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Abstract

The notion that specific cognitive and emotional processes arise from functionally distinct brain regions has lately shifted
toward a connectivity-based approach that emphasizes the role of network-mediated integration across regions. The clinical
neurosciences have likewise shifted from a predominantly lesion-based approach to a connectomic paradigm—framing
disorders as diverse as stroke, schizophrenia (SCZ), and dementia as “dysconnection syndromes”. Here we position bipolar
disorder (BD) within this paradigm. We first summarise the disruptions in structural, functional and effective connectivity
that have been documented in BD. Not surprisingly, these disturbances show a preferential impact on circuits that support
emotional processes, cognitive control and executive functions. Those at high risk (HR) for BD also show patterns of
connectivity that differ from both matched control populations and those with BD, and which may thus speak to
neurobiological markers of both risk and resilience. We highlight research fields that aim to link brain network disturbances
to the phenotype of BD, including the study of large-scale brain dynamics, the principles of network stability and control,
and the study of interoception (the perception of physiological states). Together, these findings suggest that the affective
dysregulation of BD arises from dynamic instabilities in interoceptive circuits which subsequently impact on fear circuitry
and cognitive control systems. We describe the resulting disturbance as a “psychosis of interoception”.

Introduction

Bipolar disorder (BD) is a relatively common disorder with
a substantial illness burden and high risk of suicide [1, 2].
The classic picture of BD is of a relapsing/remitting

condition with relatively brief elevations in mood followed
by protracted episodes of depression [1, 3]. However, the
natural history, response to treatment and clinical pre-
sentation of BD are quite heterogeneous. Brief instances of
elevated mood early in the disorder may be overlooked,
such that treatment focuses on the initial depressive epi-
sodes [4–6], despite the presence of an underlying disorder
that may be better managed with mood stabilizers than
antidepressants [6–9]. For these reasons, the clinical diag-
nosis of BD may be substantially delayed until the episodic
and bivalent nature of the illness has clearly expressed itself
[10]. Problematically, the efficacy of pharmacological
treatments in BD is dependent on an accurate and early
diagnosis [7]. These issues underline the need for a better
understanding of the neurobiology of BD and, crucially, the
development of biomarkers that are present early in the
disorder.

Fluctuations in mood, affect, and motivation are a cor-
nerstone of human experience, allowing us to anticipate and
adjust our social interactions according to context [11]. In
BD, such fluctuations become sufficiently pronounced,
pervasive and persistent to cause distress and functional
impairment [12]. Contemporary neurobiological theories of
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emotion posit a constellation of fronto-limbic regions (e.g.
the hippocampus and insula), their connections to anxiety
and fear circuitry (i.e. amygdala), and their interactions with
regions traditionally implicated in cognitive control (such as
the inferior frontal gyrus [IFG] and anterior cingulate cortex
[ACC]) [13, 14]. Corresponding models of BD propose that
dysfunction in these fronto-limbic neural circuits underlies
the emotional and cognitive dysregulation that characterise
the disorder [15, 16]. Traditionally, these models find sup-
port in structural magnetic resonance imaging (sMRI)
findings of morphological abnormalities in fronto-limbic
and subcortical structures [17–19]. Similarly, functional
MRI (fMRI) studies of BD have consistently reported over-
activation in the amygdala and other limbic structures
during emotional processing and regulation [16, 20, 21].
Recent studies of high risk cohorts likewise report func-
tional and morphological differences in functionally related
regions [15, 22, 23].

Classic theories of brain function focus upon cognitive
and emotional function in segregated, functionally specia-
lized regions [24]. The notion that BD arises from dys-
function within regions supporting emotion regulation sits
within this framework. To this body of knowledge, recent
research has added the integrative role of large-scale circuits
and networks in health [25–27] and disease [28, 29]. Pat-
terns of anatomical wiring are organized into networks [30–
32] that shape dynamic patterns of large-scale neural
activity [33–35]. The integration of sensory, associative and
motor areas into brain networks supports the complex fea-
tures of human cognition and behavior, which cut across
systems and modalities [36]. Accordingly, many psychiatric
conditions have been positioned as reflecting dysfunction
amongst these large-scale interactions, resonating with
Geschwind’s earlier dysconnectionist school [28, 37].
Schizophrenia (SCZ) is the classic dysconnection syndrome
—with mistimed network activity [29, 38, 39] resulting in
the dysfunction of synaptic plasticity and learning [40, 41].
Likewise the symptoms of neurodegenerative disorders
have been framed as reflecting loss of neural integration
within large-scale cortical networks [42] and functionally
integrated circuits [43].

In this paper, we view BD through the prism of con-
nectomics. We first review the basic definitions of brain
connectivity theory and their application to neuroimaging
data. We then highlight the body of work on structural,
functional and effective connectivity disturbances in BD
and high risk (HR) cohorts. We finally discuss recent
developments in connectomics and computational neu-
roscience more broadly: we use this body of work to pro-
pose that BD reflects a loss of stability in large-scale brain
network dynamics, and more specifically, those which
subserve physiological homeostasis and interoception (the
perception of physiological states).

Brain networks in health and illness

Connectomics rests upon a branch of mathematics known as
graph theory whereby complex systems are represented as
networks of elements (nodes) and their interactions (edges)
[44]. Since the seminal “small world” paper by Watts and
Strogatz [45], graph theory has grown to influence all of the
natural sciences, perhaps nowhere more so than the neu-
rosciences [25], where it forms the basis of connectomics
(Fig. 1, Box 1) [26, 31].

The notion of a brain “node”, as a functionally and
structurally distinct and homogenous entity depends upon
clustering contiguous neural tissue into discrete parcels [46,
47]. The edges linking nodes can then be inferred by
applying a suitable measure of connectivity to empirical
data (Fig. 1a-c). Research in connectomics divides into
structural, functional or effective connectivity, each of
which refers to a distinct type of connection or interaction
[48]—derived from diffusion MRI (dMRI), fMRI and other
neurophysiological recordings. Graph theoretical tools can
be used to quantify the resulting (structural, functional or
effective) network’s topological organization (Fig. 1d). [49]
Network properties can be broadly cleaved into those
speaking to segregation or to integration (Fig. 1e) [36, 50,
51]. Of the former, application of the clustering coefficient
has revealed highly-clustered patterns of local connectivity
in mammalian brains [52, 53]. Such clustering also appears
at a more composite scale, segregating communities of
nodes into modular-brain structures [54], which may facil-
itate efficient processing amongst functionally-specialized
brain regions [55]. The canonical example of network
integration is a short characteristic path length that has been
proposed to integrate disparate brain-regions into a highly-
efficient system, supporting the functional integration of
segregated areas [50]. The co-existence of these com-
plementary network features (integration and segregation)
constitutes a “small-world” architecture, a property that the
human cortex appears to possess (Fig. 1f) [27, 53].

Many biological networks, including the human con-
nectome, contain highly-connected hubs (Fig. 1d, red cir-
cles) [56–58]. Hubs can be simply defined as those nodes
which are most strongly connected to the rest of the net-
work, but can also draw from other node-level metrics,
including their topological role in global integration (i.e.
high betweenness centrality) or inter-module integration
(i.e. high participation coefficient) [49, 56, 58, 59]. Struc-
tural hubs in the human brain exist predominately within the
default-mode network (DMN), particularly it’s parietal and
medial prefrontal regions, as well as subcortical regions and
the lateral prefrontal cortex (PFC) [26, 56, 58]. Notably,
connectivity amongst the brain’s network hubs is enriched,
forming a dense anatomical backbone—the rich-club [59,
60]. Despite their high-cost (in regards to their metabolic
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load and wiring), the rich-club connections of the human
connectome integrate disparate “feeder” communities into a
global workspace, and thus appear crucial for large-scale,
functional integration [56].

If the balance between functional segregation and inte-
gration supports adaptive cognitive function, then it follows
that any imbalance may lead to cognitive dysfunction and
illness expression [50]. While the simple “first order”

Fig. 1 Fundamentals of connectomics: a Construction of functional
and structural networks. Top: Correlated BOLD fluctuations (black
curves) in grey matter regions (red spheres) derived from resting state
fMRI acquisitions form the basis of functional connectivity. Bottom:
Fibre tracts, reconstructed from the dMRI data, form the basis of whole
brain structural connectivity. b To create a network representation of
these data, grey matter is parcellated into a number (N) of discrete and
bounded regions (nodes). These boundaries can derive from atlases,
anatomical, histological or even connectivity criteria. Ideally all nodes
should be of approximately equal size and surface area, and define
functionally homogenous grey matter tissue. c Combining the func-
tional and/or structural connectivity data with the parcellation yields
functional and structural connectivity matrices. Each of the N xN

entries defines the presence (if >0) and strength of the connectivity
between the corresponding source (row) and target (column) region.
Standard human functional and structural connectomes are not directed
and hence these matrices are symmetrical. d Network representation of
inter-areal connectivity (grey lines) between nodes (red= hubs; grey
= non-hubs). e Graph-theoretical measures of segregation (clustering
coefficient= blue) and integration (characteristic path length = green).
Adapted with permission from Ref. [49]. f Complex brain networks
(middle panel) combine the segregated properties of highly clustering
of lattice-like graphs (left), with the integration of highly-integrated
random networks (right). Colours denote community membership of
complex, modular networks
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application of connectomics (connectivity strength) allows
for the discovery of over- or under-connected regions in
mental health disorders [61], the use of “second order”
(graph theoretical) metrics brings a more nuanced picture
[38]. In this vein, the notion of SCZ as a dysconnection
syndrome was finessed to that of a small world disorder,
characterised by a mixture of altered integration (i.e.
changes in network efficiency) and segregation (i.e. changes
in clustering) [62–66]. These changes have been proposed
to underline the characteristic disorganised thinking and
perceptual irregularities in SCZ [39, 67, 68]. Recent

research has additionally highlighted the impoverishment of
the rich-club in those with the disorder [69] as well as those
at high genetic risk [70, 71]. These findings speak to the
core and persistent cognitive dysfunction at the centre of the
SCZ phenotype [72]. Comparable functional disturbances
have also been reported in Alzheimer’s disease [42, 73, 74],
leading to the framing of both dementia and SCZ as “hub-
opathies” of the connectome [75]. Epilepsy has also been
positioned as a brain network disorder, with increases in
connectivity and segregation centring upon the primary
epileptogenic zone [76], and the initiation of generalised
seizures facilitated by the rich-club [77, 78].

Connectomics of bipolar disorder

SCZ, dementia and epilepsy have been the main focus of
brain network research and serve as instructive, canonical
brain network disorders [29, 38]. More recently, brain net-
work methods have emerged as a frontier in the study of
BD. In this section, we briefly revisit traditional neuroi-
maging investigations of BD, i.e. those that derive from
(non-connectomic) studies of abnormal functional activa-
tion and morphological changes in patients. We then review
the extant literature of structural, functional and effective
connectivity alterations in BD to see how these latter studies
of integrative processes complement the traditional focus on
functional specialization.

Traditional neurobiological findings in bipolar
disorder

As previewed above, contemporary connectomic con-
ceptualizations of BD build upon earlier studies showing
localised morphological and functional disturbances using
sMRI and fMRI [13, 21]. One of the most consistent of such
findings is increased activity in limbic structures (i.e.
amygdala, hippocampus, insular cortex) in BD during
emotional processing (Fig. 2a) [16, 21]. The amygdala has
traditionally played a central role in models of emotion
regulation in the brain, based upon its role in the appraisal
of threatening and other emotionally-salient stimuli [14, 79–
82]. However, responses to emotional stimuli are also
dependent on top-down neural systems involved in the
regulation of affect, typified by regions of the PFC [14, 83,
84]. As well documented, the PFC supports a diversity of
cognitive-control and executive functions [85–89]. Func-
tional under-activation in the dorsolateral, ventrolateral,
ventromedial, inferior frontal and subgenual PFC, during
both emotional and cognitive control have indeed been
documented in BD (Fig. 2a) [15, 21, 90–92]. In contrast,
increased activation has been reported within the ACC [13,
16], although this may be task and mood-dependent, with

Box 1 Definitions

Nodes: Discrete elements which comprise the units of a network.
Each node of a brain network defines a cortical (or sub-cortical)
population which ideally represents a discrete functional or
histological entity [52]. Nodal-boundaries can be derived from
data-driven functional or structural criteria [46, 258], or from a pre-
defined anatomical template [259, 260].
Edges: The connections which link network nodes. These
connections can be either binary (present or absent) or weighted
(e.g. number of tractography streamlines or the correlation strength
between neurophysiological signals). Edges can in principle be
directed or undirected.
Structural connectivity: Anatomical connections that link brain
nodes. At the mesoscopic scales, these are in effect white matter
bundles which can be estimated directly from invasive tracer
studies in non-human primates or inferred indirectly from dMRI
[144, 261].
Functional connectivity: The statistical association between the
time-series of remote neurophysiological signals such as fMRI,
electroencephalography (EEG) or magnetoencephalography
(MEG) [48].
Effective connectivity: The causal influence exerted by one neural
population on another. Effective connectivity cannot be measured
directly but must be inferred from an appropriate computational
model [149, 262].
Clustering coefficient (CC): The fraction of neighbours of a node
that are also connected to each other, forming small cliques [49].
Lattice-like networks have high CC.
Network module: A community of nodes that have relatively
strong internal connectivity and sparse connections to the nodes
assigned to other communities.
Participation coefficient (PI): The number of connections of a
node to other communities. Connector hubs have a high PI, that is,
lots of connnections to other modules.
Path length: Average shortest path length between all possible
pairs of brain nodes. A random network has a short path length
[45].
Betweenness centrality: Fraction of all shortest paths that pass
through a particular node.
Small world network: Networks which combine the clustering of
a lattice-like graph with the presence of short paths of a random
network.
Degree centrality: The number of edges of a node.
Hubs: Highly-connected nodes (i.e. with a high degree, or with
many very strong connections).
Rich clubs: A collection of highly connected hubs with enriched
connectivity between them. The presence of a rich-club can be
assessed by the rich-club coefficient (Φ) which benchmarks that
connectivity of hubs against comparable random networks.
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under-activation also observed during cognitive-control
tasks in euthymic patients [93]. Abnormal patterns of acti-
vation have also been observed in subcortical and reward-
structures including the ventral striatum and the basal
ganglia, although the directions of findings are inconsistent
and likely context-dependent [16, 18, 128]. Altered reward-
based activity is also found in BD patients within prefrontal
regions such as the ventrolateral and inferior frontal cortices
[94, 95]. The complex interaction between emotional and
reward-processing in both health and mood disorders
are currently a topic of considerable interest [96, 97].

Structural neuroimaging investigations focussing on
volumetric changes (i.e. sMRI) further support the presence
of disturbances in prefrontal, limbic and subcortical areas in
BD [98]. For example, structural changes in the amygdala
were reported early [99] and consistently [15] in the lit-
erature. In brain regions where abnormal activation patterns
have been reported, such as the ACC, morphological
reductions have also typically been observed [15–17, 90]. A
smaller volumetric size of the corpus callosum has also been
reported in BD [100–102]. The documentation of structural
abnormalities in areas involved in emotional and reward-
processing continues to accumulate, with harmonized con-
sortiums yielding very-large cohort comparisons (i.e.
thousands of BD patients) [17, 19]. These consortia provide
sufficient power to detect subtle reductions in morphologi-
cal properties of subcortical and cortical areas in BD, as
well as the potential neurotrophic effects of lithium [17].

Functional connectivity in bipolar disorder

In the last decade, a substantial body of connectivity
research in BD has built upon these earlier findings, largely
by studying connectivity disturbances between regions
previously identified as showing local functional and mor-
phological changes [15, 103]. Differences in resting-state
functional connectivity have been the most frequently
reported. Prominent among these are reports of weaker
functional connectivity between the amygdala and regions
in the PFC, including the ventrolateral [104, 105], dorso-
lateral [106], orbitofrontal [107], and medial PFC [108,
109], the IFG [107] and the pregenual ACC [110].
Although the amygdala appears frequently in functional-
connectivity studies (often because of its a priori selection
as a region of interest), reduced functional connectivity in
BD has also been observed to involve other regions—
between the IFG and the ACC (Fig. 2b) [111, 112],
amongst medial prefrontal areas [113], as well as a dis-
tributed pattern of connectivity between the medial nucleus
of the thalamus and several disparate regions of the cortex
[114]. Functional connectivity disturbances in reward-
circuitry during resting state and reward-based tasks have
also been observed [15, 115, 116], most notably involving

the ventral striatum, with decreased connectivity strength
co-varying with depression severity in patients with bipolar
(and unipolar) depression [115].

While these studies provide insights into the mechanisms
underlying emotional dysregulation in BD, they are effec-
tively constrained to local patterns of network dysfunction,
typically limited to seed-based analyses or specific pair-
wise interactions [103]. Moving toward network analyses in
a multivariate framework can be achieved using Network
based statistics (NBS), a technique that exploits the topo-
logical properties of interconnected subnetworks of edges to
control for family-wise error [61]. NBS analysis of BD
patients has been applied to study functional connectivity of
the ventromedial IFG, [111] a region showing decreased
engagement for HR (i.e. high risk) individuals in an
emotionally-salient cognitive control task [117]. Functional
dysconnectivity of this area in BD patients involves a
constellation of fronto-limbic-striatal regions, including the
bilateral insular cortex, ventrolateral PFC, superior temporal
gyri, and also the putamen (Fig. 2c). Multivariate functional
connectivity can also be studied using independent com-
ponents analysis (ICA), which aggregates regions into
maps, or resting-state networks (RSN’s), based on corre-
lated patterns of intrinsic fluctuations [118]. The application
of ICA to BD has revealed alterations within and between
RSN’s containing fronto-limbic, default-mode, thalamic,
cognitive-control and somatosensory regions [119–123].
Differences have also been observed in the default mode
(DMN) [124–126]—a constellation of regions that are less
active during external task execution [127].

As discussed above, graph theoretical tools allow the
topological organization of brain networks to be inter-
rogated. Despite the paucity of studies, the effects on
whole-brain intrinsic functional organisation in BD are
equivocal or negligible: weak effects reported in the char-
acteristic path length do not survive correction when con-
sidering the five other network metrics that were also
analysed [128]: this accords with the null findings reported
in two well-powered studies [111, 129]. Regional topolo-
gical effects (in subnetworks focussed on specific regions)
have been observed, with changes in both the topological
segregation and/or integration of areas. These regional-level
functional connectivity changes in BD patients correspond
to decreased segregation (decreased clustering coefficient)
of the ventromedial IFG [111], and opposing patterns of
both increased and decreased integration in the DMN,
sensorimotor cortex, occipital areas, cerebellum, temporal
pole, mid-cingulate cortex and the dorsomedial PFC [128,
129]. However, a more definitive interpretation of the
topological changes in BD are currently limited by the small
number of graph-theoretical functional connectivity inves-
tigations, and the different graph metrics used across stu-
dies. Nonetheless, on available evidence it seems reasonable
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to conclude that in contrast to the strong distributed effects
in SCZ, the functional network topology in BD appears to
be confined to specific functional subsystems.

Structural connectivity in bipolar disorder

The properties of structural brain networks can be inferred
from dMRI data using a variety of approaches. These can be
divided into estimates of local “white matter integrity”
using voxel-wise measures of diffusion such as fractional
anisotropy (FA) and mean diffusivity (MD), or by applying
tractographic techniques to reconstruct whole-brain struc-
tural networks and then subjecting these to graph theoretical
analyses (Fig. 1). Of the former approaches, FA and MD
have been most extensively employed, using either a voxel-
based approach (similar to the analysis of regional mor-
phological changes in sMRI) or tract-based spatial statistics
(TBSS) which, as the name suggests, allows analyses of FA
along “skeletonized” white matter tracts. Changes in FA
have been consistently demonstrated within the corpus
callosum [130], particularly the anterior horn (connecting
bilateral prefrontal and limbic regions) [131–134]. The
application of TBSS to BD has revealed decreases of FA in
intra-hemispheric white matter bundles interconnecting pre-
frontal, limbic, and subcortical structures, such as the

cingulum bundle [133, 134], uncinate fasciculus [135, 136],
the anterior thalamic radiation [135], and the superior
longitudinal fasciculus [130].

Substantial “DTI-based” research has thus contributed to
the notion of structural dysconnectivity amongst limbic and
prefrontal regions in BD [132]. However, interpreting the
biological underpinning of FA (and other DTI-based
metrics) is problematic [137, 138]: the diffusion signal
itself reflects a number of underlying contributions,
including the relative proportion of white and grey matter,
the degree of axonal myelination, the presence of crossing-
fibres, and the presence of extracellular changes leading to
free water [139]. Despite extensive use to the contrary, DTI-
derived metrics such as FA should hence not be interpreted
as directly reflecting the “integrity” of white-matter con-
nectivity [137, 140]. While differences of FA in BD may
reflect microstructural changes, they are likely also con-
founded by white matter volume, connectivity geometry
(e.g. crossing fibres) and, possibly, free water from neu-
roinflammation. A multi-modal approach employing sus-
ceptibility imaging, free water imaging and quantitative
mapping is required.

Rather than focusing on local white matter properties,
tractography performed upon dMRI data allows examina-
tion of large-scale brain networks, with the “connectivity”

Fig. 2 Functional connectivity in bipolar and high risk cohorts: a

Meta-analysis of functional activation studies in BD shows con-
sistently decreased activation in the right IFG during emotionally
salient tasks (blue). Left medial temporal areas show over-activation
(red) [21]. b Functional connectivity patterns of the right VLPFC (a
component of the IFG) during a cognitive task [112], as revealed
through psychophysiological analysis. For BD patients (right-panel)
and their HR relatives (left), dashed lines indicate reduced task-based

functional connectivity patterns. Reduced resting state functional
connectivity of the left IFG in BD (c) and HR groups (d) [111]. The
seed node (blue) corresponds to the region with reduced activation in
an emotional go-nogo task for HR individuals [117].
vACC, ventral anterior cingulate cortex; CN, caudate nucleus; INS,
insula; GP, globus pallidus; SPL, superior parietal lobule; VLPFC,
ventrolateral PFC, a component of the IFG
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of these networks typically corresponding to the streamline
density. Mirroring the morphological disturbances in the
corpus callosum, analyses of tractography also supports a
disturbance to the integration of inter-hemispheric structural
connectivity (Fig. 3a) [100, 101]. The application of NBS to
whole-brain tractography, allowing a focus on specific
subnetworks, reveals diminished connectivity amongst a
small subnetwork centered on the right rolandic operculum
—a region bounding the insula and IFG—and extending
into medial temporal regions (Fig. 3c) [141].

As with functional connectivity, graph metrics can also
be applied to tractography both at the whole-brain (to reveal
large-scale topological disturbances) and nodal-level (to
examine the network environment of specific brain regions).
Such an approach has revealed local structural network
changes largely in prefrontal and limbic areas, namely, the
hippocampus, IFG, anterior insula (AI) and superior frontal
gyrus [132, 141]. These findings include reductions in
connectivity strength (i.e. nodal strength) [141] and local
decreases in both integration (reduced efficiency and

increased path length) and segregation (decreased cluster-
ing) [100, 142]. Interestingly, reports of group-wise differ-
ences in node-wise structural connectivity have not
identified the amygdala, regardless of whether whole-brain
or a priori analyses have been conducted. However, the
amygdala is a deep nucleus with a relatively small volume,
hence inter-subject variability in tractography estimates may
require more innovative means of accounting for anatomical
variability than used in standard analyses.

Application of graph-theoretical tools to whole-brain
networks has yielded a more nuanced picture: slight
decreases in network integration have been observed in BD
(using either the characteristic path length [141] or the
comparable global efficiency [101]), although the latter did
not survive family-wise corrected threshold after controlling
for group differences in IQ. Differences in whole-brain
segregation, using the clustering coefficient, have also been
reported, although in contradicting directions (i.e. both
lower [100, 143] and higher [141]), possibly due to differ-
ences in dMRI acquisition and analysis [144]. Notably,

Fig. 3 Structural connectivity in bipolar and high risk cohorts: a

Structural brain network comprised of intra-hemispheric (grey) and
inter-hemispheric (blue) connections. Inter-hemispheric connections
indexed by streamline density (SD) are weaker in BD compared to
controls [101]. Connectivity estimates using FA or mean diffusivity
(MD) do not show group differences. b The structural rich-club cor-
responds to the clique of highly connected hubs that have an enriched

hub-to-hub connectivity. There are no apparent group differences in
rich-club connectivity in BD, whether using SD, MD or FA [101]. c
Group-wise structural connectivity subnetworks in BD, HR and con-
trol groups revealed using NBS [141].
FA, fractional anisotropy; SD, streamline density; MD, mean
diffusivity
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several well-powered studies have suggested preserved
integrity of the rich-club in BD (Fig. 3b) [101, 141]. Two
slightly smaller studies reported marginally significant
changes in the rich-club connectivity of hubs [143] or their
connections [145]: however, these effects do not survive
appropriate multiple-comparisons correction. This is in
opposition to the pervasive disruption to the structural rich-
club that is characteristic within SCZ [39], suggesting that
changes in the core anatomical backbone may be a potential
marker that discriminates between the two disorders.

In sum, disturbances in large-scale functional and
structural networks in BD appear subtle and are more likely
to be confined to specific regions and subnetworks in limbic
and prefrontal regions. The subtle decreases in whole-brain
integration observed in BD may reflect alterations to inter-
hemispheric connectivity [101], as well as the disrupted
connectivity of prefrontal-limbic circuits. When bench-
marked against the widespread disturbances in SCZ [62, 63,
66–70], it is evident in BD that most of the structural and
functional “backbone” of the connectome is left intact. This
is consistent with the cardinal differences in the phenotypes,
specifically the relative inter-episode preservation of cog-
nition and affect in BD [146]. Future network-based
research is required to better characterise the preferential
disruption of local rather than the large-scale-connectivity in
BD. In particular, it remains unclear whether the subtle
whole-brain effects that are seen do indeed reflect a perni-
cious, whole brain change in network topology or are rather
local network changes that are sufficiently severe to be
reflected in whole brain measures (which are composite
averages across all nodes).

Effective connectivity in bipolar disorder

Structural and functional connectivity thus represent novel
candidate diagnostic markers for the non-invasive identifi-
cation of BD. They can be acquired with minimal imposts
of time and training for patients. However, when it comes to
understanding network mechanisms, these advantages are
somewhat of an Achilles heel, as linking the observed
network disturbances to the BD phenotype in the absence of
a task rests largely upon correlational analyses, that is, of
regressing connectivity changes against contemporaneous
phenotypic variables. Functional interpretations are also
prone to reverse inference [147], namely imputing that a
disturbance in a neural substrate (structure, circuit or net-
work) underlies the affective or cognitive disturbances of
BD because that substrate is engaged by a specific task in a
different context. This logic rests upon a flawed assumption
of a one-to-one structure-function coupling [36], and fails to
recognise the cross-modal and functional multiplicity of
many cortical regions. Notably, most of those regions that
frequently figure in connectomic studies of BD, including

the AI, IFG, ACC and dorsolateral PFC (DLPFC), are
precisely those that are most frequently engaged across a
broad variety of cognitive and emotional tasks [148]. So,
although their involvement in connectomic studies supports
the notion of dysregulation of emotional networks, the
inference is indirect and other interpretations are possible.

Task-related effective connectivity studies largely eschew
these problems because they interrogate network dis-
turbances in clinical populations during performance of
specific tasks. The most widely used technique for studying
effective connectivity is dynamic causal modelling (DCM)
[149] which uses Bayesian inference to identify the network
model of effective connectivity most likely to have gener-
ated observed task-fMRI data [150]. To date, there have only
been a handful of papers employing DCM to study the
connectomics of BD and most of these have examined
effective connectivity during perception of facial affect. For
example, BD is associated with decreased effective con-
nectivity between the DLPFC and the amygdala during the
during perception of angry and fearful faces [151]. During
perception of happy faces, decreased effective connectivity
from the orbitomedial PFC to the amygdala has been
observed in patients with bipolar, but not unipolar, depres-
sion [152]. In BD, disambiguation of emotionally expressive
faces from those with a neutral expression is associated with
weaker effective connectivity from the amygdala to the
ventral PFC [153]. Intriguingly, clinical response to chron-
otherapy (sleep deprivation combined with light therapy) is
associated with increased effective connectivity from the
DLPFC to ACC in those with BD depression [154].

While few in number, these studies of effective con-
nectivity are important steps toward identifying the neural
mechanisms of phenotype and treatment response in cog-
nitive and emotional networks in BD. They demonstrate, for
example, that interactions amongst key brain regions
(amygdala, DLPFC, ACC, ventrolateral PFC [VLPFC]) are
indeed disturbed during the perception of facial affect.

Connectomic investigations of high-risk
cohorts

Several limitations beset studies of BD: the confounding
effect of different classes of medication (mood stabilisers,
antidepressants, antipsychotics), comorbidity, and the pos-
sible secondary effects of illness expression. Waiting for the
expression of a manic episode to confer the diagnosis also
misses the opportunity to mitigate the secondary harm (e.g.
to reputation, and risk of suicide) if the illness could be
averted. Addressing these important issues can be achieved
through the study of unaffected HR cohorts. BD has a
strong familial association and hence offers the potential for
disambiguating risk endophenotypes [155–157] and
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temperamental variations [158] from markers of illness-
expression through the study of HR individuals [155, 159],
such as first-degree relatives of patients with BD. The peak
age for BD illness onset is within the early twenties [7]: HR
individuals within this age-range are thus amongst the
highest risk: understanding conversion to illness in this age
bracket must be disambiguated from the complex matura-
tional processes of late adolescence and early adulthood
[160–162]. Studying those HR individuals who do not
develop BD, despite a higher background risk, offers the
equally important opportunity to study factors underlying
illness resilience [129]. Despite the relatively large literature
on traditional morphological and functional activation stu-
dies in HR cohorts [163], there exist relatively few HR
connectomic studies.

Structural connectivity in high-risk cohorts

A recent study of structural connectivity compared a young
HR cohort (mean age 22 years; range 15–30) to matched
control and BD cohorts [141]. Application of NBS identi-
fied two lateralized subnetworks weaker in the HR group,
based upon reductions in streamline density; each network
centred on a number of structural hubs including the AI and
ventro-lateral IFG. These networks involved connections
with the posterior insula, medial PFC, superior temporal
gyri, somatomotor cortices, and the ventral-striatum
(Fig. 3c) - regions associated with cognitive, emotional
and somatosensory functions. Despite involvement of rich-
club hubs in these subnetworks of weaker connectivity, the
connectivity of the rich-club itself was not disturbed in the
HR group in this, or an independent study [71, 141]. That is,
hub-to-hub connections appear to be preserved. Intrigu-
ingly, a subnetwork of increased connectivity, centered on
the right hippocampus, was also present in the HR cohort.
Also of note, these HR subnetworks were not disrupted in
the matched BD group, who instead expressed their own
subnetwork of weaker structural connectivity (Fig. 3c).
Alterations that were common across BD and HR groups
included the node-wise connectivity of superior frontal,
hippocampal, and mid-occipital areas.

Older HR individuals, who have passed the peak age for
BD onset, also represent a unique study population.
Whereas young HR groups are a mix of risk and resilience,
older HR cohorts more likely express neurobiological pat-
terns that reflect resilience [22, 23]. A structural con-
nectomic investigation of a HR cohort involving older
individuals (average age 43; range 21–64), did not identify
any group differences. This contrasts with the relatively
strong effects seen in young HR individuals. However, this
null finding may be attributable to the weaker MRI field
strength (1.5T) and the use of simpler fibre-reconstruction
methods that do not reconcile crossing-fibres.

The majority of structural connectivity studies in BD and
HR cohorts have been derived from streamline-based approa-
ches. As with the earlier use of FA, the extent to which
streamline counts correspond with the intra-axonal “fibre den-
sity” is debatable. Recent streamline-filtering approaches pro-
vide more biologically accurate measurements [164], but
require innovative acquisition sequences and their uptake into
clinical studies has hence been slow. Acquisition and model-
ling techniques have been recently developed which delineate
specific microstructural properties, such as neurite density [165]
and extracellular content measures [166]. Future connectomic
studies of BD and HR populations are recommended to
leverage these techniques to reconcile microstructural
abnormalities with large-scale network changes.

Functional connectivity in high-risk cohorts

As with structural connectivity in BD and HR cohorts, the
large-scale network topology of resting-state functional
connectivity in HR cohorts also appears to be largely con-
served [111, 129].

Reported disturbances are again confined to specific
subsystems of the brain: increased functional integration
(i.e. increased participation index) has been observed within
default-mode regions in an older HR cohort (mean age 32)
but not matched control or BD individuals [129]. In the
same study, both BD patients and their unaffected HR
siblings showed increased functional integration in regions
of the sensorimotor network and higher-order visual
regions. No other study has investigated whole-brain
functional topological changes in HR individuals.

Task-related functional connectivity has been probed in
HR cohorts using psychophysiological interactions (PPI)
[167], a method that identifies changes in functional con-
nectivity between two regions coincident with a cognitive
manipulation. During a linguistic stroop test, VLPFC con-
nectivity with the vACC was reduced in both BD and older
HR participants (average age 36) (Fig. 2b) [112]. In the
same study, VLPFC connectivity with the insula was also
affected: reduced VLPFC–insula coupling was uniquely
present in HR group compared to controls, whereas BD
patients showed a change of sign in this PPI association
from negative to positive.

Resting-state functional connectivity can also be used to
examine whether task-related effects persist beyond the
context in which they were observed. In this vein, the left
ventromedial IFG, whose engagement in an emotional ‘go-
nogo’ task was reduced in young HR individuals (average
age 23 years) [117], also showed a distinct patterns of
reduced resting-state functional connectivity in BD and HR
cohorts; in HR, functional connectivity with the neigh-
bouring AI and the ACC was decreased (Fig. 2d) [111]. The
pattern of decreased functional connectivity in BD compared
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to controls is quite distinct. Application of machine learning
techniques to these data identified a distributed, bilateral
subnetwork of weaker resting-state functional connectivity
which provided reasonably accurate three-way classification
of participants into their groups (control, HR and BD; 64%
accuracy benchmarked against a 41% chance rate).

Effective connectivity in high-risk cohorts

The left IFG, particularly the ventro-lateral and ventro-
medial portions, have thus been implicated in task-related
hypo-activation as well as reduced functional and structural
connectivity in both young and older HR individuals
(Figs. 2a–c, 3c). The presence of reduced functional and
structural connectivity suggests an intrinsic network dis-
turbance that may underlie the task effect. Nonlinear DCM,
which permits analyses of complex network effects during
task execution was recently employed to probe the
mechanisms underlying this hypo-activation pattern
observed in HR individuals (Fig. 4) [168]. In controls and
those with BD, a hierarchical network of interactions
between the ACC, the DLPFC and the IFG provided the
most likely explanation of these data: this network motif
allows a balanced convergence of cognitive control and
emotional salience on the IFG. In the young HR group (a
subset of those where reduced structural [141] and func-
tional connectivity [111] was reported), the hierarchical
gating of the ACC on the effective connectivity between the
DLPFC and the IFG was diminished. Intriguingly, the most
likely network model of effective connectivity in the HR
group was distinct from both the control and BD groups.

A DCM study of effective connectivity in an older HR
cohort (BD siblings, mean age 39.7) reported significantly
increased effective connectivity between the inferior occi-
pital cortex and the fusiform gyrus during perception of
emotionally salient faces [153]. This increase in effective
connectivity was not found in BD patients. BD patients, in
common with HR relatives, demonstrated increased effec-
tive connectivity between the amygdala and right VLPFC,
highlighting fronto-limbic interactions as a marker of illness
risk and expression for BD.

Hence, there are patterns of structural, functional and
effective connectivity that are unique to HR cohorts when
compared to BD, as well as shared patterns. Disturbances of
the connectivity and functional involvement of IFG in
broader prefrontal-limbic circuitry appear to be more pro-
minent in those at risk than those with the disorder. Func-
tional under-activation of the IFG and the surrounding
VLPFC during emotional and cognitive control are common
to both HR and BD populations, as are distributed dis-
turbances such as in somatosensory and higher visual cortex.

Integrating the connectomic findings in HR individuals is
challenging, given the small number of studies that exist

and their cross-sectional nature. In addition, these studies
have been conducted on HR individuals at different devel-
opmental stages of risk for BD. As we argued above, young
HR individuals are at a critical cognitive and affective
developmental period. Disturbances to the IFG and its
affective and cognitive connectivity in young HR cohorts
may reflect an endogenous risk that changes upon illness
expression in those whom convert to BD. Alternatively,
unique differences in older HR individuals may also
represent early compensatory responses that confer resi-
lience [112, 168, 169] in those whom do not develop manic
episodes. The following sections consider the potential for
elucidating disease mechanisms in longitudinal investiga-
tions of HR populations.

Challenges and opportunities in BD
connectomics

In sum, viewing BD through the lens of connectomics
positions earlier studies of functionally localised dis-
turbances into broader circuit and network mechanisms that
integrate cognitive control, affective and reward-systems of
the brain. Some connectivity disturbances are common to
both BD and HR groups; these speak to a shared risk of
affective dysregulation. Other connectivity disturbances are
unique to BD, reflecting illness expression and possible
medication effects. Several changes are unique to HR
cohorts: in the younger of these, unique effects may reflect a
mix of risk and resilience, whereas resilience may figure
more highly in older HR groups. When interpreting these
effects, however, it should be recalled that the actual
inherited risk of a first-degree relative is far from uniform
and varies sporadically and with the severity of the affected
relative (e.g. a higher risk is associated with an early age of
onset of BD). Thus, unaffected older first-degree relatives
may have a lighter genetic load, as reflected in the absence
of structural connectivity differences [142] or a stronger
adaptive response to the same genetic load as their BD
relative. Genetic risk also interacts with early life experience
to impact on illness expression [170]. Disambiguating these
scenarios cannot be achieved with cross-sectional imaging
studies but require longitudinal studies informed by assays
of early life stress and genetic risk markers such as the BP
polygene risk score.

The potential of longitudinal and genetic-risk
studies

The first expression of BD typically occurs during the final
neurodevelopmental stages of brain development and co-
occurs with fundamental changes in inter-personal func-
tioning, role, and self-identity [171]. Longitudinal HR
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studies, sufficiently powered to enable multivariate analyses
of connectomic, phenotypic and genetic data are required
here. Such analyses should also accommodate the complex
developmental trajectory of brain networks [172, 173]. The
connectomic correlates of current mood states and current
and lifetime episodes are largely unknown. The few direct
comparisons of BD mood states and subtypes do suggest
the existence of both trait and state network markers [174–
176]. However cross-sectional studies of remitted versus in-
episode BD patients cannot address within-subject varia-
tions in phenotype. Longitudinal designs are particularly
pertinent for young high-risk BD groups who later develop
sub-threshold or threshold BD symptoms. Existing (non-
connectomic) studies have reported different baseline fMRI
activations to cognitive [177] and emotional-tasks [178,
179] in those HR individuals who later develop a first
depressive episode. Repeat functional imaging assays also
suggest different trajectories of functional activation in the

striatum and insula of unipolar versus bipolar depression
[180]: morphological studies using sMRI likewise suggest
predictors of first episode mood disorders in HR popula-
tions, [181, 182] as well as the likelihood of further mania
in those with BD [183]. Moreover, different trajectories of
volumetric development have also been observed in HR
individuals who developed major depressive disorder rela-
tive to those who remained well [181]. Intriguingly, while
fractional anisotropy (FA) in a HR cohort differed from
controls at baseline, corresponding changes in FA at follow-
up did not differ [184].

Although the potential utility of brain network analyses
to identify future psychosis [185] in high-risk psychosis
cohorts has been established, longitudinal investigation of
high-risk BD populations are yet to be interrogated with
such tools.

Longitudinal studies which integrate imaging assays
with genetic risk variants for BD may also help disentangle

Fig. 4 Effective connectivity in high risk cohorts: a Hypo-activation of
the left IFG in HR individuals when inhibiting a motor response to a
fearful stimuli (from an affective Go-Nogo task) [117]. b The network
dynamics generating these data were then modelled using DCM [168].
Models consisted of inputs (faces) delivered to the FFA, with effective
connections to the DLPFC modulated by motor inhibition to explain
the effect of the “NoGo” trials. Effective connectivity of the FFA to
the ACC was modulated by the presence of fear faces. Bilinear models
then added an additional modulatory influence (here, inhibition) to
explain the interaction between motor inhibition and fear on the IFG.
Nonlinear models introduced this interaction through internal gating

effects (here the influence of the ACC on the effective connection from
the DLPFC to the IFG. c Model (exceedance) probabilities using
Bayes model selection. For controls, the nonlinear models were the
most likely family, that is, those models with nonlinear (gating) effects
of the ACC on the DLPFC to IFG connectivity. In the HR group, the
corresponding nonlinear parameter showed a between group difference
and the most probable family of models were the bilinear ones, that is,
those models where the internal nonlinear effect has been replaced by
an external modulatory influence.
ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex;
FFA, fusiform face area; IFG, inferior frontal gyrus

1306 A. Perry et al.



aetiological mechanisms. Patient carriers of genetic
risk variants for BD (CACNA1C and ANK3) show
abnormal effective connectivity in facial processing net-
works [153]. Potential for elucidating the genetic pathways
underlying BD may also lie in leveraging an individual’s
cumulative load of candidate genes for the disorder, known
as a polygenic risk score (PRS) [186]. In recent studies
conducted in BD and family-relatives, PRS was found to be
associated with functional brain activity in working memory
and facial processing networks [186, 187]. Intriguingly,
the loading of PRS on brain activity was independent of
diagnosis. Understanding the complex interaction between
imaging markers, genetic risks and illness expression
should be an important goal of future longitudinal studies.

The need for multi-disorder studies

Several clear observations emerge from the growing body of
BD connectomics research. The over-arching picture is that,
compared to the pernicious “small world” and rich-club
effects in SCZ, disturbances in BD and HR populations
appear to be confined to specific fronto-limbic subsystems,
most notably those associated with the perception and reg-
ulation of emotionally salient material. Whereas large con-
sortia investigations have revealed that all major white-matter
bundles are impacted to some extent in SCZ [166, 188], the
emerging consensus of the work we have reviewed suggests a
more restricted pattern of connectomic disturbances in BD.
This difference is even apparent in unaffected offspring—
those of SCZ patients show a decrease in rich-club con-
nectivity that is not present in the offspring of BD patients
[71]. The differing connectomic signatures between BD and
SCZ are interesting in light of the substantial genetic overlap
between the two disorders [189], and the shared cognitive
deficits in executive control [146]. Interestingly, a common
pattern of decreased resting-state functional connectivity in
the frontoparietal control network has been observed across
SCZ, schizo-affective and BD [121, 190].

As noted above, these connectivity differences reflect the
over-arching distinction of the phenotypes: the bivalent and
episodic nature of BD contrasts with the core and enduring
perceptual and cognitive deficits that characterise SCZ.
Hence, even though the networks of structural, functional
and effective dysconnectivity in BD do “hang off” impor-
tant brain hubs such as the AI, IFG, DLPFC and ACC, the
connectivity amongst other distributed core-regions remains
relatively preserved. However, the degree of disturbance in
those networks that are affected in BD is quite substantial.
That is, the disorders may differ in their core topological
reach, but not in the depth of the perturbation on the net-
works where they do impact.

Unfortunately, most prior connectomic studies of BD and
SCZ patient groups are typically careful to exclude each other,

clinical practise suggests a less distinct continuum of pheno-
types that reflects the shared genetic architecture [157]. Given
that the differential diagnosis of SCZ from BD is a frequent
clinical challenge, further large cross-disorder studies are
required [126].

On the topic of differential diagnoses, the need to detect
BD during its initial depressive episodes is crucial to early
and targeted interventions. The potential utility of neuroi-
maging markers to differentiate bipolar from unipolar
depression has been highlighted by the few connectomic
studies that include both BD and unipolar (UD) depression
cohorts [128, 152, 176, 191]. Disruptions to resting and
effective connectivity patterns (during facial processing)
between the amygdala and medial PFC have emerged as
unique to BD [110, 152]. Alterations to reward-based cir-
cuitry have also emerged as a potential marker to dis-
criminate BD from MDD patients [115]. To date, the only
graph-theoretical comparison of BD (in this case, type II
BD) and UD patients revealed patterns of both shared and
unique resting-state functional-network abnormalities [128].
Shared topological alterations occurred in fronto-limbic
areas, whereas increased nodal integration of the precuneus
was found for UD patients, relative to BD. As with SCZ,
cross-disorder studies are required if imaging is to translate
into clinical practise. To achieve this, connectomic studies,
as with earlier functional activation studies, require care-
fully chosen cognitive and emotional probes, as reflected in
the valence-dependent nature of amygdala activity in BD
versus UD [128, 152]. Naturalistic stimuli, such as emo-
tionally salient film and news clips - have been used to
identify functional [192, 193] and effective [194, 195]
connectivity correlates of UD subtypes and might also play
a role here. In common with resting-state acquisitions,
dynamic natural stimuli can be easily translated into clinical
populations, while also incorporating specifically timed
cognitive and emotional material [192].

In addition to multi-disorder studies, successful clinical
translation rests upon replication in large, independent studies
[196]. This approach tests generalizability across the nuances
of site-specific patient recruitment and scanner imaging
quality. Independent studies that test prior (published) effects
also offer protection against the “researcher degrees of free-
dom” that characterise much historical discovery research
[197]; larger studies improve the accuracy of the estimated
effect size [198]. Data sharing platforms such as ENIGMA
can play a crucial role here [17]. However, the influence of
large legacy data sets on connectomics may be limited by the
need for advanced imaging sequences, particularly the need
for high-angular and distortion-corrected diffusion images to
improve the accuracy and reduce the biases of tractography
[144]. Testing task-related effective connectivity also requires
harmonization of task design and that can often only be
achieved prospectively.
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Fusion of multimodal neuroimaging data

Computational models of brain activity suggest that the
structural connectome forms a scaffold that shapes complex,
multiscale neuronal dynamics [35, 199–202]. Accordingly,
structural connectivity in healthy adults is a strong predictor
of corresponding functional connectivity [203, 204] and can
be used to constrain models of effective connectivity [205].
Quantifying structure–function relationships in clinical
populations may be instrumental in revealing disorder
mechanisms [206]. For example, multimodal analyses could
assess whether structural abnormalities in HR populations
overlap with subject-wise differences in functional con-
nectivity. As we have seen, several findings in BD con-
nectomics span structural, functional and effective
connectivity - changes in the left IFG are an exemplar
(Fig. 2–5). Despite this, there are currently very few
network-based structure-function investigations in BD or
HR cohorts [71, 207, 208]. One study of a young HR cohort
in a young HR cohort (mean age 14.2 years) revealed
increased correspondence between structural and functional
connectivity over long-distance connections [71]. The
fusion of connectomics with complex clinical and beha-
vioural data using multivariate statistical approaches [209–
211] may also help identify those brain network changes
that are most salient to the phenotype.

Future directions: from networks to
dynamics, system control and instabilities

The emergence of computational psychiatry approaches
[212] has shifted research from traditional nosological
group-based investigations towards individual patient
mechanisms and predictions [213, 214]. The mechanisms
linking neurobiological disturbances and phenotype are
being studied using computational models of perception,
learning, inference and behaviour [214, 215]. For example,
the involvement of dopaminergic reward circuits in BD
[115, 216] has motivated computational accounts of the
influence of unstable mood fluctuations on reward-based
learning [96, 217] and decision-making [97]. Accordingly,
abnormalities in reward-based activity in the left VLPFC
has been identified in BD patients [94, 95]. Meanwhile,
large-scale biophysical models offer a principled way of
understanding how complex, multiscale neuronal dynamics
emerge from local neuronal populations interacting through
the structural connectome [33–35, 218, 219]. Computa-
tional studies also allow in silico manipulation of system
dynamics in a manner that cannot be achieved in experi-
mental studies [220]. We offer ways of bringing these
computational methods to bear upon our understanding of
BD connectomics.

Network dynamics and system control

Dynamics lie at the heart of BD: On short time scales,
fluctuations in arousal and motivation are a core aspect of
everyday life [221]. When appropriately bounded, slower
changes in mood and affect are also an important compo-
nent of adaptive interpersonal functioning: they bias
learning [217] and prime expectations according to antici-
pated social context. Computational studies of mood
swings in BD can be conceptualized as a failure in the
appropriate regulation of these fluctuations: Time series
analyses suggest mood variations in BD undergo a switch
to “chaotic” dynamics [222]. Although these results need to
be considered in light of the caveats of nonlinear time
series analyses [223], they suggest an intriguing role for
dynamic models of brain activity to disclose the origin of
multiscale temporal phenomena. Several of these models
have linked topological features of the connectome to the
emergence of multiscale neuronal dynamics [35, 218, 224,
225]. Intriguingly, a recent study has shown how the
enriched connectivity of cortical hubs leads to the emer-
gence of slow, stable synchronous dynamics in the struc-
tural core, in contrast with the fast and unstable fluctuations
in the topological periphery [199]. Notably, the slow core
encompasses much of the emotional circuitry and cognitive
control systems whereas fast, peripheral regions typically
lie in primary sensory cortex. A hierarchy of such time-
scales finds support in a diversity of invasive neurophy-
siological [226] and functional neuroimaging data [227].
These “chronoarchitecture” findings suggest that the (slow)
time scales of the emotional hubs are matched to the slow
time scales of internal states (such as changes in mood),
whereas peripheral regions are tuned to the fast fluctuations
of events in the external sensorium [199]. Corresponding
structural disturbances involving these core hub-regions
could then destabilize the corresponding slow dynamics in
BD.

What network mechanisms might cause this? Insights
could derive from the application of network control theory,
that is, quantifying how inputs to individual nodes or sub-
networks potentially change the state of the whole network
[228, 229]. The application of this framework to empirical
data predicts that the human connectome is indeed con-
trollable (i.e. can be manipulated to any state), with high
degree hubs in the default mode system allowing the tran-
sition of brain activity to many diverse states [230]. Con-
trollability of nodes largely arises through their strong
connectivity, but also reflects local network topologies such
as clustering and local closed paths [231–233]. Recent re-
analyses of structural connectivity data shows that the left-
sided subnetwork centred on the left IFG that is more
weakly connected in HR participants (Fig. 3c), shows
reduced controllability in BD patients compared to the
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control group [233]. The resultant loss of controllability in
BD is consistent with the loss of dynamic stability of mood
fluctuations in patients and the subtle affective changes in
HR individuals.

Currently, such applications are grounded in linear net-
work control theory. While linear approximations may be
sufficient to capture state-to-state transitions, future devel-
opments in the more elusive nonlinear network control
theory may reconcile this approach with the richer dynamics
present in empirical data [33, 234].

Interoceptive models of emotion

It finally remains to be seen how and why the networks
implicated in BD play a role in the (dys)regulation of mood.
For this purpose, we highlight recent developments in
computational psychiatry that reconcile a ‘William Jame-
sian’ mapping between physiological states and emotion
with predictive coding accounts of perception and inference
[11, 235, 236].

Emerging frameworks of emotional experience and
psychopathology have repositioned brain function in light
of its interactions with internal body systems [11, 235].
These interactions are proposed to occur through a per-
ceptual process known as interoception: physiological
changes signalled through autonomic and visceral inputs to
hypothalamic and brainstem structures are sensed “from
within” and yield corresponding neuronal responses in
limbic cortices [237, 238]. According to William James’
account of emotion, such sensations (of aroused physiolo-
gical states) map onto corresponding emotional states (fear,
anger, apprehension, etc.). These processes mirror the more
familiar exteroceptive systems (vision, hearing, etc.) in
terms of their salience and the hierarchical structure of
corresponding sensory cortices: whereas visual systems
feed-forward and back from the occipital pole, primary and
higher-order interoceptive cortex project between the pos-
terior and anterior insula, and also the IFG [11]. As with
exteroception, sensory processes in the interoceptive system
are primed and contextualized through cognitive control
processes such as attention, expectation, and inhibition
mediated via prefrontal regions: The state-dependent nature
of these contextual processes correspond to mood [236].

Following Bayesian ideas, contemporary models of
active perception rest upon hierarchical representations of
sensory signals encoded as prediction signals in agranular
cortices, namely the AI, ACC, subgenual cortex (SGC), and
also the orbitofrontal cortex (Fig. 5b) [11, 239–242]. Des-
cending predictions of (internal and external) states are
compared to the ascending sensory input from lower-order
regions with the difference between the two serving as a
prediction error [243, 244]. The signal encoded in this
prediction error actively updates the higher-order

representations. Heteromodal regions, such as the IFG, may
modulate the magnitude of this update according to the
certainty or “precision” of the sensory inputs [245]. In
classic (external) perception, this process ensures useful
actions and reliable models of the physical world [244]. In
interoceptive systems, these processes reconcile physiolo-
gical states with social context and potential threats
(Fig. 5a). This serves homeostatic needs by efficiently
allocating physiological resources to appropriate cognitive,
emotional and behavioural states whilst minimizing energy
expenditure. Prediction errors also serve allostatic processes
by engaging visceromotor responses, causing physiological
changes that are central to our affective content and feel-
ings, such as heart palpitations and blushing [11, 239]. If a
threat is anticipated then autonomic processes are primed
accordingly. Large prediction errors create arousal, surprise
and re-orienting. Emotional experience can hence be con-
sidered a circular process, such that interoceptive signals
inform and update these prior beliefs [11].

Integrating connectomics and computational
psychiatry: bipolar disorder as “interoceptive
psychosis”

We conclude by considering how this framework can be
used to integrate the various connectomic disturbances in
BD and HR cohorts. To this end, it is notable that the
agranular cortices proposed to embed interoceptive predic-
tions comprise the prefrontal and limbic areas [11, 239,
246] repeatedly implicated in BD. As reviewed above,
cognitive and emotional processes are supported by these
areas, exemplified by the (anterior and posterior) insula and
its rich projections with the ACC and the orbitofrontal
cortex (Fig. 5b) [89, 247–249]. The IFG, embedded within
these networks, may encode the certainty of interoceptive
inputs and predictions [245]. The structural, functional and
effective networks identified in studies of HR and BD
cohorts are thus largely those which may support inter-
oception and its visceromotor control through hierarchical
(Bayesian) prediction.

Under predictive coding accounts, the psychotic features
in SCZ are framed as disturbances to hierarchical inference
in exteroception [250]: symptoms as diverse as hallucinosis,
abnormal eye movements, sensory attenuation deficits, and
delusions are seen as various expressions of the same core
pathology, namely, aberrant encoding of the precision of
beliefs about the external world [244, 250, 251]. Con-
versely, mood disorders in general, and BD in particular,
may be viewed as a dysfunction in interoceptive inference
[252]. Mania reflects a prediction bias towards a rewarding
[253], secure, predictable, and “epistemically rich” world
[236]. Major depression may result from a ‘locked in’ brain
that is relatively insensitive to its (interoceptive) sensory
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context [239]. Lastly, fatigue is thought to arise from
higher-order (“metacognitive”) beliefs regarding the futility
of viscero-motor “effort” in response to perceived or real
bodily dyshomeostasis [235].

The disturbed subnetworks in BD suggest broad patterns
of network dysfunction involving all levels of the inter-
oceptive hierarchy: the symptomatic expression of BD may
reflect fronto-limbic dysfunction, that has figured promi-
nently in this review, and which leads to unstable and
maladaptive internal representations of the social world.
Given the aberrant precision or weighting afforded towards
incoming interoceptive signals, features of the external
milieu may be consequently perceived in BD patients as
increasingly salient, rewarding or threatening [254, 255].
Disturbances in the circuitry of interoceptive centres and
regions storing higher-order representations in BD may be

sufficient to produce these maladaptive internal models,
with the IFG likely prominent in encoding their precision of
expected interoceptive sensation. The abnormal activation
of the amygdala commonly observed in BD patients may
reflect heightened arousal signals due to the resulting dys-
homeostasis [239]. Connectivity to cognitive control
regions, such as the ACC may embed these predictions in a
broader context, such as appraising the self in the current
social milieu [171]. Disturbances at these higher hier-
archical levels speak to the challenges young HR indivi-
duals face regarding affective dysregulation and self-
identity. This framework of interoceptive dysregulation
can also accommodate the neurovegetative features of BD,
particularly the changes in sleep and energy levels. An
adaptive failure of this system may also lead to the inability
to update these internal models during inter-episode

Fig. 5 Computational models of interoception and mood: a Classic
perception (“exteroception”) involves an action-perception cycle, act-
ing through motor behaviour (e.g. eye or limb movement) and per-
ceiving (or inferring) things in the world through vision,
proprioception etc. Interoception involves a similar action-perception
cycle with internal systems: Physiological states are primed through
efferent visceromotor effects, and likewise sensed by visceral affer-
ents. Adapted with permission from [257]. b Hierarchical interoceptive
processes involve an action-perception cycle between the central
nervous system (CNS) and the body through descending visceromotor
efferents and ascending autonomic inputs to the spinal cord, brain stem
and hypothalamus (bottom, red circles). These then engage in active

perception through the mid-and posterior insula (second from bottom),
anterior insula (second from top, right panel), IFG/VLPFC (second
from top, left) and cognitive-control regions (top). The amygdala (far
right) acts in parallel, activating fear circuits in response to threat-
salient prediction errors. At each level, descending arrows represent
predictions which are compared to ascending inputs: The mismatch
yields a prediction error which is feed up the hierarchy to update
internal models (i.e. mood and expectation).
ACC, anterior cingulate cortex; AIC, anterior insula cortex; AMY,
amygdala; HYP, hypothalamus; MIC, middle insula cortex; OFC,
orbitofrontal cortex; PIC, posterior insula cortex; SGC, subgenual
anterior cingulate cortex; VLPFC, ventrolateral prefrontal cortex
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periods, leading to trait cognitive inflexibility [256].
Moreover, fluctuations and compensatory responses on very
slow time scales may yield the core “bipolar” hallmark of
BD. For example, compensatory responses to the type of
connectomic disturbances that figure predominantly in
young HR individuals (such as weaker structural and
functional connectivity of the AI) may later lead to adaptive
(resilience) or mal-adaptive (illness-related) changes in
other circuits and other levels of the interoceptive hierarchy.

In closing, we propose BD as a type of “psychosis of
interoception”, with unstable neuronal dynamics in corre-
sponding hierarchical systems. The ensuing dysregulation
yields the fluctuations in mood at the core of the disorder.
The traditional fear circuitry, that include regions such as
the amygdala, may not be a primary target of the disorder,
but may be maladaptively recruited as a result of mis-
perceptions of threat. This proposed model of abnormal
interoceptive inference accommodates the larger-scale pat-
terns of network dysfunction reviewed in this manuscript,
and suggests the need for future imaging studies that inte-
grate appropriate emotionally salient tasks with concurrent
physiological recordings.
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