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An improved understanding of the neuroplastic potential of the brain has allowed

advancements in neuromodulatory treatments for acute stroke patients. However,

there remains a poor understanding of individual di�erences in treatment-induced

recovery. Individualized information on connectivity disturbances may help

predict di�erences in treatment response and recovery phenotypes. We studied

the medical data of 22 ischemic stroke patients who received MRI scans and

started repetitive transcranial magnetic stimulation (rTMS) treatment on the same

day. The functional and motor outcomes were assessed at admission day, 1 day

after treatment, 30 days after treatment, and 90 days after treatment using four

validated standardized stroke outcome scales. Each patient underwent detailed

baseline connectivity analyses to identify structural and functional connectivity

disturbances. An unsupervised machine learning (ML) agglomerative hierarchical

clustering method was utilized to group patients according to outcomes

at four-time points to identify individual phenotypes in recovery trajectory.

Di�erences in connectivity features were examined between individual clusters.

Patients were a median age of 64, 50% female, and had a median hospital

length of stay of 9.5 days. A significant improvement between all time points was

demonstrated post treatment in three of four validated stroke scales utilized. ML-

based analyses identified distinct clusters representing unique patient trajectories

for each scale. Quantitative di�erences were found to exist in structural and

functional connectivity analyses of the motor network and subcortical structures

between individual clusters which could explain these unique trajectories on the

Barthel Index (BI) scale but not on other stroke scales. This study demonstrates

for the first time the feasibility of using individualized connectivity analyses in

di�erentiating unique phenotypes in rTMS treatment responses and recovery.

This personalized connectomic approach may be utilized in the future to better

understand patient recovery trajectories with neuromodulatory treatment.
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1. Introduction

Stroke has remained a leading cause of death worldwide which has increased

in both incidence and prevalence over recent decades (1, 2). Of the patients who

survive, few make a complete recovery and most patients are left with significant

disability (3). Despite this, many patients remain highly open to rigorous recovery

treatments and training services to improve the quality of life and integration back

into society (4, 5), and as such, neurological rehabilitation treatments to facilitate

functional recovery after stroke have remained a key priority in stroke research (1).
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In particular, an improved understanding of the neuroplastic

potential of the human brain connectome has facilitated increased

use of non-invasive neuromodulatory treatments for stroke

patients (1, 6–11).

Non-invasive neuromodulatory treatment, delivered through

transcranial magnetic stimulation (TMS), is a recognized and safe

treatment that works primarily through modulating cortical and

corticospinal excitability across the human cerebrum. While a

number of studies in the literature have suggested clear benefits of

this therapy in regard to post-stroke functional recovery (7, 12, 13),

these benefits have also been contested in recent large scale studies

suggesting limited improvements (1, 14). Notably, differences in

outcomes across controlled trials may be related to differences in

the recovery scale utilized (15, 16), the specific neuromodulatory

protocols and targets selected (17, 18), and importantly, unique

inter-individual differences in patient physiology (19). Nonetheless,

a poor understanding of the variable responses to TMS treatments

has disbarred the effective application and recommendation of this

safe treatment for stroke patients in larger clinical and research

settings (1), and thus requires further study.

It has become clear that human physiological and

pathophysiological functioning can be best understood in the

context of underlying neural connections across the human brain

connectome (8, 20, 21). More recently, these connections can

now be rigorously analyzed with the recent advancements in

neuroimaging capabilities and high-throughput approaches (22).

Similar to what has been seen in a number of other neurological

disorders (20, 23), connectomic analyses have revealed that stroke

disrupts structural and functional neural connections both near

and spatially distant from the lesion site (24, 25), and these

disruptions are highly related to functional outcomes (19, 26).

This has caused some to suggest the need for a connectomic-based

approach to stroke treatments and analyses (27).

It is also important to consider that stroke patient recovery

varies significantly between individuals (19). A connectome-

based TMS approach that considers individual connectivity

disturbances post-craniotomy can facilitate effective improvements

in motor and speech deficits for individual brain tumor patients

(11). Therefore, it is reasonable to hypothesize that similar

patient-specific connectomic analyses may offer additional novel

information to understand and predict individual recovery from

stroke (19). Utilization of this information may help track the

patient recovery course following acute stroke, which could assist in

physician decisions regarding treatment parameters and regimens

by stratifying patients into different TMS treatment recovery

groups (9, 11).

In this pilot study, we attempted to examine how patients

could be grouped into specific clusters according to their

clinical treatment phenotypes, and how connectomic information

may provide additional important insight into understanding

these phenotypes.

2. Methods

2.1. Participants

The study was completed with the first affiliated hospital of

Hainan medical university ethics committee approval. Twenty-two

patients with acute strokes provided informed consent to the use of

rTMS treatment from 2020 to 2021.

Inclusion criteria included: ① being between the ages of

18 and 90; ② having the first and unilateral onset within 1

week; ③ being able to cooperate with physical examination,

scoring, and treatment; ④ met the diagnostic criteria of the

2018 China guidelines for the diagnosis and treatment of acute

ischemic stroke, as confirmed by cranial CT or MRI; and

⑤ were diagnosed with infarct lesions in the cerebral hemisphere.

Exclusion criteria included: ① hemorrhage stroke and progressive

stroke; ② intravenous thrombolysis or vascular interventional

therapy; ③ metal or foreign matter in the body; and ④ other

important organ failure, intracranial hypertension symptoms, or

malignant tumor.

2.2. Functional outcome assessment

Appropriate demographic data and relevant medical history

were collected from each patient. Patient functional status scores

were assessed according to: (1) National Institutes of Health Stroke

Scale (NIHSS), which is an 11-item neurological examination

stroke scale used to evaluate the effect of acute cerebral infarction

on the levels of consciousness, language, neglect, visual-field

loss, extraocular movement, facial palsy, motor strength, ataxia,

dysarthria, and sensory loss. The total scores range from 0 to

42, with higher scores indicating greater severity. (2) Fugl-Meyer

Assessment (FMA) is a 5-domain and 155-item scale to assess

motor functioning, balance, sensation, and joint functioning in

patients with post-stroke hemiplegia at all ages. Each item is scored

by a 3-point ordinal scale, with lower scores indicating greater

severity. (3) Barthel Index (BI), which is a 10-item scale describing

the activities of daily living (ADL) and mobility, and includes 10

personal activities: feeding, personal toileting, bathing, dressing

and undressing, getting on and off a toilet, controlling bladder,

controlling bowel, moving from wheelchair to bed and returning,

walking on a level surface (or propelling a wheelchair if unable to

walk), and ascending and descending stairs. Total scores are 100,

with lower scores indicating greater dependency. (4) Wolf Motor

Function Test (WMFT) includes 15 task performances to measure

the upper extremity function after stroke. The total score is 75 with

a higher score indicating stronger ability to complete the upper

limb tasks (28–31). Each patient’s scores were assessed at four-

time points in order to obtain long-term data: (1) at admission

day, (2) 1 day after treatment, (3) 30 days after treatment, and (4)

90 days after treatment. All the personally identifiable information

has been removed. There were no adverse and unanticipated

events reported.

2.3. Image acquisition

Imaging acquisition was performed within after 48–72 h after

the functional outcome assessment and was performed on a Philips

3T Achieva MRI scanner. Diffusion-weighted imaging (DWI) was

acquired with: 2 × 2 × 2 mm3 voxels, field of view (FOV) =

256mm, matrix = 128 × 128 mm2, slice thickness = 2.0mm, one
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non-zero b-value of 1,000, 40 directions, gap = 0.0mm. Resting-

state functional MRI (rs-fMRI) was acquired as a T2-star EPI

sequence, with 3 × 3 × 3-mm3 voxels, 128 volumes/run, TE =

27ms, TR = 2.8 s, FOV = 256mm, flip angle = 90◦. The sequence

time is 230 s. The patient was requested to close their eyes without

thinking or any movement during the scan.

2.4. rTMS treatment

rTMS treatment was performed the day after imaging

acquisition. rTMS was delivered daily, and the patients were

treated twice a day for 5 days, a total of 10 times throughout the

hospital stay.

The rTMS was performed with a TMS stimulator (YINGCHI

Technology, China) using a flat circular coil for accurately targeted

stimulation. The coil were placed tangentially to the scalp with

the handle posterior at 45◦ from the mid-line. In order to record

surface electromyography (EMG), electrodes were placed on the

abductor pollicis brevis (AFB) on the unaffected side. Resting

motor threshold (RMT) is defined as the minimum intensity

required eliciting at least five out of 10 MEPs that are >50 µV in a

relaxed target muscle. The coil positioning was guided throughout

a positioning cap with pre-defined brain regions.

Patients were randomly divided into three intervention groups

using an automated random lot drawing technique. Based

on randomization, patients received different TMS treatments

as described in Table 2. The three treatment options were

selected based on previous rTMS evidence-based guidelines that

recommended that low-frequency or high-frequency TMS could

be used as a Class A or B recommendation for the treatment of

post-stroke motor dysfunction in the acute (subacute) stage (32).

While less stated in previous guidelines, intermittent theta burst

stimulation (iTBS) has also been shown to provide benefits in this

context with sustained benefits for at least 3 months and therefore

was also utilized in our study (33, 34). Information on the TMS

protocol used in the current study is presented in Table 1.

2.5. MRI image processing

All MRI scans were processed using Infinitome software

(produced by Omniscient Neurotechnology), which has

been described previously (23, 35). Diffusion tractography

preprocessing includes standard processing steps (36), which

include motion correction, elimination of excess movement,

gradient distortion correction, eddy correction, and constrained

spherical deconvolution-based deterministic tractography. An

individualized, parcellated brain connectome was then created

according to the Human Connectome Project (37) parcellation

scheme, and structural connectivity is measured between each

parcel pair. Resting-state fMRI image preprocessing steps include

similar steps as outlined above in addition to the removal of high

variance confounds according to the CompCor method and the

regression of motion confounds out of the image and spatial

smoothing (38).

2.6. Statistical analyses

Analyses were completed using R 4.1.3 (R Foundation for

statistical computing).

Data were analyzed for mean or median for continuous

variables and as frequency or percentages for categorical data.

Continuous variables were assessed for normality with the Shapiro–

Wilk’s test and homogeneity of variance with the F-test of

variance and then subsequently compared with unpaired t-tests

or Wilcoxon rank-sum tests (with Bonferroni correction for

multiple comparisons) and univariate linear regression analysis

as appropriate. Categorical variables were assessed with chi-

squared tests with Yate’s continuity correction or Fisher’s exact

tests as appropriate. Paired subjects at different time points [(1) at

admission day, (2) 1 day after treatment, (3) 30 days after treatment,

and (4) 90 days after treatment] were assessed using the non-

parametric Friedman’s test for all four scales. The effect size for

possible differences was measured with Kendall’s W and Dunn’s

pairwise post hoc analyses.

2.7. Structural and functional connectivity
analyses

After completing tractography-based individual patient

connectomes, structural and functional connections between

parcels in the motor network were assessed.

Possible structural connectivity disturbances in the cortical-

spinal tracts (CSTs), cortical–subcortical projection fibers, and

subcortical connections were assessed according to their structural

integrity on a 3-point scale (0 = intact, 1 = visible injured, and

2 = absent) as well as the lesion proximity to these structures

(0 = not adjacent, 1 = adjacent (<1 cm), and 2 = inside the

fibers). These structural connectivity analyses were completed by

two independent reviewers (YZ and MES) similar to what has been

completed by others (39).

Functional connectivity disturbances within themotor network

were assessed by identifying individual “anomaly” parcels, referring

to regions functioning outside of the normal range compared

to 200 healthy adults. The source of the data is from healthy

subjects of similar but not age-matched adults from the publicly

available OpenNeuro (https://openneuro.org/) and SchizConnect

(http://schizconnect.org) datasets as previously discussed by our

team (35, 40). The personalized atlas created in previous steps

was registered to the T1 image and localized to the gray matter

regions. Although the entire human connectome according to

the atlas published by the Human Connectome Project authors

demonstrates a total of 360 cortical parcellations (37) as well

as an additional 19 subcortical structures (35), we sought to

focus on the motor network and subcortical regions alone.

Therefore, in the current study, the average BOLD time series

from parcellations confined to the motor network and subcortical

structures were extracted, including a total of 45 regions (see the

details of 45 regions in Supplementary Table 1). In order to create

individual functional connectivity anomaly matrices that identify

outliers (“anomalies”), a tangent space connectivity matrix was

performed to determine the range of each functional connectivity
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TABLE 1 TMS protocols.

TMS
protocol

Motor
threshold

Stimulation
frequency
(Hz)

Trains Pulses/
train

Intervals
between
trains (s)

Total
pulses

Duration
(Min)

Side Target N = 22

iTBS 80% 5Hz burst

frequency, 3

pulses/burst at

50Hz pulses

frequency

20 30 8 600 3 Ipsilesional M1 5 (23%)

High-

frequency

90% 10Hz 100 10 10 1,000 18 Ipsilesional M1 10 (45%)

Low-frequency 90% 1Hz 100 10 2 1,000 20 Contralesional M1 7 (32%)

pair in the matrix and create an individual raw functional

connectivity matrix. Then, anomaly matrices were created by

identifying abnormally connected parcels defined as a 3-sigma

outlier for that correlation compared to the normative connectivity

matrix. Connections that were 3-SD above the normative mean

were labeled “hyperconnected,” within 3-SD labeled “normal

connectivity,” and 3-SD below the mean “hypoconnected” (23).

Furthermore, the highest variance 1/3 of pairs were excluded to

further reduce the false discovery rate. This was based on the

hypothesis that since these areas had the highest inter-subject

variance in a normal cohort, these areas may be more prone to

false discovery and therefore should be excluded, as previously

elucidated elsewhere (23, 41).

2.8. Hierarchical clustering

An unsupervised machine learning algorithm was utilized to

group patients into similar, unique clusters according to their

recovery profile and treatment response. Namely, an agglomerative

hierarchical clustering method was utilized which groups objects

into clusters based on their similar characteristics in a “bottom

up” approach (42, 43). Each node (object) represents a cluster, and

then clusters are subsequently merged based on their dis(similarity)

until the optimal number of clusters K is obtained. Information

about (dis)similarity between clusters is calculated using the

pairwise Euclidean distances between every pair of clusters in a

data matrix. The optimal number of clusters K based on this

distance information is then determined according to the Silhouette

method. In brief, a Silhouette coefficient, which presents a metric to

calculate the goodness of a clustering technique, is obtained and

ranges between −1 and 1, with higher scores representing more

coherent clusters. Mathematically, it models the difference between

cluster separation and cohesion in order to identify the optimal

quality of clustering according to a specific number of clusters

generated (44).

The individual features utilized in the algorithm included

the individual stroke scale scores at four-time points (pre-TMS

at baseline and 1-day, 30-day, and 90-day post-TMS). These

values were chosen for the current clustering analysis in order

to identify individual phenotypes in recovery trajectory (45),

rather than identifying clinical presentation phenotypes first and

then subsequently assessing their relevance to treatment responses

(46). Importantly, we completed this clustering technique for

each individual scale separately. This was done secondary to the

observation that combining elements from each scale into the same

analysis on this relatively small cohort with heterogenous data

resulted in poor statistical fitting consisting of clustering into more

than 14 groups of 1–2 patients per cluster.

3. Results

The 22 patients included in the study were of a median (IQR)

age of 64 (56, 68) years, and split equally of male (n = 11) and

female (n = 11) patients. All patients suffered from a stroke, and

the median (IQR) hospitalization duration was 9.5 (9, 11) days. The

stroke most occurred in the right hemisphere (n = 15, 68%). The

average baseline score on the NIHSS scale was 11.1, on FMA 16.5,

on BI 8.9, and on WFMT 11.8. These data are presented in Table 2.

The rTMS treatment targeted the primary motor cortex (M1)

in all patients. The targets were at equal proportions of the right

(n = 11) and left hemispheres (n = 11), although varied based

on the frequency of rTMS targeting ipsilateral or contralateral to

the lesion varied further by rTMS protocol (Table 3). Decisions

on which hemisphere rTMS was delivered to relative to the lesion

site were made by two independent stroke neurologists based

on radiographic findings at patient presentation. The treatment

intensity was most commonly of high frequency (n= 10, 45%). The

type of TMS protocol was not associated with scores at any time

point on the NIHSS, BI, orWFMT scales (p> 0.05 each). However,

the use of iTBS was associated with lower scores on the FMA scale

at 1-day (p= 0.03) and 30-day (p= 0.02) post-stroke.

3.1. Functional assessment outcomes

Functional outcomes were examined between four

standardized stroke scales between four-time points (baseline

pre-TMS and 1-day, 30-day, 90-day post-TMS). A significant

improvement between all time-points was demonstrated according

to the NIHSS (Kendall’s W = 0.51, large), FMA (Kendall’s W =

0.59, large), and WFMT (Kendall’s W = 0.02, small) scales (each

p < 0.0001). The change in the BI scale was non-significant (p =

0.67). Mean values at each time point are presented in Figure 1.

Post hoc testing demonstrated significant differences between the

time points of baseline before TMS and 1-day (p = 0.001) as well

as 30-day post-TMS (p < 0.0001) on the NIHSS scale; significant
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TABLE 2 Demographics by stroke scale and cluster.

Characteristic All
data

NIHSS cluster FMA clusters BI cluster WMFT clusters
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=
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=
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p
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a
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Lesion side

Left 7 (32%) 1 (25%) 1 (33%) 3 (38%) 2 (50%) 0 (0%) 0 (0%) >0.9 6 (33%) 1 (25%) >0.9 0 (0%) 3 (60%) 1 (17%) 2 (67%) 1 (17%) 0.3 5 (31%) 2 (33%) >0.9

Right 15 (68%) 3 (75%) 2 (67%) 5 (62%) 2 (50%) 2 (100%) 1 (100%) 12 (67%) 3 (75%) 2 (100%) 2 (40%) 5 (83%) 1 (33%) 5 (83%) 11 (69%) 4 (67%)

Gender

Female 11 (50%) 3 (75%) 1 (33%) 4 (50%) 2 (50%) 0 (0%) 1 (100%) 0.6 8 (44%) 3 (75%) 0.6 2 (100%) 2 (40%) 2 (33%) 2 (67%) 3 (50%) 0.7 7 (44%) 4 (67%) 0.6

Male 11 (50%) 1 (25%) 2 (67%) 4 (50%) 2 (50%) 2 (100%) 0 (0%) 10 (56%) 1 (25%) 0 (0%) 3 (60%) 4 (67%) 1 (33%) 3 (50%) 9 (56%) 2 (33%)

Patient age 64 (56,

68)

58 (55,

62)

49 (48,

59)

64 (62,

66)

64 (55,

72)

78 (77,

80)

67 (67,

67)

0.2 64 (56,

67)

69 (64,

72)

0.2 57 (55,

59)

66 (65,

68)

69 (52,

74)

64 (61,

65)

60 (56,

66)

0.8 64 (58,

67)

62 (54,

70)

>0.9

Hospitalization (days) 9.50

(9.00,

10.75)

10.00

(9.00,

11.25)

9.00

(8.50,

9.00)

10.00

(8.75,

10.00)

11.50

(10.75,

12.00)

8.50

(8.25,

8.75)

8.00

(8.00,

8.00)

0.073 9.00

(9.00,

10.00)

10.50

(9.50,

11.25)

0.5 11.50

(11.25,

11.75)

9.00

(9.00,

9.00)

9.00

(8.00,

10.75)

12.00

(10.50,

12.00)

9.50

(9.00,

10.00)

0.2 9.00

(8.75,

10.00)

11.50

(10.25,

12.00)

0.045

History of cerebrovascular disease

No 22 (100%) 4 (100%) 3 (100%) 8 (100%) 4 (100%) 2 (100%) 1 (100%) 18 (100%) 4 (100%) 2 (100%) 5 (100%) 6 (100%) 3 (100%) 6 (100%) 16 (100%) 6 (100%)

Hypertension 12 (55%) 2 (50%) 1 (33%) 5 (62%) 3 (75%) 1 (50%) 0 (0%) 0.9 10 (56%) 2 (50%) >0.9 0 (0%) 4 (80%) 3 (50%) 1 (33%) 4 (67%) 0.4 9 (56%) 3 (50%) >0.9

Diabetes 9 (41%) 1 (25%) 2 (67%) 4 (50%) 1 (25%) 1 (50%) 0 (0%) 0.9 8 (44%) 1 (25%) 0.6 0 (0%) 4 (80%) 2 (33%) 0 (0%) 3 (50%) 0.2 8 (50%) 1 (17%) 0.3

Coronary Heart

Disease

2 (9.1%) 1 (25%) 0 (0%) 1 (12%) 0 (0%) 0 (0%) 0 (0%) >0.9 2 (11%) 0 (0%) >0.9 0 (0%) 1 (20%) 0 (0%) 1 (33%) 0 (0%) 0.4 2 (12%) 0 (0%) >0.9

Hyperlipidemia 9 (41%) 0 (0%) 2 (67%) 5 (62%) 1 (25%) 1 (50%) 0 (0%) 0.3 8 (44%) 1 (25%) 0.6 0 (0%) 4 (80%) 2 (33%) 0 (0%) 3 (50%) 0.2 8 (50%) 1 (17%) 0.3

TMS protocol

High freq 10 (45%) 2 (50%) 0 (0%) 4 (50%) 2 (50%) 1 (50%) 1 (100%) 0.7 7 (39%) 3 (75%) 0.3 0 (0%) 2 (40%) 3 (50%) 1 (33%) 4 (67%) 0.5 7 (44%) 3 (50%) 0.7

iTBS 5 (23%) 2 (50%) 1 (33%) 1 (12%) 1 (25%) 0 (0%) 0 (0%) 4 (22%) 1 (25%) 2 (100%) 0 (0%) 1 (17%) 1 (33%) 1 (17%) 3 (19%) 2 (33%)

Low freq 7 (32%) 0 (0%) 2 (67%) 3 (38%) 1 (25%) 1 (50%) 0 (0%) 7 (39%) 0 (0%) 0 (0%) 3 (60%) 2 (33%) 1 (33%) 1 (17%) 6 (38%) 1 (17%)

TMS side

Contralateral 10 (45%) 2 (50%) 2 (67%) 4 (50%) 1 (25%) 1 (50%) 0 (0%) >0.9 10 (56%) 0 (0%) 0.1 1 (50%) 3 (60%) 2 (33%) 2 (67%) 2 (33%) 0.9 9 (56%) 1 (17%) 0.2

Ipsilateral 12 (55%) 2 (50%) 1 (33%) 4 (50%) 3 (75%) 1 (50%) 1 (100%) 8 (44%) 4 (100%) 1 (50%) 2 (40%) 4 (67%) 1 (33%) 4 (67%) 7 (44%) 5 (83%)

an (%); median (IQR).
bFisher’s exact test; Kruskal–Wallis rank-sum test.
cFisher’s exact test; Wilcoxon rank-sum test.
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TABLE 3 Patient demographics by TMS protocol.

Characteristic High frequency, N = 10 iTBS, N = 5 Low frequency, N = 7 p-value

Lesion side

Left 4 (40%) 1 (20%) 2 (29%) 0.9

Right 6 (60%) 4 (80%) 5 (71%)

Gender

Female 5 (50%) 4 (80%) 2 (29%) 0.3

Male 5 (50%) 1 (20%) 5 (71%)

Age 66 (64, 70) 53 (52, 58) 65 (56, 68) 0.035

Hospitalization duration (days) 9.00 (9.00, 10.00) 11.00 (10.00, 12.00) 9.00 (8.50, 11.00) 0.3

History of cerebrovascular disease

No 10 (100%) 5 (100%) 7 (100%)

History of hypertension 8 (80%) 0 (0%) 4 (57%) 0.020

History of diabetes 6 (60%) 1 (20%) 2 (29%) 0.3

History of coronary heart disease 2 (20%) 0 (0%) 0 (0%) 0.5

History of hyperlipidemia 6 (60%) 1 (20%) 2 (29%) 0.3

TMS side

Contralateral 3 (30%) 1 (20%) 6 (86%) 0.041

Ipsilateral 7 (70%) 4 (80%) 1 (14%)

differences between the time points of baseline before TMS and

30-day (p= 0.001) as well as 90-day post-TMS (p < 0.001) and also

between 1-day post-TMS, 30-day post-TMS (p= 0.02), and 90-day

(p < 0.001) post-TMS on the FMA scale; significant differences

between the time points of baseline before TMS and 1-day (p =

0.006), 30-day post-TMS (p < 0.0001), and 90-day post-TMS (p <

0.0001) as well as between 1-day post-TMS and 90-day post-TMS

(p= 0.002).

3.2. Connectivity outcomes

Structural and functional connectivities were measured based

on individualized connectomic analyses. A case example is

presented in Figure 2. These outcomes were addressed below in the

next section based on clustering analyses.

3.3. Cluster analysis based on standardized
stroke scales

Cluster analyses based on total scores at four-time points

revealed unique clusters, suggesting the presence of different types

of patient recovery trajectories in this cohort. These ML-based

clustering analyses were completed for each standardized stroke

scale (Figure 3). According to the optimal number of unique

clusters by the silhouette coefficient, six unique patient trajectories

existed for the NIHSS scale, two for the FMA scale, five for the

BI scale, and two for the WFMT scale. The silhouette coefficients

for each of these scales were 0.59 (NIHSS), 0.52 (FMA), 0.57 (BI),

and 0.57 (WFMT). A table comparing patient demographics in the

total study sample and by individual clusters is presented in Table 2.

There were no significant differences between individual clusters

according to individual patient demographics alone except a higher

length of hospital duration for cluster 2 compared to cluster 1 on

the WFMT scale.

Further inspection of the recovery trajectory profile of each

of these scales reveals some important trends. Most importantly,

despite some similarities between clusters for each scale (e.g., high-

or low-functional status prior to TMS and at the final 90-day time

point following TMS), individual clusters varied significantly in

terms of whether or not they experienced transient 1- and 30-day

declines. These trends in trajectories can be seen in Figure 3. As

an example, visually clusters 1 and 4 had similar baseline stroke

impairment and 1-day post-TMS scores on the NIHSS scale, but

cluster 1 then went on to improve 30 days and 90 days later,

while cluster 4 remained the same. Interestingly, while there were

no significant differences on the BI scale overall for the cohort,

ML-based analyses were able to highlight those patients who did

respond (e.g., cluster 3), and how other groups who had similar

initial scores to these patients then go on to decline (e.g., clusters

1 and 5).

3.4. Connectivity di�erences between
individual clusters

After ML-based analyses were able to identify individual stroke

recovery trajectories according to each scale, we next sought to

examine differences in structural and functional connectivities
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FIGURE 1

Changes in functional outcomes after rTMS treatment. Patient functional status scores for each scale (NIHSS, FMA, BI, and WMFT) were assessed at

four-time points: baseline at presentation, 1-day after rTMS, 30 days after rTMS, and 90 days after rTMS. Top lines connect each time point. *p < 0.05,
**p < 0.001, and ***p < 0.0001.

between these trajectories. Although some observable trends

were noted between clusters on the NIHSS, FMA, and WFMT

scales in structural and functional connectivity elements, these

visual trends did not reach statistical significance (p > 0.05).

However, a number of significant differences in structural and

functional connectivity changes were identified between clusters

on the BI scale. Importantly, these differences prominently

differed for the patients who did improve on this scale compared

to other clusters. Given our ML-based analyses identified

individual trajectories according to each scale regardless of

how the overall cohort responded on that specific scale, we

focus on connectivity differences for the BI scale below in

further detail.

We provide a heatmap of these connectivity differences for each

scale and related clusters in Figure 4 as well as expanded results in

the Supplementary material.

3.4.1. Functional connectivity di�erences
between BI clusters

The number of functional connectivity 3-sigma outliers

(“anomalies”) between clusters was investigated for both

cortical and subcortical connections and the total number of

hypoconnected and hyperconnected anomalies.

When investigating specific individual cortical parcels, a

number of significant motor regions differed between clusters.
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FIGURE 2

Case example. (A) Patient with right-sided stroke presented significant left upper and lower extremity motor deficits. (B) Structural tractography

revealed the lesion was directly inside the CST and cortical–subcortical projection fibers and an appreciable visual decrease in the integrity of the

right CST fibers was identified (represented by yellow arrows). Subcortical fibers were relatively intact from the lesion. (C) Functional connectivity

revealed a number of hyperconnected (red) and hypoconnected (blue) cortical and subcortical regions compared to the normative functional

connectivity of healthy adults. As detailed in the methods, the highest variance 1/3 of pairs were excluded to further reduce the false-discovery rate

given these areas may be prone to false discovery due to inter-individual variability in normal subjects. These areas are represented as black in the

connectivity matrix. White boxes represent areas within the normative distribution compared to healthy subjects.

FIGURE 3

Unique stroke recovery trajectories. Di�erent groups are presented according to cluster analyses using outcomes on the four standardized stroke

scales at four-time points. Patient functional status scores were assessed according to: (1) National Institutes of Health Stroke Scale (NIHSS) (top

left), (2) Barthel Index (BI) (top right), (3) Fugl-Meyer Assessment (FMA) (bottom left), and (4) Wolf Motor Function Test (WMFT) (bottom right). Each

patient score was assessed at four-time points in order to obtain long-term data: (1) at presentation, (2) 1-day after treatment, (3) 30-days after

treatment, and (4) 90-days after treatment. While our sample included n = 22, individual clusters contained occasional overlapping lines in patients

with the same scores. On the NIHSS panel, two patients in cluster 3 had the same score. On the BI panel, two patients in cluster 5 had the same

score. On the WMFT, two patients in cluster 1 had the same score.
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FIGURE 4

Dysfunctional connectivity between patient clusters. Connectivity anomalies are demonstrated on a heat map between patients according to

clustering analyses for the (1) National Institutes of Health Stroke Scale (NIHSS) (top left), (2) Barthel Index (BI) (top right), (3) Fugl-Meyer Assessment

(FMA) (bottom left), and (4) Wolf Motor Function Test (WMFT) (bottom right). Hyperconnected parcels are demonstrated in red, with a higher mean

number of hyperconnections in dark red and a lower mean number of hyperconnections in light red. Hypoconnected parcels are demonstrated in

blue, with a higher mean number of hypoconnections in dark blue and a lower mean number of hypoconnections in light blue. Each brain region,

ipsilateral or contralateral to the stroke site, is labeled on the y-axis. Individual patient clusters are on the x-axis. These outcomes are further

demonstrated in the Supplementary material.

Individual groups differed in the mean number of ipsilateral

hyperconnected supplementary and cingulate eye field (SCEF)

areas of the pre-supplementary motor area (cluster 3 = 0.7

anomalies, cluster 1= 1 anomaly, no anomalies for other clusters; p

= 0.04). Although, these differences were not statistically significant

between individual clusters on post hoc analyses but rather just for

all groups together. Similar overall differences were found for SCEF

on the ipsilateral side for hypoconnections, where only cluster 1

demonstrated an anomaly (p = 0.04). Post hoc testing revealed

that these ipsilateral hypoconnections were significantly different

between group 1 with all other clusters, including clusters 2 (p =

0.02), 3 (p = 0.02), 4 (p = 0.04), and 5 (p = 0.04). Differences

were also present for the number of hypoconnections with area

24dd contralateral to the lesion side (p = 0.02), although post hoc

analyses revealed differences between individual groups did not

reach statistical significance (p > 0.05).
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When examining subcortical structures, differences mostly

existed between groups for subcortical connections which were

hypoconnected rather than hyperconnected, specifically with the

pallidum, caudate, and thalamus. Significant differences were found

for the number of hypoconnections with the contralateral pallidum

(cluster 1= 1.0 anomaly, 2= 1.0, 3= 0, 4= 3.0, 5= 0.7; p= 0.02).

Post hoc analyses revealed clusters 3 and 4 significantly differed the

most (p= 0.007). Significant differences were found for the number

of hypoconnections with the contralateral thalamus (cluster 1 =

3.5 anomalies, 2 = 1.0, 3 = 0, 4 = 0.3, 5 = 1.0; p = 0.02). Post

hoc analyses revealed that clusters 1 and 3 significantly differed the

most (p = 0.05). Significant differences were found for the number

of hypoconnections with the ipsilateral caudate (cluster 1 = 0.5

anomalies, 2 = 0.4, 3 = 0, 4 = 2.7, 5 = 0.5; p = 0.02). Post hoc

analyses revealed that clusters 3 and 4 significantly differed themost

(p= 0.02).

The mean number of contralateral cortical parcels which were

hypoconnected differed between clusters (cluster 1= 12 anomalies,

2 = 4.4, 3 = 3.8, 4 = 10, 5 = 4.2; p = 0.05). The mean number of

hypoconnected ipsilateral cortical parcels between clusters followed

a similar trend but did not reach statistical significance (cluster 1=

19 anomalies, 2= 6.6, 3= 4.0, 4= 9.0, 5= 5.3; p= 0.09).

Differences between other individual parcellations are

demonstrated in Figure 4 and in the Supplementary material which

did not reach statistical significance.

3.4.2. Structural connectivity di�erences between
BI clusters

Differences in the visual appearance and lesion proximity of

different clusters were examined given the importance of white

matter integrity in post-stroke outcomes and treatment responses

(47–49). When examining the proximity of the lesion to white

matter fibers on DTI, there was a significant difference between

groups for cortical–subcortical projection fibers (p= 0.03), but not

for subcortical fibers (p= 0.71) or the CST (p= 0.68). For cortical–

subcortical projection fibers, proximity was significantly different

between clusters (p = 0.033). Proximity was not a predictor of

90-day BI score alone (p > 0.05). Similarly, when examining the

disruption of white matter fibers on DTI, there was a significant

difference between groups regarding the visual integrity of cortical–

subcortical projection fibers (p = 0.04), but not for subcortical

fibers (p = 0.52) or the CST (p = 0.38). For cortical–subcortical

projection fibers, visual integrity was significantly different between

clusters (p = 0.047). Visual integrity was not a predictor of 90-day

BI score alone (p > 0.05).

4. Discussion

Despite a clear understanding that stroke patients vary

significantly in regard to their recovery trajectory, there remains a

poor understanding of how to gain further insight into this process

during motor recovery treatment. Many scales which assess patient

functional outcomes (motor, sensory, and cognitive) have been

developed to predict individual stroke recovery in order to guide

treatment decisions; however, these scales remain heterogenous

and there is little consensus on their clinical value across the field

(50). In this study, a novel approach was taken to identify different

recovery phenotypes following rTMS treatment for acute stroke

patients and specifically with unique insight from personalized

connectomic information. Namely, a reverse approach was taken

which clustered patients with machine learning analyses according

to baseline and post-rTMS functional scores on validated stroke

scales, rather than just grouping patients according to clinical

presentation characteristics alone (45). While we found significant

improvements in functional recovery for patients from baseline up

to 90-day post-rTMS treatment across our entire sample, evidence

was found for clusters of specific patients with distinct recovery

trajectories. Furthermore, these treatment response phenotypes

could partially be differentiated according to their unique structural

and functional connectivity disruptions in the motor network

despite all suffering from “similar” acute strokes.

In many controlled trials, stroke patients are largely treated

as if they have the same underlying problem, despite it being

known that there are unique neurobiological differences between

patients (19). Thus, it is unsurprising to find that there have

been many conflicting results in functional outcomes for similar

stroke treatments, such as TMS, across different trials (1, 14).

What is interesting in the current study is that despite not being

a largely powered study, a number of quantitative differences

were found existing in structural and functional connectivity

between individuals and this information could differentiate

unique phenotypes in rTMS treatment responses and recovery

on a standardized stroke scale. Thus, functional and structural

connectivity analyses may allow for additional assistance in

determining the prognosis of the patient as well as for trial designs

in more appreciable ways at the single subject level than many

other predicting tools which do not account for neurobiological

differences between individuals (51).

Spontaneous stroke recovery in functional ability, such as

motor functions, has been reiteratively demonstrated to be

dependent on underlying brain network damage and the network’s

capacity for functional re-organization (19, 24–26). Based on

our study, different phenotypes according to the Barthel scale

varied in their total number of abnormal functional connections

to cortical parcellations. The connectivity of these parcellations

in the sensorimotor network has been well-described previously

(52, 53) and are well-known regions involved in motor functioning

(54). In particular, the mean total of hypoconnected parcels

contralateral to the lesion side differed between specific trajectories.

Similar results have been found in previous study with less

anatomic specificity (55, 56), although early identification of the

specific contralateral hypoconnected sensorimotor connections

which can be normalized with neuromodulatory treatments is

important for facilitating clinical improvements in the functional

activity and motor impairments (48). Furthermore, significant

abnormalities included dysfunctional connectivity of ipsilateral

pre-supplementary motor (pre-SMA) areas, ipsilateral caudate

connections, and contralateral pallidum connections. As an

example, patients in Barthel clusters 1 and 2 were similar in

their lower long-term 90-day scores but differed in their trajectory

such that cluster 1 had a transient improvement at 30 days

before declining in function. Simultaneously, cluster 1 had a
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greater number of hypoconnected ipsilateral connections to the

supplementary and cingulate eye field (SCEF) of the pre-SMA.

SCEF is amotor planning and initiation area believed to be a likely a

major point of informational outflow from higher-order networks

into the motor system due to shared network affiliation (57), and

damage to its connections may be a major cause of problems with

the initiation of goal-directed behaviors, such as in SMA syndrome

(58–60). Another example can be seen with clusters 3 and 4 which

had similar low Barthel starting points but varied in their long-

term scores (high vs. low). Cluster 4 had high functional scores at

90 days, and also had a greater number of abnormally decreased

connections with the ipsilateral caudate and contralateral pallidum

compared to cluster 4. Damage to each of these structures has

been extensively correlated with a variety of functional deficits (48,

61), and therefore, identifying these functional connections may

provide important connectomic features to model stroke severity

and recovery moving forward.

In addition to the insight provided by functional connectivity,

structural connectivity analyses have also been suggested to provide

additional information to better understand stroke recovery (19,

62, 63). In the current study, individual clusters on the Barthel

scale were significantly different in regard to their projection

fiber integrity. Projection fibers are white matter connections that

link cortical and subcortical structures and facilitate a variety

of motor and non-motor functions. Although stroke studies

incorporating structural connectivity analyses focus on the CST

and its connections in the motor network (64), projection fibers

are also extensively damaged in stroke patients and are important

in understanding post-stroke deficits despite not being extensively

studied to date (47). In our sample, the integrity of these fibers

alone was not predictor of post-TMS scores; although this is

not entirely surprising given, these connectomic elements are

just one important structure that likely contributes to overall

function and recovery ability. Tools may be created which can

model the severity of white matter integrity of projection fibers

in addition to the CST and other white matter connections

(e.g., commissural fibers) to better understand motor impairment

(47), but additional studies should also examine their non-motor

correlates post-stroke. By mapping this lesion topography to white

matter connections, structural anatomic correlates can be identified

for overall stroke severity and post-stroke outcomes which may aid

in decisions for early rehabilitation strategies tailored to specific

patients but also perhaps for individual symptoms in future

studies (11, 48, 65).

An increase in the number of studies has attempted

to incorporate structural–functional analyses to predict motor

recovery following stroke. These studies have mainly focused

on the CST in relation to predicting motor impairment with

variable outcomes (66–69), and have also suggested the volume

of the acute lesion (70) may be less important to motor recovery

compared to the actual lesion location (71) and integrity of specific

underlying white matter bundles (19, 72). These observations

highlight one of the main benefits of our analyses, namely

the utilization of an anatomically fine surface-based, multi-

modal parcellation scheme published by the Human Connectome

Project. Parcel-guided analyses may improve our ability to

better analyze underlying pathophysiological mechanisms and

communicate more anatomically fine results between studies for

hypothesis generation (18). Furthermore, parcel-guided treatments

can provide us a step forward to more accurate therapeutic

targeting (9–11, 73). The efficacy of rTMS treatment is highly

dependent on the target location, which can be incorrectly

estimated with standard craniometric measurements that often

underestimate the localization of underlying structures that often

only havemillimeter differences across the human scalp (74).While

parcel-guided TMS was not utilized in the current study, and rather

only to analyze and report our data, this study provides an example

of the feasibility and importance of such specific analyses which

should be examined further in future study for the clinical relevance

of such analyses.

The current study sought to use machine learning to identify

unique patient trajectories following acute stroke and then to

examine how connectivity information may provide additional

insight into these differences. While accomplishing this goal in

this current study, it is important to note that the current study

did not attempt to examine the intricacies and mechanisms of

TMS treatment or associated patient responses. It is well-known

that differences in TMS parameters may affect patient responses

(75, 76), but this was not examined in the current study and

instead, our results may at most in this context point to the need

to identify precise anatomic neuromodulatory targets, but not the

efficacy in targeting these regions. Furthermore, an obvious point

brought out by our analyses is how stroke patients may have

unique recovery trajectories but also that these trajectories may

vary between different scales such that a select group of patients

“responding” on one scale may or may not be a responder on

a different scale. Although not the focus of study in the current

work a large body of research has also attempted to look at

these differences which presents an important area of research

moving forwards which connectomics may also provide valuable

information (77). Nonetheless, our results instead highlight the

ability of ML-based analyses to identify and highlight trajectories

irrespective of a responder or non-responder status, and then how

connectomic features can differentiate some of these patients, as

seen with the Barthel Index.

Our study included a small sample size of patients from a

single institution. Thus, while individualized connectivity analyses

produced a large amount of data for each single patient, these

biases could have influenced our statistical analyses and therefore

although connectivity differences may have existed between

clusters on other scales, these differences may not have been

identified in the current dataset. Ourmethods utilized a unique way

to investigate functional connectivity analyses using connectivity

“anomalies.” Given small changes in functional connectivity can be

difficult and too vague to interpret, our use of 3-sigma anomalies

provides a novel way to highlight likely meaningful changes in

a patients connectome in response to pathology or intervention;

however, our structural connectivity-based analyses relied on the

visual inspection of DTI as other have completed (39) and therefore

may have been subject to additional bias. Structural connectivity

provides a meaningful way to examine major differences in

a patient’s white matter bundles and identify gross patterns

between individuals, but when examined alone without additional

information these data should not be over-interpreted. In light
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of these limitations, future studies with larger datasets and

additional statistical power should look to examine individual scale

subcomponents with greater statistical certainty as it relates to

precise connectivity features (65). This is an important area of

future research as we transition toward a period where technology

now exists for highly specialized targeting according to individual

deficits (9, 11, 73).

Despite having limited power, a number of quantitative

differences in structural and functional connectivity were identified

which could differentiate unique patient recovery trajectories

on a standardized stroke scale and provide insight into their

treatment response. A larger sample size may have allowed us to

more confidently identify more specific individual parcellations

for each cluster and among varying scales. Instead, the current

results demonstrate the value of including additional connectomic

information on individual patients that may have unique

pathophysiological profiles despite similar injuries in order to

appropriately guide clinical decision-making and understand

treatment capabilities moving forward.

5. Conclusion

This study demonstrates the ability to identify unique patient

rTMS recovery trajectories between patients and how functional

and structural connectivity features can provide additional

information in this context. Additional personalized connectivity

analyses may allow for an improved understanding of the

patient’s disease burden or estimate their trajectory and capability

for neuromodulatory treatments and therefore represents an

important area for future study in larger prospective studies.
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