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Objective: The authors sought to identify a brain-based pre-

dictor of cocaine abstinence by using connectome-based

predictive modeling (CPM), a recently developed machine

learning approach. CPM is a predictive tool and a method

of identifying networks that underlie specific behaviors

(“neural fingerprints”).

Methods: Fifty-three individuals participated in neuro-

imaging protocols at the start of treatment for cocaine

use disorder, and again at the end of 12 weeks of treat-

ment. CPM with leave-one-out cross-validation was con-

ducted to identify pretreatment networks that predicted

abstinence (percent cocaine-negative urine samples during

treatment). Networks were applied to posttreatment

functional MRI data to assess changes over time and abi-

lity to predict abstinence during follow-up. The predictive

ability of identified networks was then tested in a sepa-

rate, heterogeneous sample of individuals who under-

went scanning before treatment for cocaine use disorder

(N=45).

Results: CPM predicted abstinence during treatment, as in-

dicated by a significant correspondence between predicted

and actual abstinence values (r=0.42, df=52). Identified net-

works included connections within and between canonical

networks implicated in cognitive/executive control (fronto-

parietal, medial frontal) and in reward responsiveness (sub-

cortical, salience,motor/sensory).Connectivity strengthdidnot

change with treatment, and strength at posttreatment assess-

ment also significantly predicted abstinence during follow-up

(r=0.34, df=39). Network strength in the independent sample

predicted treatment response with 64% accuracy by itself

and 71% accuracy when combined with baseline cocaine use.

Conclusions: These data demonstrate that individual dif-

ferences in large-scale neural networks contribute to vari-

ability in treatment outcomes for cocaine use disorder, and

they identify specific abstinence networks that may be tar-

geted in novel interventions.
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Addictions are a leading cause of disability worldwide. De-

spite advances in substance use treatment, the effectiveness

of most interventions remains highly variable across indi-

viduals, and multiple quit attempts are common. While a

growing body of research suggests that variability in treat-

ment response is linked to individual differences in neural

functioning (1–6), the search for brain-based predictors has

yet to yield a reliable indicator of future treatment response

or abstinence (7, 8). Identification of brain-based predictors

of abstinence not only may expand existing biological knowl-

edge of addiction pathophysiology (which may itself be used

to refine existing interventions) but also may ultimately be

used to directly inform real-world clinical practice by as-

signment of patients to therapies basedon individual patterns

of neural function, or neuromarkers (7, 9, 10).

In most cases, treatment-oriented neuroimaging studies

inaddictionandotherdisorders relyonprospectiveassociations

(1–4), where the term “predict” is often used inaccurately to

refer to correlation or regression (11, 12). True predictive models,

however, require application of the model to novel data (8, 11,

13–15). Newly available alternatives, such as machine learning,

allow for actual prediction (9, 11, 12) but have not yet been used

to identify pretreatment predictors of abstinence. Nonethe-

less, research indicates that alterations within well-established

neural networks (e.g., frontoparietal, salience, default mode)

likely contribute to individual differences in treatment out-

comes for cocaine use disorder (3, 5, 16). For example, functional

connectivity strength between the medial prefrontal cortex and

the temporal pole, when combined with years of education, has

been identified as a predictor of relapse (5). However, no pre-

vious study has used a whole-brain, machine learning approach

to identify neuromarkers of future abstinence.

Connectome-based predictive modeling (CPM) (13, 17) is a

machine learning approach for generating brain-behavior

models from whole-brain functional connectivity data (“con-

nectomes”). Unlike correlation or regressionmodels, CPMwith

built-in cross-validation protects against overfitting by testing

the strength of the relationship in a novel sample, increasing

the likelihood of replication in future studies and thus applica-

bility to other clinical samples (13). Unlike themachine learning

approaches that have previously been used to study addictions,

CPM is entirely data driven and requires no a priori selection of
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networks. It is therefore both a predictive tool and a method of

identifying networks that subserve specific behaviors—referred

to as “neural fingerprints”—and thus it may also be used to

identify novel treatment targets (13, 17). CPMhas previously been

used to identify neural fingerprints of IQ and attention using

whole-brain functional connectivity data acquired during neu-

rocognitive task performance (17–19), but it has not previously

been used to predict future behaviors or a clinical outcome.

In this study, we used dimensional CPM to identify neural

networks predictive of future abstinence from cocaine by ap-

plying CPM to functional MRI (fMRI) reward task data ac-

quired at the start of a 12-week treatment for cocaine use

disorder. We further tested the stability of these networks over

time and in relation to posttreatment abstinence. Finally, we

tested the ability of identified networks to predict treatment

response in a heterogeneous replication sample. Based on pre-

vious work focusing on selected networks (5, 16), we hypothe-

sized that increased connectivity within and between medial

frontal, frontoparietal, and salience networks would positively

predict abstinence.

METHODS

Participants and Recruitment

Participants (N=74) were recruited from a randomized con-

trolled trial of behavioral therapy plus galantamine or

placebo treatment for cocaine use disorder (20). Demographic

and clinical characteristics are summarized in Table 1.

In addition to seeking treatment for cocaine, all partici-

pants were currently enrolled in methadone maintenance

treatment for opioid use disorder. Consistent with the

parent trial (20), the fMRI sample was predominantly male

(63.5%) and unemployed (73.0%), with multiple previous

treatment attempts (a mean of 2.97 outpatient treatments

[SD=3.63] and 3.16 inpatient treatments [SD=5.24]) and legal

problems (a mean of 5.46 lifetime arrests [SD=6.29]). After

exclusion of individuals with incomplete data (N=4) or

excessive motion during scanning (N=17; further details

below), the final sample used for CPM analyses consisted

of 53 individuals (73.6% male). Further details on motion

controls and follow-up analyses controlling for time of

scanning are provided in the online supplement. As

shown in Table 1, included and excluded participants did

not differ significantly in years of cocaine use, treatment

assignment, or other clinical variables,with the exceptionof

sex (p=0.004). As in our previous work (2, 4), abstinence

during treatment was assessed with biweekly urine testing

and was defined in terms of the percentage of urine sam-

ples provided during the treatment period that were neg-

ative for cocaine. All participants provided written informed

consent after receiving a complete description of the study

procedures.

TABLE 1. Demographic and clinical characteristics of methadone-maintained, cocaine-dependent participants in a connectome-based

predictive modeling (CPM) study (N=74)a

fMRI Data Included in CPM
b

Variable Total (N=74) Yes (N=53) No (N=21)

N % N % N %

Female 27 36.5 14 26.4 13 61.9

Completed high school 53 71.6 37 69.8 16 76.2

Unemployed 54 73.0 36 71.7 16 76.2

Mean SD Mean SD Mean SD

Methadone dosage at baseline (mg/day) 73.0 24.4 74.7 23.1 69.0 27.5

Days in treatment at fMRI scan 1.9 7.3 1.5 6.7 2.9 8.6

Age (years) 36.3 9.4 35.2 9.4 39.3 9.1

Days of opioid use, past 28 days 3.6 5.8 3.8 6.1 3.1 5.0

Days of marijuana use, past 28 days 2.0 5.5 1.9 5.9 2.2 4.2

Days of cocaine use, past 28 days 16.2 8.1 16.9 8.3 14.5 7.4

Days of cigarette use, past 28 days 26.1 6.6 25.6 7.6 27.4 2.8

Days of alcohol use, past 28 days 2.4 5.9 2.1 5.1 3.2 7.7

Years of regular cocaine use 9.0 7.8 8.1 6.5 11.3 10.2

Number of previous outpatient drug treatments 3.0 3.6 3.0 3.8 2.9 3.4

Number of previous inpatient drug treatments 3.2 5.2 3.0 4.7 3.6 6.6

Lifetime number of arrests 5.5 6.3 5.3 6.1 5.8 6.9

Estimated IQ 90.5 12.8 90.1 12.8 91.2 13.2

Percent cocaine-negative urine samples 21.6 28.9 23.0 28.0 18.0 31.5

N % N % N %

Route of cocaine use

Smoking 52 70.3 37 69.8 15 71.4

Snorting 15 20.3 11 20.8 4 19.0

Intravenous 7 9.5 5 9.4 2 9.5

a There were no significant differences between groups on any variable except sex (p=0.004).
b Four individuals were excluded because of incomplete or missing data, and 17 were excluded because of excessive motion during scanning.

Am J Psychiatry 176:2, February 2019 ajp.psychiatryonline.org 157

YIP ET AL.

http://ajp.psychiatryonline.org


Neuroimaging Data Acquisition

fMRI data were acquired during performance of a well-

validated monetary incentive delay task (21) (see the online

supplement, including Figure S1). Preprocessing was con-

ducted using SPM8 and the BioImage Suite and is described

in the online supplement.

Functional Connectivity

Whole-brain functional connectivity analyses were con-

ducted using the BioImage suite, using previously de-

scribed methods (17–19). Network nodes were defined

using the Shen 268-node brain atlas, which includes the

cortex, subcortex, and cerebellum (22), as in previous

CPM work (17–19) (further details are provided in the online

supplement). Task connectivity was calculated on the basis

of the “raw” task time courses, with no regression of task-

evoked activity (18, 23). This involved computation of mean

time courses for each of the 268 nodes (i.e., average time

course of voxels within the node) for use in node-by-node

pairwise Pearson’s correlations. The resultant r values were

transformed using Fisher’s z-transformation to create

symmetric 2683268 connectivity matrices in which each

element of the matrix represents the strength of connection

between two individual nodes (hereafter referred to as an

“edge”) (13, 19).

Connectome-Based Predictive Modeling (CPM)

CPM was conducted using previously validated custom

MATLAB scripts (13). A schematic diagram of CPM is pre-

sented in Figure S2 in the online supplement. Briefly, CPM

takes group connectivitymatrices andbehavioral data (in this

case, percentage of cocaine-negative urine samples during

treatment) as input to generate a predictive model of the

behavioral data from connectivity matrices (13). Edges and

behavioral data from the training data set are correlated

using regression analyses (here using either Pearson’s cor-

relation or partial correlation) to identify positive and neg-

ative predictive networks. Positive networks are networks

for which increased edge weights (increased connectivity)

are associated with the variable of interest, and negative

networks are those for which decreased edge weights (de-

creased connectivity) are associated with the variable of

interest. While both networks are used for predicting the

same variable, they are by definition independent, because

a single edge cannot be both a positive and a negative pre-

dictor. Single-subject summary statistics are then created as

the sum of the significant edge weights in each network and

are entered into predictive models that assume linear rela-

tionships with behavioral data. The resultant polynomial

coefficients (linear equation including slope and intercept)

are then applied to the test data set to predict behaviors.

In the case of leave-one-out cross-validation (used here), a

single participant’s predicted value (i.e., the “left-out” par-

ticipant) is generated by taking the data from all other par-

ticipants as the training data set in an iterative manner until

all participants have a predicted value.

Model performance (i.e., correspondence between pre-

dicted and actual values) was assessed using Spearman’s rho

correlations. When using leave-one-out cross-validation,

analyses in the leave-one-out folds are not wholly in-

dependent, and the number of degrees of freedom is thus

overestimated for parametric p values based on correlation.

Instead of parametric testing, we therefore performed

permutation testing. To generate null distributions for

significance testing, we randomly shuffled the correspon-

dence between behavioral variables and connectivity ma-

trices 5,000 times and reran the CPM analysis with the

shuffled data. Based on these null distributions, the p values

for leave-one-out predictions were calculated as in previous

work (13, 18). Details on characterization of the resultant

network anatomy are provided in the online supplement.

RESULTS

AssociationsBetweenBaselineVariables andAbstinence

Spearman’s correlation analyses indicated no significant as-

sociations between baseline clinical variables (years of use,

past-month use, methadone dosage) and within-treatment

abstinence (p values, .0.05). For comparison with CPM

findings, a machine learning analysis (i.e., support vector re-

gression [SVR]) of baseline clinical data was also conducted

(details are provided in the online supplement). Because

CPM is optimized for neuroimaging data, SVR was selected

over CPM for this analysis. SVR incorporating baseline clini-

cal variables did not predict within-treatment abstinence

(p.0.05).

Predicting Within-Treatment Abstinence

To control for putative effects of residual motion, CPM

analyses were conducted both with and without motion as a

covariate, and the two approaches yielded similar results

(further details are provided in the online supplement). For

simplicity, findings including motion as a covariate are pre-

sented here unless otherwise specified. The overall CPM

model successfully predicted abstinence (as indicated by

cocaine-negative urine samples) (combined positive and

negative networks: r=0.42, df=52, p=0.001) (Figure 1), as

did connectivity within the positive (r=0.43, df=52,

p,0.001) and negative (r=0.40, df=52, p=0.003) networks

separately.

Follow-up comparisons controlling for methadone dosage,

medication group (galantamine or placebo), cocaine use

history (years of use, days of past-month use), other

drug and alcohol use, smoking status, and timing of fMRI

scanning with respect to treatment initiation also suc-

cessfully predicted abstinence (r values .0.40, with p

values,0.003) and are presented in the online supplement.

Post hoc correlations indicated significant correspondence

between network strengths and other abstinence indices

(e.g., percent days self-reported abstinence, maximum

days of consecutive abstinence) and are presented in the

online supplement.
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Network Anatomy

Figure 2 summarizes positive and negative abstinence net-

works based on connectivity between macroscale brain re-

gions (note that brain regions are presented in approximate

anatomical order, such that longer-range connections are

represented by longer lines). Consistent with previous CPM

work (17–19), network anatomies for both networks were

complex and included connections between frontal, parie-

tal, occipital, and temporal lobes. Despite this complexity,

the spatial extent of both positive and negative networks to-

gether included only 529 edges (266 positive, 263 negative),

or less than 1.5% of possible connections. Highest-degree

nodes (i.e., nodes with the most connections) for the positive

network included a prefrontal node with connections to

limbic, temporal, parietal, cerebellar, and other prefrontal

nodes, and a temporal node with connections to limbic,

parietal, motor, and prefrontal nodes. Highest-degree nodes

for the negative network also included a temporal node

with connections to limbic, parietal, and prefrontal nodes as

well as with connections to cerebellar and subcortical nodes.

Both abstinence networks included short- and long-range

connections. However, the positive network was character-

ized by relatively more long-range connections (56% long-

range; 44% short-range), whereas the negative network

included more short-range connections (42% long-range;

58% short-range).

Overlap With Canonical Neural Networks

To facilitate characterization of identified abstinence net-

works, Figure 3 summarizes connectivity based on the num-

ber of connections within and between canonical neural

networks (e.g., frontoparietal, motor/sensory) for the positive

(Figure 3A) and negative (Figure 3B) networks. By definition,

positive and negative networks do not contain overlapping

connections (as a single edge cannot be both apositive and a

negative predictor). However, positive and negative ab-

stinence networks included connections within and be-

tween similar large-scale canonical neural networks.

Comparison of networks (Figure 3C) indicated that the

positive network included relatively more connections

between medial frontal and frontoparietal and default

mode networks; between motor/sensory and cerebellar

and salience networks; and between subcortical and motor/

sensory and salience networks. The negative network in-

cluded relatively more connections between medial frontal

and salience networks; between medial frontal and sub-

cortical networks; between medial frontal and motor/sensory

networks; between default mode and salience networks; and

between frontoparietal and motor/sensory networks. The

positive network was further characterized by more

within-network connections across medial frontal, fronto-

parietal, default mode, motor/sensory, visual association,

and salience networks, whereas the negative network in-

cluded more within-network connections for occipital and

subcortical networks.

Relationship to Posttreatment Abstinence

Trial participants were also invited to participate in post-

treatment fMRI scanning. After exclusion for excess motion

(as described above), 40 participants who underwent post-

treatment fMRI scanning were included in the analyses.

To determine the extension of our networks to predict

abstinence after treatment, individual participant network

summary scores were created as the sum of connectivity

FIGURE 1. Connectome-based predictive modeling (CPM) performance and positive and negative abstinence networksa

A. Positive and Negative Abstinence Networks Identified Using CPM B. Model Fit: Predicted Versus Actual

r=0.42, p=0.001
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aPanel A shows positive (red) and negative (blue) abstinence networks. For the positive network, increased edge weights (i.e., increased functional

connectivity) predict more within-treatment abstinence. For the negative network, decreased edge weights (i.e., decreased functional connectivity)

predict more within-treatment abstinence. Larger spheres indicate nodes with more edges, and smaller spheres indicate fewer edges. Panel B illustrates

the correspondence between actual (x-axis) and predicted (y-axis) abstinence values generated using CPM. Abstinence values correspond to the

percentage of urine samples provided during treatment that were negative for cocaine. Despite the clinical complexity of the population, CPM

successfully predicted within-treatment abstinence (p values,,0.005). Predictions remained significant in follow-up analyses controlling for clinical

variables, including years of cocaine use and treatment retention (see the online supplement).
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strengths within positive and negative networks (negative

network values were first sign-flipped so that higher values

indicated “better” networks). The resultant scores from post-

treatment matrices were entered into correlation analyses

with abstinence during 6-month follow-up (as defined by

self-report using the timeline follow-back method, assessed

monthly). Posttreatment connectivity strengths were sig-

nificantly associated with abstinence during follow-up

(r=0.34, df=39, p=0.03). Comparison of pre- and posttreat-

ment networks indicated no significant changes in connec-

tivity strength (t=0.81, df=38, p=0.42).

Out-of-Sample Replication and Binary Prediction

To determine the generalizability of our findings, we tested

the ability of the identified networks to predict cocaine-negative

urine toxicology outcomes in a heterogeneous sample of

cocaine-dependent individuals (N=45). This included pre-

viously excluded individuals with excess motion during

scanning (N=17) and individuals from an independent, pre-

viously published randomized controlled trial (N=28) (2). As

in our original analyses, residual motion was included as

a covariate. Further details on exclusion for motion and re-

lated analyses are provided in the online supplement.

Because the practical clinical utility of biomarkers is un-

likely to rely on their ability to generate continuous indices

of treatment outcome but rather on their ability to identify, a

priori, treatment responders from nonresponders in a binary

manner, we further tested the ability of the identified networks

to predict abstinence in a binary manner (any drug-free urine

specimens, yes/no) in our replication sample. Individual

participant summary scores were extracted from functional

connectivity matrices, as above, and entered into regression

analyses with within-treatment abstinence values.

Pretreatment network strength in the independent sample

predicted abstinence during treatment for both continuous

outcomes (percent cocaine-negative urine samples during

treatment; r=0.36, df=44, p=0.016) and binary outcomes (any

cocaine-negativeurine; 64%accuracy,x2=5.99, df=2, p=0.014;

82% specificity; 35% sensitivity). For binary prediction,

accuracy was increased to 71% after inclusion of baseline

cocaine use (days of use in the month preceding treatment)

in the model (x2=6.20, df=2, p=0.02; 89% sensitivity; 41%

FIGURE 2. Positive and negative abstinence networks summarized by connectivity between macroscale brain regionsa

Prefrontal TemporalMotor Strip Insula Parietal

Occipital BrainstemLimbic Cerebellum Subcortical

≥5 edges ≥10 edges ≥12 edges

Negative NetworkPositive Network

a From the top, brain regions are presented in approximate anatomical order, such that longer-range connections are represented by longer lines.
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specificity). As shown in Figure S4 in the online supple-

ment, binarization across different levels of use ($25%

drug-free urine samples, $75% drug-free urine samples)

decreased sensitivity (57% and 25%, respectively) but in-

creased specificity (71% and 89%, respectively).

DISCUSSION

The translation of brain imaging findings into real-world

clinical settings is one of the primary challenges of modern

neuropsychiatry (7–9, 11–13). In this study, we demonstrated

the ability of a recently developed connectome-basedmachine

learning approach to predict treatment outcomes (abstinence

from cocaine during 12-week treatment) using baseline pat-

terns of connectivity. We further demonstrated that post-

treatment patterns of connectivity within these networks

predicted abstinence during 6-month follow-up. Finally, we

demonstrated that the same networks can be used to predict

treatment response in an independent, heterogeneous sample.

Despite this predictive ability, identified networks could be

considered potential treatment targets (3, 5, 16), and further

replication and model refinement are needed before the

findings can be directly applied to clinical decision making.

Consistent with the connectome-based approach, absti-

nence networks were complex and included connections

between multiple well-established neural networks (17, 18).

The positive network included more frontoparietal–medial

frontal–default mode connections as well as more salience–

subcortical–motor/sensory connections. In contrast, the

negative network (the network for which increased connec-

tivity is negatively associated with abstinence) included more

connections between the medial frontal network and salience,

subcortical, and motor/sensory networks as well as more

salience–default mode connections. Based on these findings,

Figure 4 presents a theoretical network model of abstinence.

We propose that abstinence is positively predicted by 1) in-

tegration of a cognitive/executive control system involving

increased connectivity between frontoparietal and medial

frontal networks; 2) integration of a reward responsiveness

system involving increased connectivity between salience,

motor/sensory, and subcortical networks; and 3) segregation

(decreased connectivity) between these two systems. This

model builds on previous models of addiction emphasizing

separation of frontoparietal and salience networks (24, 25)

but also incorporates medial frontal, motor/sensory, and

subcortical networks to provide a theoretical framework for

future research.

Within the above context, cognitive/executive control

networks are theorized to contribute to abstinence via co-

ordination of top-down processes necessary for treatment

FIGURE 3. Positive and negative abstinence networks summarized by overlap with canonical neural networksa
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aWithin- and between-network connectivity for the positive network (panel A), for the negative network (panel B) and for the positive minus the

negative network (panel C) are summarized based on overlap with canonical neural networks. In panels A and B, cells represent the total number of

edges connecting nodes within (and between) each network, with darker colors indicating a greater number of edges. In panel C, cells represent the

number of positive versus negative edges connecting nodes within (and between) each network, with warmer colors (orange and yellow) indicating

more edges in the positive network and cooler colors (blue and green) indicatingmore edges in the negative network. Despite this visual simplification,
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Figure S3 in the online supplement.)
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engagement (e.g., acquisition of new skills, enhanced control

over impulsive behavior), whereas integration of reward

networks may support motivational processes relevant to

treatment (e.g., willingness to change, attending to alternate

rewards) (3, 26). In addition, based on previous resting-state

research in cocaine use disorder (27), appropriate separation

between these two systems is theorized to relate to greater

behavioralflexibility (or todecreasedcompulsivity), aswould

be required for behavior change during treatment.

Although we did not model specific events of interest but

rather used “raw” time courses, our findings are nonetheless

intuitive when considered within the context of reward task

performance, which requires coordination of both atten-

tional and cognitive control processes as well as of salience

encoding and reward response behaviors (28, 29). These

findings are further consistentwith recent data prospectively

linking medial prefrontal, frontoparietal, and salience net-

works to cocaine relapse (5, 16), as well as with data from

activation-based studies linking individual differences in

brain reward responses to treatment outcomes in addiction

(2, 6, 30). They further suggest that segregation of execu-

tive control/attention and salience/reward response systems

within the context of performance on the monetary in-

centive delay task may be optimal for achieving absti-

nence from cocaine. More generally, these data add to

emerging evidence that manipulation of brain states (e.g.,

via reward task performance) may be helpful in detecting

individual differences in brain-behavior relationships

(23). For example, connectome-based predictive models

derived from task-based data have consistently outperformed

those derived from resting-state data in nonaddicted pop-

ulations (31). However, further work across different brain

states and in relation to diverse substance use behaviors is

needed to test this hypothesis in the specific context of

addictions.

Connectivity strength within abstinence networks did

not differ between pre- and posttreatment assessments. Pre-

vious activation-based studies have demonstrated changes in

neural responses after substance use treatments; however,

comparatively little is known about network-level changes

with treatment. For example, individual differences in con-

nectivity have been found to predict subsequent relapse to

cocaine (5, 16, 32), yet no previous study has compared con-

nectivity before and after treatment for cocaine use disorder.

Our findings suggest relative stability of identified networks

over 12-week treatment, raising the possibility that absti-

nence may be more closely linked to pretreatment neural

function than to within-treatment neuroplasticity. In this

context, it is possible that pretreatment interventions influ-

encing connectivity within the identified networks (e.g.,

cognitive training, targeted pharmacotherapies) may be

helpful in promoting abstinence during treatment (33–36).

For example, previous CPM work has demonstrated that

connectivity strength within networks predictive of at-

tention deficit hyperactivity disorder symptoms is changed

after administration of methylphenidate (19). Thus, it is

possible that effective treatments for addiction also in-

fluence connectivity within complex networks.

It is further possible that networks contributing to

treatment response are distinct from those that are directly

implicated in disease pathology or that change with treat-

ment. Brain regions predictive of treatment response in

other disorders often have limited overlap with regions

consistently found to differentiate patients from control

subjects (37). Clinically, factors that predict treatment

response (e.g., motivation to change) may be distinct from

those that change with treatment (e.g., acquisition of new

skills). Thus, the same may be true for neural networks.

Furthermore, it is possible that changes within abstinence

networks may take time to emerge and thus may be de-

tectable only after treatment, as would be consistent with

data indicating protracted emergence of treatment effects

(38). Additional work is therefore needed to characterize

network-level changes over time and in relation to ad-

diction pathology per se. Similarly, future studies should

consider how “positive” and “negative” networks change

over the course of treatment.

While continuous prediction approaches, which maxi-

mize individual differences, are optimal for feature selection

in heterogeneous clinical samples (11), the practical value

of predictive modeling within a clinical context will likely

involve binary prediction (e.g., identifying treatment re-

sponders andnonresponders).We therefore tested the ability

FIGURE 4. Five-network model of abstinence during substance

use treatmenta
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a Large-scale patterns of between-network connectivity for abstinence

networks identified using connectome-based predictive modeling are

summarized based on relative number of connections within positive

(red) versusnegative (blue) networks. Stronger connectivity (i.e., network

integration) between frontoparietal and medial-frontal networks (top)

and between sensory-motor, salience, and subcortical networks (bot-

tom) positively predicted within-treatment abstinence. Weaker con-

nectivity between these two systems (i.e., network segregation) also

predicted more within-treatment abstinence.
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of the identified networks to predict categorical outcomes

(cocaine-negative urine samples, yes/no) as well as to predict

dimensional (percent cocaine-negative urine samples)within-

treatment abstinence in an independent, heterogeneous sam-

ple of individuals with cocaine use disorder with and without

concurrent methadone treatment. Connectivity within the

identified networks successfully predicted both categorical

and dimensional treatment response in our replication sample.

In our replication sample, our model had high sensitivity

but low specificity. In this instance, low sensitivity would

translate to underidentification of responders (and thus

underassignment of individuals to effective treatment),

whereas low specificity would translate to underidentification

of nonresponders (overassignment to ineffective treatment).

Given that multiple failed treatment attempts are common in

addictions—and that only resources are lost in the instance

of overassignment to ineffective treatment—maximizing

sensitivity in this instance appears paramount.

Strengths and Limitations

This study has several strengths, including use of a recently

developed whole-brain predictive modeling approach,

multiple-time-point fMRI data (before and after treatment),

and out-of-sample replication. Several limitations should be

noted, too. Some participants were excluded formissing data

or excess motion during scanning, resulting in a relatively

modest sample size for our primary analysis (N=53); thus,

further work in larger samples is warranted, as noted above.

Second, the functional significance of the identified networks

in relation to other aspects of substance use pathology re-

mains to be determined. While networks were relatively

robust and not significantly changed in follow-up analyses

controlling for other factors, we cannot entirely exclude the

effects of other clinical variables, such as concurrent use of

other substances or even acute intoxication, on connectivity

strength. Third, given the relatively limited temporal spec-

ificity of urine toxicology analyses, future studies should

consider incorporation of salivary testing for acute drug

effects. Fourth, further work will be needed to determine

generalizability of these findings to fMRI data acquired

during performance of different tasks or while the brain is

“at rest.” To avoid circularity, we did not test the ability of

pretreatment data to predict abstinence during follow-up;

however, this will be an important next step for future

studies (5). Consistent with recommendations to encourage

model testing in diverse samples (39), we have made the

positive and negative abstinence network masks publicly

available at our web site (https://www.nitrc.org/projects/

bioimagesuite/).

Identified networks accounted for just under 20% of the

variance in within-treatment abstinence for novel subjects.

While arguably somewhat modest, it is important to note

that effect size estimates derived from “traditional” statis-

tical approaches—that is, statistics applied to test explan-

atory hypotheses—are typically larger than those derived

from machine learning approaches—that is, statistics

applied to predict unknown information (17, 40). Predictive

models are less likely to overfit a specific data set, leading to

both increased likelihood of out-of-sample replication as

well as typically decreased (more realistic) effect size es-

timates (12, 41, 42). Similarly, small effect sizes are found in

mega-analyses with ∼10,000 subjects (e.g., findings from

the ENIGMA project).

CONCLUSIONS

This study demonstrates that baseline patterns of whole-

brainconnectivity canpredict a complexclinical outcome—in

this case, cocaine abstinence. Consistent with the parent

randomized controlled trial (20), participants had significant

addiction histories, including multiple previous quit at-

tempts, legal problems, and concurrent methadone treat-

ment for opioid use disorder. Despite this clinically complex

profile, baseline connectivity within the identified net-

works successfully predicted within-treatment abstinence,

even after controlling for other baseline variables, includ-

ing other drug use history and treatment assignment.

The predictive ability of these networks translated to a

separate, heterogeneous sample of individuals (including

non–methadone-maintained individuals with cocaine use

disorder who underwent scanning before enrollment in

a different treatment trial). These data demonstrate that

individual differences in connectivity within large-scale

neural networks implicated in cognitive/executive control

and reward responsiveness processes contribute to vari-

ability in cocaine use outcomes. As such, these “neural

fingerprints” may be an appropriate target for future in-

tervention efforts.
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