too small to even hold demographically viable

populations [3]. As a result, recent conservation strategies

emphasize the need to expand conservation efforts to include

more than one meta-population [5]. These efforts have led to

identification of ‘‘Tiger Conservation Landscapes’’ (TCLs), which

include a number of PAs interconnected by corridors that could

potentially support viable populations [6].

The success of these meta-population/landscape conservation

approaches depends critically upon detailed understanding of

population dynamics, distribution and dispersal events. Earlier

studies have shown that tiger abundance is driven by prey density

[7], while tiger spatial distribution is driven by prey densities and

human disturbance [8]. Successfully implementing a landscape-

level conservation approach would require knowledge about tiger

dispersal and factors influencing such dispersal events, which is

lacking. However, very little is known about tiger dispersal rates,

landscape predictors (e.g. roads, vegetation types, human habita-

tion) and within PA conditions (e.g. prey density, tiger density)

influencing such dispersal events. For large mammalian carnivores

it is difficult to measure connectivity and dispersal, as long-distance

dispersal events are rare [9]. Radio-telemetry [10–12] and camera

trapping [13] can be used to study dispersal events. However, both

these approaches require long-term monitoring across large

landscapes, and conclusions can be made only if there are

successful dispersal events during the study period.

Approaches involving genetic analyses provide a complemen-

tary tool to the above methods as they can provide information

about population connectivity and relatively recent dispersal

events. Advances in landscape genetics allow evaluation of the

landscape effects on genetic structure and population connectivity

[14], providing the ability to potentially test the impacts of specific

mitigation measures on connectivity in the future. Genetic studies

in northwest India indicates that tigers moved between two tiger

reserves, which were 120 km apart [15], while that from central

India suggest connectivity over distances of around 200 km [16].

These results come from Protected Areas that have relatively

contiguous tiger habitat between them, or have potential corridors

for movement exist, and do not highlight the factors influencing

connectivity. Understanding elements of the landscape that
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facilitate connectivity and dispersal is crucial to successfully

manage tiger populations at a landscape level.

In this study we combine genetic approaches with landscape

ecology to study tiger dispersal between six PAs of the Central

Indian landscape, and examine how the nature of the intervening

landscape elements influences their dispersal. We define connec-

tivity as a larger ecological measurement of gene flow from one

population to another by immigrating individuals. The Central

Indian landscape supports one of the largest tiger populations in

India, and has been identified as a global tiger conservation

landscape [5]. Its configuration (in terms of tiger population,

number of PA’s, and mean distance between them) makes this

landscape a potentially good model system to investigate

landscape-level connectivity. However, over the last decade it

has witnessed large-scale land use modification with increasing

urbanization, expansion of highways, mining within and around

forested habitats and increase in tourism. This has led to

speculation that tiger populations within this landscape are

isolated or are under threat of isolation, and recent efforts to

mitigate the barrier effects of roads have gained importance at a

national level [17].

We specifically ask the following questions: (1) Are tigers

dispersing between populations in the Central Indian landscape,

resulting in population connectivity? and (2) What landscape

features, if any, affect connectivity in this landscape? We discuss

the implications of our results for tiger conservation in human-

dominated landscapes, with a particular focus on incorporating

connectivity in the effective planning and management of existing

PA networks and intervening areas.

Methods

Ethics
All field-based sampling was conducted non-invasively, without

animal handling. Permissions to conduct research in the various

Protected Areas were obtained from the relevant Forest Depart-

ments (Permit No./Technical-1/6473 and Permit No./D-22(8)/

Research/3255/2009-10). Institutional biosafety and bioethics

permissions were obtained from the National Centre for Biological

Sciences, TIFR.

Study Area
The study was carried out in six PAs encompassing the major

tiger populations of central India (Figure 1). These PAs are

situated at varying distances from each other (Table S1) and

spread across three states. Melghat Tiger Reserve (MTR), Pench

Tiger Reserve (PTR), Nagzira Wildlife Sanctuary (NGWLS), and

Tadoba-Andhari Tiger Reserve (TATR) are in the state of

Figure 1. Study area. Map of the study area showing the tiger-habitat and sample locations.
doi:10.1371/journal.pone.0077980.g001

How Does the Landscape Impact Tiger Connectivity?

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e77980



Maharashtra; Kanha Tiger Reserve (KTR), in the state of

Madhya Pradesh and Nagarjunasagar- Srisailam Tiger Reserve

(NSTR), in the state of Andhra Pradesh.

Field Surveys
We obtained tiger DNA from faecal samples collected from the

six PAs. Tigers are known to use roads and trails for travelling and

regularly mark their territories by depositing faeces. Existing roads

and trails in the PAs were searched for fresh tiger scats. Each road

or trail was sampled only once to avoid recaptures and maximize

the number of different individual in any of the area covered. Scat

samples (n = 96) were stored in absolute ethanol and the

geographical coordinates were recorded in field. The data

collected in this study were combined with data from 22 other

individual tigers (15 obtained from Mondol et al., [4] sampled in

2008 and seven from the Centre for Cellular and Molecular

Biology, India sampled in 2010).

Laboratory Methods
DNA was extracted from scat samples using QIAamp DNA

stool mini kit (QIAGEN Inc.) as described in Mondol et al., [18].

Species identification was conducted using tiger-specific primers

[19]. Based on expected heterozygosity, polymorphism and

amplification success rates from previous studies in the laboratory,

14 microsatellite loci (FCA069, FCA090, FCA126, FCA230,

FCA232, FCA279, FCA304, FCA441, FCA628, FCA672,

[4,18,20,21] MSHDZ170, MSFCA453, MSF115 and MSFCA506

[22] were used. PCR products were multiplexed and run with LIZ

500 size standard in an automated sequencer ABI3100XL

(Applied Biosystems). Alleles were visualized using GENEMAP-

PER version 4.0 (Applied Biosystems) and scored manually.

Data Quality
To minimize genotyping errors, amplification and scoring of

each locus was repeated four times (for each sample) and a quality

index (as in Mondol et al., [18]) was calculated. Only samples with

0.75 or higher quality were retained for further analyses. Program

MICROCHECKER 2.2.3 [23] was used to estimate null alleles

and scoring errors due to stutter peaks on the complete dataset.

Population Genetic Analyses
Individual identification. Unique individuals (based on

data from 12 or more loci) were identified using the program

CERVUS [24]. Program GIMLET [25] was used to calculate

Probability of Identity for siblings (PID-sibs) for the loci used.

Genetic diversity. Genetic diversity in terms of alleles per

locus (Al), expected heterozygosity (HE) and observed heterozy-

gosity (H0) and Hardy Weinberg equilibrium were calculated using

GENEPOP [26]. Pairwise FST was estimated between protected

areas using program ARLEQUIN 3.1 [27]. Since FST represents

connectivity over the last 150 to 200 years [28], recent

connectivity was assessed using the proportion of shared alleles

(DSP, see Landguth et al., [28] for justification), calculated using

the program MICROSAT [29] and immigration/emigration rates

(estimated using BayesAss 3 [30], see for Munshi-South [31] for

justification).

Relatedness. We used program ML-RELATE [32] to

calculate maximum likelihood estimates of pair-wise relatedness

and relationship categories between individuals from genotypic

data. Allele frequencies, pair-wise genetic relatedness, and kinship

category estimations were performed by entering all individuals’

genotype as a single population, as well as separate populations

(sampling populations) during analyses.

Figure 2. Population structure in the Central Indian landscape. STRUCTURE plot showing the distribution of genetic variation (at K = 3).
Individuals with ‘*’ mark indicate migrants detected by STRUCTURE.
doi:10.1371/journal.pone.0077980.g002

Table 1. FST (above diagonal, genetic differentiation, historical connectivity, significant values in bold) and DSP (below diagonal,
genetic similarity, recent connectivity, standard error in parentheses).

Pench Melghat Tadoba Nagzira Kanha Nagarjun- sagar

Pench 0.0907 0.1438 0.2167 0.0564 0.0735

Melghat 0.937 (0.13) 0.126 0.1679 0.0958 0.084

Tadoba 1.083 (0.12) 0.773 (0.12) 0.1035 0.1605 0.1462

Nagzira 1.172 (0.15) 0.94 (0.11) 0.762 (0.14) 0.1789 0.1461

Kanha 0.789 (0.11) 0.829 (0.09) 0.85 (0.11) 1.006 (0.14) 0.0321

Nagarjun-sagar 1.11 (0,11) 1.017 (0.15) 0.986 (0.14) 1.156 (0.09) 0.899 (0.08)

doi:10.1371/journal.pone.0077980.t001
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Population structure. We used a Bayesian clustering

approach implemented in program STRUCTURE 2.3.2 [33,34]

to identify population structure in our data set. We evaluated the

most likely number of clusters (K), testing values between one and

ten, using one million iterations and a burn-in of 500,000,

assuming correlated allele frequencies. We repeated the analyses

ten independent times and finally the optimal value of K was

calculated using STRUCTURE HARVESTER web version [35].

Detection of migrants. To detect tiger dispersals in this

landscape, we used three different approaches that use allele

frequencies to detect migrant individuals in our dataset. First, we

used prior population information in the USEPOPINFO option

implemented in STRUCTURE 2.3.2 to detect first-generation

migrants in our sampled populations. Run conditions used for this

analysis were as described above. We assigned different migration

rates (MIGPRIOR 0.01, 0.02, 0.05, 0.1) as a sensitivity test during

the analysis. We ran the analysis with two different groups of data:

a) individuals grouped as populations according to their sampling

locations and b) individuals grouped as genetic clusters from our

initial run. These different runs helped us to check consistency of

the results across different genetic groups created.

Further, we used ‘Migrant detection’ function in program

GENECLASS 2.0 [36] to identify first generation migrants. We

used a Bayesian approach as described by Rannala and Mountain

[37] along with the resampling method of Paetkau et al., [38] for

likelihood computation (L_home/L_max), with 10000 simulated

individuals at an assignment threshold (alpha) of 0.01. This

method allows detection of migrants even when the overall

differentiation between populations is low. Apart from first

generation migrant detection, we did individual assignments in

GENECLASS using Bayesian criterion of Rannala and Mountain

[37] in combination without resampling with rest of the

parameters same as described above.

Finally, we used a Bayesian assignment approach implemented

in program SCAT ver. 2.0 [39,40] to support our GENECLASS

and STRUCTURE results. We assigned all individuals found as

migrants (as indicated by both previous analyses) to this landscape

against reference samples (found as resident individuals during our

previous analyses). The advantage of this approach lies in its use of

geographic location information from the reference samples, and

resulting assignment of each unknown individual to a geographic

location. SCAT uses allele frequencies from reference samples and

spatial smoothing methods [41] to generate a geographic map of

allele frequency variation across the entire sampling area

(including intervening areas without reference samples). Reference

allele frequencies were generated based on the Smoothed

Continuous Assignment Technique, using a Markov Chain Monte

Carlo (MCMC) scheme [39,40]. Observed alleles from the

dispersed tigers were then compared with the geographic map of

tiger allele frequencies from that sample’s respective habitat to

determine the range of plausible locations for each sample. We

initially conducted exploratory runs with multiple combinations of

input parameters (burn-in, thinning and iterations) with the entire

data to select the best parameter combinations. After comparing

the results across test runs, ten independent runs with lengths of

100 burn-ins, 10 thinning and 100 iterations were performed. All

resulting likelihood values were compiled excluding the initial

burn-in data. We then estimated the 99% and 95% kernel density

of assignment to identify the uncertainty associated with sample

assignment. Final plots included the original sampling location, the

median latitude and median longitude of assignment, and the

kernel density (both 99% and 95%, representing uncertainty as a

contour) on an India map.

Landscape-resistance Models
Radio-collaring studies on tigers indicate maximum 30 km

dispersal distance for adult males [10]. While this may not extend

to all habitats, it is the only information available on direct

dispersal; hence we used this as a maximum dispersal distance to

delineate our study landscape. We buffered all forested patches up

to a distance of 30 km to define the study landscape. Available

literature reveals that tigers are able to disperse through a wide

range of forested habitats, occasionally through agricultural land

but avoiding urbanized areas [10]. Consequently, we masked out

all urban areas to further refine the study landscape. Night-lights

[42,43]were used to identify urbanized areas; all pixels with values

.20 were categorized as urban centres as these represented class

I–IV towns with populations more than 10,000 people (data

obtained from Census of India 2001). To identify landscape

features that differentially influence dispersal and gene flow,

landscape resistance layers based on proximity between tiger

habitat, percentage tree cover, proximity between human settle-

ments and road densities were developed. Each of these layers has

different spatial resolution, we used the best possible resolution and

Table 2. Results of migrant detection analyses. p resident refers to the probability of an individual belonging to the population
from where it was sampled.

Tiger ID Sampled in

Assigned

Population

GeneClass F0 Log ratio

(L_home/L_max) p Resident

STRUCTURE migrant

probability (MIGPRIOR=0.05)

NSTR6 NSTR KTR 1.633 0.006 0.002

NSTR7 NSTR NGWLS 2.562 0.004 0.053

KNHR2 KTR NSTR 4.523 0.002 0.977

KNHR6 KTR NSTR 5.116 0.001 0.984

KNH13 KTR MTR 1.611 0.008 0.001

KNH15 KTR MTR 2.333 0.004 0.012

PNCR7 PTR KTR 3.921 0.001 0.195

PNCR8 PTR NSTR 4.05 0 0.9409

MELR1 MTR NGWLS 3.206 0.003 0

MELR4 MTR KTR 5.429 0.001 0.913

(NSTR is Nagarjunasagar, KTR is Kanha, PTR is Pench, NGWLS is Nagzira and MTR is Melghat).
doi:10.1371/journal.pone.0077980.t002
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Figure 3. Individual assignment across populations. (a) Barplot showing the percent assignment of each individual to a population. Each bar
represents an individual and the colour represents the population to which it was assigned. The highlighted bars (*) represent the dispersed
individuals. Score of .95% was used as a threshold for complete assignment (b) the inferred Tiger dispersal events over varying distances. The
assignment results suggest that apart from relatively short distance (i.e. ,165 km, between KTR & PTR) individuals are also moving over very large
distances, on the order of 600 km (NSTR-KTR and PTR-NSTR), 500 km (NSTR-NGWLS) and 300 km (MTR-KTR and MTR-NGWLS).
doi:10.1371/journal.pone.0077980.g003
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all layers were re-sampled to a spatial resolution of 1 km2. To

assess the relative influence of various landscapes elements, we

rescaled all resistance layers to range from 1 to 100.

Tiger habitat. We used the MODIS land cover maps

(MCD12Q1), IGBP global vegetation classification scheme to

identify potential tiger habitats. The original data has 17 land-

cover classes at a resolution of 500 m and was generated following

the algorithm described by Friedl et al., [44] using training

datasets. We are aware that limited number of training sites could

have been used to generate these global land-cover maps. Using a

layer of forest administrative boundaries we identified major

classes that represented forested habitats in Central India. These

include all forest types and savannas, we combined all such

patches .10 km2 [6] to represent potential tiger habitats and

assigned a minimum resistance value of 1. The Euclidean distance

between patches of tiger habitat, a measure of proximity between

Figure 4. SCAT plots showing uncertainty in tiger assignment. The blue-coloured dot is the original sampling location; the red-coloured dot
is the median point of assignment. The uncertainty is represented by the 99% & 95% contour. a (NSTR6), b (NSTR7) are individuals sampled in
NSTR; c (KNHR2), d (KNHR6), e (KNH13), f (KNH15) are individuals sampled in KTR; g (PNCR7), h (PNCR8) are individuals sampled in PTR
and I (MELR1), j (MELR4) are individuals sampled in MTR.
doi:10.1371/journal.pone.0077980.g004

How Does the Landscape Impact Tiger Connectivity?

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e77980



patches of tiger habitat was used to assign landscape resistance to

dispersal from one tiger habitat to another; larger distances

represented higher resistances.

Tree cover. We used remotely sensed MODIS Vegetation

Continuous Fields data (MOD44B) to measure percentage tree

cover across the landscape for the year 2009. The original 250

meters dataset provides a gradation of percent tree cover across

the landscape and ranged between 0–67 percent, this was rescaled

to 1–100 to obtain a resistance layer where pixels with lower tree

cover were assigned higher resistance values.

Human settlements. Remotely sensed nightlights data

reflect human densities/urbanization [42,43]. Radiance calibrated

average night-light data at 1 km resolution for 2009 was obtained

from the National Geophysical Data Centre (available at http://

www.ngdc.noaa.gov/dmsp/download_rad_cal_96-97.html). All il-

luminated pixels were extracted to derive a layer of human-

settlements. We are aware that this would be a subset of all

settlements within the landscape as a large number of smaller

settlements without electrification will not be identified. Again,

Euclidean distance from the edge of the settlement was used to

assign resistance to dispersal; larger distances represented lower

resistances and shorter distances or areas in close proximity to

human settlements were assigned higher resistance.

Roads. Using a vector layer of national highways, state

highways and major public roads we generated a raster layer of

road densities at a resolution of 1 km. Areas with higher road

densities were assigned higher resistance values and those without

any road network were assigned the minimum resistance value of

1.

Recent Connectivity and Landscape Resistance
A pair-wise algorithm in Circuitscape 3.5.7 (based on circuit

theory) was used to estimate landscape resistance between sampled

sites [45]. While the pair wise algorithm assumes a uniform source

strength of 1 each of sampled region (polygon), we used the

corresponding tiger numbers (number of camera trapped individ-

uals) [2] as source strength in our calculations. We used number of

camera-trapped individuals as a surrogate for tiger densities as

they might be less biased than the density estimates in Jhala et al.,

[2] are based on limited sampling [46]. A non-parametric Mantel

test (where significance is assessed by permutations) was used to

assess whether pair-wise differences in genetic differentiation

(DSP/immigration/emigration rates) between sampled sites corre-

lated with pairwise differences in landscape resistances. Mantel

tests were implemented in R [47] using package ecodist [48]. We

also investigated whether FST (historical connectivity) is affected by

geographic distance. In order to maintain consistency, we used the

same Mantel tests assuming that resistance was only caused by

Euclidean distance.

Results

Data Quality and Genetic Diversity
From all 96 field-collected faecal samples, we identified 48 tigers

(50%) and 10 leopards (10%). Remaining 38 samples (39.5%) were

unresolved. Using a cut-off criterion of 12 or more loci data, we

identified 33 unique tigers from these samples, without any

recaptures. Our final data comprised a total of 55 individuals (22

additional individuals described in methods section). These data

represent about 30% of the estimated tiger population in this

entire landscape [2]. Numbers of individual tigers from different

PAs were as follows: MTR: 5, PTR: 7, NGWLS: 5, TATR: 16,

KTR: 15 and NSTR: 7.

None of the 14 loci showed deviations from Hardy-Weinberg

Equilibrium (HWE), while only one locus (msFCA506) showed

presence of null alleles. All the loci were polymorphic with a mean

of 11.71 alleles (ranging from 5 to 16 alleles), expected

heterozygosity (HE) of 0.81 and observed heterozygosity (Ho) of

0.54 (Table S2).

Overall, we found low average relatedness value (0.054) and

very few related individuals in the dataset. The relatedness

analyses show only seven pairs of individuals with relatedness value

higher than 0.5. These include individuals mostly from Tadoba

and Nagzira. None of these individuals are assigned a ‘migrant’

status by any of our assignment approaches. The overall

relatedness among individuals is presented in figure S1.

Population Structure and Genetic Differentiation
The STRUCTURE analysis indicates presence of three distinct

genetic clusters (K=3, based on ten independent runs) in this

landscape (Figure 2). Our data reveal that tiger populations are

genetically differentiated at low, but significant levels (Table 1) for

almost all populations. We used DSP as an indicator of relatively

recent connectivity. Similar to FST, DSP values are relatively low

(high values could be as large as 9 or 10), indicating that

populations share alleles. Like with FST, we can be reasonably

confident of our DSP estimates, as standard errors were less than

Table 3. Mantel tests between various measures of genetic
subdivision and geographic distance.

Statistic r2 p value

FST 0.0435 0.42

DSP 0.107 0.53

Immigration rate 0.007 0.79

Emigration rate 0.104 0.29

doi:10.1371/journal.pone.0077980.t003

Table 4. Non-parametric partial Mantel tests between DSP

and landscape resistance (significant values at p = 0.05 level in
bold).

r2 p

Human settlements 0.206 0.033

Human settlements, Roads, Tree cover 0.205 0.035

Human settlements, Roads 0.205 0.036

Human settlements, Tiger habitat 0.203 0.038

Human settlements, Roads, Tiger habitat 0.203 0.043

Human settlements, Tree cover 0.201 0.044

Human settlements, Tree cover, Tiger habitat 0.199 0.049

Human settlements, Tree cover, Tiger habitat, Roads 0.199 0.053

Tiger Habitat 0.196 0.053

Roads, Tiger habitat 0.194 0.067

Tree cover, Tiger habitat 0.192 0.071

Roads, Tree cover, Tiger habitat 0.192 0.071

Tree cover 0.193 0.073

Roads+Tree cover 0.193 0.073

Roads 0.188 0.098

doi:10.1371/journal.pone.0077980.t004
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10% (Table 1). Finally, both emigration and immigration rates

(Table S3, S4) are relatively low, suggesting a relatively low recent

connectivity.

Connected Tiger Populations in the Central Indian
Landscape
Migrant detection in STRUCTURE identified four individuals

with migrant probability .0.9 at K= 3 (Table 2). The inferred

ancestry of individuals did not vary across different assumed values

of migration rate (MIGPRIOR of 0.02, 0.05 and 0.1). Out of these

four migrants, two individuals from KTR were assigned to NSTR,

one from PTR to NSTR and one from MTR to KTR.

In addition to these four migrants detected by STRUCTURE,

GENECLASS identified six additional first generation (Fo)

migrants (Table 2). Results for first-generation migrant detection

and assignment without resampling were the same (Table 2 and

Figure 3). In both cases, a total of ten individuals were assigned to

areas different from their sampled locations. The results show

connectivity between NSTR-KTR, PTR-NSTR, NSTR-

NGWLS, KTR-PTR, KTR-MTR and MTR-NGWLS. However,

TATR seems to be poorly connected, as there are no immigrants

or emigrants detected from this population.

Results from additional analyses conducted in SCAT, on

dispersed individuals identified by GENECLASS and STRUC-

TURE re-iterate our inference of long-distance dispersal. Figure 4

shows median assignment of individuals to geographic location

along with the associated uncertainty. Apart from three sample

(NSTR6, NSTR7 and KTR13), all individuals are assigned very

close to the PAs suggested by the GENECLASS and STRUC-

TURE analysis.

Landscape affects Population Connectivity across the
Central Indian Landscape
Neither FST nor DSP/immigration/emigration rates were

significantly correlated with Euclidean distance (Table 3), suggest-

ing absence of Isolation by Distance (IBD). Mantel tests revealed

that recent connectivity (DSP) was correlated with the presence of

human settlements (r2=0.21, p = 0.033, Table 4), and combina-

tions of landscape elements that included human settlements,

roads, tree cover and tiger habitat (Table 4). Emigration rate

(movement from a protected area) was significantly impacted by

tiger habitat (Table 5, r2=0.11, p = 0.043), roads and tiger habitat

(r2=0.11, p= 0.049) and human settlements and tiger habitat

(Table 5, r2=0.10, p= 0.051). Immigration rate was not

significantly related to any landscape elements or combinations

thereof (Table 6). Figure S2 depicts landscape connectivity based

on combined resistance from human settlements, roads and forest

cover in the Central Indian landscape.

Discussion

Tigers are Dispersing much Greater Distances than
Previously Found
Assignment tests, historical patterns of population connectivity

and measures of recent geneflow indicate population connectivity

in the Central Indian landscape through seemingly tiger-inhospi-

table habitats. This is in concordance with the results from a recent

study done in the Satpura-Maikal (a portion of the Central Indian

landscape) area [16], which suggested low population structure,

implicating connectivity.

Genetic assignment tests identified individuals that migrated

within the last generation; our results support long-distance

dispersal by individual tigers of over 690 km, suggesting that

either this individual (Fo migrant) or its parents moved this

distance. The assignment tests performed in SCAT reinforce our

results, with high certainty in these estimates. The traditional

problem with assignment studies is the inability to assign

uncertainty to these assignments. Our use of SCAT in this context

is very powerful, and could be henceforth added to the suite of

landscape genetic analyses.

Even from a conservative perspective, this suggests a minimum

dispersal distance of 345 km (if the parent moved half the distance,

and the offspring, captured as a migrant in our data, moved the

remaining distance). This is much higher than empirical dispersal

Table 5. Non-parametric partial Mantel tests between
emigration rate and landscape resistance (significant values at
p = 0.05 level in bold).

r2 p

Tiger Habitat 0.109 0.043

Roads, Tiger habitat 0.11 0.049

Human settlements, Tiger habitat 0.107 0.051

Human settlements 0.106 0.053

Human settlements, Roads, Tiger habitat 0.106 0.054

Human settlements, Roads 0.106 0.056

Roads 0.109 0.057

Human settlements, Roads, Tiger habitat, Roads 0.106 0.062

Human settlements, Tree cover 0.105 0.063

Roads, Tree cover, Tiger habitat 0.106 0.064

Human settlements, Tree cover, Tiger habitat 0.106 0.064

Human settlements, Roads, Tree cover 0.106 0.065

Tree cover, Tiger habitat 0.105 0.068

Tree cover 0.104 0.071

Roads, Tree cover 0.106 0.071

doi:10.1371/journal.pone.0077980.t005

Table 6. Non-parametric Mantel tests between immigration
rate and landscape resistance.

r2 P

Human settlements, Tiger habitat 0.0123 0.389

Human settlements, Road 0.0123 0.389

Human settlements, Tree cover, Tiger habitat 0.0117 0.39

Human settlements, Roads, Tree cover 0.0114 0.39

Human settlements, Tree cover, Tiger habitat, Roads 0.0114 0.391

Human settlements, Roads, Tiger habitat 0.0119 0.391

Tree cover, Tiger habitat 0.0104 0.393

Human settlements, Tree cover 0.0119 0.393

Tree cover 0.0079 0.395

Roads, Tree cover, Tiger habitat 0.01 0.398

Tiger Habitat 0.0098 0.399

Roads, Tiger habitat 0.0098 0.4

Human settlements 0.0102 0.402

Roads, Tree cover 0.0096 0.405

Roads 0.0121 0.407

doi:10.1371/journal.pone.0077980.t006
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distances for tigers suggested by camera trap studies (200 km [13])

and genetic data (200 km [15,16]), and close to predicted median

dispersal distances based on theoretical models that use allometric

data (,450 km [49]). While this extends the range of tiger

dispersal two- to three-fold, it could still be an underestimate,

given that radio-collared mountain lions, and other large

carnivores, have been shown to disperse even longer distances

[50–52].

One possible concern with our study is the relatively low sample

size (55 individuals) compared to those in Sharma et al., [16] and

its possible impact on the assignment results. Paetkau et al. [38]

suggest that the Monte Carlo resampling methods such as

implemented in Rannala and Mountain [37] are not ideal when

trying to identify immigrants from a limited data set, leading to an

increased inference of immigrants. The discrepancy we find

between STRUCTURE and GENECLASS support their sugges-

tions. GENECLASS detects a total of ten dispersal events, while

STRUCTURE detects only four. Finally, SCAT appears to be an

intermediate approach between these two, re-enforcing the

individuals detected by STRUCTURE as migrants, but also

suggesting two additional migrants (a total of six migrants). The

fact that all approaches label the same individuals as migrants, and

that even under the most conservative assumptions (STRUC-

TURE results) we find evidence for long-distance dispersal

suggests that our inferences are robust to assignment methods

and their varying assumptions.

Despite lower sample size, our FST values are not qualitatively

different from those observed for tigers in these and other

populations [15]. Additionally, it appears that our results provide

better power to detect population subdivision (compared to [16]).

This is possibly because we use a large number of markers, which

results in greater power to detect population subdivision.

Simulation studies investigating trade-offs between sample size

and number of loci have suggested similar patterns for landscape

genetic processes [53].

Our results show that dispersal is occurring not just across long

distances, but also across a highly fragmented and human-

dominated landscape. Mapping current flow allows us to visualize

how such connectivity may be achieved (Figure S2). While our

study does not aim to identify corridors for movement, resistance

based approaches are useful in identifying landscape elements that

limit gene flow in the Central Indian tiger population. The

burgeoning field of movement and dispersal ecology, which

addresses behavioural decisions made by animals with respect to

dispersal, as well as the habitats selected for such events, will

provide a framework to further investigate such phenomena.

Direct Human Footprint Affects Connectivity
The presence of human settlements has a negative impact on

tiger connectivity (Table 4). Apart from this single parameter, all

Mantel tests that are significant include human settlements along

with other landscape variables. DSP provides more explanatory

power compared to migration rate estimates (higher r2 values,

Tables 5 and 6). When significant, in addition to human footprint

(roads and human settlements), tiger habitat also has an impact on

connectivity. Several studies have shown that roads form linear

barriers to dispersing carnivores [54–56]. However, our results are

amongst the first to show that human population density could be

detrimental to connectivity [57–60]. Most studies addressing

connectivity have been in temperate locations with developed

economies, where human population density is low, unlike in

tropical locations where the economy is developing and human

population density is tenfold higher. We suggest that carnivores

such as tigers might avoid locations of very high human population

density, thus an increase in the direct human footprint (e.g. high

density urban settlements) might be detrimental to connectivity.

Other Factors Influencing Connectivity
Assignment results show that 70% of the dispersers are from/

going to Kanha, the PA with the highest prey and tiger density in

the study area. Our results support predictions (e.g. Walston et al.,

[1]) that populations with high density will participate more

actively in maintaining connectivity. That dispersal depends

positively on population density has been illustrated in several

species [61–63]. Our results also suggest that low-density

populations can have high migration rates (e.g. Nagarjunsagar

Srisailam Tiger Reserve), suggesting that tigers may disperse out of

sites with low prey abundances towards high quality habitats.

Negative relationship between dispersal and density has been

observed in some species (e.g. brown bears, [64]). Finally, certain

populations appear isolated in spite of having a high density and

structural connectivity (e.g. Tadoba-Andhari Tiger Reserve);

although, it is possible that, TATR might have connectivity with

other PAs that were not sampled in this study.

Apart from population density, population growth rates could

also impact tiger dispersal. Detailed camera trap studies also

provide information of demographic rates [65], and such

information could be incorporated into future studies on

connectivity.

Implications for Tiger Conservation: Moving Beyond
Populations
In discussing conservation strategies for tigers, Walston et al.,

[1] emphasize the need for well-managed protected areas, and

locally increasing tiger population sizes. Wikramanayake et al.,

[5,66], on the other hand, argue that a meta-population/

landscape-based conservation strategy is required. Our findings

indicate that meta-populations might already exist within current

TCLs. To maintain and enhance existing connectivity between

tiger populations, management strategies must address demo-

graphic viability (tiger numbers), but more importantly landscape

and habitat viability outside and between PAs.

Human demographic studies predict that much of the world will

be urbanized within the next century [67], and in India, studies

have shown considerable increase in the number of new towns or

urbanised areas over the last decade [68]. Additional studies in the

tropics indicate detrimental land-use change around PAs [69–71].

Our results suggest that such unplanned development will greatly

compromise landscape-level connectivity for tiger populations in

Central India. Recent directives passed by the Supreme Court of

India on buffer zones around tiger reserves to be identified and

officially notified, makes our results relevant to on-going conser-

vation efforts.

While these are broad generalities, our results (Figure 3, 4) re-

establish the functionality of the Kanha-Pench corridor [as

suggested by Sharma et al., [16]], where expansion of a national

highway is currently being proposed. With more than 13% of

sampled individuals dispersing within the landscape in the last

decade, any ‘‘developmental activity’’ could hamper connectivity

at a large scale. For the future, we need to identify and legally

notify areas as critical wildlife corridors.

Given the increasing trend towards urbanization, how can we

maintain connectivity? At the landscape scale, most corridors

support local people, and future conservation strategies must

include plans to provide earnings to communities based on forests

conserved by them. Plans like Payments for Ecosystem Services

(PES), REDD+ and certification based on wildlife presence will
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help in maintaining physical as well as functional connectivity in

the landscape.

Around 3,000 tigers remain in the wild globally, and currently

the focus of conservation is limited to increasing tiger populations.

Our results reveal that some PAs can remain isolated despite high

local population density. Increasing local tiger abundance, while

important, will still be an inadequate conservation strategy in the

absence of population connectivity. If dispersal translates into

migration along with increases in tiger population size, the future

of tigers is promising, provided that connectivity is maintained and

becomes an important conservation agenda in the future.

Supporting Information

Figure S1 Relatedness between individuals. A heatmap

showing relatedness values between all individual in our dataset.

Relatedness is presented in a continuous scale between 0 and 1,

with values below 0.5 going from light brown to light green, while

values between 0.5 and 1 go from light green to dark blue.

(TIFF)

Figure S2 Landscape connectivity. A map showing land-

scape connectivity based on the current output from Circuitscape.

(TIF)

Table S1 Euclidean distance (in Km) between Protected

Areas.

(DOCX)

Table S2 Genetic diversity and genotyping error details

of 14 microsatellite loci used in this study.

(DOCX)

Table S3 Recent Emigration rates estimated using

BayesAss.
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Table S4 Recent Immigration rates estimated using

BayesAss.

(DOCX)
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