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ABSTRACT 
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How does the connectivity of a neural network (number of synapses per 

neuron) relate to the complexity of the problems it can handle (measured by 

the entropy)? Switching theory would suggest no relation at all, since all Boolean 

functions can be implemented using a circuit with very low connectivity (e.g., 

using two-input NAND gates). However, for a network that learns a problem 

from examples using a local learning rule, we prove that the entropy of the 

problem becomes a lower bound for the connectivity of the network. 

INTRODUCTION 

The most distinguishing feature of neural networks is their ability to spon

taneously learn the desired function from 'training' samples, i.e., their ability 

to program themselves. Clearly, a given neural network cannot just learn any 

function, there must be some restrictions on which networks can learn which 

functions. One obvious restriction, which is independent of the learning aspect, 

is that the network must be big enough to accommodate the circuit complex

ity of the function it will eventually simulate. Are there restrictions that arise 

merely from the fact that the network is expected to learn the function, rather 

than being purposely designed for the function? This paper reports a restriction 

of this kind. 

The result imposes a lower bound on the connectivity of the network (num

ber of synapses per neuron). This lower bound can only be a consequence of 

the learning aspect, since switching theory provides purposely designed circuits 

of low connectivity (e.g., using only two-input NAND gates) capable of imple

menting any Boolean function [1,2] . It also follows that the learning mechanism 

must be restricted for this lower bound to hold; a powerful mechanism can be 
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designed that will find one of the low-connectivity circuits (perhaps byexhaus

tive search), and hence the lower bound on connectivity cannot hold in general. 

Indeed, we restrict the learning mechanism to be local; when a training sample 

is loaded into the network, each neuron has access only to those bits carried by 

itself and the neurons it is directly connected to. This is a strong assumption 

that excludes sophisticated learning mechanisms used in neural-network models, 

but may be more plausible from a biological point of view. 

The lower bound on the connectivity of the network is given in terms of 

the entropy of the environment that provides the training samples. Entropy is a 

quantitative measure of the disorder or randomness in an environment or, equiv

alently, the amount of information needed to specify the environment. There 

are many different ways to define entropy, and many technical variations of this 

concept [3]. In the next section, we shall introduce the formal definitions and 

results, but we start here with an informal exposition of the ideas involved. 

The environment in our model produces patterns represented by N bits 

x = Xl ••• X N (pixels in the picture of a visual scene if you will). Only h different 

patterns can be generated by a given environment, where h < 2N (the entropy 

is essentially log2 h). No knowledge is assumed about which patterns the en

vironment is likely to generate, only that there are h of them. In the learning 

process, a huge number of sample patterns are generated at random from the 

environment and input to the network, one bit per neuron. The network uses 

this information to set its internal parameters and gradually tune itself to this 

particular environment. Because of the network architecture, each neuron knows 

only its own bit and (at best) the bits of the neurons it is directly connected to 

by a synapse. Hence, the learning rules are local: a neuron does not have the 

benefit of the entire global pattern that is being learned. 

After the learning process has taken place, each neuron is ready to perform 

a function defined by what it has learned. The collective interaction of the 

functions of the neurons is what defines the overall function of the network. The 

main result of this paper is that (roughly speaking) if the connectivity of the 

network is less than the entropy of the environment, the network cannot learn 

about the environment. The idea of the proof is to show that if the connectivity 

is small, the final function of each neuron is independent of the environment, 

and hence to conclude that the overall network has accumulated no information 

about the environment it is supposed to learn about. 

FORMAL RESULT 

A neural network is an undirected graph (the vertices are the neurons and the 

edges are the synapses). Label the neurons 1"", N and define Kn C {I"", N} 

to be the set of neurons connected by a synapse to neuron n, together with 

neuron n itself. An environment is a subset e C {O,I}N (each x E e is a sample 
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from the environment). During learning, Xl,"', xN (the bits of x) are loaded 

into the neurons 1"", N, respectively. Consider an arbitrary neuron nand 

relabel everything to make Kn become {I"", K}. Thus the neuron sees the 

first K coordinates of each x. 

Since our result is asymptotic in N, we will specify K as a function of N; 

K = a.N where a. = a.(N) satifies limN-+oo a.(N) = 0.0 (0 < 0.0 < 1). Since the 

result is also statistical, we will consider the ensemble of environments e 

e=e(N)={eC{O,I}N I lel=h} 

where h = 2~N and /3 = /3(N) satifies limN-+oo /3(N) = /30 (0 < /30 < 1). The 

probability distribution on e is uniform; any environment e E e is as likely to 

occur as any other. 

The neuron sees only the first K coordinates of each x generated by the 

environment e. For each e, we define the function n : {O,I}K -+ {O, 1,2,··.} 

where 

n(al" .aK) = I{x Eel Xle = ale for k = 1,'" ,K}I 

and the normalized version 

The function v describes the relative frequency of occurrence for each of the 2K 

binary vectors Xl'" XK as x = Xl ••• XN runs through all h vectors in e. In other 

words, v specifies the projection of e as seen by the neuron. Clearly, veal > 0 

for all a E {O,l}K and LaE{O,l}K veal = 1. 

Corresponding to two environments el and e2, we will have two functions VI 

and V2. IT VI is not distinguishable from V2, the neuron cannot tell the difference 

between el and e2' The distinguishability between VI and V2 can be measured 

by 
1 

d(Vl,V2) = - 2: IV1(a) - V2(a) I 
2 aE{O,l}K 

The range of d(Vb V2) is 0 < d(Vl' V2) < 1, where '0' corresponds to complete 

indistinguishability while '1' corresponds to maximum distinguishability. We 

are now in a position to state the main result. 

Let el and e2 be independently selected environments from e according to the 

uniform probability distribution. d(Vl' V2) is now a random variable, and we are 

interested in the expected value E(d(Vl' V2))' The case where E(d(Vb V2)) = 0 

corresponds to the neuron getting no information about the environment, while 

the case where E(d(Vb V2)) = 1 corresponds to the neuron getting maximum 

information. The theorem predicts, in the limit, one of these extremes depending 

on how the connectivity (0.0) compares to the entropy (/30)' 
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Theorem. 

1. H Q o > Po , then limN ..... co E (d(VI, V2)) = 1. 

2. H Q o < Po , then limN ..... co E (d(v}, V2)) = O. 

The proof is given in the appendix, but the idea is easy to illustrate infor

mally. Suppose h = 2K +10 (corresponding to part 2 of the theorem). For most 

environments e E e, the first K bits of x E e go through all 2K possible val

ues approximately 210 times each as x goes through all h possible values once. 

Therefore, the patterns seen by the neuron are drawn from the fixed ensemble of 

all binary vectors of length K with essentially uniform probability distribution, 

i.e., v is the same for most environments. This means that, statistically, the 

neuron will end up doing the same function regardless of the environment at 

hand. 

What about the opposite case, where h = 2K - 10 (corresponding to part lof 

the theorem)? Now, with only 2K - 10 patterns available from the environment, 

the first K bits of x can assume at most 2K- 10 values out of the possible 2K 

values a binary vector of length K can assume in principle. Furthermore, which 

values can be assumed depends on the particular environment at hand, i.e., 

v does depend on the environment. Therefore, although the neuron still does 

not have the global picture, the information it has says something about the 

environment. 
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APPENDIX 

In this appendix we prove the main theorem. We start by discussing some 

basic properties about the ensemble of environments e. Since the probability 

distribution on e is uniform and since Ie I = e:), we have 

(
2N)-1 

Pr(e) = h 

which is equivalent to generating e by choosing h elements x E {O,l}N with 

uniform probability (without replacement). It follows that 

h 
Pr(x E e) = 2N 



and so on. 

h h-l 
Pr(Xl E e , X2 E e) = 2N X 2N _ 1 
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The functions n and v are defined on K-bit vectors. The statistics of n(a) 

(a random variable for fixed a) is independent of a 

Pr(n(at} = m) = Pr(n(a2) = m) 

which follows from the symmetry with respect to each bit of a. The same holds 

for the statistics of v(a). The expected value E(n(a)) = h2-K (h objects going 

into 2K cells), hence E(v(a)) = 2-K . We now restate and prove the theorem. 

Theorem. 

1. If ao > Po , then limN_oo E (d(vt, V2)) = 1. 

2. If ao < Po , then limN_oo E (d(vt, V2)) = 0. 

Proof. 

We expand E (d(vt, V2)) as follows 

where nl and n2 denote nl(O. ··0) and n2(0·· ·0), respectively, and the last step 

follows from the fact that the statistics of nl(a) and n2(a) is independent of a. 

Therefore, to prove the theorem, we evaluate E(lnl - n21) for large N. 

1. Assume ao > Po. Let n denote n(O··· 0), and consider Pr(n = 0). For n to 

be zero, all 2N - K strings x of N bits starting with K O's must not be in the 

environment e. Hence 

h h h 
Pr(n = 0) = (1 - -) (1 - ) ... (1 - ) 

2N 2N - 1 2N - 2N- K + 1 

where the first term is the probability that 0· . ·00 f/. e, the second term is the 
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probability that O· .. 01 ~ f given that o· .. 00 ~ f, and so on. 

> (1- 2N _h
2N

_ K )'N-K 

= (1- h2-N(1- 2-K)-1) 
2N - K 

> (1 - 2h2-N)2N
-

K 

> 1- 2h2-N 2N - K 

= 1- 2h2-K 

Hence, Pr(nl = 0) = Pr(n2 = 0) = Pr(n = 0) > 1 - 2h2-K • However, E(nl) = 

E( n2) = h2-K. Therefore, 

" " E(lnl - n2\) = LLPr(nl = i,n2 = j)li - jl 
i=O;=O 

" " = L L Pr(nl = i)Pr(n2 = j) Ii - jl 
i=O;=O 

" > L Pr(nl = 0)Pr(n2 = j)j 
;=0 

" + L Pr(nl = i)Pr(n2 = O)i 
i=O 

which follows by throwing away all the terms where neither i nor j is zero (the 

term where both i an j are zero appears twice for convenience, but this term is 

zero anyway). 

= Pr(nl = 0)E(n2) + Pr(n2 = O)E(nl) 

> 2(1 - 2h2-K )h2-K 

Substituting this estimate in the expression for E(d(Vb V2)), we get 

2K 
E(d(vl, V2)) = 2h E(lnl - n21) 

2K 
> - x 2(1 - 2h2-K )h2-K 

- 2h 

= 1- 2h2-K 

= 1 - 2 X 2(,8-a)N 

Since ao > 130 by assumption, this lower bound goes to 1 as N goes to infinity. 

Since 1 is also an upper bound for d( VI, V2) (and hence an upper bound for the 

expected value E(d(vl, V2))) , limN_oo E(d(vl, V2)) must be 1. 



2. Assume a o < Po. Consider 

E(lnl - n21) = E (I(nl - h2-K) - (n2 - h2-K )I) 

< E(\nl - h2-K \ + In2 - h2-K I) 

= E(\nl - h2-K I) + E(ln2 - h2-K I) 

= 2E(ln - h2-K I) 

7 

To evaluate E(ln - h2-K I), we estimate the variance of n and use the fact 

that E(ln - h2-K I) < ..jvar(n) (recall that h2-K = E(n»). Since var(n) = 
E(n2) - (E(n))2, we need an estimate for E(n2). We write n = E.E{O,l}N-K 6., 

where 

6 - , , { 
1 if 0 .. ·Oa E e· 

• - 0, otherwise. 

In this notation, E(n2 ) can be written as 

E(n2) = E (I: I: 6.6t,) 
.E{O,l}N-K bE{O,l}N-K 

I: L E(6.6t,) 
.E{O,l}N-K bE{O,l}N-K 

For the 'diagonal' terms (a = b), 

E(6.6.) = Pr(6. = 1) 

= h2-N 

There are 2N - K such diagonal terms, hence a total contribution of 2N - K x 

h2-N = h2-K to the sum. For the 'off-diagonal' terms (a '# b), 

E(6.6b ) = Pr( 6. = 1,6b = 1) 

= Pr(6. = 1)Pr(6b = 116. = 1) 

h h-l 
=-x--::-:::--

2N 2N_1 

There are 2N - K (2N - K -1) such off-diagonal terms, hence a total contribution of 

2N - K(2N - K -1) x 2;~:N~1) < (h2-K)2 2~~1 to the sum. Putting the contributions 
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from the diagonal and off-diagonal terms together, we get 

2N 
E(n2) < h2-K + (h2-K)2 2N _ 1 

var(n) = E(n2) - (E(n))2 

< (h2-K + (h2-K )' 2:: 1) - (h2-K )' 

1 
= h2-K + (h2 - K)2----:-:-_ 

2N -1 

= h2-K 1 + ---:-:--( 
h2-K ) 

2N -1 

< 2h2-K 

The last step follows since h2-K is much smaller than 2N -1. Therefore, E(ln-
1 

h2-K I) < vvar(n) < (2h2- K)?i. Substituting this estimate in the expression for 

E( d( Vb V2)), we get 

2K 
E(d(vb V2)) = 2h E(lnl - n21) 

2K 
< 2h x 2E(ln - h2-K I) 

2K 1 

< 2h x 2 x (2h2-K)?i 

_ ( 2K) ~ - 2-
h 

= v'2 X 2~(Q-~)N 

Since a o < Po by assumption, this upper bound goes to 0 as N goes to infinity. 

Since 0 is also a lower bound for d(vb V2) (and hence a lower bound for the 

expected value E(d(vb V2))), limN_oo E(d(vb V2)) must be O .• 
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