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ABSTRACT
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An Archimedean lattice is a graph of a regular tiling of the plane, such that all corners
are equivalent. A tiling is regular if all tiles are regular polygons: equilateral triangles,
squares, et cetera. There exist exactly 11 Archimedean lattices. Being planar graphs,
the Archimedean lattices have duals, 3 of which are Archimedean, the other 8 are
called Laves lattices.

In the thesis, three measures of connectivity of these 19 graphs are studied: the
connective constant for self-avoiding walks, and bond and site percolation critical prob-
abilities. The connective constant measures connectivity by the number of walks in
which all visited vertices are unique. The critical probabilities quantify the proportion
of edges or vertices that can be removed, so that the produced subgraph has a large
connected component.

A common issue for these measures is that they, although intensely studied by
both mathematicians and scientists from other fields, have been calculated only for
very few graphs. With the goal of comparing the induced orders of the Archimedean
and Laves lattices under the three measures, the thesis gives improved bounds and
estimates for many graphs.

A large part of the thesis focuses on the problem of deciding whether a given graph
is a subgraph of another graph. This, surprisingly difficult problem, is considered for
the set of Archimedean and Laves lattices, and for the set of matching Archimedean
and Laves lattices.
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Konnektivitetsegenskaper
for Arkimediska och
Lavesgrafer

Inledning

Avhandlingen studerar 3 matt pa hur sammanhéngande en graf ar, framfor allt
studeras hur matten ar relaterade till varann.

For transitiva grafer (sidana att alla noder ar ekvivalenta) ar gradtalet ett
enkelt matt pa konnektivitet. For kvasitransitiva grafer (grafer med &ndligt
antal nodklasser) kan man anvinda nagot slags genomsnittligt gradtal. Liksom
de flesta andra enkla matt, dar enkel ska tolkas som att det &r mojligt att snabbt
bestdmma ett exakt véirde, har dessa en svaghet: de tilldelar samma varde till
manga olika grafer.

I avhandligen studeras tre komplicerade matt, kritiska sannolikheter for nod-
och kantperkolation, samt konnektiva konstanter for sjdlvundvikande vagar.
Dessa ar sa komplicerade att berdkna att det endast har klarats av i ett fatal
fall.

De grafer som studeras ar de Arkimediska graferna, samt deras duala grafer,
de sa kallade Lavesgraferna, 19 st. plana, oéndliga, transitiva eller kvasitransi-
tiva grafer. Lat oss kalla dessa 19 grafer for AL-graferna.

Ett mal har varit att besvara foljande fraga. Léat ps(G),p2(G) och u(G)
beteckna kritiska sannolikheten for nodperkolation, fér kantperkolation, och
konnektiva konstanten for grafen G.

Fraga 1. Ar det sant att det for alla AL-grafer G och H, giller att
wG) < p(H) & pl(G) = po(H) & pi(G) = pi(H)?
Ett rigorost svar har inte hittats, men resultaten tyder, nagot forvanande,
pa att svaret ar nej. Att det inte géller allmént for plana kvasitransitiva grafer

har visats av Wierman, [29], och i Uppsats IV i denna avhandling.

1



Arkimediska och Lavesgrafer

Den forsta systematiska studien av de Arkimediska graferna gjordes av Kepler,
[13], som visade att det finns exakt 11 stycken. En graf &r Arkimedisk om den &r
transitiv, och kan ritas upp i planet sa att alla omraden &r reguljédra polygoner,
dvs. alla kanter ska vara lika langa, och alla vinklar lika stora.

De duala graferna fas genom att se varje omrade som en nod, och séga att
tva noder dr grannar om motsvarande omraden delar en kant. Det kvadratiska
punktgittret dr en Arkimedisk graf, och dessutom sin egen dual, och dualen till
det hexagonala gittret dr det trianguléra gittret (och vice versa), sa det finns
totalt 19 AL-grafer.

Sjalvundvikande vagar

En sjélvundvikande vég ar en foljd av parvis angrénsande noder, sddana att alla
ingdende noder ar olika. Om vi fixerar en startpunkt o, dér alla sjélvundvikande
végar ska starta, och later f,, beteckna antalet vagar av lingd n, defineras den
konnektiva konstanten som
@ = lim f%/ "
n—oo

Den konnektiva konstanten ar okénd for alla tvadimensionella grafer, men
Nienhuis, [20], har, via icke-rigorésa metoder, beriiknat virdet /2 + /2 for det
hexagonala gittret. Den allménna uppfattningen ar dock att detta varde &r
det korrekta. Detta skulle ocksa ge ett exakt varde for den Arkimediska grafen
kallad (3,122).

Perkolation

Perkolationsprocessen introducerades 1954 av Broadbent, i en diskussion om
Hammersley och Mortons uppsats Poor man’s Monte Carlo, [10], som ett mojligt
exempel for de tekniker som presenterades.

Perkolation har sedan dess anvénts som modell inom manga olika omraden,
framfor allt inom fysiken och geovetenskapen.

Modellen &r féljande. For en given odndlig graf, singla en slant med sanno-
likhet p for krona, for varje kant i grafen. De kanter som far klave tas bort.
Vi har nu producerat en slumpméssig delgraf av den ursprungliga, och &r in-
tresserade av storleken pa de sammanhingande komponenterna, klustrena, i
denna delgraf.

Det visar sig att det finns ett kritiskt varde p., sadant att om p < p., sa
finns det endast dndligt stora kluster, medan det fér p > p. existerar ett unikt
oandligt stort kluster.

Modellen ovan kallas for kantperkolation, och det kritiska vardet p. kallas
for den kritiska sannolikheten. Analogt defineras nodperkolation; istéllet for
kanter tas noder bort slumpmaéssigt.



De kritiska sannolikheterna ar endast kénda i ett fatal fall. For AL-graferna
ar de kdnda for tre (kantperkolation), respektive sex grafer (nodperkolation).

Resultat

Ett anvdndbart faktum for var studie ar foljande. Om G é&r delgraf till H,
kommer de kritiska sannolikheterna for G att vara hogre dn for H, och den
konnektiva konstanten lagre. Det &r déarfor intressant att reda ut vilka av AL-
graferna som ar delgrafer av varandra. Detta &ar gjort i Uppsats 1.

Ytterligare grafer kan fas fran AL-graferna genom att ta deras matchande
grafer (fas genom att fylla i alla mdéjliga diagonaler). Dessa ar anvéndbara i
studiet av kritiska sannolikheter for nodperkolation. Ocksa for dessa har vi
utrett vilka som ar delgrafer av varandra, i Uppsats V.

Nér resultatet i Uppsats I kombineras med granser for, och exakta varden
pa, kritiska sannolikheter fas en bild av vad som kan sidgas exakt om ordningen
av graferna, med avseende pa de kritiska sannolikheterna. I Uppsats II pre-
senterar vi ett sadant resultat, och hérleder ocksa nya grénser for den kritiska
sannolikheten for kantperkolation for vissa grafer.

Da exakta varden pa de kritiska sannolikheterna saknas for de flesta AL-
graferna ar skattningar ett komplement till de, oftast svaga, grinser som exis-
terar. I Uppsats VI har vi skattat de kritiska sannolikheterna for kantperkola-
tion, for de Arkimediska grafer dér den kritiska sannolikheten ar okand.

Att det existerar par av grafer (dessa ar inte AL-grafer) sadana att kritiska
sannolikheterna och de konnektiva konstanterna ligger i samma ordning, visas
i Uppsats IV.

Slutligen, har vi i Uppsats III berédknat forbéattrade granser for den konnek-
tiva konstanten pa det hexagonala gittret.

Slutsats

Som tidigare ndmnts har inget rigorost svar pa Fraga 1 hittats. Dock tyder skatt-
ningar pa att svaret dr nej. Det finns troligen par av AL-grafer, sadana att de
kritiska sannolikheterna och de konnektiva konstanterna ej uppfyller pastaendet
i Fraga 1.






Chapter 1

Introduction

The motivating question behind the thesis could, in retrospect, be stated as
What is the relation between different measures of connectivity of a graph?

There are countless ways of measuring connectivity, ranging from simple to
extremely complicated, in terms of evaluation of the measure on a given graph.

The simple measures tend to be coarse, they assign the same value to several
different graphs. The complicated measures often avoid this problem, but as
suggested above, the drawback is that they are seldom possible to compute
exactly.

For a transitive graph, the common degree of the vertices is trivial to com-
pute. For quasi-transitive graphs we may use some kind of mean degree, also
easy to compute. A high (mean) degree indicates a highly connected graph. We
could also use mean size of faces, combinations of degree and face size, so on
and so forth.

Examples of complicated measures are critical probabilities for site and bond
percolation, and connective constants for self-avoiding walks. These can be
computed exactly only for very few special cases, and will be described in detail
below.

All these measures certainly are more or less related, and an important
question is to what extent the different measures give the same information.
Put another way, if measure 1 says that the graph G is more connected than
the graph H, what does measure 2 say?

A more tractable form of the question is the following.

Question 1.1. For two measures 1 and us of connectivity, and a set C of
graphs, is it true that for G1,Gs € C,

11 (G1) < pi(Ga) <= pa2(Gr) < p2(G2)?

Yet another way of looking at the problem is the prediction of complicated
measures from simple ones, for example in the sense of “universal formulae”
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that tries to predict percolation thresholds given simple graph statistics, such
as mean degree.

The thesis addresses Question 1.1 for the Archimedean and Laves lattices,
a set of 19 infinite planar quasi-transitive two-dimensional graphs. The focus is
on bond and site percolation critical probabilities and connective constants.

A rigorous answer is not found, but simulation results indicate that the
answer should be no.



Chapter 2

Background

2.1 Graph theory

A graph consists of a countable (finite or infinite) set V' of vertices, and a set E
of edges connecting pairs of vertices. We will only consider undirected graphs,
so each edge e € F is an unordered pair of vertices (u,v), u,v € V. We will
also restrict to simple graphs, disallowing loops — edges joining one vertex with
itself, and multiple edges — more than one edge between any pair of vertices.

If e = (u,v) is an edge, u and v are said to be adjacent. Also, u and v are
incident to e. Two edges sharing one vertex are also said to be adjacent. The
degree of a vertex v is the number of vertices adjacent to v, or equivalently, the
number of edges incident to v.

Two graphs G = (V, E) and G’ = (V', E’) are isomorphic if there exists a
graph isomorphism ¢ : V' — V' such that (u,v) € E if and only if (¢(u), ¢(v)) €
E'.

A graph G is transitive if all vertices play the same role, i.e. for every pair
of vertices u and v, there exists a graph automorphism ¢ (a graph isomorphism
from V to V, such that G is isomorphic to ¢(G)), such that ¢(u) = v.

A quasi-transitive graph is slightly more general; there are finitely many
equivalence classes of vertices under graph automorphisms.

A graph is planar if it is possible to draw it in R? so that no two edges
intersect. A planar graph divides the plane into regions, separated by the edges,
called faces. The graph in Figure 2.1 has three faces, one square, one triangular,
and one unbounded face. A precise definition is the following: the faces of a
planar graph are the connected regions in R? that remain after the line segments
that constitute the edges in the planar embedding of G in R? are removed.

The dual graph D(G) of a planar graph G is the graph in which every face
of G is a vertex, and in which two vertices are adjacent if and only if the
corresponding faces in GG are adjacent, that is, share an edge.

See Figure 2.2 for an example of a graph and its dual. Note that in this case,

7
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vertex

face edge

Figure 2.1: A small planar graph, Figure 2.2: A graph and its dual.
with 6 vertices, 7 edges, and 3 faces
(one unbounded).

the two graphs are isomorphic (the graph is said to be self-dual).

Given a planar infinite graph G, the matching graph of G, denoted M (G), is
the graph in which all diagonal edges in every face are added, that is, each face
is substituted for a complete graph with order equal to the number of vertices
in the face. In Figure 2.3 the matching graph of the Kagomé lattice is shown.
Note that all triangulated graphs are self-matching.

Logo oo

-- -t -

Figure 2.3: A finite subgraph of the matching graph of the Kagomé lattice. The
added diagnonals are shown as dashed edges.
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2.2 Archimedean and Laves lattices

The Archimedean lattices are the infinite transitive planar graphs, that can be
drawn in the plane such that all faces are regular polygons. A regular polygon
with n edges is a polygon where all edges have the same length, and the inner
angle between any two adjacent edges is (n—2)m/n radians. Kepler, [13], showed
early in the 17th century that there are exactly 11 Archimedean lattices. The
Archimedean lattices include 3 lattices with only one type of face, the square,
triangular and hexagonal lattices, and 8 lattices with more than one type of
face.

The lattices have systematic names, that also serve as formulas to produce
them. For any given vertex, the incident faces are listed in, say, clockwise order,
by the number of edges in the face, the list being the name of the lattice. Several
lattices get multiple names, depending on the starting face, the convention is
then to choose the lexicographically smallest name. If two or more consecutive
entries agree, exponents may be used to abbreviate the name. Consequently,
the square lattice is also known as (4,4,4,4), or (4%).

The dual graphs of the Archimedean lattices are called the Laves lattices.
Since the square lattice is self-dual, and the triangular and hexagonal lattices
are each others duals, the union of the Archimedean and Laves lattices consists
of 19 graphs. The graphs and their names are shown in Figure 2.4.

Some of the graphs also have more colorful names. The regular lattices (4%),
(6%) and (3°) are usually called the square, hexagonal and triangular lattices.
The hexagonal lattice is also commonly called the honeycomb lattice. The
(3,6,3,6) lattice have a name from Japanese, it is known as the Kagomé lattice
(Kagomé means “woven bamboo pattern”). The (3,122) lattice is known as the
extended Kagomé lattice. The (3,4,6,4) lattice is known as the ruby lattice,
and in analogy with the Kagomé lattices, (4,6,12) can be called the extended
ruby lattice. The (4,8%) is known as the bathroom tiling (the origin of the
name should be obvious), or occasionally, the Briarwood lattice (named by one
researcher after a local shopping mall).

The dual Kagomé lattice, D(3,6,3,6), is known as the dice lattice, and the
dual of the bathroom tiling, D(4,82), is known as the Union Jack lattice. The
lattice D(3,12%) also has a Japanese name, Asanoha, meaning “hemp leaf”.
The lattice D(32,4,3,4) is sometimes called the Cairo lattice, as the pattern
occurs frequently as tilings on the streets of Cairo.

2.3 The connective constant

The connective constant gives information about connectivity by counting the
number of possible walks on the lattice that are self-avoiding; they are not
allowed to visit the same vertex more than once.

Self-avoiding walks were proposed in the late 40’s by Flory, [8], as a model for
long linear polymer chains (“the excluded volume problem”). The mathematical
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Figure 2.4: The 11 Archimedean lattices and their dual Laves lattices.
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analysis took off in the 50’s, by early work often involving Hammersley.

A walk from the vertex vy to the vertex v, is an alternating sequence of ver-
tices and edges, {vo, e1,v1,€2...,0,}, such that ey = (vg—_1,v%), k =0,...,n—1.
A self-avoiding walk is a walk in which all vertices are distinct.

Let f,, denote the number of self-avoiding walks with n edges, starting at a
predetermined vertex (which we will call the origin). The connective constant
1(G) of a graph G, which is independent of the chosen origin, is defined as

p(G) = lim fu/".
n—oo
The connective constant is not known exactly for any non-trivial graph, with
the possible exception of the hexagonal and (3,122) lattices. For the hexagonal

lattice, Nienhuis, [20], derived the value v/2 + v/2, through mathematically non-
rigorous methods (but there is a very strong belief that this value is correct).
If true, this also implies that the connective constant for the (3,122) lattice is
1.711041, [12], see also Paper IIT of this thesis.

For a more thorough introduction to self-avoiding walks, the book by Hughes,
[11], contains a nice chapter on the subject, and the book by Madras and
Slade, [18], gives an even more substantial treatment.

Figure 2.5: In the left figure, a realization of the bond percolation process
on a finite subgraph of (4%) is shown. The bold edges constitute the random
subgraph. In the right figure, a realization of the of site percolation process on
the same graph is shown. The vertices with unfilled circles are removed, and
the random subgraph consists of the filled circles and the bold edges.

2.4 Percolation

Percolation critical probabilities measure connectivity by the proportion of edges
or vertices necessary in a random subgraph of the lattice, in order to have a large
connected component.
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The percolation process was born in the 50’s, in the discussion of Hammersley
and Morton’s paper Poor man’s Monte Carlo*, [10]. Broadbent suggested the
bond percolation process as a possible problem to apply the presented methods
on?. Broadbent and Hammersley went on to write the first paper on percolation,
[6], published 1957.

In bond percolation, a random subgraph of a given graph is produced as
follows. Let each edge remain in the subgraph with probability p, independently
of all other edges. The remaining edges are also said to be open, the removed
to be closed.

For the kind of graphs studied here, it is well known that there exists a critical
value p?, depending on the graph G, such that, for p below p®, there exists only
finite connected components in the random subgraph with probability 1, and for
p above p?, there exists a unique infinite connected component with probability
1.

The critical value p® is called the bond percolation critical probability or bond
percolation threshold. The site percolation critical probability or site percolation
threshold p? is the analogous constant, when vertices instead of edges are re-
moved from the original graph (when a vertex is removed, the incident edges
are also removed). In Figure 2.5, realizations of both processes are shown.

The value of the critical probability is known only for a few graphs. Although
the correct values for the square, hexagonal and triangular lattices were conjec-
tured in the 60’s, it was not until 1980 that Kesten, [15], proved that the critical
probability for the square lattice equals 1/2. Soon thereafter, Wierman, [24],
extended Kestens result to show that the critical probabilities for the hexagonal
and triangular lattices equal 2sin(7/18) and 1 —2sin(w/18). Wierman, [25], has
also found the critical probabilities for another pair of dual lattices, the Bowtie
lattice and its dual.

Except for derivatives of these lattices, these are the only 2-dimensional
lattices for which the bond percolation critical probabilities are known.

The site percolation critical probability is known for a few planar graphs.
It is known for triangulated graphs, for which it equals 1/2 (proved by Kesten,
[16]), and for two other Archimedean lattices - the (3,6,3,6) (Kagomé) and
(3,122) (extended Kagomé) lattices - the latter two follow from the bond per-
colation threshold on the hexagonal lattice.

2.5 Degree based measures
In this section we look at some generalized mean degree measures, defined by

Alm, [2].
For a quasi-transitive graph, with K vertex classes with a proportion of w;

IWhich also contains some early results on self-avoiding walks.
2The reply showed foresight: “Mr. Broadbent’s problem is very fascinating and diffi-
cult...”
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vertices of class i, the mean degree, d, is usually defined as

K
i=1

where d; is the degree of the vertices of class .

To generalize d, we study a finite Markov chain {X,}22,, describing a ran-
dom walk on the lattice, with vertex classes as state space. The unique station-
ary distribution 7 = {7y, 72, ..., 7K } satisfies

% -1
wi:C’%, where C' = ( m) .

d;
T i=1 3

- -1
Thus, d = (Zfil 27) = dj, the weighted harmonic mean of the degrees

d;. Alternative mean degrees are the weighted arithmetic mean,

K
do =Y dimi,
=1

and the weighted geometric mean,

K

dg =[] di™.

i=1

Alm also defines a further mean degree, ¢, which improves separation be-
tween different lattices. Let g;(n) be the number of walks of length n, starting
at a vertex of class i, and define

d; = lim gi(n)l/".

The value of d; is the same for all 4, and this common value is the generalized
mean degree d.

An equivalent definition uses the Markov chain defined earlier. Let P denote
the chain’s transition matrix, and D the diagonal matrix with entries d;. Then
d is the largest eigenvalue of the matrix DP. Using this definition, numerical
evaluation of d is straightforward.

Note the similarity between d and the connective constant (it is obvious that
d is an upper bound for the connective constant).

The mean degrees defined above only use information on the number of
neighbors of different classes, and the neighbors degrees. Improved measures of
connectivity along these lines should use more information (such as neighbor’s
neighbors and so on). For example, the definition of d could be generalized in
the direction of the connective constant;

am = tim (g m) "

n—oo
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where g§m) is the number of walks starting at a vertex of class 7, such that all

subwalks of length m are self-avoiding.

2.6 Other measures

There are of course many other models that give measures of connectivity. Ex-
amples are time constants for first-passage percolation, the critical temperature
for the Ising model, or more generally, critical probabilities for random cluster
models, and probabilities related to random walks.

2.7 The main problem

Let the connective constant, bond percolation critical probability, and site per-
colation critical probability of a graph G be denote by, respectively, u(G), p2(G)
and p3(G).

Problem 2.1. For which classes G of graphs, is it true that, if G,H € G,
(@) < p(H) & pl(G) = pi(H) < pi(G) > pi(H).

That the statement does not hold for all planar quasi-transitive graphs is
shown by Wierman, [29], who gives a pair of planar graphs G and H, such that

p(G) > pl(H) but pi(G) < pi(H),

and in Paper IV of this thesis, where we give pairs of planar graphs (G, Hy)
and (Ga, Ha) such that

p2(G1) > pl(Hy) but u(Gy) > p(Hy), and

pe(G2) > pi(Ha) but u(Gz2) > p(Hs).

The included papers in this thesis address various aspects of this problem
for the set of Archimedean and Laves lattices. The Archimedean lattices are
a natural choice as a class of graphs for this problem. The graphs have many
pleasant features; they are transitive, planar, are relatively few, and include
most graphs commonly studied in the literature on these subjects. The inclusion
of their duals gives a larger class of graphs, which includes quasi-transitive
lattices. There are two further reasons for including the duals. Since the bond
percolation critical probabilities for a graph and its dual sum to 1, we gain much
information about the bond percolation critical probabilities. Also, the effect of
taking the dual graph on the other measures is an interesting problem in itself.

Similarly, since the site percolation critical probabilities for a graph and
its matching graph sum to 1, inclusion of the matching graphs would also be
interesting. Only a first step in this direction is taken in this thesis; the subgraph
order of the matching graphs are studied in paper V.
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Normally, any study of a probability model on graphs is much easier on trees
(connected graphs without cycles). In the next section we summarize what is
known about our problem on trees.

2.7.1 The tree case

Denote the root of a tree o, and for v in the vertex set V(T'), let |v| denote the
graph distance from o. The branching number of a tree is defined as

. 1
br(T) = sup{\: oeWIg/(T) Z T 0}.
|W|<oo veEIW

If the limit exists, the growth of T is defined as
gr(T) = lim |T,|*/",

where T, is the set of a vertices of distance n from the root. The lower (upper)
growth of a tree is defined as

gr(T) = liminf |T,,|™  (g6(T) = limsup |T,,|*/™).

— n— 00 n—00

It is well known that both the site and bond critical probability for perco-

lation on a tree is 1/br(T). The number of self-avoiding walks, starting at the
root, is obviously |T7,], so the (lower) growth can be interpreted as the connective
constant for trees.

Question 2.2. If T and S are two infinite, locally finite trees, is it true that
br(T) < br(S) <= gr(T) < gr(5)?

For a class of trees, called sub-periodic trees, the answer is positive. If T
is a regular tree, where each vertex has k children, br(T) = k and gr(T) = k.
More generally, if T is spherically symmetric, so that the degree of a vertex only
depends on the distance from the root, it is easy to check that br(T") = gr(7T).
These are special cases of sub-periodic trees, for which Furstenberg, [9], showed
that br(T) = gr(T). T is N-sub-periodic if, for any vertex v, there exists a 1-1
adjacency preserving map f : TV — TF() with |f(v)| < N, where T? is the
subtree rooted at v, which contains all descendants of v. T is sub-periodic if it
is IN-sub-periodic for some N > 0.

For trees T" and S, for which the growths exist, we can prove the following.

Proposition 2.3. If the growths gr(T') and gr(S) exist for two trees T and S,
with gr(T) < gr(9), then br(T) < br(S).

Proof. Since limy, oo [Tp|Y/" < lim, o0 |Sn|'/™, for all n greater than some
finite number N, T;, < S,,. The forest T'\ Uy<,,<ny Tn is then a subgraph of the
forest S\ Uy<,<n Sn- Since the critical probability does not depend on finite
subgraphs, p.(T) = br(T)~! > p.(S) = br(S)~L. O
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The included papers

3.1 Paper I

In Paper I, we determine which Archimedean and Laves lattices are subgraphs
of each other. For each of the 19 - 18 = 342 ordered pairs of graphs (G, H),
we either show how to get G from H by deleting edges, or prove that it is not
possible.

The positive cases are proved simply by showing which edges to remove
from the supergraph, or, which is the preferred viewpoint from the practical
side, which to keep (however, finding the proof is not always trivial).

For the negative cases we have developed several general criteria for non-
inclusions. That the maximum degree of the subgraph can not be higher than
the maximum degree of the supergraph is a simple criterion, that handles many
cases. Face sizes also give some useful criteria.

However, 21 cases are neither positive cases, nor handled by any of the
criteria, and have to be handled case by case. The arguments for these special
cases tend to follow the general lines of this example (although this is one of the
easy special cases).

Ezample 3.1. D(4,8%) ¢ D(3,122)

In D(4,82), each vertex of degree 4 is adjacent to every vertex of a surrounding
cycle of length 4. In D(3,122), the only vertices in the interior of a cycle of
length 4 are vertices of degree 3. Therefore, D(4,8%) cannot be a subgraph of
D(3,122).

The resulting partial order is conveniently summarized by a Hasse diagram
(Figure 3.1). In the figure, a line between two graphs indicate that the graph
higher in the diagram is a subgraph of the graph lower in the diagram.

Remark 3.2. That the subgraph relation defines a partial order on a given set of
graphs is not true in general. An example of two non-isomorphic infinite trees
which are subgraphs of each other is given in [5, p. 231]. In our case it follows
from the results.

17
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For our purpose, knowing which graphs are subgraphs of each other is useful
due to the following well known facts. If H is a subgraph of G, the site and
bond critical probabilities are higher for H than for G. Also, the connective
constant is lower for H than for G.

3.2 Paper II

The aim of Paper II is to give an, as complete as possible, ordering of the
Archimedean and Laves lattices, with respect to the bond percolation critical
probabilities. The main tool is the partial order from Paper I combined with
exact values of and rigorous bounds for the critical probabilities. For some
lattices we derive new bounds.

Since the critical probability also is known exactly for the Bowtie lattice
and its dual (see Figure 3.2), the partial order from Paper I was extended to
included these two graphs. The results are summarized in Section 4.2.

3.3 Paper III

The paper gives improved bounds for the connective constant on the hexagonal
lattice.

For the upper bound we use the method of Alm, [1], a transfer matrix
technique based on enumeration of “short” self-avoiding walks. The result is
a large square matrix (in our case of dimension 17700 x 17700), each element
is the number of self-avoiding walks of a certain length that start and end in
specified ways. The largest eigenvalue of the matrix gives the bound. The whole
computation took about 40 days on a standard desktop computer.

The lower bound is achieved by combining a method of Kesten, [14], based
on a subclass of self-avoiding walks, called bridges, and by exact calculations
on 1-dimensional lattices. Alm and Janson, [4], showed, in principle, how to
compute the generating function for self-avoiding walks (and thus the connective
constant) for any periodic 1-dimensional lattice. It is straightforward to extend
this to get the generating function for bridges of a predetermined height, which
is required for Kestens method.

The generating function is obtained as one element of the inverse of a large
matrix. In the matrix, each element is a polynomial, representing certain pos-
sible configurations of edges, which can be found by inspection. However, for
the largest case studied in the paper, the matrix has dimension 1024 x 1024,
eliminating any hope of finding the matrix by hand.

The task is not trivial even with the help of a computer. The rules for gener-
ating the elements are quite easy to describe in words, but harder to implement
as a computer program. (The source code has over 500 lines.)

Generating the matrix took several weeks of CPU-time. Next, (a bound of)
the generating function had to be found, requiring days of further computation.
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Figure 3.1: The Hasse diagram of the subgraph partial order of the Archimedean
and Laves lattices. Edges of the diagram indicate covering relationships, in
which the lattice higher in the diagram is a subgraph of the lattice lower in the
diagram. Additional subgraph relationships, valid by transitivity, are implied,
but not shown.
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Bowtie D(Bowtie)

Figure 3.2: The Bowtie lattice and its dual.

The same method may be used to improve the lower bounds for other lattices
as well, but we have not pursued that.

3.4 Paper IV

In Paper IV we find pairs of planar graphs with critical probabilities and con-
nective constants in the same order, both for bond and site percolation.

The site percolation case is in fact almost trivial if multiple edges are allowed.
For a suitable graph, replace each edge with k& multiple edges. This does not
change the site percolation critical probability, but increases the connective
constant. Hence, we start with a pair of graphs G and H with pi(G) > pi(H)
and p(GQ) < p(H). Replacing each edge in G with k& multiple edges, to get G’,
we get pE(G') = pi(G) > p.(H) and u(G') > u(H), if k is large enough.

Only minor modifications are necessary if multiple edges are not allowed.
Replace each edge with k disjoint paths of length 2. This modification decreases
the site percolation critical probability, but the graph will always be a subgraph
of a triangulated graph, and thus have site percolation critical probability above
1/2. Tt is clear that these methods give an infinite number of counterexamples.

To find a bond percolation example with planar graphs is a little harder
(non-planar examples can be found quite easily by replacing vertices by complete
graphs of some order). The example in the paper uses the Bowtie lattice and a
subdivided triangular lattice (the triangular lattice with each edge replaced by
two in series). For both of these, the bond percolation critical probabilities are
known, and combined with bounds given in [3] for the connective constants, we
draw the desired conclusion.
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3.5 Paper V

For site percolation, the counterpart of dual graphs are matching graphs. The
matching graph M(G) of a planar graph G is the graph obtained by adding
every diagonal edge in every face of the graph, that is, every face with k vertices
is substituted for a complete graph with & vertices. Kesten, [16], showed that
for a broad class of graphs,

pi(G) +pi(M(G)) = 1.

Consequently, since triangulated graphs are self-matching, the site percola-
tion critical probability for triangulated graphs equals 1/2.

In Paper V we give the (almost) complete partial order induced by the sub-
graph relation, for the matching graphs of the Archimedean and Laves lattices.
That this partial order should extend the information given by the subgraph
partial order for the graphs themselves, is not a priori clear. It might conceiv-
ably be the case that for the Archimedean and Laves lattices, M (G) C M(H)
implies H C G. However, examples show that neither the subgraph partial
order, nor the matching subgraph partial order is a suborder of the other (of
course one of the orders have to be reversed).

The presence of complete subgraphs of high order makes the analysis much
more complicated than for the original graphs. For example, several of the non-
inclusion criteria and many of the arguments for the special cases in Paper I are
based on planarity and face structures.

Nevertheless, the results in Paper I are still useful in some aspects. In some
cases it is true that M(G) C M(H) implies H C G, so if H ¢ G, it follows that
M(G) ¢ M(H). Also, some criteria based on face structures have analogues
based on complete subgraph structures.

Still, there are 36 cases that are neither inclusions nor handled by a general
criterion, as compared to 21 cases for the original graphs (3 of the cases are
common). The complexity of these special cases ranges from very easy to very
hard.

Unfortunately, one case remains unsolved. We do not know at the time if
M (33,42) is a subgraph of M(4,6,12) or not. The feeling is that it could go
either way, with a small bias towards a negative answer.

Hasse diagrams of the two possible partial orders are shown in Figure 3.3.

3.6 Paper VI

With the absence of exact values for the critical probability for most lattices,
accurate estimates are a complement to the (sometimes crude) bounds.

The site percolation critical probabilities for the Archimedean lattices have
previously been estimated with high precision, but for many of these lattices, no
accurate estimates of the bond percolation critical probabilities were available.
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(3%)

D(4,8%)

D(4,6,12)

D(3,122)
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Figure 3.3: The Hasse diagram of the two possible subgraph partial orders of the
matching Archimedean and Laves lattices. An arrow indicates that the lattice
higher in the diagram is a subgraph of the lattice lower in the diagram. The
dotted arrow represents the undecided inclusion.
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3.6.1 The hull gradient method

The hull gradient method was derived for site percolation, [22, 30, 31], but it
is well know that every bond percolation problem corresponds to an equivalent
site percolation problem, via the line graph transformation. Each bond in the
original graph is a vertex in the line graph, and the adjacency of edges in the
original graph gives the adjacency of vertices in the line graph.

In the hull gradient method, percolation in a 1-dimensional, say horizontal,
strip is considered. The probability of an open vertex depends linearly on the
height, so at the top of the strip all vertices are open, and at the bottom, all
vertices are closed. Thus there will be an infinite open cluster at the top, and
an infinite closed cluster at the bottom. There exists a unique curve, called the
interface, separating the two clusters. The hull gradient method is a method
for generating the interface, via a random walk. Statistics of the interface then
give information about the critical probability — heuristically, the mean height
of the interface should correspond to the critical probability.

3.6.2 The method of Newman and Ziff

Newman and Ziff, [19], have developed a fast algorithm for estimating perco-
lation thresholds. To show its true efficiency, we start by looking at an early
estimation method.

A traditional method for estimating a percolation threshold p, is the follow-
ing. Consider a finite subgraph L of the lattice for which we wish to estimate
pe- Generate a large number of realizations of the percolation process on L, for
a fixed value of p, and estimate, for example, the probability Q(p) that a cluster
spans L in the horizontal direction. If p > p. this probability should be large,
if p < p. it should be small. Repeat for a large number of different values of p.

The inefficiency should be apparent. To estimate Q(p) accurately for a single
value of p we need a large number of realizations. In the example above, the
standard error of the estimate of Q(p) is of order 1/y/n, for n realizations. We
then have to repeat for large enough number of values of p, to be able to get
an accurate estimate of, in this case, the point where the derivate of Q(p) has a
maximum. Further, we should repeat the whole thing for different sizes of the
sublattice, to be able to correct for finite size bias.

As the hull gradient method, Newman and Ziff’s method removes the need
to do simulations for fixed values of p. Combined with a clever way of detect-
ing clusters wrapping around the lattice, it results in an impressively efficient
method for estimating p. (the method is however not restricted to estimating
pe; many other interesting statistics may also be estimated): the running time
is in principle linear in the system size (the number of vertices or edges of the
subgraph), while still producing accurate estimates.

The method will now be described in more detail for the case of bond per-
colation.

It turns out that it is profitable to modify the subgraphs, and use regular
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boundary conditions to get torus shaped regions. We will consider Q(p), the
probability that a cluster wraps around the torus in one direction, but not both.

The key observation is the following. If we generate a percolation process on
the subgraph L, with S edges, by adding edges in random order, we have S + 1
different, but dependent, realizations of a percolation process, with unknown
p, which gives (very crude) estimates of Q,(p), the probability that a cluster
spans the torus in one direction but not the other, given that there are exactly
n open edges.

Assume for a moment that the probabilities @, (p) are exactly known. Then,
by the law of total probability, we have

Q(p) =Y Qu(p)P(N =n),

where N is a random variable with the Binomial distribution with parameters .S
and p. Thus, from a single realization, we get an estimate of Q(p) for all values
of p, from 0 to 1.

In our case, p. can be estimated by the value of p at which Q(p) is maximized,
since the probability Q(p) tends to zero both for p above and below p., as the
system size S grows.

For the method to achieve its impressive running time, it is necessary to keep
track of clusters efficiently. This can be done by using a tree based union/find
algorithm. When an edge is added, we find the clusters to which the endpoints
belong. If the clusters are different, the union of the clusters is calculated. Both
steps are rapidly done by representing the set of clusters as a directed forest. By
a small modification of the union/find algorithm, detection of cluster wrapping
is also easy.

The paper uses Newman and Ziff’s method, with the number of realizations
chosen such that the standard error of each estimate is approximately 5 x 1077,
and with system sizes such that the finite size error is small compared to the
standard error. This required almost a year of CPU time on a standard desktop
computer, for each graph. Of course, many computers' were used simultane-
ously.

The simulations are complemented with short runs with the hull gradient
method, to get independent checks on the estimates. The numerical results are
summarized in Section 4.2.

We also study the algorithm’s performance on the hexagonal lattice (for
which the bond percolation critical probability is known). In particular, we find
that a scaling law for the estimates standard deviation, proposed by Newman
and Ziff, [19], does not hold.

LClock frequencies between 1 and 1.6 GHz.
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Summary

In this section we summarize what is known about the percolation thresholds
and connective constants for the Archimedean and Laves lattices. For percola-
tion, most results are from the thesis, while most results for connective constants
are from Alm, [3]. See the relevant subsections for more precise references.

4.1 Connective constants

Table 4.1 and Figure 4.1 summarize the current state of knowledge about the
values of the connective constants. In the table, numerical values for bounds,
exact values, and estimates are given. The table also gives values for the mean
degrees discussed in Section 2.5.

All bounds are from Alm, [3], except for (4%), [7] (lower bound), [21] (upper
bound), and for (63), which are from Paper III. In the column for estimates,
the conjectured values for the (3,12%) and (63) lattices, [20, 12, Paper I1I] are
given. The estimates for (3%), (4%), (3,6,3,6) and (4,8%) are from [12], all other
estimates are given in [3].

The lattices are ordered in the table by the mean degrees, by the following
rule. If, for some mean degree d € {d, d,,d,,dp}, d(G) < d(H), or if d(D(G)) >
d(D(H)), then G is above H. It turns out that this rule gives a total order of
the 19 lattices.

Note that this also gives the correct order with respect to the estimated con-
nective constants, with the exception of D(3,4,6,4) and D(3,6,3,6). However,
these estimates are quite unreliable.

The figure shows a Hasse diagram of the partial order induced by our infor-
mation on the connective constants. An edge in the diagram indicates that the
lattice higher in the diagram has a smaller connective constant than the lattice
lower in the diagram.

25
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(32,4,3,4)

D(3,122)

Figure 4.1: A diagram describing the current knowledge of the connective con-
stant order of the Archimedean and Laves lattices.
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Lower  Upper
Lattice bound bound Estimate d d, Jq d,
(3,122) 1.70526 1.71926 1.71104* 3 3 3 3
(4,6,12) 1.76376 1.80907 1.787 3 3 3 3
(4,82) 1.78564 1.82926 1.809 3 3 3 3
(63) 1.83300 1.86884 1.84776* 3 3 3 3
D(32%,4,3,4) | 2.09257 2.16832 2.132 3.372 34 3.366 10/3
D(33,42) 2.11289 2.18672 2.152 3.414 34 3.366 10/3
D(3%,6) 2.15481 2.23507 2.193 3.541 3.6 3.446 10/3
(3,6,3,6) 2.50967 2.60493 2.561 4 4 4 4
(3,4,6,4) | 251125 2.61084 2.564 4 4 4 4
(4%) 2.62006 2.67920 2.638 4 4 4 4
D(3,4,6,4) |2.69342 2.82818 2.763 4.243 4.25 4.120 4
D(3,6,3,6) |2.70423 2.81774 2.761 4.243 4.5 4.243 4
(3%,6) 3.20640 3.36912 3.293 5 5 5 5
(33,42) 3.26640 3.42537 3.350 5 5 5 5
(32,4,3,4) 3.28528 3.45144 3.374 5 5 5 5
(39) 4.03333 4.25142 4.151 6 6 6 6
D(4,8?) 4.30471 4.56537 4.442 6.472 6.667 6.350 6
D(4,6,12) 4.46305 4.78723 4.624 6.823 7.333 6.604 6
D(3,122%) 5.37715 5.79621 5.595 8196 9 7.560 6

Table 4.1: Connective constant results. The entries with * are conjectured
values.

4.2 Bond percolation thresholds

Table 4.2 and Figure 4.2 give the current state of knowledge about the values
of the bond percolation critical probabilities. The lattices are given in the same
order as in the table for connective constants.

There are four cases where the estimates disobeys the order, the estimated
critical probability for (3,4,6,4) is higher than the estimate for (3,6,3,6), and
the estimate for (33,42) is higher than the estimate for (3%,4,3,4). The inverse
is true for the dual lattices. Here, the estimates are very accurate (the standard
errors are approximately 5 x 1077), so we believe the estimated order to hold
for the true values as well.

In the Hasse diagram (Figure 4.2), the Bowtie lattice (B), and its dual
(D(B)) are also included, as this gives fewer edges.

The bounds are given in Paper II. Many of these are previous results by
Wierman, see the paper for exact references.

The exact values were derived by Kesten, [15], for the square lattice, and by
Wierman, [24, 25] for the hexagonal and Bowtie dual pairs.

All estimates are from Paper VI, except the estimate for (3,6,3,6) (and its
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dual), which is from Ziff and Suding, [31].

Lower Upper

Lattice bound bound Estimate | d d, dg dp
(3, 122) 0.7393 0.7418 0.7404220 3 3 3 3
(4,6, 12) 0.6430 0.7376 0.6937338 3 3 3 3
(4, 82) 0.6281 0.7201 0.6768023 3 3 3 3
(63) 0.6527036 3 3 3 3

D(32,4,3,4) [ 0.5 0.6528 0.5803581 | 3.372 3.4 3.366 10/3
D(33,4?) 0.5 0.6528 0.5858626 | 3.414 3.4 3.366 10/3
D(3%,6) 0.4474 0.6528 0.5656938 | 3.541 3.6 3.446 10/3
(3,6,3,6) 0.5209 0.5291 0.5244053 | 4
(3,4,6,4) 0.4106 0.5955 0.5428326 | 4
(4%) 0.5 4 4 4
D(3,4,6,4) |0.4045 0.5894 0.4571674 | 4.243 4.25 4.120
D(3,6,3,6) |0.4709 0.4791 0.4755947 | 4.243 4.5 4.243

NGNS

(34,6) 0.3472 0.5526 0.4343062 | 5 5

(33,42) 0.3472 0.5 04141374 | 5 5 5

(32,4,3,4) |0.3472 0.5 0.4196419 | 5 5 5

(36) 0.3472964 6 6 6

D(4,82) 0.2799 0.3719 0.3231977 | 6.472 6.667 6.350

D(4,6,12) 0.2624 0.3570 0.3062662 | 6.823 7.333 6.604
D(3,122) 0.2582 0.2607 0.2595780 [8.196 9  7.560

ot
SO O O UL UL U i s

Table 4.2: Bond percolation results.

4.3 Site percolation thresholds

Table 4.3 and Figure 4.5 give the current state of knowledge about the values of
the site percolation critical probabilities. The lattices are again ordered in the
table by the mean degrees.

The estimates for the Archimedean lattices are from Suding and Ziff, [22],
and the estimates for the Laves lattices are given in Section 4.3.2. The exact
values for triangulated graphs were proved by Kesten, [16]. The exact values
for (3,6,3,6) and (3,122) easily follow from the bond percolation threshold on
(63), by the line graph transformation. References for the bounds are given in
the table. All other bounds are given in Section 4.3.1.

4.3.1 Bounds for the site percolation thresholds

As all Archimedean and Laves lattices are subgraphs of some of the 4 triangu-
lated lattices, we have the lower bound 1/2 for all lattices. Unless otherwise
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(3,122)

D(3,122)

Figure 4.2: A diagram describing the current knowledge of the bond percolation
threshold order of the Archimedean and Laves lattices.
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stated below, this is the best known lower bound.

(6)

The lower bound follows from the general relation ps(G) > p2(G).
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Figure 4.3: The lattice L;. Figure 4.4: The lattice Lo.
D(32,4,3,4)

The upper bound follows from a grouping argument, as in [17]. Group pairs of
adjacent vertices with degree three. Consider the groups as new vertices, which
are open if and only if both original vertices are open.

This gives a lattice Ly with higher threshold. The lattice L is the square
lattice, in which every other vertex is open with probability p?, the others
open with probability p, see Figure 4.3. The threshold for L; is less than
the threshold for (4%), when all vertices are open with probability p?. Thus,

pc(D(327 4,3, 4)) < v pc(44)'
D(3%,42)

The upper bound is analogous to the previous case. In Figure 4.4 the grouped
lattice Lo is shown.

D(3%,6)
The upper bound follows from the relation p3(G) <1 — (1 — p2(G))*~!, where
A is the maximum degree of G.

(3,4,6,4)
The linegraph of the dice lattice D(3,6, 3,6) is a subgraph of the matching graph
of (3,4,6,4). Therefore

p5(3,4,6,4) =1 — p5(M(3,4,6,4)) > 1 —p(D(3,6,3,6)) = p(3,6,3,6).

The upper bound follows from the subgraph relation (6%) C (3,4,6,4).
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D(3,4,6,4), (3,6), (3,42) and (32 4,3, 4)

The bounds follow from subgraph relationships. Both (33, 42) and (32,4, 3,4) are
supergraphs to (4*), while (34,6) is a supergraph to (3,4, 6,4), and D(3,4,6,4)
is a supergraph to (6%).

4.3.2 Estimates for the site percolation thresholds

For 5 of the Laves lattices, no estimates of the site percolation threshold were
available. The same algorithm used in Paper VI, and described in Section
3.6.2, was used to estimate the thresholds. The simulations were run until the
standard error of the estimate was approximately 5 x 1075, which took a couple
of days of CPU-time per lattice (if run on a single computer). The finite size
biases are roughly one order of magnitude smaller than the standard errors.

Lower Upper .
Lattice bound bound Estimate d d, Jq d,
(3,122) 0.807904 3 3 3 3
(4,6,12) 0.721731 0.81898!  0.747806 3 3 3 3
(4,82) 0.70710' 0.79997'  0.729724 3 3 3 3
(63) 0.6527 0.79472%2  0.697043 3 3 3 3
D(32%,4,3,4) | 0.5 0.824314 0.650184 | 3.372 3.4 3.366 10/3
D(33,42) 0.5 0.824314 0.647084 | 3.414 3.4 3.366 10/3
D(3%,6) 0.5 0.994948 0.639447 | 3.541 3.6 3.446 10/3
(3,6,3,6) 0.652704 4 4 4 4
(3,4,6,4) 0.5209 0.79472 0.621819 4 4 4 4
(4%) 0.556%  0.679472*% 0.592746 | 4 4 4 4
D(3,4,6,4) | 0.5 0.79472 0.582410 | 4.243 4.25 4.120 4
D(3,6,3,6) |0.5020 0.7937° 0.585040 | 4.243 4.5 4.243 4
(3%,6) 0.5 0.79472 0.579498 5 5 5 5
(33,42) 0.5 0.679472 0.550213 5 5 5 5
(32,4,3,4) 0.5 0.679472  0.550806 5 5 5 5
(39) 0.5 5 5 5 5
D(4,8?) 0.5 6.472 6.667 6.350 6
D(4,6,12) 0.5 6.823 7.333 6.604 6
D(3,122) 0.5 8196 9 7.560 6

Table 4.3: Site percolation results. * Wierman, [27], 2 Wierman, [28], 3 van den
Berg and Ermakov, [23], + Wierman, [26], > Luczak and Wierman, [17].
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(6°) ((4,6,12)) ((3,12%)) (D(3%4,3,4)) (D(3°,4%))

(4,8%)

=
—

11 )((3,6,3,6)) / ((3,4,6,4)) / (D(3,6,3,6) (D(3,4,6,4))

((3%,4,3,9))  ((38°,4?)) D(34,6)) ((34,6)

( D(3,122),(3%),D(4,6,12), D(4,8%) )

Figure 4.5: A diagram describing the current knowledge of the site percolation
threshold order of the Archimedean and Laves lattices.
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4.4 Comparison of the measures

Wiite G £ H, if, for some mean degree d € {d,d,,d,,dy}, d(G) < d(H), or if
d(D(G)) > d(D(H)), and call the resulting order the mean degree order. Recall
that this is a total order on the set of Archimedean and Laves lattices.

Also consider the three orders defined by connective constants and bond
and site percolation thresholds, for which G < H if, respectively, u(G) < u(H),
P2(G) = ph(H) and p3(G) > p3(H).

The estimates and exact values indicates that no two of the four orders
agree, although the numerical evidence for the case of connective constants
versus mean degree order is weak. The cases for which the four orders do not
agree are summarized in the first four of the following conjectures.

d
Conjecture 4.1. For (3%,4%) and (32%,4,3,4), for which (33,42) < (32,4,3,4),
it holds that
n(3%,4%) < u(3%,4,3,4),
pe(3%,4%) < pl(3%,4,3,4),
pi(3°,4%) < pi(3°,4,3,4).

Conjecture 4.2. For D(3%,4,3,4) and D(33,4%), for which D(3%,4,3,4) i
D(33,42), it holds that

u(D(3%,4,3,4)) < u(D(3%,4%)),

pe(D(3%,4,3,4)) < pl(D(3%,4%),

pe(D(3%,4,3,4)) > pi(D(3°,47)).

Conjecture 4.3. For (3,4,6,4) and (3,6, 3,6), for which (3,6,3,6) < (3 4,6,4),
it holds that

1(3,6,3,6) < 1u(3,4,6,4),
p2(3,6,3,6) < p5(3,4,6,4),
p3(3,6,3,6) > p:(3,4,6,4).

Conjecture 4.4. For D(3,6,3,6) and D(3,4,6,4), for which D(3,4,6,4) i
D(3,6,3,6), it holds that

n(D(3,4,6,4)) > pu(D(3,6,3,6)),

pe(D(3,4,6,4)) < p2(D(3,6,3,6)),

pe(D(3,4,6,4)) < pi(D(3,6,3,6)).
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Conjecture 4.5. For two Archimedean or Laves lattices G and H, except for
the four pairs in Conjectures 4.1 — 4.4, it holds that

G £ H = p(G)) < u(H) <= pb(G) > pb(H) <= p3(G) > p(H),

and equality holds in the last inequality if and only if both G and H are trian-
gulated.

4.5 Conclusions

A rigorous answer to question of whether percolation thresholds and connective
constants give the same order on the Archimedean and Laves lattices is not
known today, although numerical estimates give compelling arguments for a
negative answer.

The hope for a rigorous answer is scant — the methods for finding bounds for
the critical constants, especially for percolation thresholds, are simply not good
enough. Estimates show that there are lattices for which the critical constants
are so close, that a radically new method of finding bounds would have to be
found. Of course, we could also try to compute the constants exactly, a task for
which little if any progress has been made since the mid 80’s.
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