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Objective: Stroke remains the number one cause of morbidity in many developing

countries, and while e�ective neurorehabilitation strategies exist, it remains di�cult to

predict the individual trajectories of patients in the acute period, making personalized

therapies di�cult. Sophisticated and data-driven methods are necessary to identify

markers of functional outcomes.

Methods: Baseline anatomical T1 magnetic resonance imaging (MRI), resting-state

functional MRI (rsfMRI), and di�usion weighted scans were obtained from 79 patients

following stroke. Sixteen models were constructed to predict performance across

six tests of motor impairment, spasticity, and activities of daily living, using either

whole-brain structural or functional connectivity. Feature importance analysis was

also performed to identify brain regions and networks associated with performance

in each test.

Results: The area under the receiver operating characteristic curve ranged from 0.650

to 0.868. Models utilizing functional connectivity tended to have better performance

than those utilizing structural connectivity. The Dorsal and Ventral Attention Networks

were among the top three features in several structural and functional models, while

the Language and Accessory Language Networks were most commonly implicated in

structural models.

Conclusions: Our study highlights the potential of machine learning methods

combined with connectivity analysis in predicting outcomes in neurorehabilitation

and disentangling the neural correlates of functional impairments, though further

longitudinal studies are necessary.

KEYWORDS

stroke, machine learning, connectomic analysis, functional prediction, structural and

functional connectivity, motor functional outcome, language networks, attention networks

1. Introduction

Stroke is among the leading causes of long-term functional impairment worldwide (Karahan

et al., 2014). Survivors often suffer residual motor, sensory, and cognitive deficits, all contributing

to a deterioration in quality of life (Dobkin, 2005; Meyer et al., 2015). Beyond acute

revascularization therapies, rehabilitation interventions remain paramount to aiding patients to

regain function. However, one of the challenges in rehabilitation medicine is the heterogeneity

in patient recovery trajectories after stroke. It remains difficult to predict whether or not patients

will benefit from a given therapy, and it is clear that information beyond the observed deficits on
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assessment are necessary to prognosticate patients and prescribe

individualized therapies which will improve quality of life. Machine

learning methods may have a key role in traversing this gap and be a

tool for prescribing precise treatments.

Several studies have already utilized machine learning algorithms

to predict functional outcomes in the acute/subacute stroke period.

Lin et al. compared the performance of several machine learning

methods in predicting the Barthel Index (Lin W.-Y. et al.,

2018). Other studies have assessed the ability of machine learning

models in predicting cognitive, motor and sensory outcomes, many

achieving high accuracy in classifying participants (Fang et al., 2021;

Campagnini et al., 2022; Kim et al., 2022; Liao et al., 2022). Some of

these studies have also examined the important features contributing

to the model’s classification. For example, Thakkar et al. found that

the time since stroke, baseline functional independence, and baseline

motor ability were the most predictive factors of motor function

improvement in chronic stroke patients (Thakkar et al., 2020). It is

unclear which set of features is most optimal to include in a predictive

model, though it is likely that the input of these models must reflect

the heterogeneity among patients. Moreover, it is unclear if there are

any specific connectomic features that are predictive of outcome.

Magnetic resonance imaging (MRI)-based functional

and structural connectivity may be potential candidates in

prognosticating stroke outcomes, as they could provide personalized

brain information at the individual level. Several studies have

demonstrated an association between disruptions in structural and

functional connectivity and stroke outcomes (Carter et al., 2010;

Ding et al., 2014; Lin L. Y. et al., 2018; Puig et al., 2018; Lee et al.,

2020). However, there has been limited attention on combining

machine learning with connectivity analysis to predict functional

outcomes; to-date, there have not been any exploratory analyses of

whole brain connectomics predictive of post-stroke motor functional

outcome in machine learning models. Here, we analyze functional

connectivity (FC) and structural connectivity (SC) in a clinical

sample, in order to (1) predict several stroke related motor functional

outcomes, and (2) describe the connectomic correlates contributing

to those predictions.

2. Methods

2.1. Patient cohort

A total of 79 first-time stroke patients with hemiplegia who

were hospitalized in the Rehabilitation Medicine Department of

The Affiliated Brain Hospital of Nanjing Medical University from

April 2018 to December 2021 were prospectively included in this

study. The study protocol was approved by the Ethics Committee

of The Affiliated Brain Hospital of Nanjing Medical University, and

written informed consent was obtained from all patients or their

family members.

The inclusion criteria of the study included: (1) diagnosis of

first-ever subcortical ischemic or hemorrhagic stroke by computed

tomography or magnetic resonance; (2) patients were within 2–12

months after stroke; (3) patients only had unilateral limb hemiplegia

(Modified Brunnstrom classification as grade I–IV); (4) patients did

not have severe cognitive impairment; (5) patients did not have

other acute diseases or serious complications; (6) right-handedness.

The exclusion criteria were: (1) disturbance of consciousness, severe

hearing and visual impairment; (2) significant pain in the affected side

(Ten-point Visual Analog Scale > 4); (3) severe primary heart, lung,

liver, kidney or hematopoietic system diseases; (4) after craniectomy

or cranioplasty. (5) MRI contraindications.

2.2. Outcome assessment

The hospital records of the 79 patients were retrospectively

reviewed for data collection. The following data on demographics and

relevant past medical history were collected: age, sex, (hospitalization

time, date of stroke onset and lesion location). Information on motor

functional outcomes were also collected, using the following the

assessment tools: Brunnstrom recovery stage (BRS) (Brunnstrom,

1966), modified Ashworth scale (MAS) (Bohannon and Smith, 1987),

Barthel Index (Mahoney and Barthel, 1965), Fugl-Meyer Assessment

(FMA) (Fugl-Meyer et al., 1975), functional ambulation category

(FAC) (Holden et al., 1984), and Semans balance scale (Wang, 2018).

The functional classification of stroke patients was based on the

BRS scale, which includes three parts: upper limb, lower limb and

hand, with each part having six levels (0–6). The higher the level, the

stronger the motor ability (Brunnstrom, 1966). The scale has good

internal consistency in stroke patients. The MAS scale was used to

evaluate spasticity in the biceps brachii and triceps surae muscles,

which was graded out of six levels (0, 1, 1+, 2, 3, 4) (Bohannon and

Smith, 1987). The higher the level, the more severe the spasm. The

Barthel Index was used for the ability of daily living, with a total score

of 100. The higher the score, the better the quality of life (Mahoney

and Barthel, 1965). FMA was used to evaluate motor function, with a

total score of 100, including 66 for upper limbs and 34 for lower limbs.

The higher the score, the better the motor ability (Fugl-Meyer et al.,

1975). FAC was used for assessing walking ability, and was divided

into six levels—the higher the level, the better the walking function

(Holden et al., 1984). The Semans balance scale was used to assess

balance. It is an observational assessment method mainly used in the

balance assessment of pediatric cerebral palsy and hemiplegic patients

after stroke (Wang, 2018). It classifies balance into eight levels, with

higher levels corresponding to better balance.

2.3. Imaging protocol

Image scanning was performed on the same day as functional

assessment, on a 3.0-T MRI scanner (Siemens, Verio, Germany)

in the Affiliated Brain Hospital of Nanjing Medical University. All

patients lay supine with their head fixed by foam pads with a standard

birdcage head coil to minimize head movement. Participants were

instructed to remain as still as possible, open their eyes, remain

awake, and not think of anything. High-resolution T1-weighted

images were acquired by 3D magnetization-prepared rapid gradient-

echo (MPRAGE) sequence [repetition time (TR) = 2,300ms; echo

time (TE) = 2.85ms; flip angle (FA) = 9 degrees; matrix = 256 ×

256; field of view (FOV) = 256 × 256 mm2; slice thickness/gap =

1/0.5mm; 176 slices covered the whole brain] for image registration

and functional localization. The imaging took ∼260 s. The resting-

state of functional MRI (rsfMRI) were subsequently collected in the

same slice orientation with a gradient-recalled echo-planar imaging

pulse sequence (TR= 2,000ms; TE= 30ms; FA= 90 degrees; matrix
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= 64 × 64, FOV = 240 × 240 mm2; thickness/gap = 4.0/0mm;

voxel size = 3.8 × 3.8 × 4 mm3; slice numbers = 30). A total of

251 volumes were obtained in this acquisition sequence and each

functional resting-state session lasted∼500 s.

Diffusion-weighted imaging was performed with the SE-EPI

sequence scanning. Using iPAT technology, axial scanning, TR =

11,000ms, TE = 90ms, slice number = 67, slice thickness = 2mm,

slice spacing 0mm, FOV = 256mm × 256mm, matrix: 128 × 128,

voxel size= 2× 2× 2mm3, diffusion weighted scan b= 1,000 s/mm2

in 30 gradient directions, and another non-diffusion weighted image

with b= 0. Excitation times (NEX)= 2. Scan time= 11min and 57 s.

2.4. Di�usion weighted imaging
pre-processing

Diffusion weighted imaging (DWI) was processed using

the Infinitome software (Omniscient Neurotechnology, 2020).

Infinitome relies on standard processing steps using Python

(Garyfallidis et al., 2014). The diffusion image was resliced to obtain

isotropic voxels. A rigid body alignment was used for motion

correction, and slices with excess motion, defined as DVARS >2

sigma from the mean slice were eliminated. The T1 image was then

skull stripped using a convolution neural net, described elsewhere

(Isensee et al., 2019). This was then inverted and aligned to the DWI

image using a rigid alignment, which was then used as a mask to

skull strip the DWI image. A diffeomorphic warping method was

then used to correct for gradient distortion to similarize the DWI

and T1 images, and eddy current correction was performed. Finally,

the fiber response function was estimated and constrained spherical

deconvolution was used calculate the diffusion tensors. Deterministic

tractography was then performed, with random seeding, manifesting

in around 300,000 streamlines per brain (Doyen et al., 2022).

2.5. Structural-connectivity based
parcellation

A parcellation scheme is necessary for measuring FC changes at

an anatomical level. Most available atlasing methods to parcellate

the brain into functional regions however are derived from healthy

subjects. These atlases also are based on a group average of

these healthy cohorts, and are therefore unable to account for

individual morphological differences such as gyral variation. This

is especially problematic when applying these atlases to brains

altered by pathology, such as in stroke. In order to account for

any morphological deficits caused by stroke, we utilized a machine

learning based method to individually parcellate each brain based

on the Human Connectome Project Multimodal Parcellation (HCP-

MMP1) atlas (Glasser et al., 2016), creating a subject-specific atlas.

While we have described this method in detail elsewhere (Doyen

et al., 2022), briefly, a machine learningmodel was trained using DWI

data from 178 healthy controls from the Schiz Connect database,

which were pre-processed as above. The model consequently learnt

the structural connectivity pattern between each voxel. The unalted

HCP-MMP1 was then warped to each brain in the current study’s

cohort, and the machine learning model was applied to each brain to

re-appoint voxels to their most likely parcellation based on structural

connectivity features. This method manifested in “reparcellation” of

voxels, creating a subject-specific version of the HCP-MMP1 atlas

with 180 cortical regions, 9 subcortical regions, and the brainstem.

Each brain region was then automatically mapped to a known

large-scale brain network by the Infinitome software, which itself

relies upon previous meta-analyses mapping each large-scale brain

network. The network template described by Yeo et al. (2011) was

utilized, including the core networks: the Central Executive Network

(CEN), Default Mode Network (DMN), Dorsal Attention Network

(DAN), Limbic Network (LN), Salience Network (SN), Sensorimotor

Network (SMN), and the Visual Network (VN), along with several

networks which are either part of the extended versions of the

core networks, or additional networks described in the literature,

including the Accessory Language and Language Networks (part of

the extended DMN), Auditory System (part of the SMN), Multiple

demand network, and Ventral Attention Network (VAN).

2.6. Resting-state fMRI pre-processing steps

rsfMRI images were pre-processed prior to analysis according

to standard pre-processing steps. A rigid body alignment was used

to perform motion correction on the T1 and blood-oxygen-level-

dependent (BOLD) images. Slices with excess movement (defined as

DVARS > 2 sigma from the mean slice) were eliminated. A CNN

was used to skull strip the T1 image (Isensee et al., 2019). In order

to then skull strip the rsfMRI image, the T1 image was inverted and

aligned to the BOLD image using a rigid alignment, and then used

as a mask. Slice timing correction, global intensity normalization,

and gradient distortion correction were performed, the latter using

a diffeomorphic warping method to register the rsfMRI and T1

images. The CompCor methodwas used to calculate high variance

confounds (Behzadi et al., 2007), which were regressed out of the

rsfMRI image along with the motion confounds. The linear and

quadratic signals were detrended (note this method does not perform

global signal regression). A 4mm FWHM Gaussian kernel was used

to perform spatial smoothing. The subject-specific brain atlas created

in the previous steps were then registered to the T1 image, and the

regions were aligned with the regions in each subject’s scan. A visual

check was then performed by two neuroanatomists, independently,

to ensure the methodology accounted for the morphological changes

caused by the lesion. The atlas was therefore ideally positioned to

extract a BOLD time series, averaged over all the voxels within

a region, from 379 brain regions (180 cortical regions from two

hemispheres, along with 19 subcortical structures). A Pearson

correlation coefficient was then calculated between the BOLD signals

of each unique pair of regions, yielding. Thus, it is ideally positioned

for extracting a BOLD time series, averaged over all voxels within

a region, from all 379 regions (180 parcels from two hemispheres,

plus 19 subcortical structures). The Pearson correlation coefficient is

calculated between the BOLD signals of each unique area pair (self to

self-inclusive), which yields 71,631 unique correlations.

2.7. Machine learning classification and
feature extraction

Machine learning was used to model the test performance of

each participant based on the pairwise functional correlation or

structural connectivity between the 379 regions of each individual’s
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TABLE 1 Cuto�s for each functional outcome scale utilized in the machine

learning models.

Functional outcome
scale

Scoring cuto�s

Brunnstrom Stage Recovery
(BRS)—upper extremity

Stages 1–3 Worse

Stages 4–6 Better

Fugl-Meyer Assessment
(FMA)—lower extremity

<21 Worse capacity

≥21 Better capacity

Fugl-Meyer Assessment
(FMA)—upper extremity

≤31 Worse capacity

≥32 Better capacity

Modified Ashworth Scale
(MAS)—upper extremity

0 No muscle tone

>0 Some muscle tone

Modified Ashworth Scale
(MAS)—lower extremity

0 No muscle tone

>0 Some muscle tone

Barthel index ≤40 Very or totally dependent

41–100 Partially to fully independent

Semans balance 0–1 Severe

>1 Moderate to none

Functional ambulation category 0 Non-ambulatory

1–5 Ambulatory

brain atlas. XGBoost Classifier (Chen and Guestrin, 2016), a boosted

trees approach was used to fit each model. All models included age

and sex as nuisance predictors. A total of 16 models were trained—

one utilizing structural connectivity (SC), and another functional

connectivity (FC)—to predict performance on the BRS on upper

extremity, FMA on upper and lower extremities, MAS on upper

and lower limbs, Barthel Index, FAC, and Semans balance scale. The

scores for each of these tests were binarized for the models to classify

subjects into either category, as detailed in Table 1.

Five-fold cross-validation was used for each model, with different

training and test data splits to ensure the hyperparameters were

not being optimized just for the given training and test data splits.

The models were evaluated with the mean area under the receiver

operating characteristic curve (AUC-ROC) ± standard deviation.

Given the small sample size, several strategies were utilized to

minimize the impact of class imbalances on the performance of

each model. Five-fold cross-validation ensured that each fold had

an equal ratio of both classes; a stopping criterion was applied

to stop training if the model performance did not improve over

consecutive iterations of hyperparameter tuning—an attempt to

prevent overfitting; and, feature importance analysis only relied upon

the correctly predicted cases, therefore being independent of whether

one class was predicted slightly better than the other. These strategies

aimed to approximate a balanced class AUC even in cases of class

imbalance. Our predominant aim in each model was also feature

importance analysis, with a focus on identifying what resulted in

the classifications. Consequently, while AUC is inherently affected by

class imbalances, the guardrails applied, along with the significantly

higher than chance performance of each model counteract any AUC

bias, and make it largely irrelevant to the aim of our analysis.

The feature importance analysis for each model was visualized

using a SHAP plot of the top 20 features, either functional or

structural connectivity between two regions of the HCP-MMP1

atlas, contributing to the model. The SHAP method, based on

cooperative game theory, calculates Shapley values for each feature,

which estimate the marginal contribution of each feature to the

outcome of models relying on every possible permutation of features

(Lundberg and Lee, 2017). Each SHAP plot shows a list of features

in descending order of importance, quantifying the impact on the

model along the x-axis, with the color of each point representing

a single observation, indicating whether a high (red), or low (blue)

value of that feature is associated with the model. A network-based

summary plot is also produced, aggregating the contribution of each

parcel by their network affiliation. This gives an indication of which

brain networks are most influential in each model’s classification.

3. Results

3.1. Subject demographics

Subject demographics are detailed in Table 2. The median age

(±IQR) of our sample was 62 ± 18. There were 22 females (27.8%)

and 57 males (72.2%). The median time (±IQR) from initial stroke

to scanning was 35 days (33). There was a small difference in

the stroke side, with 55.7% of patients having a left-sided stroke;

however, speech deficits were only seen in 21.5% of patients, andmost

patients had a subcortical stroke.Motor deficits were present in 96.2%

of patients.

3.2. Models classifying tests of limb function
and spasticity

Machine learning was applied to classify subjects into binarized

categories as outlined in Table 1. For each test, two models

were constructed to separately evaluate functional and structural

connectivity. Both models included age and sex as covariates.

3.2.1. Brunnstrom stage of recovery (BRS)—Upper
extremity

The model utilizing subjects’ FC to classify the upper limb BRS

achieved a mean (±SD) AUC of 0.81 ± 0.12. Utilizing the SHAP

method for feature extraction revealed that at the individual brain

region level, a low FC between the left area posterior 24 prime (p24pr)

and left area posterior insular 1 (PoI1), a high FC between the right

primary motor cortex (area 4) and right area 9 posterior (9p), and a

high FC between left area anterior 24 (a24) and left area intraparietal 0

(IP0) contributed most to the model’s classification (Figure 1A). The

rest of the features did not demonstrate as significant an impact on

the output. At the network level, the DAN, limbic/paralimbic system,

and VAN had the largest contribution to the model’s output, followed

by the DMN (Figures 1B, E).

The model employing SC to classify the upper limb BRS achieved

a mean (±SD) AUC of 0.66 ± 0.13. At the individual brain region

level, the structural connectivity between the left Thalamus and right
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TABLE 2 Subject demographics.

Demographics N = 79

Age years (median± IQR) 62.0± 18.0

Sex F/M n (%) 22 (27.8)/57 (72.2)

Years of education (median± IQR) 9.0± 6.0

Hand dominance L/R n (%) 79 (100)/0 (0)

Time from first admission to fMRI days (median± IQR) 35 (33)

Stroke side∗ L/R n (%) 44 (55.7)/34 (43.0)

Stroke location n (%)

Cortical 12 (15.2)

Subcortical 52 (65.8)

Both 15 (19.0)

Deficits on admission n (%)

Motor 76 (96.2)

Cognition 21 (26.6)

Speech 17 (21.5)

Dysarthria 21 (26.6)

Dysphagia 25 (31.6)

Ataxia 2 (2.5)

Brunnstrom stage of recovery (median ± IQR)

Upper limb 3 (3)

Lower limb 4 (3)

Fugl-Meyer assessment (median ± IQR)

Total motor 39 (53.5)

Upper limb motor 20 (37.5)

Lower limb motor 18 (22)

Modified Ashworth scale (median ± IQR)

Upper limb 0 (1)

Lower limb 0 (0.25)

Barthel index (median± IQR) 50 (42.5)

Semans balance scale (median± IQR) 3 (2)

∗One subject had an infarct of the corpus callosum.

area TE2 anterior (TE2a) (though the direction of this connectivity

was unclear), and a high connectivity between left parabelt complex

(Pbelt) and right V3CD were the top two features (Figure 1C).

However, there was significant variability and overlap among the

feature contribution values, and this model therefore requires caution

while interpreting. At the network level, the accessory language

network demonstrated the greatest contribution to the model’s

classification (Figures 1D, F).

3.2.2. Fugl-Meyer Assessment
The model classifying the FMA lower extremity score using FC

achieved a mean AUC of 0.797 ± 0.052. A high FC between the left

hippocampus and left V3A had the greatest impact on the model’s

output, while the rest of the features demonstrated a mixed pattern

of FC, with great overlap (Figure 2A). At the network level, the

accessory language network demonstrated the greatest contribution,

followed by the VAN and medial temporal regions (Figures 2B, E).

When utilizing SC, the model achieved a mean AUC of 0.650 ±

0.117. The model performance and the low level of variance among

the subjects limited further interpretation of this model, especially at

the individual region level (Figure 2C), though the SN and language

network demonstrated the greatest contribution at the network level

(Figures 2D, F).

Classification of the upper extremity FMA scores using FC

yielded a mean AUC of 0.677 ± 0.080. At the individual region

level, a high FC between the right IFSp and left orbital frontal

complex (OFC), right PBelt and left temporoparietooccipital junction

(TPOJ2), left dorsal area 8A (8Ad) and left area posterior 10p (p10p),

right supplementary and cingulate eye field (SCEF) and left rostral

area 10 (10r), right lateral belt complex (LBelt) and right superior

temporal visual area (STV) were the top five features contributing

to the model’s output (Figure 3A). At the network level, the auditory

system, followed by the limbic/paralimbic system had the greatest

contribution (Figures 3B, E). When utilizing structural connectivity

to classify upper extremity FMA scores, the model demonstrated

a mean AUC of 0.788 ± 0.045. A high connectivity between the

right hippocampus and left area 8B lateral (8BL) was the top feature

contributing to the model’s output, while the rest of the features

generally were associated with low connectivity, though there was too

much overlap to highlight a single feature and these features did not

show as a significant contribution to the model (Figure 3C). At the

network level, the medial temporal regions and VAN, followed by the

auditory system demonstrated the greatest contribution to the output

(Figures 3D, F).

3.2.3. Modified Ashworth scale
The model classifying the MAS lower extremity score into no

change in muscle tone and some change in muscle tone achieved

a mean AUC of 0.753 ± 0.140. Due to the relative class imbalance

of this model, the SHAP output was difficult to interpret at the

individual brain region level, and while a high FC between the

right medial belt complex (Mbelt) and right posterior operculum 2-

3 (OP2-3) had the highest contribution to the output, it should be

interpreted with caution (Figure 4A). At the network level however,

the medial temporal regions and CEN, followed by the auditory

system and VN demonstrated the greatest contribution to the model’s

output (Figures 4B, E). When utilizing SC to classify MAS lower

extremity scores, the model achieved a mean AUC of 0.802 ± 0.108.

A low connectivity between the left thalamus and left area 9 posterior

(9p) had the greatest contribution to the model’s output, and the

top 10 features generally pointed to low connectivity (Figure 4C).

There was however significant overlap among the features, making

it difficult to ascertain the relative importance of features. At the

network level, the auditory system and CEN were once again among

the top four networks contributing to the model’s output, and were

followed by the language system and SN (Figures 4D, F).

Classification of the upper extremity scores using FC yielded a

mean AUC of 0.815 ± 0.080. At the individual region level, a high

FC between the left cerebellum and right area 31p ventral (31pv) had

the greatest contribution to the model’s output, followed by a high FC

between left area anterior 47r (a47r) and right area p32 prime (p32pr)

(Figure 5A); while at the network level, the DMN contributed most
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FIGURE 1

Feature importance analysis of the models classifying the Brunnstrom stage of recovery—upper extremity based on functional connectivity at the (A)

individual brain region level, and (B) the network level; and based on structural connectivity at the (C) the individual brain region level, and (D) the network

level. The networks contributing most to the models’ classifications, based on (E) functional connectivity, and (F) structural connectivity, have also been

visualized on brain models.
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FIGURE 2

Feature Importance Analysis of the models classifying the Fugl Meyer assessment—lower extremity based on functional connectivity at the (A) individual

brain region level, and (B) the network level; and based on structural connectivity at the (C) the individual brain region level, and (D) the network level. The

networks contributing most to the models’ classifications, based on (E) functional connectivity, and (F) structural connectivity, have also been visualized

on brain models.
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FIGURE 3

Feature Importance Analysis of the models classifying the Fugl Meyer assessment—upper extremity based on functional connectivity at the (A) individual

brain region level, and (B) the network level; and based on structural connectivity at the (C) the individual brain region level, and (D) the network level. The

networks contributing most to the models’ classifications, based on (E) functional connectivity, and (F) structural connectivity, have also been visualized

on brain models.
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FIGURE 4

Feature Importance Analysis of the models classifying the modified Ashworth scale—lower extremity based on functional connectivity at the (A) individual

brain region level, and (B) the network level; and based on structural connectivity at the (C) the individual brain region level, and (D) the network level. The

networks contributing most to the models’ classifications, based on (E) functional connectivity, and (F) structural connectivity, have also been visualized

on brain models.
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to the output, followed by medial temporal regions (Figures 5B, E).

When utilizing structural connectivity to classify upper extremity

scores, the model demonstrated a mean AUC of 0.737± 0.150. A low

SC between the right area 6mp and left area 52, right area 47m and left

prostriate area (ProS), and right posterior inferotemporal complex

(PIT) and right area 45 were the top three features contributing to

the model’s classification (Figure 5C). At the network level, the DAN,

VAN, and SN demonstrated the greatest contribution (Figures 5D, F).

3.3. Models classifying tests of general
functional performance activities of daily
living

3.3.1. Barthel Index
When using FC to classify subjects based on the Barthel Index,

the model achieved a mean AUC of 0.808± 0.094. A low FC between

the brainstem and right medial area 7P (7Pm), and right para-insular

area (PI) and right area TE2 posterior (TE2p) were the top 2 features

contributing to the model’s classification, while the rest of the features

demonstrated great overlap in contribution (Figure 6A). The VAN

had the greatest contribution at the network level (Figures 6B, E).

The model utilizing SC achieved a mean AUC of 0.742 ±

0.175. Low connectivity between the left area superior temporal

sulcus ventral-anterior (STSva) and left area V4t, and left area

temporoparietooccipital junction 1 (TPOJ1) and right premotor eye

field (PEF) had the greatest impact on the model’s output, though

there was once again significant overlap in contribution values

(Figure 6C). At the network level, the accessory language network had

the greatest contribution to the model’s classification (Figures 6D, F).

3.3.2. Semans balance scale
The model utilizing FC to classify balance performance yielded

a mean AUC of 0.868 ± 0.155. A low FC between the right area

intraparietal 1 (IP1) and left area 44 had the greatest contribution

to the model’s output (Figure 7A), while at the network level, the

language system was the top network (Figures 7B, E). The model

utilizing structural connectivity had a mean AUC of 0.685 ± 0.069.

A low level of structural connectivity between the left area 6 medial-

anterior (6ma) and the right area superior temporal sulcus dorsal

anterior (STSda) had the greatest impact on this model’s output,

while the rest of the features demonstrated a mix of low and high

levels of connectivity, with great overlap (Figure 7C). At the network

level, the language system had the greatest contribution to the model,

followed by the SN, SMN, multiple demand network, and the VAN

(Figures 7D, F).

3.3.3. Functional ambulation category
The model utilizing FC to predict FAC achieved a mean AUC of

0.75± 0.10 following hyperparameter tuning. At the individual brain

region level, a high FC between the right area 33 prime (33pr) and

right area 9 posterior (9p), and a low FC between the left area anterior

9-46v (a9-46v) and right STSva were the top two features contributing

to the model (Figure 8A). The CEN demonstrated the greatest

contribution to the model at the network level (Figures 8B, E).

When utilizing FC, the model achieved a mean AUC of 0.804 ±

0.115. A low connectivity between the left superior frontal language

area (SFL) and left area 9 anterior (9a), left area temporal gyrus

ventral (TGv) and right PI, and left p32pr and left parahippocampal

area 3 (PHA3) were the top three features contributing to the

model’s output, though there was overlap among the top 20 features’

contributions (Figure 8C). At the network level, the language system

and the SMN demonstrated the greatest contribution, followed by the

SN and the VN (Figures 8D, F).

4. Discussion

In this study, we utilized machine learning models to predict

functional impairment after stroke using functional and structural

connectivity and analyzed important features to identify the

neuroanatomical basis of this impairment. Notably, our models

achieved a high performance when classifying standardized tests of

functional impairment. Our data also revealed broad disruptions

across multiple brain networks in functional and structural

connectivity, especially within the DAN and VAN. Together, our

findings demonstrate the utility of our methodology to explore

and discover the connectomic disturbances underlying stroke, and

how networks respond to insults. While our study was the first

comprehensive analysis utilizing both functional and structural

connectivity to classify standardized tests of functional impairment

using machine learning, the generalizability of our findings is limited

by a relatively small and heterogeneous sample. The following

discussion will therefore examine whether our findings may be

explained by the existing literature, though we acknowledge that our

hypotheses are speculative in nature and further studies are necessary

to validate these claims.

4.1. Attention and language networks in
stroke

Although our models pointed to several large-scale networks

which are known to be important in functional recovery after stroke,

such as the DMN, CEN, and SMN (Tuladhar et al., 2013; Larivière

et al., 2018; Wu et al., 2020; Olafson et al., 2021; Vicentini et al.,

2021), the attention networks, the DAN and VAN were among the

top contributors in several of our models. Classically, The DAN is

considered to be crucial for sustaining attention on a given task

(Ptak and Schnider, 2010), while the VAN is thought to act as a

circuit breaker by redirecting attention in response to salient events

(Corbetta and Shulman, 2002; Corbetta et al., 2008). Generally,

impairment in the DAN following stroke has been associated with

neglect (Corbetta and Shulman, 2011; Barrett et al., 2019) and the

severity of motor impairment (Siegel et al., 2016), however, the

exact nature of changes within the attention networks in stroke

patients remains unknown. Some studies have reported increased

connectivity (Rehme et al., 2012; Wang et al., 2014; Siegel et al.,

2016; Lee et al., 2018), contextualized by the greater need for

patients to direct attention to movements following stroke. While

others have demonstrated lower FC within the VAN and DAN in

both task-free and task-based settings (He et al., 2007; Baldassarre
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FIGURE 5

Feature Importance Analysis of the models classifying the modified Ashworth scale—upper extremity based on functional connectivity at the (A) individual

brain region level, and (B) the network level; and based on structural connectivity at the (C) the individual brain region level, and (D) the network level. The

networks contributing most to the models’ classifications, based on (E) functional connectivity, and (F) structural connectivity, have also been visualized

on brain models.
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FIGURE 6

Feature Importance Analysis of the models classifying the Barthel index based on functional connectivity at the (A) individual brain region level, and (B)

the network level; and based on structural connectivity at the (C) the individual brain region level, and (D) the network level. The networks contributing

most to the models’ classifications, based on (E) functional connectivity, and (F) structural connectivity, have also been visualized on brain models.
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FIGURE 7

Feature Importance Analysis of the models classifying the Semans balance scale based on functional connectivity at the (A) individual brain region level,

and (B) the network level; and based on structural connectivity at the (C) the individual brain region level, and (D) the network level. The networks

contributing most to the models’ classifications, based on (E) functional connectivity, and (F) structural connectivity, have also been visualized on brain

models.
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FIGURE 8

Feature Importance Analysis of the models classifying the functional ambulation category based on functional connectivity at the (A) individual brain

region level, and (B) the network level; and based on structural connectivity at the (C) the individual brain region level, and (D) the network level. The

networks contributing most to the models’ classifications, based on (E) functional connectivity, and (F) structural connectivity, have also been visualized

on brain models.
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et al., 2016; Adhikari et al., 2017; Barrett et al., 2019). This may be

pointing to increased inter-network connectivity and decreased intra-

network connectivity, representing the loss of network segregation

and specialization following stroke (Caliandro et al., 2017; Marebwa

et al., 2017; Guo et al., 2019). Interestingly, congruent to our findings,

Romeo et al. recently demonstrated a positive correlation between

decreased connectivity of the DAN and the motor component of the

Functional Independence Measure (FIM) in the sub-acute to chronic

period following stroke (Romeo et al., 2021). Furthermore, several

studies have shown that the outcome of motor rehabilitation may

be associated with preserved FC within the ipsilesional DAN (Cheng

et al., 2021; D’Imperio et al., 2021). Therefore, patients with preserved

connectivity within the DAN and VAN may be performing better

across the tests in our models. We however cannot validate this given

the task-free nature of our study. Nonetheless, it is evident that the

attention networks play a role in mediating functional performance,

though further studies on large, homogeneous samples are necessary

to elucidate the mechanism behind this, which may provide further

therapeutic avenues.

Interestingly, the language and accessory language networks were
highlighted in our models classifying the BRS, FMA, Barthel Index,
Semans balance scale and FAC. This may be due to impairments

in the language system typically accompanying strokes with worse

motor and functional impairment, and indeed those with expressive

aphasia tend to have an 80% chance of also suffering hemiplegia

(Romeo et al., 2021). Due to our small sample size, we were unable

to perform separate analyses on patients reporting a brain lesion

in the left compared to the right hemisphere. However, given most

of the strokes within our cohort were subcortical, only nine out

of 17 strokes affecting speech were left-sided cortical strokes, and

most patients with motor deficits did not have speech deficits, we

speculate that there may be alternative reasons for why the language

network contributed to our classifications. This finding may instead

be pointing to the functional symbiosis between language and motor

function (recently reviewed by Anderlini et al., 2019). Recently,

several studies have demonstrated that not only do deficits in these

domains co-occur, but they also interact in their treatment. For

example, Romeo et al. also demonstrated an association between the

FIM motor score and the language network, specifically a higher

integration within the region of the precentral gyrus, pointing

to a possible role of the language network in motor sequence

planning (Romeo et al., 2021). Indeed, Maitra et al. have reported

an improvement in motor function through self-vocalization (Maitra

et al., 2006), while Arya et al. demonstrated inadvertent improvement

in language following upper limb therapy (Arya and Pandian, 2014).

A similar effect was also found following transcranial direct current

stimulation over the motor cortex, which led to improved language

outcomes (Meinzer et al., 2016). More recently, Hybbinette et al. also

demonstrated that similar mechanism of recovery may be involved

in language and motor recovery post-stroke, further contributing

to the so-termed “shared recovery hypothesis” (Hybbinette et al.,

2021). While well-controlled studies examining this phenomenon are

lacking, our findings may suggest either: functional compensation

by the language system associated with better performance, or

impaired connectivity within the language system manifesting in

poor sensorimotor outcomes. Since our models are unable to point

to which is the case, further studies are necessary to elucidate the

interaction of the language and motor networks following stroke.

Nonetheless, both our findings, and the literature highlight the

possible need to simultaneously target the language and motor

systems for effective neurorehabilitation.

4.2. The role of the limbic system in motor
recovery

Our models classifying the BRS Upper Limb and FMA Upper

Limb both suggested that the limbic/paralimbic system may be

playing an important role in motor function following stroke. A

similar finding was reported recently by Li et al., who found that the

connectivity between the limbic network and DAN was predictive of

the FMA (Nishimura et al., 2011). It is therefore possible that the

limbic system may be contributing to motor learning after stroke.

The limbic system in the Infinitome atlas comprises the orbitofrontal

cortex, amygdala, hippocampus, along with other medial temporal

regions. Previous studies have established that motor sequence

learning relies on the interaction between the prefrontal cortex and

hippocampal and striatal networks, along with cortico-cerebellar

networks (Albouy et al., 2008; Fernández-Seara et al., 2009; Rose

et al., 2011; Burman, 2019; Schapiro et al., 2019; Gann et al., 2021).

The activity within the fronto-hippocampal networks decrease as

learning progresses (Albouy et al., 2013). As motor learning and re-

learning is a key part of neurorehabilitation in the post-stroke period,

the limbic system may be key to this process. Alternatively, as the

limbic system is also associated with reward and motivation, this

findingmay be implicatingmotivation as a key factor in performance.

Although one study has examined the role of the motivation in motor

recovery following spinal-cord injury in macaques, demonstrating

increased functional connectivity between the primary motor cortex

and the ventral striatum, orbitofrontal cortex, and anterior cingulate

(Nishimura et al., 2011), the role of the limbic network in motor

recovery in humans has not garnered much attention. However,

it is widely assumed that motivation is a significant component

of neurorehabilitation (Widmer et al., 2017; Oyake et al., 2020).

Consequently, the limbic system may potentially be a target to

improve motor recovery in the post-stroke period, though this

remains conjectural and further studies are required to substantiate it.

4.3. Machine learning prediction of stroke
outcomes

The prediction performance of our models was comparable to

those reported in previous studies examining acute/subacute stroke

patients. Wang et al. achieved an AUC of 0.899 using random

forest models in acute stroke patients (Wang et al., 2019), while

Thakkar et al. had an AUC of 0.77 (Thakkar et al., 2020). It

should be noted that direct comparisons of performance are not

possible, as most other studies have not combined both DWI

based structural and rsfMRI-based FC metrics in machine learning

models. Riahi et al. utilized EEG-based FC to estimate the FMA

scores in chronic stroke, achieving an R2 of 0.97 in their regression

model (Riahi et al., 2020). Tozlu et al. compared the performance

of several types of models in predicting FMA scores based on

a combination of demographic, clinical, neurophysiological, and

structural connectivity based metrics, achieving an R2 between 0.70

and 0.91 (Tozlu et al., 2020). In order to compare and generalize
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the performance of our models, future research should incorporate

functional and structural connectivity measures into holistic brain

connectivity models.

Interestingly, our models utilizing FC tended to have better

performance than those utilizing structural connectivity. While this

needs to be further investigated and validated in independent cohorts,

we speculate that this may be reflective of the rapidity of functional

compensation, compared to the structural changes which may occur

over a longer time span. This is in line with several studies suggesting

that functional reorganization is observed within the first 4–5 weeks

following stroke (Golestani et al., 2013; Nijboer et al., 2017; Xia et al.,

2021), while structural changes occur from 3 to 12 months (Lin L.

Y. et al., 2018); though these timings are contentious. For example, a

recent study found no changes in the connectivity of motor areas over

a year, despite motor improvement (Branscheidt et al., 2022). This

may suggest that functional connectivity changes occur distributively

to promote recovery, or that some reported connectivity changes are

lesion-related, and not a form of compensation. These discrepancies

must be addressed through much larger studies utilizing longitudinal

data looking at whole-brain functional connectivity. Though there

are a number of outstanding questions, our findings make clear

that structural and functional connectome changes are related

to functional outcomes, and that machine learning models may

be necessary to elucidate the complex patterns of neural change

occurring in response to stroke.

4.4. Future directions

Overall, our analysis highlighted several networks which may be

playing key roles in motor recovery post-stroke, including the DAN,

VAN, the language network, and the limbic system. It is possible

that enhancing these networks through non-invasive stimulation

techniques, such as repetitive transcranial magnetic stimulation, may

improve functional outcomes post-stroke. This is however entirely

speculative, and clinical trials are necessary to test these targets. rTMS

has already demonstrated benefit for motor recovery the post-acute

period, however, treatment often targets the primary motor cortex

(Dionísio et al., 2018; Fisicaro et al., 2019). It is therefore necessary to

investigate whether a more individualized network-based approach

to target selection would improve outcomes. While some of our

group has demonstrated that this may be a promising and efficacious

technique in a case study (Yeung et al., 2021), larger, controlled trials

are needed.

Our study also reveals the need to adopt a global-approach

when examining deficits in stroke, and therefore looking beyond

classically defined motor-regions when investigating motor deficits.

This may consequently allow for the development of deficit-specific

brain network—networks of functionally connected regions which

may be associated with upper limb or lower limb function, or even

a spasticity network. These may then enable for further identification

of specific targets for treatment.

4.5. Limitations

Our study is limited by a small, heterogeneous sample, and

our findings require larger scale prospective studies for validation.

Owing to this, we cannot assume that our results are not biased

by overfitting to our sample and class imbalances, though our

methodology employs several approaches to mitigate this risk,

including 5-fold cross-validation and early stopping criteria.

Furthermore, future studies should attempt to replicate functional

and structural connectivity-based models in a longitudinal

cohort study to investigate whether connectivity changes may

reveal pathological and compensatory mechanisms in the

acute and chronic stages. Finally, models may further benefit

from multimodal inputs, considering baseline information

beyond connectomic data as we have done. This may enable

the establishment of more individualized diagnostic trajectories

for patients.

5. Conclusion

The brain connectivity changes that occur as a consequence

of stroke are still poorly understood. Analyses of structural

and functional changes associated with behavioral outcomes

may begin to disentangle the deleterious effects of injury

and the facilitatory effects of compensation and recovery;

however, explainable machine learning methods are necessary

to model and decode the complexity of brain response. Our

study highlights the potential of machine learning methods

combined with connectivity analysis in predicting outcomes

in neurorehabilitation and disentangling the neural correlates

of functional impairments, though further longitudinal studies

are necessary.
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