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CONNES-AMENABILITY OF BIDUAL AND
WEIGHTED SEMIGROUP ALGEBRAS

MATTHEW DAWS

Abstract

We investigate the notion of Connes-amenability, introduced by Runde in [10], for bidual algebras
and weighted semigroup algebras. We provide some simplifications to the notion of aσWC-virtual
diagonal, as introduced in [13], especially in the case of the bidual of an Arens regular Banach
algebra. We apply these results to discrete, weighted, weakly cancellative semigroup algebras,
showing that these behave in the same way as C∗-algebras with regards Connes-amenability of
the bidual algebra. We also show that for each one of these cancellative semigroup algebras
l1(S, ω), we have that l1(S, ω) is Connes-amenable (with respect to the canonical predual c0(S))
if and only if l1(S, ω) is amenable, which is in turn equivalent to S being an amenable group, and
the weight satisfying a certain restrictive condition. This latter point was first shown by Grønbæk
in [6], but we provide a unified proof. Finally, we consider the homological notion of injectivity,
and show that here, weighted semigroup algebras do not behave like C∗-algebras.

1. Introduction

We first fix some notation, following [2]. For a Banach space E, we letE′ be its
dual space, and for µ ∈ E′ and x ∈ E, we write 〈µ, x〉 = µ(x) for notational
convenience. We then have the canonical map κE : E → E′′ defined by
〈κE(x), µ〉 = 〈µ, x〉 for µ ∈ E′, x ∈ E. For Banach spaces E and F , we
write B(E, F ) for the Banach space of bounded linear maps between E and
F ; we write B(E,E) = B(E); we write T ′ for the adjoint of T ∈ B(E, F ).
We use the notion of Banach left A -modules, right modules and bimodules as
in [2].

A linear map d : A → E between a Banach algebra A and a Banach
A -bimodule E is a derivation if d(ab) = a · d(b) + d(a) · b for a, b ∈ A .
For x ∈ E, we define δx : A → E by δx(a) = a · x − x · a. Then δx is a
derivation, called an inner derivation.

A Banach algebra A is amenable if every derivation d : A → E′ to a
dual bimodule is inner. For example, a C∗-algebra A is amenable if and only
if A is nuclear; a group algebra L1(G) is amenable if and only if the locally
compact group G is amenable (which is the motivating example). See [14] for
further discussions of amenability and related notions.
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Let E be a Banach space and F a closed subspace of E. Then we naturally,
isometrically, identify F ′ with E′/F ◦, where

F ◦ = {µ ∈ E′ : 〈µ, x〉 = 0 (x ∈ F)}.
Definition 1.1. Let E be a Banach space and E∗ be a closed subspace of

E′. Let πE∗ : E′′ → E′′/E◦∗ be the quotient map, and suppose that πE∗ ◦ κE
is an isomorphism from E to E′∗. Then we say that E is a dual Banach space
with predual E∗.

When A is a dual Banach space with predual A∗ which is also a submodule
of A ′ we say that A is a dual Banach algebra.

For a dual Banach algebra A with predual A∗, we henceforth identify A

with A ′∗. Thus we get a weak∗-topology on A , which we denote by σ(A ,A∗).
As noticed by Runde (see [10]), there are very few Banach algebras which

are both dual and amenable. For von Neumann algebras, which are the motiv-
ating example of dual Banach algebras, there is a weaker notion of amenablity,
called Connes-amenability, which has a natural generalisation to the case of
dual Banach algebras.

Definition 1.2. Let A be a dual Banach algebra with predual A∗. Let E
be a Banach A -bimodule. Then E′ is a w∗-Banach A -bimodule if, for each
µ ∈ E′, the maps

A → E′, a �→
{
a · µ,

µ · a
are σ(A ,A∗) − σ(E′, E) continuous.

Then (A ,A∗) is Connes-amenable if, for each w∗-Banach A -bimodule
E′, each derivation d : A → E′, which is σ(A ,A∗)− σ(E′, E) continuous,
is inner.

Given a Banach algebra A , we define bilinear maps A ′′ × A ′ → A ′ and
A ′ × A ′′ → A ′ by

〈� ·µ, a〉 = 〈�,µ · a〉 〈µ ·�, a〉 = 〈�, a ·µ〉 (� ∈ A ′′, µ ∈ A ′, a ∈ A ).

We then define two bilinear maps �,♦ : A ′′ × A ′′ → A ′′ by

〈���,µ〉 = 〈�,� ·µ〉 〈�♦�,µ〉 = 〈�,µ ·�〉 (�,� ∈ A ′′, µ ∈ A ′).

We can check that � and ♦ are actually algebra products, called the first and
second Arens products respectively. Then κA : A → A ′′ is a homomorphism
with respect to either Arens product. When � = ♦, we say that A is Arens
regular. In particular, when A is Arens regular, we may check that A ′′ is a
dual Banach algebra with predual A ′.
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Theorem 1.3. Let A be an Arens regular Banach algebra. When A is
amenable, A ′′ is Connes-amenable. If κA (A ) is an ideal in A ′′ and A ′′ is
Connes-amenable, then A is amenable.

Let A be a C∗-algebra. Then A is Arens regular, and A ′′ is Connes-
amenable if and only if A is amenable.

Proof. The first statements are [10, Corollary 4.3] and [10, Theorem 4.4].
The statement about C∗-algebras is detailed in [14, Chapter 6].

Another class of Connes-amenable dual Banach algebras is given by Runde
in [11], where it is shown that M(G), the measure algebra of a locally compact
group G, is amenable if and only if G is amenable.

The organisation of this paper is as follows. Firstly, we study intrinsic
characterisations of amenability, recalling a result of Runde from [13]. We
then simplify these conditions in the case of Arens regular Banach algebras.
We recall the notion of an injective module, and quickly note how Connes-
amenability can be phrased in this language. The final section of the paper then
applies these ideas to weighted semigroup algebras. We finish with some open
questions.

2. Characterisations of amenability

Let E and F be Banach spaces, and form the algebraic tensor product E ⊗F .
We can norm E ⊗ F with the projective tensor norm, defined as

‖u‖π = inf

{ n∑
k=1

‖xk‖‖yk‖ : u =
n∑

k=1

xk ⊗ yk

}
(u ∈ E ⊗ F).

Then the completion of (E⊗F, ‖ · ‖π ) is E ⊗̂F , the projective tensor product
of E and F .

Let A be a Banach algebra. Then A ⊗̂ A is a Banach A -bimodule for the
module actions given by

a · (b ⊗ c) = ab ⊗ c, (b ⊗ c) · a = b ⊗ ca (a ∈ A , b ⊗ c ∈ A ⊗̂ A ).

Define "A : A ⊗̂A → A by "A (a⊗b) = ab. Then "A is an A -bimodule
homomorphism. Let M ∈ (A ⊗̂ A )′′ be such that

a · M = M · a, "′′
A (M) · a = κA (a) (a ∈ A ).

The M is a virtual diagonal for A . It is well-known that A is an amenable
Banach algebra if and only if A has a virtual diagonal.
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Definition 2.1. Let A be a dual Banach algebra with predual A∗, and
let E be a Banach A -bimodule. Then x ∈ σWC(E) if and only if the maps
A → E,

a �→
{ a · x,
x · a

are σ(A ,A∗) − σ(E,E′) continuous.

It is clear that σWC(E) is a closed submodule of E. The A -bimodule
homomorphism "A has adjoint "′

A : A ′ → (A ⊗̂A )′. In [13, Corollary 4.6]
it is shown that"′

A (A∗) ⊆ σWC((A ⊗̂A )′). Consequently, we can view"′
A

as a map A∗ → σWC((A ⊗̂A )′), and hence view "′′
A as a map σWC((A ⊗̂

A )′)′ → A ′∗ = A , denoted by "̃A . Let M ∈ σWC((A ⊗̂ A )′)′ be such that

a · M = M · a, a"̃A (M) = a (a ∈ A ).

The M is a σWC-virtual diagonal for A .

Theorem 2.2. Let A be a dual Banach algebra with predual A∗. Then the
following are equivalent:

(1) A is Connes-amenable;

(2) A has a σWC-virtual diagonal.

Proof. This is [13, Theorem 4.8].

In particular, we see that a Connes-amenable Banach algebra is unital
(which can of course be shown in an elementary fashion, as in [10, Proposi-
tion 4.1]).

3. Connes-amenability for biduals of algebras

Recall Gantmacher’s theorem, which states that a bounded linear map T :
E → F between Banach spaces E and F is weakly compact if and only if
T ′′(E′′) ⊆ κF (F ). We write W (E, F ) for the collection of weakly compact
operators in B(E, F ).

Lemma 3.1. Let E be a dual Banach space with predual E∗, let F be a
Banach space, and let T ∈ B(E, F ′). Then the following are equivalent, and
in particular each imply that T is weakly compact:

(1) T is σ(E,E∗) − σ(F ′, F ′′) continuous;

(2) T ′(F ′′) ⊆ κE∗(E∗);
(3) there exists S ∈ W (F,E∗) such that S ′ = T .

Proof. That (1) and (2) are equivalent is standard.
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Suppose that (2) holds, so that we may define S ∈ B(F,E∗) by κE∗ ◦ S =
T ′ ◦ κF . Then, for x ∈ E and y ∈ F , we have

〈x, S(y)〉 = 〈T ′(κF (y)), x〉 = 〈T (x), y〉,
so that S ′ = T . Then S ′′(F ′′) = T ′(F ′′) ⊆ κE∗(E∗), so that S is weakly
compact, by Gantmacher’s Theorem, so that (3) holds.

Conversely, if (3) holds, as S is weakly compact, we have κE∗(E∗) ⊇
S ′′(F ′′) = T ′(F ′′), so that (2) holds.

It is standard that for Banach spacesE andF , we have (E⊗̂F)′ = B(F,E′)
with duality defined by

〈T , x ⊗ y〉 = 〈T (y), x〉 (T ∈ B(F,E′), x ⊗ y ∈ E ⊗̂ F).

Then we see, for a, b, c ∈ A and T ∈ (A ⊗̂ A )′ = B(A ,A ′), that 〈a ·
T , b ⊗ c〉 = 〈T (ca), b〉 and that 〈T · a, b ⊗ c〉 = 〈T (c), ab〉 = 〈T (c) · a, b〉
so that
(1)
(a · T )(c) = T (ca), (T · a)(c) = T (c) · a (a, c ∈ A , T : A → A ′).

Notice that we could also have defined (E ⊗̂ F)′ to be B(E, F ′). This
would induce a different bimodule structure on B(A ,A ′), but we shall see in
Section 4 that our chosen convention seems more natural for the task at hand.

Proposition 3.2. Let A be a dual Banach algebra with predual A∗. For
T ∈ B(A ,A ′) = (A ⊗̂ A )′, define maps φr, φl : A ⊗̂ A → A ′ by

φr(a ⊗ b) = T ′κA (a) · b, φl(a ⊗ b) = a · T (b) (a ⊗ b ∈ A ⊗̂ A ).

Then T ∈ σWC(B(A ,A ′)) if and only if φr and φl are weakly compact and
have ranges contained in κA∗(A∗).

Proof. For T ∈ B(A ,A ′) = (A ⊗̂ A )′, define RT ,LT : A → (A ⊗̂
A )′ by RT (a) = a · T and LT = T · a, for a ∈ A . By definition, T ∈
σWC(B(A ,A ′)) if and only if RT and LT are σ(A ,A∗) − σ(B(A ,A ′),
(A ⊗̂A )′′) continuous. By Lemma 3.1, this is if and only if there exist ϕr, ϕl ∈
W (A ⊗̂ A ,A∗) such that ϕ′

r = RT and ϕ′
l = LT .

For a ⊗ b ∈ A ⊗̂ A and c ∈ A , we see that

〈c, ϕr(a ⊗ b)〉 = 〈RT (c), a ⊗ b〉 = 〈c · T , a ⊗ b〉 = 〈T (bc), a〉
= 〈T ′κA (a), bc〉 = 〈T ′κA (a) · b, c〉 = 〈φr(a ⊗ b), c〉,

〈c, ϕl(a ⊗ b)〉 = 〈LT (c), a ⊗ b〉 = 〈T · c, a ⊗ b〉 = 〈T (b), ca〉
= 〈a · T (b), c〉 = 〈φl(a ⊗ b), c〉.
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Thus κA∗ ◦ ϕr = φr and κA∗ ◦ ϕl = φl . Consequently, we see that T ∈
σWC(B(A ,A ′)) if and only if φr and φl are weakly compact and take values
in κA∗(A∗).

The following definition is [13, Definition 4.1].

Definition 3.3. Let A be a Banach algebra and let E be a Banach A -
bimodule. An element x ∈ E is weakly almost periodic if the maps

A → E, a �→
{ a · x,
x · a

are weakly compact. The collection of weakly almost periodic elements in E

is denoted by WAP(E).

Lemma 3.4. Let A be a Banach algebra, and let T ∈ B(A ,A ′) =
(A ⊗̂A )′. Letφr, φl : A ⊗̂A → A ′ be as above. ThenT ∈ WAP(B(A ,A ′))
if and only if φr and φl are weakly compact.

Proof. Let RT ,LT : A → B(A ,A ′) be as in the above proof. By defin-
ition, T ∈ WAP(B(A ,A ′)) if and only if LT and RT are weakly compact.
We can verify that

φ′
r ◦ κA = RT , φ′

l ◦ κA = LT , R′
T ◦ κA ⊗̂A = φr, L′

T ◦ κA ⊗̂A = φl,

which completes the proof.

Corollary 3.5. Let A be a unital, dual Banach algebra with predual A∗,
and let T ∈ B(A ,A ′) = (A ⊗̂ A )′. The following are equivalent, and, in
particular, each imply that T is weakly compact:

(1) T ∈ σWC(B(A ,A ′));
(2) T (A )⊆ κA∗(A∗), T ′(κA (A ))⊆ κA∗(A∗), and T ∈ σWC(B(A ,A ′));
(3) T (A )⊆ κA∗(A∗), T ′(κA (A ))⊆ κA∗(A∗), and T ∈ WAP(B(A ,A ′)).

Proof. Let eA be the unit of A , so that for a ∈ A , we have T (a) =
φl(eA ⊗ a) and T ′κA (a) = φr(a ⊗ eA ), which shows that (1) implies (2);
clearly (2) implies (1).

As A∗ is an A -bimodule, (2) and (3) are equivalent by an application of
Lemma 3.4 and Proposition 3.2.

Theorem 3.6. Let A be a dual Banach algebra with predual A∗. Then A

is Connes-amenable if and only if A is unital and there exists M ∈ (A ⊗̂A )′′
such that:

(1) 〈M,a · T − T · a〉 = 0 for a ∈ A and T ∈ σWC(W (A ,A ′));
(2) κ ′

A∗"
′′
A (M) = eA , where eA is the unit of A .
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Proof. As σWC((A ⊗̂ A )′)′ is a quotient of (A ⊗̂ A )′′, this is just a
re-statement of Theorem 2.2.

When A is an Arens regular Banach algebra, A ′′ is a dual Banach al-
gebra with canonical predual A ′. In this case, we can make some significant
simplifications in the characterisation of when A ′′ is Connes-amenable.

For a Banach algebra A , we define the map κA ⊗κA : A ⊗̂A → A ′′ ⊗̂A ′′
by

(κA ⊗ κA )(a ⊗ b) = κA (a) ⊗ κA (b) (a ⊗ b ∈ A ⊗̂ A ).

We turn A ′′ ⊗̂A ′′ into a Banach A -bimodule in the canonical way. Then κA ⊗
κA is an A -bimodule homomorphism. The following is a simple verification.

Lemma 3.7. Let A be a Banach algebra. The map

ιA : B(A ,A ′) → B(A ′′,A ′′′); T �→ T ′′,

is an A -bimodule homomorphism which is an isometry onto its range. Fur-
thermore, we have that (κA ⊗κA )′ ◦ ιA = IB(A ,A ′). Define ρA : A ′′ ⊗̂A ′′ →
(A ⊗̂ A )′′ by

〈ρA (τ ), T 〉 = 〈T ′′, τ 〉 (τ ∈ A ′′ ⊗̂ A ′′, T ∈ B(A ,A ′) = (A ⊗̂ A )′).

Then ρA is a norm-decreasing A -bimodule homomorphism which satisfies
ρA ◦ (κA ⊗ κA ) = κA ⊗̂A .

For a Banach algebra A , it is clear that W (A ,A ′) is a sub-A -bimodule
of B(A ,A ′) = (A ⊗̂ A )′.

Theorem 3.8. Let A be an Arens regular Banach algebra such that A ′′
is unital, and let T ∈ B(A ′′,A ′′′) = (A ′′ ⊗̂ A ′′)′. Then the following are
equivalent:

(1) T ∈ σWC(B(A ′′,A ′′′)), where we treat B(A ′′,A ′′′) as an A ′′-
bimodule;

(2) T= S ′′ for some S ∈ WAP(W (A ,A ′)), where now we treat W (A ,A ′)
as an A -bimodule.

Proof. We apply Corollary 3.5 to A ′′, so that (1) is equivalent to T being
weakly compact, T (A ′′) ⊆ κA ′(A ′), T ′(κA ′′(A ′′)) ⊆ κA ′(A ′), and T ∈
WAP(B(A ′′,A ′′′)). Thus, if (1) holds, then there exists T0 ∈ W (A ′′,A ′)
such that T = κA ′ ◦T0, and there exists T1 ∈ W (A ′′,A ′) such that T ′ ◦κA ′′ =
κA ′ ◦T1. Let S = T0 ◦κA ∈ W (A ,A ′). As before, we can check that S ′ = T1

and that S ′′ = T . We know that the maps LT ,RT : A ′′ → B(A ′′,A ′′′),
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defined by LT (�) = T · � and RT (�) = � · T for � ∈ A ′′, are weakly
compact. Define LS,RS : A → B(A ,A ′) is an analogous manner, using
S ∈ W (A ,A ′). For a ∈ A , S · a ∈ W (A ,A ′), so for � ∈ A ′′ and b ∈ A ,

〈(S · a)′(�), b〉 = 〈�, (S · a)(b)〉 = 〈�, S(b) · a〉
= 〈a · �, S(b)〉 = 〈S ′(a · �), b〉.

Thus, for a ∈ A and �,� ∈ A ′′, we have that

〈ιA (LS(a))(�),�〉 = 〈(S · a)′′(�),�〉 = 〈�, S ′(a · �)〉 = 〈S ′′(�) · a,�〉,
so that ιA (LS(a))(�) = S ′′(�)·a, and hence that ιA (LS(a)) = S ′′ ·a = T ·a =
T · κA (a) = LT (κA (a)). Thus we have that LS = (κA ⊗ κA )′ ◦ RT ◦ κA , so
that LS is weakly compact. A similar calculation shows that RS is also weakly
compact, so that S ∈ WAP(W (A ,A ′)). This shows that (1) implies (2).

Conversely, if (2) holds, thenLS andRS are weakly compact. AsS is weakly
compact, T (A ′′) = S ′′(A ′′) ⊆ κA ′(A ′) and T ′(κA ′′(A ′′)) = S ′′′(κA ′′(A ′′))
= κA ′(S ′(A ′′)) ⊆ κA ′(A ′), and T is weakly compact. Thus, to show (1), we
are required to show that LT and RT are weakly compact.

For a, b ∈ A and � ∈ A ′, we have

〈(a · S)′(�), b〉 = 〈�, S(ba)〉 = 〈a · S ′(�), b〉.
Then, for �,� ∈ A ′′ and a ∈ A , we thus have

〈R′
S(ρA (� ⊗ �)), a〉 = 〈(a · S)′′,� ⊗ �〉 = 〈(a · S)′′(�),�〉

= 〈�, a · S ′(�)〉 = 〈� · a, S ′(�)〉
= 〈� � κA (a), S ′(�)〉 = 〈S ′(�) · �, a〉.

Hence we see that R′
S(ρA (� ⊗ �)) = S ′(�) · �. Let U = R′

S ◦ ρA : A ′′ ⊗̂
A ′′ → A ′, so that as RS is weakly compact, so is U . Then, for �,�,- ∈ A ′′,
we have that

〈U ′(-),� ⊗ �〉 = 〈-, S ′(�) · �〉 = 〈� ♦ -, S ′(�)〉
= 〈S ′′(� � -),�〉 = 〈(- · S ′′)(�),�〉,

so that U ′(-) = - · T , that is, U ′ = RT , so that RT is weakly compact.
Similarly, we can show that LT is weakly compact, completing the proof.

Theorem 3.9. Let A be an Arens regular Banach algebra. Then A ′′ is
Connes-amenable if and only if A ′′ is unital and there exists M ∈ (A ⊗̂ A )′′
such that:
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(1) "′′
A (M) = eA ′′ , the unit of A ′′;

(2) 〈M,a ·T −T ·a〉 = 0 for each a ∈ A and each T ∈ WAP(W (A ,A ′)).

Proof. By Theorem 3.6, we wish to show that the existence of such an M

is equivalent to the existence of N ∈ (A ′′ ⊗̂ A ′′)′′ such that:

(N1) κ ′
A ′"

′′
A ′′(N) = eA ′′ ;

(N2) 〈N,� · S − S · �〉 = 0 for each � ∈ A ′′ and each
S ∈ σWC(B(A ′′,A ′′′)).

We can verify that ιA ◦ "′
A = "′

A ′′ ◦ κA ′ , so that (N1) is equivalent to
"′′

A ι′A (N) = eA ′′ . For S ∈ σWC(B(A ′′,A ′′′)), we know that S = T ′′ for
some T ∈ WAP(W (A ,A ′)), by Theorem 3.8. That is, the maps φr and φl ,
formed using T as in Proposition 3.2, are weakly compact. Then, for � ∈ A ′′,
φ′
r (�), φ′

l (�) ∈ B(A ,A ′), and we can check that

φ′
r (�)(a) = κ ′

AT ′′(a · �), φ′
l (�)(a) = T (a) · � (a ∈ A ).

Then φ′
r (�)′, φ′

l (�)′ ∈ B(A ′′,A ′) are the maps

φ′
r (�)′(�) = � · T ′(�), φ′

l (�)′(�) = T ′(� � �) (� ∈ A ′′),

where we remember that T ′′(A ′′) ⊆ κA ′(A ′). Consequently φ′
r (�)′′, φ′

l (�)′′
∈ B(A ′′,A ′′′) are given by

φ′
r (�)′′(�) = T ′′(� � �), φ′

l (�)′′(�) = T ′′(�) · � (� ∈ A ′′),

where A ′′′ is an A ′′-bimodule, as A ′′ is Arens regular. That is, φ′
r (�)′′ = � ·S

and φ′
l (�)′′ = S · �. Hence (N2) is equivalent to

0 = 〈N,φ′
r (�)′′ − φ′

l (�)′′〉 = 〈N, ιA (φ′
r (�) − φ′

l (�))〉
= 〈ι′A (N), φ′

r (�) − φ′
l (�)〉,

for each � ∈ A ′′ and S ∈ σWC(B(A ′′,A ′′′)). That is, (N2) is equivalent to

φ′′
r ι

′
A (N) − φ′′

l ι
′
A (N) = 0 (S ∈ σWC(B(A ′′,A ′′′))).

As φr and φl are weakly compact, φ′′
r and φ′′

l take values in κA ′(A ′), and
so (N2) is equivalent to

0 = 〈φ′′
r ι

′
A (N) − φ′′

l ι
′
A (N), κA (a)〉 = 〈ι′A (N), φ′

r (κA (a)) − φ′
l (κA (a))〉,

for each a ∈ A and each S ∈ σWC(B(A ′′,A ′′′)). However, φ′
r (κA (a)) −

φ′
l (κA (a)) = a · T − T · a, so that (N2) is equivalent to

0 = 〈ι′A (N), a · T − T · a〉 (a ∈ A ),
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for each T ∈ W (A ,A ′) such that φr and φl are weakly compact.
Thus we have established that (N1) holds for N if and only if (1) holds for

M = ι′A (N), and that (N2) holds forN if and only if (2) holds forM = ι′A (N),
completing the proof.

We immediately see that A amenable implies that A ′′ is Connes-amenable.
Furthermore, if A is itself a dual Banach algebra, then Corollary 3.5 shows
that if A ′′ is Connes-amenable, then A is Connes-amenable: notice that if eA ′′

is the unit of A ′′, then

〈κ ′
A∗(eA ′′)a, µ〉 = 〈eA ′′ · a, κA∗(µ)〉

= 〈κA (a), κA∗(µ)〉 = 〈a, µ〉 (a ∈ A , µ ∈ A∗),

so that κ ′
A∗(eA ′′) is the unit of A .

4. Injectivity of the predual module

Let A be a Banach algebra, and let E and F be Banach left A -modules. We
write A B(E, F ) for the closed subspace of B(E, F ) consisting of left A -
module homomorphisms, and similarly write BA (E, F ) and A BA (E, F ) for
right A -module and A -bimodule homomorphisms, respectively. We say that
T ∈ A B(E, F ) is admissible if both the kernel and image of T are closed,
complemented subspaces of, respectively, E and F . If T is injective, this is
equivalent to the existence of S ∈ B(F,E) such that ST = IE .

Definition 4.1. Let A be a Banach algebra, and let E be a Banach left A -
module. Then E is injective if, whenever F and G are Banach left A -modules,
θ ∈ A B(F,G) is injective and admissible, and σ ∈ A B(F,E), there exists
ρ ∈ A B(G,E) with ρ ◦ θ = σ .

We say that E is left-injective when we wish to stress that we are treating
E as a left module. Similar definitions hold for right modules and bimodules
(written right-injective and bi-injective where necessary).

Let A be a Banach algebra, let E be a Banach left A -module, and turn
B(A , E) into a left A -module by setting

(a · T )(b) = T (ba) (a, b ∈ A , T ∈ B(A , E)).

Then there is a canonical left A -module homomorphism ι : E → B(A , E)

given by
ι(x)(a) = a · x (a ∈ A , x ∈ E).

Notice that if E is a closed submodule of A ′, then B(A , E) is a closed
submodule of (A ⊗̂ A)′ = B(A ,A ′), and ι is the restriction of "′

A : A ′ →
B(A ,A ′) to E.
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Similarly, we turn B(A ⊗̂ A , E) into a Banach A -bimodule by

(a · T )(b ⊗ c) = T (ba ⊗ c), (T · a)(b ⊗ c) = T (b ⊗ ac)

(a, b, c ∈ A , T ∈ B(A ⊗̂ A , E)).

We then define (with an abuse of notation) ι : E → B(A ⊗̂ A , E) by

ι(x)(a ⊗ b) = a · x · b (x ∈ E, a ⊗ b ∈ A ⊗̂ A ),

so that ι is an A -bimodule homomorphism.
We can also turn B(A , E) into a right A -module by reversing the above

(in particular, we need to take the other possible choice in Section 3 leading
to different module actions as compared to those in (1).)

Proposition 4.2. Let A be a Banach algebra, and letE be a faithful Banach
left A -module (that is, for each non-zero x ∈ E there exists a ∈ A with
a ·x �= 0). Then E is injective if and only if there exists φ ∈ A B(B(A , E), E)

such that φ ◦ ι = IE .
Similarly, if E is a left and right faithful Banach A -bimodule (that is, for

each non-zero x ∈ E there exists a, b ∈ A with a · x �= 0 and x · b �= 0).
Then E is injective if and only if there exists φ ∈ A BA (B(A ⊗̂ A , E), E)

such that φ ◦ ι = IE .

Proof. The first claim is [4, Proposition 1.7], and the second claim is an
obvious generalisation.

Again, there exists a similar characterisation for right modules. The above
result is useful, as it allows us to work with A and not its unitisation (which
is the usual approach).

Let A be a dual Banach algebra with predual A∗. It is simple to show (see
[13]) that if A∗ is bi-injective, then A is Connes-amenable. Helemskii showed
in [8] that for a von Neumann algebra A , the converse is true. However, Runde
(see [13]) and Tabaldyev (see [15]) have shown thatM(G), the measure algebra
of a locally compact group G, while being a dual Banach algebra with predual
C0(G), has that C0(G) is a left-injective M(G)-module only when G is finite.
Recall that Runde (see [11]) has shown that M(G) is Connes-amenable if and
only if G is amenable.

Similarly, it is simple to show (using a virtual diagonal) that if A is a Banach
algebra with a bounded approximate identity, then A is amenable if and only
if A ′ is bi-injective.

Let E and F be Banach left A -modules, and let φ : E → F be a left
A -module homomorphism which is bounded below. Then φ(E) is a closed
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submodule of F , so that F/φ(E) is a Banach left A -module. Hence we have
a short exact sequence:

φ−−−−→0 −−−−→ E F −−−−→→ F/φ(E) −−−−→ 0.
P

If there exists a bounded linear map P : F → E such that P ◦ φ = IE , then
we say that the short exact sequence is admissible. If, further, we may choose
P to be a left A -module homomorphism, then the short exact sequence is said
to split. Similar definitions hold for right modules and bimodules.

Proposition 4.3. Let A be a Banach algebra, let E be a Banach left A -
module, and consider the following short exact sequence:

ι−−−−→0 −−−−→ E B(A , E) −−−−→→ B(A , E)/ι(E) −−−−→ 0.
P

Then E is injective if and only if this short exact sequence is admissible and
splits.

Proof. See, for example, [14, Section 5.3]. Notice that when A is unital,
the short exact sequence is certainly admissible.

Proposition 4.4. Let A be a unital dual Banach algebra with predual A∗,
and consider the following admissible short exact sequence of A -bimodules:

(2)
"′

A−−−−→0 −−−−→ A∗ σWC((A ⊗̂ A )′)
P

−−−−→→ σWC((A ⊗̂ A )′)/"′
A (A∗) −−−−→ 0.

Then A is Connes-amenable if and only if this short exact sequence splits.

Proof. Notice that "′
A certainly maps A∗ into σWC((A ⊗̂ A )′) =

σWC(B(A ,A ′)), and that Corollary 3.5 shows that we can define P :
σWC(B(A ,A ′)) → A∗ by P(T ) = T (eA ) for T ∈ σWC(B(A ,A ′)).

Suppose that we can choose P to be an A -bimodule homomorphism. Then
let M = P ′(eA ), so that for a ∈ A and T ∈ σWC(B(A ,A ′)),

〈a · M − M · a, T 〉 = 〈eA , P (T · a − a · T )〉 = 〈a − a, P (T )〉 = 0,

so that a · M − M · a. Also "′′
A (M) = (P ◦ "′

A )′(eA ) = eA , so that M
is a σWC-virtual diagonal, and hence A is Connes-amenable by Runde’s
theorem.

Conversely, let M be a σWC-virtual diagonal and define P : σWC(B(A ,

A ′)) → A ′ by

〈P(T ), a〉 = 〈M,a · T 〉 (a ∈ A , T ∈ σWC(B(A ,A ′)).
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Let (aα) be a bounded net in A which tends to a ∈ A in the σ(A ,A∗)-
topology. By definition, aα ·T→ a ·T weakly, for each T ∈ σWC(B(A ,A ′)),
so that 〈P(T ), aα〉 → 〈P(T ), a〉. This implies that P maps into A∗, as re-
quired. Then, for µ ∈ A∗,

〈a, P"′
A (µ)〉 = 〈M,a · "′

A (µ)〉 = 〈M,"′
A (a · µ)〉

= 〈eA , a · µ〉 = 〈a, µ〉 (a ∈ A ),

so that P"′
A = IA∗ . Finally, we note that

〈P(a · T · b), c〉 = 〈M, ca · T · b〉 = 〈b · M, ca · T 〉
= 〈M · b, ca · T 〉 = 〈P(T ), bca〉
= 〈a · P(T ) · b, c〉 (a, b, c ∈ A , T ∈ σWC(B(A ,A ′))),

so that P is an A -bimodule homomorphism, as required.

Let A be an Arens regular Banach algebra. By reversing the argument
Theorem 3.8, we can show that "′

A : A ′ → B(A ,A ′) actually maps into
WAP(W (A ,A ′)). Furthermore, if A ′′ is unital, then we may define P :
WAP(W (A ,A ′)) → A ′ by

〈P(T ), a〉 = 〈eA ′′ , P (a)〉 (a ∈ A , T ∈ WAP(W (A ,A ′))).

Then we have that

〈P"′
A (µ), a〉 = 〈eA ′′ , a · µ〉 = 〈µ, a〉 (a ∈ A , µ ∈ A ′).

Proposition 4.5. Let A be an Arens regular Banach algebra such that
A ′′ is unital, and consider the following admissible short exact sequence of
A -bimodules:

(3)
"′

A−−−−→0 −−−−→ A ′ WAP(W (A ,A ′))
P

−−−−→→ WAP(W (A ,A ′))/"′
A (A ′) −−−−→ 0.

Then A ′′ is Connes-amenable if and only if this short exact sequence splits.

Proof. This follows in the same manner as the above proof, using The-
orem 3.9.
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5. Beurling algebras

LetS be a discrete semigroup (we can extend the following definitions to locally
compact semigroups, but for the questions we are interested in, the results for
non-discrete groups are trivial). A weight on S is a function ω : S → R+ such
that

ω(st) ≤ ω(s)ω(t) (s, t ∈ S).

Furthermore, if S is unital with unit uS , then we also insist that ω(uS) = 1.
This last condition is simply a normalisation condition, as we can always set
ω̂(s) = sup{ω(st)ω(t)−1 : t ∈ S} for each s ∈ S. For s, t ∈ S, we have that
ω(st) ≤ ω̂(s)ω(t), so that

ω̂(st) = sup{ω(str)ω(r)−1 : r ∈ S}
≤ sup{ω̂(s)ω(tr)ω(r)−1 : r ∈ S} = ω̂(s)ω̂(t).

Clearly ω̂(uS) = 1 and ω̂(s) ≤ ω(s) for each s ∈ S, while ω̂(s) ≥
ω(s)ω(uS)

−1, so that ω̂ is equivalent to ω.
We form the Banach space

l1(S, ω) =
{
(ag)g∈S ⊆ C : ‖(ag)‖ :=

∑
g∈S

|ag|ω(g) < ∞
}
.

Then l1(S, ω), with the convolution product, is a Banach algebra, called a
Beurling algebra. See [1] and [3] for further information on Beurling algebras
and, in particular, their second duals.

It will be more convenient for us to think of l1(S, ω) as the Banach space
l1(S) together with a weighted algebra product. Indeed, for g ∈ S, let δg ∈
l1(S) be the standard unit vector basis element which is thought of as a point-
mass at g. Then each x ∈ l1(S) can be written uniquely as x = ∑

g∈S xgδg for
some family (xg) ⊆ C such that ‖x‖ = ∑

g∈S |xg| < ∞. We then define

6(g, h) = ω(gh)

ω(g)ω(h)
, δg 8ω δh = δg 8 δh = δgh6(g, h) (g, h ∈ S),

and extend 8 to l1(S) by linearity and continuity.
For example, if ω and ω̂ are equivalent weights on S, then define ψ :

l1(S, ω) → l1(S, ω̂) by ψ(δs) = ω̂(s)ω(s)−1δs . As ω and ω̂ are equivalent, ψ
is an isomorphism of Banach spaces. Then ψ(δs 8 δt ) =
ω(st)ω(s)−1ω(t)−1ω̂(st)ω(st)−1δst = ψ(δs) 8 ψ(δt ), so that ψ is a homo-
morphism.
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For a set I , we define the spaces c0(I ) and l∞(I ) in the standard way. We
write (ei)i∈I for the standard unit vector basis of c0(I ) (or its image in l∞(I )),
so that 〈δj , ei〉 = δi,j , the Kronecker delta, for j ∈ I .

For a semigroup S and s ∈ S, we define maps Ls, Rs : S → S by

Ls(t) = st, Rs(t) = ts (t ∈ S).

If, for each s ∈ S, Ls and Rs are finite-to-one maps, then we say that S is
weakly cancellative. When Ls and Rs are injective for each s ∈ S, we say
that S is cancellative. When S is abelian and cancellative, a construction going
back to Grothendieck shows that S is a sub-semigroup of some abelian group.
However, this can fail to hold for non-abelian semigroups.

Proposition 5.1. Let S be a weakly cancellative semigroup, let ω be a
weight on S, and let A = l1(S, ω). Then c0(S) ⊆ l∞(S) = A ′ is a sub-A -
module of A ′, so that l1(S, ω) is a dual Banach algebra with predual c0(S).

Proof. For g, h ∈ S and a = (as)s∈S ∈ l1(S, ω), we have

〈eg · δh, a〉 = 〈eg, δh 8 a〉 = 〈eg,
∑
s∈S

asδhs6(h, s)〉 =
∑

{s∈S:hs=g}
as6(h, s).

As S is weakly cancellative, there exists at most finitely many s ∈ S such
that hs = g, so that eg · δh is a member of c0(S). Thus we see that c0(S) is a
right sub-A -module of A ′. The argument on the left follows in an analogous
manner.

Notice that the above result will hold for some semigroups S which are
not weakly cancellative, provided that the weight behaves in a certain way.
However, it would appear that the later results in this section do not easily
generalise to the non-weakly cancellative case.

Following [3, Definition 2.2], we have the following definition.

Definition5.2. Let I andJ be non-empty infinite sets, and letf : I×J →
C be a function. Then f clusters on I × J if

lim
n→∞ lim

m→∞ f (xm, yn) = lim
m→∞ lim

n→∞ f (xm, yn),

whenever (xm) ⊆ I and (yn) ⊆ J are sequences of distinct elements, and both
iterated limits exist.

Furthermore, f 0-clusters on I × J if f clusters on I × J , and the iterated
limits are always 0, when they exist.

From now on we shall exclude the trivial case when our (semi-)group is
finite.
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Theorem 5.3. Let S be a discrete, weakly cancellative semigroup, and let
ω be a weight on S. Then the following are equivalent:

(1) l1(S, ω) is Arens regular;

(2) for sequences of distinct elements (gj ) and (hk) in S, we have

lim
j→∞ lim

k→∞6(gj , hk) = 0,

whenever the iterated limit exists;

(1) 6 0-clusters on S × S.

Proof. That (1) and (2) are equivalent for cancellative semigroups is [1,
Theorem 1]. Close examination of the proof shows that this holds for weakly
cancellative semigroups as well. That (1) and (3) are equivalent follows by
generalising the proof of [3, Theorem 7.11], which is essentially an application
of Grothendieck’s criterion for an operator to be weakly compact. Alternatively,
it follows easily that (2) and (3) are equivalent by considering the opposite
semigroup to S where we reverse the product.

In [1] it is also shown that ifG is a discrete, uncountable group, then l1(G,ω)

is not Arens regular for any weight ω. Furthermore, by [1, Theorem 2], if G is
a non-discrete locally compact group, then L1(G,ω) is never Arens regular.

We shall consider both the Connes-amenability of l1(S, ω)′′ and l1(S, ω)

(with respect to the canonical predual c0(S)) as, with reference to Corollary 3.5
and Theorem 3.8, the calculations should be similar.

Proposition 5.4. Let I be a non-empty set, and let X ⊆ l∞(I ) be a subset.
Then the following are equivalent:

(1) X is relatively weakly compact;

(2) X is relatively sequentially weakly compact;

(3) the absolutely convex hull of X is relatively weakly compact;

(4) if we define f : I × X → C by f (i, x) = 〈x, δi〉 for i ∈ I and x ∈ X,
then f clusters on I × X;

Proof. That (1) and (2) are equivalent is the Eberlien-Smulian theorem;
that (1) and (3) are equivalent is the Krein-Smulian theorem. That (1) and
(4) are equivalent is a result of Grothendieck, detailed in, for example, [3,
Theorem 2.3].

It is standard that for non-empty sets I and J , we have that l1(I ) ⊗̂ l1(J ) =
l1(I × J ), where, for i ∈ I and j ∈ J , δi ⊗ δj ∈ l1(I ) ⊗̂ l1(J ) is identified
with δ(i,j) ∈ l1(I × J ). Thus we have (l1(I ) ⊗̂ l1(J ))′ = B(l1(I ), l∞(J )) =
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l1(I × J )′ = l∞(I × J ), where T ∈ B(l1(I ), l∞(J )) is identified with
(T(i,j)) ∈ l∞(I × J ), where T(i,j) = 〈T (δi), δj 〉.

For a non-empty set I , the unit ball of l1(I ) is the closure of the absolutely-
convex hull of the set {δi : i ∈ I }, so that for a Banach space E, by the
Krein-Smulian theorem, a map T : l1(I ) → E is weakly compact if and only
if the set {T (δi) : i ∈ I } is relatively weakly compact in E.

Proposition 5.5. Let S be a weakly cancellative semigroup, let ω be a
weight on S, and let A = l1(S, ω). Let T ∈ B(A ,A ′) be such that T (A ) ⊆
κc0(S)(c0(S)) and T ′(κA (A )) ⊆ κc0(S)(c0(S)). Then T ∈ W (A ,A ′), and T ∈
WAP(W (A ,A ′)) if and only if, for each sequence (kn) of distinct elements
of S, and each sequence (gm, hm) of distinct elements of S × S such that the
repeated limits

lim
n

lim
m

〈T (δhm
), δkngm〉, lim

n
lim
m

6(kn, gm)(4)

lim
n

lim
m

〈T (δhmkn), δgm〉, lim
n

lim
m

6(hm, kn)(5)

all exist, we have that at least one repeated limit in each row is zero.

Proof. That T is weakly compact follows from Gantmacher’s Theorem
(compare with Corollary 3.5). To show that T ∈ WAP, by Lemma 3.4, we are
required to show that the maps φr and φl are weakly compact. We shall show
that φl is weakly compact if and only if one of the repeated limits in the first
line (4) is zero; the proof that φr is related to (5) follows in a similar way. We
have that

φl(δ(g,h)) = φl(δg ⊗ δh) = δg · T (δh) (g, h ∈ S).

By Proposition 5.4, φl is weakly compact if and only if the function

S × (S × S) → C; (k, (g, h)) �→ 〈δg · T (δh), δk〉
= 〈T (δh), δkg〉6(k, g) (g, h, k ∈ S)

clusters on S × (S × S). As T is weakly compact, the function

S × S → C; (g, h) �→ 〈T (δg), δh〉 (g, h ∈ S)

does cluster on S × S.
Let (kn) be a sequence of distinct elements of S, and let (gm, hm) be a

sequence of distinct elements of S × S such that the iterated limits

(6) lim
n

lim
m

〈T (δhm
), δkngm〉6(kn, gm), lim

m
lim
n

〈T (δhm
), δkngm〉6(kn, gm)
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exist. We now investigate when these iterated limits are equal.
Suppose that (gm) has a constant subsequence, so we may suppose that

gm = g for all m. By moving to a subsequence if necessary, we may also
suppose that limn 6(kn, g) = α, say, and that (kng) is a sequence of distinct
elements (as S is weakly cancellative). Then

lim
n

lim
m

〈T (δhm
), δkngm〉6(kn, gm) = lim

n
6(kn, g) lim

m
〈T (δhm

), δkng〉
= α lim

n
lim
m

〈T (δhm
), δkng〉

= α lim
m

lim
n

〈T (δhm
), δkng〉

= lim
m

lim
n

〈T (δhm
), δkngm〉6(kn, gm),

where we can swap the order of taking limits, as T is weakly compact.
Alternatively, if we cannot move to a subsequence such that (gm) is constant,

then we may move to subsequence such that (gm) is a sequence of distinct
elements, and such that the iterated limits

lim
m

lim
n

6(kn, gm), lim
n

lim
m

6(kn, gm),

lim
m

lim
n

〈T (δhm
), δkngm〉, lim

n
lim
m

〈T (δhm
), δkngm〉

all exists. As T (A ) ⊆ κc0(S)(c0(S)), we have that

{g ∈ S : |〈T (δh), δg〉| ≥ ε} is finite (ε > 0, h ∈ S).

Consequently, and using the fact that S is weakly cancellative, we see that

lim
n

〈T (δhm
), δkngm〉 = 0

for each m. Hence the iterated limits in (6) are equal if and only if we have
that at least one repeated limit in (4) is zero.

Proposition 5.6. Let S be a discrete, unital, weakly cancellative semig-
roup, and let ω be a weight on S such that A = l1(S, ω) is Arens regular.
Then WAP(W (A ,A ′)) = W (A ,A ′).

Proof. Let T ∈ W (A ,A ′). We can follow the above proof through until
the point at which we use the fact that T (A ) ⊆ κc0(S)(c0(S)). However, as
l1(S, ω) is Arens regular, by Theorem 5.3, we have that

lim
m

lim
n

6(kn, gm) = lim
n

lim
m

6(kn, gm) = 0,

so that the iterated limits in (6) must be 0, implying that φl is weakly compact.
In a similar manner, φr is weakly compact.
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Theorem 5.7. Let S be a discrete weakly cancellative semigroup, and
let ω be a weight on S such that A = l1(S, ω) is Arens regular and A ′′ is
unital with unit eA ′′ . Then A ′′ is Connes-amenable if and only if there exists
M ∈ (A ⊗̂ A )′′ = l∞(S × S)′ such that:

(1) 〈M, (fgh6(g, h))(g,h)∈S×S〉=〈eA ′′ , f 〉 for each bounded family (fg)g∈S;

(2) 〈M, (f (hk, g)6(h, k)−f (h, kg)6(k, g))(g,h)∈S×S〉 = 0 for each k ∈ S,
and each bounded function f : S × S → C which clusters on S × S.

Proof. We use Theorem 3.9 and Proposition 5.6. For f = (fg)g∈S ∈
l∞(S), we have

〈"′
A (f ), δg ⊗ δh〉 = 〈f, δgh〉6(g, h) (g, h ∈ S),

so that "′
A (f ) = (〈f, δgh〉6(g, h))(g,h)∈S×S ∈ l∞(S × S). As f ∈ l∞(S) was

arbitrary, we have condition (1).
For T ∈ B(A ,A ′), we treat T as being a member of l∞(S × S). Then T

is weakly compact if and only if the family (〈T (δg), δh〉)(g,h)∈S×S clusters on
S × S. For k ∈ S, we have

〈δk · T − T · δk, δg ⊗ δh〉 = 〈T (δhk), δg〉6(h, k) − 〈T (δh), δkg〉6(k, g).

Thus we have condition (2).

Notice that if S is unital with unit uS , then the unit of A (and hence A ′′) is
δuS

. In this case, condition (1) reduces to 〈M, (fgh6(g, h))(g,h)∈S×S〉 = fuS
.

Theorem 5.8. Let S be a discrete unital semigroup, let ω be a weight
on S, and let A = l1(S, ω). Then A is amenable if and only if there exists
M ∈ (A ⊗̂ A )′′ = l∞(S × S)′ such that:

(1) 〈M, (fgh6(g, h))(g,h)∈S×S〉 = fuS
, where uS ∈ S is the unit of S, for

each bounded family (fg)g∈S;

(2) 〈M, (f (hk, g)6(h, k)−f (h, kg)6(k, g))(g,h)∈S×S〉 = 0 for each k ∈ S,
and each bounded function f : S × S → C.

Proof. This follows as above, but by using a virtual diagonal in place of a
σWC-virutal diagonal.

Notice that condition (2) of Theorem 5.8 is strictly stronger than condition
(2) of Theorem 5.7.

Theorem 5.9. Let S be a discrete, weakly cancellative semigroup, let ω
be a weight on S, and let A = l1(S, ω) be unital with unit eA . Then A is
Connes-amenable, with respect to the predual c0(S), if and only if there exists
M ∈ (A ⊗̂ A )′′ = l∞(S × S)′ such that:
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(1) 〈M, (fgh6(g, h))(g,h)∈S×S〉 = 〈eA , f 〉 for each family (fg)g∈S ∈ c0(S);

(2) 〈M, (f (hk, g)6(h, k)−f (h, kg)6(k, g))(g,h)∈S×S〉 = 0 for each k ∈ S,
and each bounded function f : S × S → C which is such that the map
T ∈ B(A ,A ′), defined by 〈T (δg), δh〉 = f (g, h) for g, h ∈ S, satisfies
the conclusions of Proposition 5.5.

Proof. We now use Theorem 3.6.

We shall now characterise when l1(S, ω) and l1(S, ω)′′ are Connes-amen-
able in terms of properties of S and ω. For a discrete group G, a weight ω on
G and h ∈ G, define Jh ∈ B(l∞(G)) by

Jh(f ) = (
fhg6(h, g)ω(h)6(g−1, h−1)ω(h−1)

)
g∈G
(f = (fg)g∈G ∈ l∞(G)).

Notice then that, for f ∈ l∞(G), we have

‖Jh(f )‖ = sup
g

|fhg|ω(hg)ω(g)−1ω(g−1h−1)ω(g−1)−1 ≤ ‖f ‖ω(h)ω(h−1),

so that Jh is bounded. Define ω̂(g) = ω(g)ω(g−1) for g ∈ G, so that ω̂ is the
auxiliary weight considered in [6]. If we identify l∞(G) with l∞(G, ω̂−1) by
the map (xg)g∈G �→ (xgω̂(g)

−1)g∈G, then Jh is simply the operator induced
by left-translation by h on l∞(G, ω̂−1).

Definition 5.10. Let G be a discrete group, and let ω be a weight on G.
We say that G is ω-amenable if there exists N ∈ l∞(G)′ such that:

(1) 〈N, (6(g, g−1))g∈G〉 = 1, where 6 is defined by ω, and hence
(6(g, g−1))g∈G is a bounded family forming an element of l∞(G);

(2) J ′
h(N) = N for each h ∈ G.

By the remark above about Jh, we see that G is ω-amenable if and only if
l∞(G,ω) has a non-zero, left-invariant mean. Notice that if ω is identically 1,
then this condition reduces to the usual notion of a group being amenable (we
usually require that N is a mean, in that N is a positive functional on l∞(G),
but by forming real and imaginary parts, and then positive and negative parts,
we can easily generate a non-zero scalar multiple of a mean from a functional
N satisfying the definition above).

Theorem 5.11. Let G be a discrete group, let ω be a weight on G, and let
A = l1(G,ω). Then the following are equivalent:

(1) A is Connes-amenable, with respect to the predual c0(G);

(2) A is amenable;
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(3) G is ω-amenable.

Furthermore, if A is Arens regular, then these conditions are equivalent to A ′′
being Connes-amenable.

Proof. It is clear that (2) implies (1). When A is Arens regular, (2) implies
that A ′′ is Connes-amenable, and A ′′ Connes-amenable implies (1). We shall
thus show that (1) implies (3). That (3) implies (2) follows from the equivalence
of (3) and (2) established in [6, Theorem 3.2].

If (1) holds, then let M ∈ l∞(G × G)′ be given as in Theorem 5.9. Define
φ : l∞(G) → l∞(G × G) by

〈φ(f ), δ(g,h)〉 =
{
fg : g = h−1,

0 : g �= h−1,
(f = (fg)g∈G ∈ l∞(G)),

and let N = φ′(M) ∈ l∞(G)′. Then we have

φ((6(g, g−1))g∈G) = (δh,g−16(g, h))(g,h)∈G×G = (δgh,eG6(g, h))(g,h)∈G×G,

where δ is the Kronecker delta, so that

〈N, (6(g, g−1))g∈G〉 = δeG,eG = 1,

by condition (1) on M from Theorem 5.9; clearly (δeG,g)g∈G ∈ c0(G).
Fix k ∈ G and f ∈ l∞(G). Define F : G × G → C by

F(h, g) = δgh,kfgω(k)ω(hk−1)ω(h)−1. (g, h ∈ G).

Then we have |F(h, g)| ≤ |fg||ω(k)||ω(hk−1)||ω(h)|−1 ≤
‖f ‖∞|ω(k)||ω(k−1)|, so that F is bounded. Let T : A → A ′ be the op-
erator associated with F . For g, h ∈ G, we have that F(h, g) �= 0 only when
gh = k, so that T (A ) ⊆ c0(S) and T ′(κA (A )) ⊆ c0(S). Furthermore, if
(kn) is a sequence of distinct elements in G, and (gm, hm) is a sequence of
distinct elements in G×G, then limn limm F(hm, kngm) = 0. This follows, as
for n0 fixed, kn0gmhm = k only if gmhm = k−1

n0
k, so if this holds for all suffi-

ciently large m, we have that kngmhm �= k for sufficiently large m and n �= n0.
Similarly, limn limm F(hmkn, gm) = 0, so that F satisfies the conditions of
Proposition 5.5.

Notice that

〈φ(Jk(f )), δ(g,h)〉 = δgh,eG〈Jk(f ), δg〉
= δgh,eGfkgω(kg)ω(g)−1ω(g−1k−1)ω(g−1)−1.
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Thus we have

F(hk, g)6(h, k) − F(h, kg)6(k, g)

= δghk,kfgω(k)ω(hkk−1)ω(hk)−16(h, k)

− δkgh,kfkgω(k)ω(hk−1)ω(h)−16(k, g)

= δgh,eGfg − δgh,eGfkgω(hk−1)ω(h)−1ω(kg)ω(g)−1

= 〈φ(f ) − φ(Jk(f )), δ(g,h)〉.
So, by condition (2) from Theorem 5.9, we have that

〈N, f − Jk(f )〉 = 0,

which, as f was arbitrary, shows that N = J ′
k(N), as required.

Example 5.12. If S is a semigroup which is not cancellative, then it is
possible for l1(S) to be unital while S is not. For example, let S be Z with
adjoined idempotents u and v such that uv = vu = 0 and un = nu = vn =
nv = n for n ∈ Z. Then S is a weakly cancellative, commutative semigroup
without a unit, but e = δu + δv − δ0 is easily seen to be a unit for l1(S). Indeed,
S is seen to be a finite semilattice of groups, so by the result of [5], l1(S) is
amenable.

In [6, Theorem 2.3] it is shown that if l1(S, ω) is amenable for a cancellative,
unital semigroup S and some weight ω, then S is actually a group. We shall
now show that this holds for Connes-amenability as well.

Theorem 5.13. Let S be a weakly cancellative semigroup, let ω be a weight
on S, and let A = l1(S, ω). Suppose that A is Connes-amenable with respect
to the predual c0(S). If S is cancellative or unital, then S is a group.

Proof. As A is Connes-amenable, letM ∈ (A ⊗̂A )′′ be as inTheorem 5.9.
Then A is unital, with unit eA = (as)s∈S ∈ l1(S, ω) say. For now, we shall
not assume that eA has norm one, as the standard renorming to ensure this will
not (a priori) necessarily yield an l1(S, ω̂) algebra for some weight ω̂. Suppose
now that S is cancellative. We see that∑
s∈S

asδsh6(s, h) = eA 8 δh = δh = δh 8 eA =
∑
s∈S

asδhs6(h, s) (h ∈ S).

In particular, for each h ∈ S there is a unique (as S is cancellative) uh ∈ S

such that huh = h (so that huhh = h2 implying that uhh = h), and we have
that auh

ω(uh)
−1 = 1. We also see that as = 0 for each s ∈ S such that sh �= h,
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that is, s �= uh. However, h was arbitrary, so that S is unital with unit uS , and
eA = ω(uS)δuS

, where we can now assume that ω(uS) = 1 by a renorming.
Now suppose that S is a unital, weakly cancellative semigroup, so that the

unit of A is δuS
. Suppose that s ∈ S has no right inverse. DefineF : S×S → C

by

F(h, sg) = 0, F (hs, g) =
{
6(g, hs) : gh = uS ,

0 : otherwise.
(g, h ∈ S).

To show that this is well-defined, suppose that for g, h, j, k ∈ S, we have
that h = js, sg = k and kj = uS . Then s(gj) = kj = uS , so that s has a
right inverse, a contradiction. Then F is bounded, so let T : A → A ′ be the
operator associated with F . Then F(a, b) �= 0 only when ba = s, so as S is
weakly cancellative, we see that T (A ) ⊆ c0(S) and T ′(κA (A )) ⊆ c0(S).

Suppose that for sequences of distinct elements (kn) ⊆ S and (gm, hm) ⊆
S × S, we have that

lim
n

lim
m

〈T (δhm
), δkngm〉 = lim

n
lim
m

F(hm, kngm) �= 0.

Then, for some N > 0 and ε > 0, for each n ≥ N , limm F(hm, kngm) ≥
ε. Hence, for n ≥ N , there exists Mn > 0 such that if m ≥ Mn, then
kngmhm = s (as otherwise F(hm, kngm) = 0). This, however, contradicts
S being weakly cancellative. Similarly, if limn limm〈T (δhmkn), δgm〉 �= 0, then
we need gmhmkn = s for all n,m sufficiently large, which is a contradiction.
Thus T satisfies all the conditions of Proposition 5.5.

Then, for g, h ∈ S, if gh = uS , we have that 6(h, s)6(g, hs) =
ω(h)−1ω(g)−1 = 6(g, h), so that

F(hs, g)6(h, s) − F(h, sg)6(s, g) =
{
6(g, h) : gh = uS ,

0 : otherwise.

Hence condition (2) of Theorem 5.9 implies that 〈M, (δgh,uS
6(g, h))(g,h)∈S×S〉

= 0, which contradicts condition (1) of this theorem. Hence every element of
S has a right inverse.

By symmetry (or by repeating the argument on the left) we see that every
element of S has a left inverse, and that hence S must be a group.

We hence have the following theorem, which shows that weighted semig-
roup algebras behave like C∗-algebras with regards to Connes-amenability.

Theorem 5.14. Let S be a discrete cancellative semigroup, and let ω be a
weight on S. The following are equivalent:

(1) l1(S, ω) is amenable;
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(2) l1(S, ω) is Connes-amenable, with respect to the predual c0(S);

If l1(S, ω) is Arens regular, then these conditions are equivalent to l1(S, ω)′′
being Connes-amenable. These equivalent conditions imply that S is a group.

This result extends the result of [12], where it is shown that M(G), the
measure algebra of a locally compact group G, is Connes-amenable if and
only if G is amenable. This follows as, for discrete groups G, M(G) = l1(G).

Example 5.15. Let ω be the weight on Z defined by ω(n) = 1 + |n| for
n ∈ Z. By Theorem 5.3, A = l1(Z, ω) is Arens regular. For m, n ∈ Z and
f = (ak)k∈Z ∈ l∞(Z), we have that

〈δm · f, δn〉 = 〈f, δn+m6(n,m)〉 = fn+m

1 + |n + m|
(1 + |n|)(1 + |m|) .

Suppose that M � κA (δm) = κA (a) for some m ∈ Z, M ∈ l∞(Z)′ and a ∈ A .
Then 〈M, δm · f 〉 = 〈f, a〉 for each f ∈ l∞(Z), so by letting f = κc0(Z)(ek) ∈
c0(Z), we see that a = ∑

k∈Z akδk , where ak = 〈M, δm · κc0(Z)(ek)〉. However,
δm · κc0(Z)(ek) ∈ κc0(Z)(c0(Z)) for each k ∈ Z, so if M ∈ c0(Z)◦, then a = 0.

Consequently, if M � κA (δm) ∈ κA (A ) for each m ∈ Z and M ∈ l∞(Z)′,
then δm · f ∈ κc0(Z)(c0(Z)) for each m ∈ Z and f ∈ l∞(Z). However, if
1 ∈ l∞(Z) is the constant 1 sequence, then

lim
n

〈δm · 1, δn〉 = lim
n

1 + |n + m|
(1 + |n|)(1 + |m|) = 1

1 + |m| ,

so that δm · 1 �∈ κc0(Z)(c0(Z)).
We hence conclude that A is not an ideal in A ′′, and so we cannot apply

Theorem 1.3 in this case.

Unfortunately, for the viewpoint of finding a counter-example to the con-
jecture that A is amenable if and only if A ′′ is Connes-amenable, it is not
possible for l1(S, ω) to be both amenable and Arens regular.

Theorem 5.16. Let G be discrete group, and let ω be a weight on G. Then
l1(G,ω) is amenable if and only if G is an amenable group, and
sup{ω(g)ω(g−1) : g ∈ G} < ∞.

Proof. This is [6, Theorem 3.2].

Proposition 5.17. Let S be a discrete, unital semigroup, and let ω be a
weight on S such that A = l1(S, ω) is Arens regular. Let K > 0 and B ⊆ S

be such that for each g ∈ B, g has a right inverse g−1 (which need not be
unique), and ω(g)ω(g−1) ≤ K . Then B is finite.
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Proof. For g ∈ B and h ∈ S, we have

ω(g)ω(h) = ω(g)ω(hgg−1) ≤ ω(g)ω(hg)ω(g−1) ≤ Kω(hg),

so that 6(h, g) ≥ K−1. Suppose now that B is infinite. Then we can easily
construct sequences which violate condition (2) of Theorem 5.3, showing that
A is not Arens regular. This contradiction shows that B must be finite.

5.1. Injectivity of the predual module

Let S be a unital, weakly cancellative semigroup, let ω be a weight on S, and
let A = l1(S, ω), A∗ = c0(S). Then B(A ,A∗) = B(l1, c0) = l∞(c0) ⊆
l∞(S × S), where we identify T : A → A∗ with the bounded family
(〈δs, T (δt )〉)(s,t)∈S×S . Let φ : B(A ,A∗) → A∗, so that φ is represented
by a bounded family (Ms)s∈S ⊆ B(A ,A∗)′ using the relation

〈δs, φ(T )〉 = 〈Ms, T 〉 (s ∈ S, T ∈ B(A ,A∗)).

Suppose further that φ is a left A -module homomorphism. Then

(7) 〈δs, φ(T )〉 = 〈δus
, φ(δs · T )〉 = 〈MuS

, δs · T 〉
= 〈Ms, T 〉 (s ∈ S, T ∈ B(A ,A∗)),

so that Ms = MuS
· δs for each s ∈ S. We see also that φ maps into c0(S) (and

not just l∞(S)) if and only if

lim
s→∞〈MuS

, δs · T 〉 = 0 (T ∈ B(A ,A∗)).

Conversely, if condition (7) holds, then for s, t ∈ S and T ∈ B(A ,A∗),
we have that

〈δs, φ(δt · T )〉 = 〈Ms, δt · T 〉 = 〈MuS
, δs · δt · T 〉 = 6(s, t)〈Mst , T 〉

= 6(s, t)〈δst , φ(T )〉 = 〈δs, δt · φ(T )〉.
Hence φ is a left A -module homomorphism.

Notice that c0(S × S) ⊆ B(A ,A∗), so that c0(S × S)◦ ⊆ B(A ,A∗)′.

Definition 5.18. Let G be a group and ω be a weight on G such that for
each ε > 0, the set {g ∈ G : ω(g)ω(g−1) < ε−1} is finite. Then we say that
the weight ω is strongly non-amenable.

Proposition 5.19. Let G be a group, let ω be a weight on G such that
ω is not strongly non-amenable, and let φ : B(A , c0(G)) → c0(G) be a
left A -module homomorphism. If φ is represented by (Mg)g∈G as above, then
MuG

∈ c0(S × S)◦.
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Proof. We adapt the methods of [4] to the weighted, discrete case. As
ω is not strongly non-amenable, there exists some K > 0 such that the set
XK = {g ∈ G : ω(g)ω(g−1) ≤ K} is infinite. LetM = MuG

, and suppose that
M �∈ c0(G×G)◦, so that for some g, h ∈ G, we have that δ := 〈M, e(g,h)〉 �= 0.
We shall henceforth treat e(g,h) as a member of B(A , c0(G)), noting that for
k ∈ G,

〈δs, (δk · e(g,h))(δt )〉 =
{
6(t, k) : s = g, t = hk−1,

0 : otherwise.

We claim that we can find a sequence (gn)n∈N of distinct elements in G such
that |〈M · δg−1

m gn
, e(g,h)〉| ≤ K−12−2−|m−n| (n �= m),

ω(gn)ω(g−1
n ) ≤ K (n ∈ N).

We can do this as φ must map into c0(G), so that for any T : A → c0(G),
we have limg→∞〈M · δg, T 〉 = 0. Explicitly, let g1 ∈ XK be arbitrary, and
suppose that we have found g1, . . . , gk . Then notice that the sets

{s ∈ G : |〈M · δs−1gn , e(g,h)〉| > K−12−2−|k+1−n| : 1 ≤ n ≤ k},
{s ∈ G : |〈M · δg−1

m s, e(g,h)〉| > K−12−2−|k+1−m| : 1 ≤ m ≤ k}
are finite, so as XK is infinite, we can certainly find some xk+1.

Then, for x = (xn) ∈ l∞(N), define Tx : A → c0(G) by setting
〈δg, Tx(δhg−1

n
)〉 = xn6(hg−1

n , gn) for n ≥ 1, and 〈δs, Tx(δt )〉 = 0 otherwise.
Then clearlyTx does map into c0(G), and ‖Tx‖ ≤ ‖x‖. Notice that for s, t ∈ G,
we have

〈δs, Tx(δt )〉 =
{
xn6(t, gn) : s = g, t = hg−1

n ,

0 : otherwise,

=
∑
n

xn〈δs, (δgn · e(g,h))(δt )〉.

Define Q : l∞(N) → c0(N) by

〈δn,Q(x)〉 = 〈M, δg−1
n

· Tx〉 (n ∈ N),

so that Q is bounded and linear.
Let n0 ≥ 1 and let x = en0 ∈ c0(N) ⊆ l∞(N). Then, Tx = δgn0

· e(g,h), so
that 〈δn,Q(x)〉 = 〈M, δg−1

n
· Tx〉 = 〈M, δg−1

n
· (δgn0

· e(g,h))〉

=
{
δ 6(g−1

n0
, gn0) : n = n0,

6(g−1
n , gn0)〈M · eg−1

n gn0
, e(g,h)〉 : n �= n0.
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Define Q1 ∈ B(c0(N)) by

Q1(x) = (
6(g−1

n , gn)xn
)
n∈N (x = (xn) ∈ c0(N)).

Then, as each gn ∈ XK , Q1 is an invertible operator. Let Q2 be the restriction
of Q to c0(N), so that Q2 ∈ B(c0(N)) and Q2 = δQ1 + δQ3Q1 for some
Q3 ∈ B(c0(N)). Thus Q3 = δ−1Q2Q

−1
1 − Ic0(N), so that for x ∈ c0(N), we

have that

‖Q3(x)‖ = sup
n

|〈δn, δ−1Q2Q
−1
1 (x) − x〉|

= sup
n

∣∣∣∣∑
m

xm〈δn, δ−1Q2Q
−1
1 (em) − em〉

∣∣∣∣
= sup

n

∣∣∣∣∑
m�=n

xm6(g−1
m , gm)

−16(g−1
n , gm)〈M · δg−1

n gm
, e(g,h)〉

∣∣∣∣
≤ K−1 sup

n

∑
m�=n

|xm|2−2−|m−n|ω(gm)ω(g−1
m ) ≤ ‖x‖/2.

Consequently Q3 − Ic0(N) is invertible, so that Q2Q
−1
1 is invertible, showing

that Q2 is invertible. However, this implies that Q−1
2 Q : l∞(N) → c0(N) is a

projection, which is a well-known contradiction, completing the proof.

Theorem 5.20. Let G be a countable group, let ω be a weight which is not
strongly non-amenable, and let A = l1(G,ω). Then c0(G) is not left-injective.

Proof. Suppose, towards a contradiction, that c0(G) is left-injective, so
that there exists M = MuG

∈ B(A ,A∗)′ as above, with the additional condi-
tion that

δg,h = 〈δg, φ"′
A (eh)〉 = 〈M, δg · "′

A (eh)〉 = 6(hg−1, g)〈M,"′
A (ehg−1)〉

= 6(hg−1, g)〈M, (δst,hg−16(s, t))(s,t)∈G×G〉 (g, h ∈ G).

This clearly reduces to

δg,uG
= 〈M,

(
δst,g6(s, t)

)
(s,t)∈G×G

〉 (g ∈ G).

As G is countable, we can enumerate G as G = {gn : n ∈ N}. Then, for
gn ∈ G, let Xgn = {g1, . . . , gn} ⊆ G. Define Q : l∞(G) → B(A , c0(G)) by

〈δs,Q(x)(δt )〉 = 6(s, t)
∑
g∈Xt

xgδst,g (s, t ∈ G, x ∈ l∞(G)).
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Then, for each t ∈ G, as Xt is finite, we see that Q(x)(δt ) ∈ c0(G), so Q is
well-defined. Clearly Q is linear, and we see that for x ∈ l∞(G),

‖Q(x)‖ = sup
s,t∈G

6(s, t)

∣∣∣∣∑
g∈Xt

xgδst,g

∣∣∣∣ ≤ sup
s,t∈G

∑
{g∈Xt :g=st}

|xg| = ‖x‖,

so that Q is norm-decreasing. Then, for h ∈ G, we have that

〈δs,Q(eh)(δt )〉 = 6(s, t)
∑
g∈Xt

δg,hδst,g =
{ 〈δs,"′

A (eh)(δt )〉 : h ∈ Xt ,

0 : h �∈ Xt .

Let h = gn0 , so that {t ∈ G : h �∈ Xt } = {gn ∈ G : h �∈ Xgn} =
{g1, g2, . . . , gn0−1}. We hence see that Q(eg0)−"′

A (eg0) ∈ c0(G×G). By the
preceding proposition, we hence have that Ic0(G) = φ ◦ "′

A = φ ◦ (Q|c0(G)).
However, this implies that φ ◦Q : l∞(G) → c0(G) is a projection onto c0(G),
giving us the required contradiction.

We have not been able to establish if c0(S) can ever be a left-injective
l1(S, ω)-module for some semigroup S and weight ω. However, Helemskii’s
theorem about Connes-amenable von Neumann algebras does not hold for
weighted semigroup algebras.

Theorem 5.21. Let S be a discrete, weakly cancellative semigroup, let ω
be a weight on S, and let A = l1(S, ω). When S is unital, or S is cancellative,
c0(S) is not a bi-injective A -bimodule.

Proof. Suppose, towards a contradiction, that c0(S) is bi-injective. Then
A is Connes-amenable, so that Theorem 5.14 implies that A is amenable, and
that S = G is an amenable group. By [16, Corollary 2] there exists a positive
character φ on G (that is, a group homomorphism to the multiplicative group
of positive reals) such that φ is equivalent to ω. Thus l1(G,ω) is isomorphic to
l1(G, φ), and as φ is multiplicative, it follows that l1(G, φ) is simply l1(G) (as
the 6 associated with φ is identically 1). The result now follows from results
in [4].

6. Open questions

We state a few open questions of interest:

(1) Let A be an Arens regular Banach algebra such that A ′′ is Connes-
amenable. Need A be amenable?

(2) This is true for C∗-algebras. Can we find a “simple” proof?
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(3) Let A be a dual Banach algebra with predual A∗, and suppose that A∗
is bi-injective. Is A necessarily a von Neumann algebra or the bidual of
an Arens regular Banach algebra B such that B is an ideal in A?

(4) Let S be a (weakly cancellative) semigroup, and let ω be a weight on
S. Classify (up to isomorphism) the preduals of l1(S, ω), and calculate
which preduals yield a Connes-amenable Banach algebra.

(5) This question was asked by Niels Grønbæk. In most of our examples,
it is obvious that when A is a Connes-amenable dual Banach algebra,
there is B ⊆ A which is weak∗-dense and amenable. Is this always
true?

Acknowledgement. The author wishes to thank the referee for the idea
to use White’s result in [16] to simplify the proof of Theorem 5.21.
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