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We show that Tsirelson’s problem concerning the set of quantum correlations and

Connes’ embedding problem on finite approximations in von Neumann algebras

(known to be equivalent to Kirchberg’s QWEP conjecture) are essentially equivalent.

Specifically, Tsirelson’s problem asks whether the set of bipartite quantum corre-

lations generated between tensor product separated systems is the same as the set

of correlations between commuting C*-algebras. Connes’ embedding problem asks

whether any separable II1 factor is a subfactor of the ultrapower of the hyperfinite

II1 factor. We show that an affirmative answer to Connes’ question implies a positive

answer to Tsirelson’s. Conversely, a positive answer to a matrix valued version of

Tsirelson’s problem implies a positive one to Connes’ problem. C© 2011 American

Institute of Physics. [doi:10.1063/1.3514538]

I. INTRODUCTION

In nonrelativistic Quantum Mechanics, measurements conducted on a quantum system by two

distant observers are usually modeled by operators acting on a tensor product of two Hilbert spaces.

Each factor corresponds to one observer, and the action of a measurement operator is assumed to

be non-trivial only on its associated party’s space. In contrast, in Algebraic Quantum Field Theory

(AQFT1), local observables are represented by operators acting on a joint Hilbert space, and the

independence condition reduces to demanding that operators corresponding to different parties

commute.

The problem of Tsirelson is to decide whether these two mathematical models give rise to the

same set of probability distributions. In other words, is it possible to represent all bipartite probability

distribution originating from commuting sets of observables by using observables of tensor product

form? The problem originated in a premature claim (positive answer to the question) in,2 for which

the authors of Ref. 3 demanded a proof. Tsirelson then posted it on the open problems site at

Braunschweig.4

A negative answer to this question would allow, in principle, to demonstrate experimentally

that finite dimensional quantum models do not suffice to describe all bipartite correlations. On the

other hand, a positive answer amounts to saying that the powerful numerical algorithms to limit the

commutative set of correlations,3, 5 produce not just upper bounds to quantum correlations, but best

upper bounds.

Though its original motivation stems from physical considerations, Tsirelson’s problem is

closely related to finite approximability in operator algebras.6 The most prominent question in this

field is the Connes’ embedding problem for von Neumann algebras (see Refs. 7–9 for nice reviews

about it). It asks whether any separable II1-factor is a subfactor of the ultrapower Rω of the hyperfinite

a)Author to whom correspondence should be addressed. Electronic mail: volkher.scholz@itp.uni-hannover.de.
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II1-factor R. This problem, casually raised by Connes, has many equivalent formulations. One of

them, whether the predual of any separable von Neumann algebra is finitely representable in the trace

class S1, is related to the possible extension of local Banach space theory to its non-commutative

relative: operator spaces. The one we will use here is known as Kirchberg’s QWEP conjecture and it

asks whether all C*-algebras are quotients of C*-algebras with the weak expectation property. This

can be read also as the existence of a unique C*-algebra norm in the tensor product C∗(Fn) ⊗ C∗(Fn).

As shown for instance in the review,7 both a positive and negative solution to Connes’ problem would

have deep implications:

A positive solution would lead to new results concerning invariant subspaces. It would shed new

light on the conditions under which the semigroup Ext(A) of a C*-algebra A is indeed a group. It

would also show that all countable discrete groups are hyperlinear, refuting the famous conjecture of

Gromov that “any statement that holds for all countable discrete groups is either trivial or false.” A

negative solution would also have nice applications, for instance, in free probability, where it would

imply that the two possible definitions of free entropy do not coincide.

In this paper, we show that a positive answer to Connes’ embedding problem would also imply

an affirmative answer to Tsirelson’s problem. Furthermore, we will also show that the converse also

holds in some sense. More precisely, we will show the following theorem.

Theorem 1: If Kirchberg’s QWEP conjecture holds, then every probability distribution between two

parties which can be represented using commuting sets of observables could also be represented by

observables of tensor product form. Conversely, if Tsirelson’s problem has a positive solution, also

in the case of matrix valued coefficients (made clear below), then the QWEP conjecture, and hence

Connes’ embedding problem, is also true.

The structure of this paper is as follows: in Secs. II and III, we will state precisely both

mathematical problems. In Sec. IV we will introduce essential operator space notation that we will

use in the Sec. V to prove Theorem 1. Along the way, we will obtain an intermediate result that is

important in its own right: namely, that Tsirelson’s problem is independent of whether we restrict

measurements to be projective or general positive operator valued measures (POVMs).

II. TSIRELSON’S PROBLEM

As taught in standard Quantum Mechanics textbooks,10 a measurement z with K possible

outcomes is described by a collection of projector operators {E z
c : c = 1, . . . , K } acting over a given

Hilbert space H, and such that

1. E z
c E z

c′ = E z
cδcc′ (Orthogonality),

2.
∑n

c=1 E z
c = I (Completeness).

A physical state ω is mathematically represented by a positive linear functional ω : B(H) → C

satisfying the normalization condition ω(I) = 1. The probability of obtaining an outcome c when

measuring property z on a quantum system in the state ω is given by the expression

p(c|z) = ω(E z
c ). (1)

Note that these probabilities are normalized, since

K∑

c=1

p(c|z) =

K∑

c=1

ω(E z
c ) = ω

(
K∑

c=1

E z
c

)
= ω(I) = 1. (2)

The above is the standard description of the measurement process, and it is common to all

present formulations of Quantum Mechanics as long as just one observer is involved in the quantum

experiment. In the bipartite scenario, though, there are different options for identifying the “parts”

of the system, which are supposedly under control of different characters, say Alice and Bob.

In nonrelativistic Quantum Mechanics, measurement operators associated to different parties

are assumed to act over different Hilbert spaces. More specifically, if we call the observers Alice and



012102-3 Connes’ embedding problem and Tsirelson’s problem J. Math. Phys. 52, 012102 (2011)

Bob, then Alice’s (Bob’s) measurement of property x (y) is linked to the set of operators11 {E x
a : a

= 1, . . . , K } ⊂ B(HA) ({E
y

b : b = 1, . . . , K } ⊂ B(HB)), which are required to satisfy orthogonality

and completeness relations on the space HA (HB).

States in this scenario are normalized positive functionals of B(HA ⊗ HB), and the probability

that Alice and Bob respectively observe the outcomes a, b when they perform measurements x, y is

equal to

p(a, b|x, y) = ω
(
E x

a ⊗ E
y

b

)
. (3)

Fix K and assume that Alice and Bob are each able to interact with their system in N possible

different ways, and so the index x and y run from 1 to N . Following Tsirelson’s notation,2 any set

of probabilities {p(a, b|x, y) : a, b = 1, . . . , K ; x, y = 1, . . . , N } will be called behavior. We will

define Q as the set of all behaviors for which there exist operators {E x
a , E

y

b } satisfying conditions

1,2 and a state ω such that equation (3) holds. Sometimes we will refer to Q as the tensor set of

quantum correlations.

In AQFT, i.e., in relativistic quantum field theory, bipartite correlations are described in a prima

facie more general way: This time, measurement operators associated to Alice and Bob act over

the same Hilbert space H, and measurement operators acting on different sites commute with each

other.12 In short, Alice’s and Bob’s operators must satisfy:

1. E z
c E z

c′ = E z
cδcc′ (Orthogonality),

2.
∑K

c=1 E z
c = I (Completeness),

3. [E x
a , E

y

b ] = 0, for all a, b = 1, . . . , K ; x, y = 1, . . . , N (Microcausality).

For any state ω, the probability that Alice and Bob observe the results a, b when they perform

measurements x, y is given by

p(a, b|x, y) = ω
(
E x

a · E
y

b

)
. (4)

In analogy with Q, we will denote by Q′ the set of all behaviors of the form (4). Note that, since[
E x

a ⊗ IB, IA ⊗ E
y

b

]
= 0, Q is contained in Q′. We will call Q′ the commutative set of quantum

correlations.

Tsirelson’s problem consists in determining whether the inclusion Q ⊂ Q′ is strict, i.e., whether

the sets of correlations predicted by the two ways of formalizing “subsystems” might differ.

To establish a connection with previous literature on the subject, note that the sets Q, Q′ do not

grow when we just demand positivity rather than orthogonality for Alice and Bob’s measurement

operators. Indeed (see Remark 11), if we relax the orthogonality condition to

1. E z
c ≥ 0 (Positivity)

in the definitions of Q, Q′, then the resulting sets of correlations are again Q and Q′. Actually, these

last definitions for Q and Q′ appear in the original formulation of Tsirelson’s problem.6

We note that the possible difference between Q and Q′ is not so much a consequence of

relativistic space-time physics, but of the necessity to handle infinitely many degrees of freedom in

AQFT. Indeed, one usually imposes axioms to tame the number of local degrees of freedom, e.g., by

nuclearity constraints.13 This implies that local algebras of strictly separated space-time regions are

contained in Hilbert space tensor factors (“split property”14). Since the separation can be arbitrarily

small, this forces the local algebras to be hyperfinite,15 and from the discussion below it is clear that

this excludes all correlations which are stronger than tensor products allow. This conclusion holds

even in the scenario, when especially strong, state-independent violations of Bell inequalities have

been demonstrated,16 namely when space-time regions touch.

One may also strengthen the notion of “local subsystems” by demanding that in a local labs

scenario Alice and Bob should not only be able to choose measurements independently of each

other, but should also be able to prepare local states as needed (see also17). Again, this implies the

split property,18 and excludes Q′.
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Of course, a negative answer to Tsirelson’s problem would mean that, if an appropriate correla-

tion expression could be constructed and implemented in the laboratory, the split property could be

refuted experimentally.

III. CONNES’ EMBEDDING PROBLEM

We will describe the problem in terms of the universal C*-algebra of the free group with n

generators C∗(Fn). That this is indeed a reformulation of Connes’ embedding problem is a deep

result of Kirchberg.7, 19 The free group Fn with n generators g1, . . . , gn is the group formed by all

words written in a unique way as the product of the generators together with their inverses, using

the only cancelation rule gi g
−1
i = e; e being the empty word.

The universal C*-algebra of Fn , C∗(Fn), is the completion of the group ring of Fn with respect to

‖x‖ = supπ ‖x‖B(H), where the supremum is taken over all unitary representation of the free group

into some B(H). It has the universal property that any *-homomorphism from the group ring into

some B(H) extends to a *-representation of C∗(Fn).

Given two C*-algebras A, C, there are two canonical ways to turn their algebraic tensor product

A ⊗ C into a C*-algebra. Consider two *-representations πA : A → B(HA), πB : C → B(HB), and

define the norm of some tensor x ∈ A ⊗ C as ‖πA ⊗ πB(x)‖B(HA⊗HB ). The supremum over all such

pairs of representations is called the minimal C*-algebraic tensor norm and will be denoted by ⊗min .

It can be proven that it is indeed the smallest possible tensor norm for C*-algebras.20 We denote by

A⊗minC the completion of A ⊗ C with respect to this norm.

To construct the maximal tensor norm, we do not only consider pairs of *-representations πA, πB

into the bounded operators on a pair of different Hilbert spaces, but also all pairs of *-representations

into a single B(H), but with the restriction that the range of πA commutes with the range of πB . The

resulting C*-structure, obtained after completion of A ⊗ C, is called the maximal C*-tensor product

and will be denoted by A⊗maxC. It is the largest possible tensor norm for C*-algebras.20 Note that

if either A or C is finite dimensional, then the two tensor norms induce the same C*-algebraic

structure. This is also the defining property of nuclear C*-algebras.9, 20 Thus, if either Alice or Bob

has a quantum system which is described by a nuclear C*-algebra, then Tsirelson’s problem is

trivially true.

Kirchberg’s QWEP conjecture, equivalent to Connes’ embedding problem, states now that there

is only one possible C*-norm on the tensor product of C∗(Fn) with itself, meaning that we have for

all n

C∗(Fn)⊗minC∗(Fn) = C∗(Fn)⊗max C∗(Fn) .

IV. NON-SIGNALLING OPERATOR SYSTEM AND TENSOR NORMS

In order to show the equivalence between Tsirelson’s problem and Connes’ embedding problem,

we first reformulate the setting of Tsirelson without referring to some particular Hilbert space. We

will start by considering the set of “marginals” p(a|x) of Alice’s (or Bob’s) possible measurements.

By definition, this is the set of N × K matrices with positive entries such that all rows sum up to

one. Following Ref. 21 we will define the space N SG(N , K ) to be the complex span of this subset

of C
N K . To be precise, we define the vector space N SG(N , K ) ⊂ C

N K as the space of all matrices

(λx,a) such that there exists λ ∈ C with the property that

∑

a

λx,a = λ holds for all x .

Next, we have to ensure that the probabilities are represented by outcomes of quantum measurements.

In order to understand the duality implicitly involved, we have to recall some facts about operator

systems. An operator system X is a subspace X ⊂ B(H) with is closed under taking the adjoint and
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containing the unit.22 Then the generalized state space is defined as

S(X ; B(H)) = {u : X → B(H) : u ucp}, S(X ) =
⋃

H

S(X ; B(H)).

Here and in the following ucp means unital completely positive. Note that for finite dimensional H

we find indeed

S(X ; B(ℓn
2)) ⊂ Mn(X∗)

as a vector space. Following standard operator space terminology this means we are identifying the

matrix structure of the dual space X∗. In our situation, it is useful to reverse this operation. As a vector

space we may identify the dual N SG(N , K )∗ of N SG(N , K ) with the quotient C
N K /N SG(N , K )⊥.

The orthogonal space N SG(N , K )⊥ is easy to calculate and it is given by

N SG(N , K )⊥ = {((

K︷ ︸︸ ︷
λ1, . . . , λ1), (

K︷ ︸︸ ︷
λ2, · · · λ2), · · · , (

K︷ ︸︸ ︷
λN , . . . , λN )) :

∑

j

λ j = 0}.

Then we define the state space

SH(N , K ) = {(�x )N
x=1 : �x : ℓK

∞ → B(H) ucp}. (5)

Each such ucp map �i defines a positive operator valued measure on the Hilbert space H and hence

a valid quantum measurement. A sequence (�x )N
x=1 then defines a set of N measurements with K

outcomes each. Note that, given such a sequence, we may define the linear map u : N SG(N , K )∗

→ B(H) given by

u((λx,a)) =
∑

x,a

λx,a�x (ea).

Here ea is the corresponding unit vector in ℓK
∞ = C

K . It is clear that such a u is well-defined. Indeed,

we have that for any λ = (λx,a) in N SG(N , K )⊥

u(λ) =
∑

x,a

λx�x (ea) =
∑

x

λx�x (1) =
∑

x

λx = 0.

In the following, we will use the symbol N SG(N , K )∗ for the (more or less) concrete operator

system defined by (5). More precisely, considering the family

J = {(�x )N
x=1|�x : ℓK

∞ → B(H) is ucp for every x},

the operator system structure defined on N SG(N , K )∗ is exactly the one defined by the embedding

η : N SG(N , K )∗ →֒ ⊕ j∈J B(H j ),

such that

η((λx,a)) ( j) =
∑

x,a

λx,a�x (ea), j = (�x )N
x=1 ∈ SH(N , K ),

where H j is the Hilbert space associated with the index j .

Note that in the sense of the above definition, any set of measurement devices {E x
a }, as introduced

in Sec. II, defines indeed an element of the state space SH(N , K ) with the identification �x (ea) = E x
a .

Up to now, we only formalized the situation for one observer. Coming back to the Tsirelson

setting, we now associate one copy of N SG(N , K )∗ to both Alice and Bob. A measurement

on the combined systems will be then an element of the algebraic tensor product N SG(N , K )∗

⊗N SG(N , K )∗. In order to turn this linear space into an operator system, we have to define matrix

cones on the algebraic tensor product. There are two obvious choices for doing that, and they exactly

reflect the two settings connected to Tsirelson’s problem.
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Definition 2: We call an element t ∈ N SG(N , K )∗ ⊗ N SG(N , K )∗ of the algebraic tensor

product ⊗min-positive, if

(�A ⊗ �B)(t) ∈ B(HA ⊗ HB)

is a positive operator for all pairs (�A,�B) ∈ SHA
(N , K ) × SHB

(N , K ) of completely positive maps

defined with respect to different Hilbert spaces. We denote by N SG(N , K )∗⊗min N SG(N , K )∗ the

corresponding operator system and call it the minimal tensor product.

It is not difficult to see that min is the minimal norm in the category of operator systems (see

Ref. 22).

Definition 3: We call an element t ∈ N SG(N , K )∗ ⊗ N SG(N , K )∗ of the algebraic tensor

product ⊗cmax -positive, if

(�A · �B)(t) ∈ B(H)

is a positive operator for all pairs (�A,�B) ∈ SH(N , K ) × SH(N , K ) of completely pos-

itive maps with commuting ranges. We denote the corresponding operator system by

N SG(N , K )∗⊗cmax N SG(N , K )∗ and call it the maximal commuting tensor product.

These definitions (for general operator systems) were introduced and nicely discussed in

Ref. 23. We must note that the notation ⊗cmax here is different from the one used in Ref. 23

(⊗c). However, we decided to maintain our notation because it is more suitable in this context.

Using the mathematical objects we have defined in this section, we can state the following

equivalence to Tsirelson’s problem:

Proposition 4: Tsirelson’s problem has an affirmative solution if and only if

(N SG(N , K )∗⊗min N SG(N , K )∗)sa = (N SG(N , K )∗⊗cmax N SG(N , K )∗)sa

holds isometrically for all (N , K ). Here Xsa denotes the selfadjoint part of the operator system X.

Proof: Indeed, note that, for any real coefficients {Ma,b
x,y }

N ;K
x,y;a,b=1, the element M =

∑N ;K
x,y;a,b=1

Ma,b
x,y ex,a ⊗ ey,b ∈ N SG(N , K )∗ ⊗α N SG(N , K )∗ is selfadjoint for both α = min and α = cmax .

Thus, it is normed by states. The definitions of N SG(N , K )∗ and the min and cmax norms yield

the assertion. �

Thus, the previous proposition says that Tsirelson’s problem is equivalent to check whether two

real Banach spaces coincide isometrically.

V. CONNES’ EMBEDDING PROBLEM EQUALS TSIRELSON’s PROBLEM

In this section, we will combine the insights from the previous sections and show that, in some

sense, both problems, Tsirelson’s and Connes’, are indeed equivalent. More specifically, we will

prove the following theorem:

Theorem 5: Let C∗(FN ) be the universal C*-algebra of the free group of order N, and let

N SG(N , K )∗ be the non-signaling operator system of order (N , K ). Then the following are equiv-

alent.

(1) C∗(FN )⊗minC∗(FN ) = C∗(FN )⊗max C∗(FN ) for all N ,

(2) N SG(N , K )∗⊗min N SG(N , K )∗ = N SG(N , K )∗⊗cmax N SG(N , K )∗ completely isometri-

cally for all N , K .

Remark 6: After this work was completed, we learned about the recent work of Kavruk et. al.24

The ideas developed there (for general operator systems) to state an “operator system version” of

Kirchberg’s conjecture closely resemble our strategy. In particular, the operator system Sn used in

theorem 9.14 is in some sense a “lifted version” of our operator system N SG(n, K )∗.
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Then, the first implication stated in Theorem 1 is immediately obtained from Theorem 5. Indeed,

we have:

Corollary 7: If Connes’ embedding problem is true, then Tsirelson’s problem has an affirmative

answer.

Proof: According to Theorem 5, a positive solution of Connes’ problem implies that

N SG(N , K )∗⊗min N SG(N , K )∗ and N SG(N , K )∗⊗cmax N SG(N , K )∗ are completely isometric.

In particular, they are isometric. �

In order to prove Theorem 5 we need to introduce some notation. We refer to Ref. 9, (Chapter 8)

for a more detailed explanation. Given a (discrete) group G, we consider the left regular representation

of G, λG : G → B(ℓ2(G)), defined by λG(s)(δt ) = δst . Then, we can define the reduced C∗-algebra

of G, C∗
λ(G), as the C*-algebra generated by λG(G). That is C∗

λ(G) = C∗(λG(G)) ⊂ B(ℓ2(G)).

In this work, we will be interested in the particular case G = Zn . Since it is an abelian group,

we have that C∗
λ(Zn) = ℓ∞(Ẑn) = ℓ∞(Zn) = ℓn

∞, where the identification between Ẑn and Zn

is via the Fourier Transform. Since abelian groups are amenable, we have C∗
λ(G) = C∗(G) (see

Section III for the definition of the universal C*-algebra of G, C∗(G)). Given two groups G1, G2

(resp. C∗-algebras A1,A2), we will denote by G1 ∗ G2 (resp. A1 ∗ A2) the free product group (resp.

C∗-algebra). It is well known that C∗(G1 ∗ G2) = C∗(G1) ∗ C∗(G2). Actually, this identification is

true for an arbitrary family of groups (G i )i∈I . Note that we have

C∗(∗i∈I Zn) = ∗i∈I C∗(Zn) = ∗i∈I ℓ
n
∞.

We will start by stating Connes’ embedding problem in terms of ∗i∈I ℓ
n
∞. Although the result is

certainly known to experts, we will prove it for the sake of completeness.

Lemma 8: C∗(FN )⊗minC∗(FN ) = C∗(FN )⊗max C∗(FN ) for all N iff for all N , K ∈ N the min-

imal and the maximal tensor norms coincide on the tensor product of ∗N
x=1ℓ

K
∞ with itself:

∗N
x=1ℓ

K
∞⊗min∗

N
x=1ℓ

K
∞ = ∗N

x=1ℓ
K
∞⊗max∗

N
x=1ℓ

K
∞ . (6)

Proof: First, we show that (6) implies

C∗(FN )⊗minC∗(FN ) = C∗(FN )⊗max C∗(FN ) .

Indeed, we observe that C∗(FN ) = ∗N C(T ). However, C(T ) is a commutative C*-algebra and it

admits a net �λ of completely positive unital maps converging pointwise to the identity. Each

of them admits a factorization �λ = vλuλ. Here uλ : C(T ) → ℓmλ
∞ and vλ : ℓmλ

∞ → C(T ) are both

completely positive unital maps (see Ref. 9). Recall that unital completely positive maps extend

to free products (see Refs. 25 and 26). Therefore, we deduce from our assumption that for every

z ∈ C∗(FN ) ⊗ C∗(FN ) and λ we have

‖(∗N �λ ⊗ ∗N �λ)(z)‖C∗(FN )⊗maxC∗(FN )

≤ ‖((∗N uλ) ⊗ (∗N uλ))(z)‖∗N
x=1ℓ

mλ
∞ ⊗max∗

N
x=1ℓ

mλ
∞

= ‖((∗N uλ) ⊗ (∗N uλ))(z)‖∗N
x=1ℓ

mλ
∞ ⊗min∗

N
x=1ℓ

mλ
∞

≤ ‖z‖C∗(FN )⊗minC∗(FN ).

It is easy to see that for tensors z =
∑

k ak ⊗ bk we have norm convergence along the net. By density

we obtain the assertion.

For the converse implication, recall that a unital C*-algebra A has the Local Lifting Property

(LLP) if for every C*-algebra B, any (closed two-side) ideal I ⊂ B, any ucp map u : A → B/I and

any finite dimensional subspace E ⊂ A, there is a complete contraction ũ : E → B that lifts u|E :

E → B/I . Note that ℓ∞ has the LLP. Furthermore, according to Ref. 27 ∗N
x=1ℓ

K
∞ has the LLP. Now,

according to Ref. 9, (Proposition 16.13), the QWEP conjecture implies that A ⊗min A = A ⊗max A

for every C*-algebra having the LLP. So, we conclude the proof. �
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The key point in the proof of Theorem 5 is Kasparov’s dilation Theorem. We refer to Ref. 28

(Chapter 6) for all missing details. Given a C*-algebra B, let us start with the C∗-module

HB = {(xn)n : xn ∈ B,
∑

n

x∗
n xn converges in B}.

Note that HB is a B right module with respect to (xn)b = (xnb)n .

A right module map T : HB → HB is called adjointable if there exists a linear map S : HB

→ HB such that

〈ξ1, T (ξ2)〉 = 〈S(ξ1), ξ2〉 for every ξ1, ξ2 ∈ HB,

where 〈(xn)n, (yn)n〉 =
∑

n x∗
n yn . Then,

L(HB) := {T : HB → HB |T adjointable right module map }

is again a C*-algebra. We refer to28 for L(HB) = M(K ⊗ B), where M(A) is the multiplier algebra

of a (non- unital) C*-algebra A and K = K (ℓ2) denotes the space of compact operators on ℓ2. If we

assume A ⊆ B(H ) for some Hilbert space, then T ∈ B(H ) belongs to M(A) if T a ∈ A and aT ∈ A

for all a ∈ A.

In our particular situation, the C*-algebra B will be unital. Then, it is easy to see that every

T ∈ M(K ⊗ B), is represented by a matrix T = [Ti, j ] with coefficients Ti, j ∈ B. It follows, in

particular, that

M(K ⊗ B) ⊆ B(ℓ2)⊗B ′′, (7)

where ⊗ denotes the von Neumann tensor product and B ′′ the bicommutant of the C*-algebra B.

Theorem 9:
28(Kasparov’s dilation Theorem). Let A and B be separable unital C∗- algebras

and let ρ : A → B ucp. Then, there exists a ∗-homomorphism π : A → M(K ⊗ B) such that ρ(a)

= π (a)11 = e11π (a)e11 for every a ∈ A.

Note that this statement is not exactly the same as Ref. 28, (Theorem 6.5). However, it can

be easily obtained from it. Indeed, for any ρ : A → B ucp, we can consider σ ◦ ρ : A → L(HB),

where σ : B →֒ L(HB) is the canonical embedding defined by σ (b) = 1 ⊗ b. Then, according to

Ref. 28, (Theorem 6.5), we obtain an ∗-homomorphism π : A → M2(L(HB)) such that 1 ⊗ ρ(a)

= π (a)11 = e1π (a)e1. By the explanation above, we can see ρ(a) = (e1 ⊗ f1)π (a)(e1 ⊗ f1), where

here ( fn)n denotes the canonical basis of ℓ2. Furthermore, as it is explained in Ref. 28, (p. 65), there

is a canonical identification M2(L(HB)) ≃ M(K ⊗ B). Therefore, we can see π : A → M(K ⊗ B)

and write (π (a))11 := e11π (a)e11, where we denote e11 ⊗ e11 the rank one projection obtained from

(e1 ⊗ f1) ⊗ (e1 ⊗ f1) by the previous identification.

With this at hand, we can prove the following proposition, which is a crucial point in this work.

Proposition 10: The space N SG(N , K )∗ embeds completely isometrically into the N-fold free

product of ℓK
∞ with itself via the map

ι : N SG(N , K )∗ →֒ ∗N
x=1ℓ

K
∞, (8)

defined by ι(ex,a) = πx (ea) for every x, a. Here, πi : ℓK
∞ →֒ ∗N

x=1ℓ
K
∞ denotes the natural embedding

in the position x = i .

Furthermore, the minimal (resp. the maximal commuting) tensor product of N SG(N , K )∗ with

itself embeds completely isometrically into the minimal (resp. the maximal) C*-tensor product of

∗N
x=1ℓ

K
∞ with itself via the map

ι ⊗ ι : N SG(N , K )∗⊗min N SG(N , K )∗ →֒ ∗N
x=1ℓ

K
∞⊗min∗

N
x=1ℓ

K
∞, (9)

ι ⊗ ι : N SG(N , K )∗⊗cmax N SG(N , K )∗ →֒ ∗N
x=1ℓ

K
∞⊗max∗

N
x=1ℓ

K
∞ . (10)
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With this at hand, and using Lemma 8, we immediately deduce the implication a) ⇒ b) in

Theorem 5.

Proof. It is very easy to see that the map ι : N SG(N , K )∗ →֒ ∗N
x=1ℓ

K
∞ is well defined. Actually,

by the very definition of N SG(N , K )∗ it follows that ι is completely positive and unital. Thus, it is

a completely contraction. Therefore, in order to prove (8) it suffices to show that each completely

positive unital map � from N SG(N , K )∗ to B(H) extends to a completely positive map from

∗N
x=1ℓ

K
∞ into B(H). By the definition of the operator system N SG(N , K )∗, each � is given by a set

of N completely positive maps �x : ℓK
∞ → B(H). Then, if we consider the separable C*-algebra

A ⊂ B(H) generated by the �x (ea)’s, we can apply Theorem 9 for every x to get a set of unital

∗-representations

πx : ℓK
∞ → M(K ⊗ A)

such that �x (ea) = (πx (ea))11 = e11πx (ea)e11.

Let π be the ∗-representation of ∗N
x=1ℓ

K
∞ which restricts to πx if we only consider the x th copy

of ℓK
∞. Then the fact that the projection e11 ⊗ e11 is independent of x , guarantees that the map

�̃(·) = e11π (·)e11 : ∗N
x=1ℓ

K
∞ → B(H)

is a completely positive unital extension of �.

To prove the second part of the proposition, note that the first embedding follows from the

injectivity of the minimal tensor product (see e.g. Ref. 23). On the other hand, the second inclusion

requires a more careful treatment. Consider a pair ϒ = ((�x )x , (�y)y) in the state space SH (N , K )

such that

[�x (ea), �y(eb)] = 0

holds for all x, a, y, b.

Let A be the separable C∗-algebra generated by the �x (ea)’s and B be the separable C*-algebra

generated by the �y(eb)’s. Since all these elements are self-adjoint we deduce that still [a, b] = 0

holds for elements a ∈ A′′ := NA ⊆ B(H), b ∈ B ′′ := NB ⊆ B(H).

For fixed x , we apply again Theorem 9 and find a representation

πx : ℓK
∞ → M(K ⊗ A)

such that �x (ea) = e11πx (ea)e11 for every a. According to (7),

M(K ⊗ A) ⊂ B(ℓ2)⊗̄NA

holds for the von Neumann algebra tensor product. Now call

π̃x : ℓK
∞ → B(ℓ2)⊗̄B(ℓ2)⊗̄NA, π̃x (ea) = 1 ⊗ πx (ea).

We proceed analogously for every y and define

σ̃y : ℓK
∞ → B(ℓ2)⊗̄B(ℓ2)⊗̄NB, σ̃y(eb) = flip ◦ (1 ⊗ πy(eb)) ◦ flip.

Here flip(T ⊗ S) = S ⊗ T makes sure that the extra B(ℓ2) part is put in the second copy.

Since elements in NA, NB ⊂ B(H) commute, we have [π̃x (ea), σ̃y(eb)] = 0 for all x, a, y, b.

Therefore, we can obtain representations

π1, π2 : ∗N
x=1ℓ

K
∞ → B(ℓ2)⊗̄B(ℓ2)⊗̄B(H)

with commuting range. This allows us to obtain a representation

π1 ⊗ π2 : ∗N
x=1ℓ

K
∞ ⊗max ∗N

x=1ℓ
K
∞ → B(ℓ2)⊗̄B(ℓ2)⊗̄B(H)

verifying π1 ⊗ π2(x ⊗ y) = π1(x)π2(y) for every x, y ∈ ∗N
x=1ℓ

K
∞.

Finally, by defining

ϒ̃(·) = (e11 ⊗ e11)((π1 ⊗ π2)(·))(e11 ⊗ e11)
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we obtain a completely positive unital map on ∗N
x=1ℓ

K
∞ ⊗max ∗N

x=1ℓ
K
∞ which extends the initial state

ϒ on N SG(N , K )∗⊗max N SG(N , K )∗. This concludes the proof. �

Remark 11: (projective measurements and POVMs): Since projective measurements correspond

to families of representations πx : ℓK
∞ → B(H ), we get as a consequence of Proposition 10 that the

sets of tensor and commutative quantum correlations Q and Q′, defined in Section II, are the same

whether one considers only projective measurements or also POVMs.

Remark 12: It is also interesting that we have proved a stronger result than Proposition 10.

Indeed, we have shown that all maps in the proposition define isometric embeddings in the category

of operator systems. In particular, this means that the natural order on the space N SG(N , K )∗

(and on the corresponding tensor product) coincides with the natural order on the corresponding

C*-algebras. In21 the authors showed that this order is very important in the context of violation of

Bell inequalities.

We will conclude the paper by showing the implication b) ⇒ a) in Theorem 5. Note that if

the implication a) ⇒ b) is read as: Connes’ embedding problem implies Tsirelson’s problem, the

converse implication can be understood as: A positive answer of Tsirelson’s problem when we

consider matrix coefficients implies that the QWEP conjecture is true. Implication b) ⇒ a) follows

from the next lemma joint with Lemma 8. The proof is based on a trick of Pisier which can be found

in Ref. 27.

Lemma 13: The identity map

id : N SG(N , K )∗ ⊗max N SG(N , K )∗ → N SG(N , K )∗ ⊗min N SG(N , K )∗

is completely isometric if and only if

∗N
i=1ℓ

K
∞ ⊗max ∗N

i=1ℓ
K
∞ = ∗N

i=1ℓ
K
∞ ⊗min ∗N

i=1ℓ
K
∞ .

Proof: Let {Uik} be a spanning set of unitary operators in N SG(N , K )∗. Then {Uik} clearly gen-

erates the C*-algebra ∗N
x=1ℓ

K
∞. We will identify the elements U A

ik ∈ N SG(N , K )∗⊗min N SG(N , K )∗

with the elements Uik ⊗ e and U B
ik ∈ N SG(N , K )∗⊗min N SG(N , K )∗ with the elements e ⊗ Uik .

Then the set {U
A,B

ik } generates the C*-algebra ∗N
x=1ℓ

K
∞⊗min∗

N
x=1ℓ

K
∞. Combining the assumption with

the conclusion of Proposition 10, we get a completely positive unital map

T : N SG(N , K )∗⊗min N SG(N , K )∗ → ∗N
x=1ℓ

K
∞⊗max∗

N
x=1ℓ

K
∞.

As a consequence of Proposition 10, we can assume that T (U
A,B

ik ) is a unitary operator in

∗N
x=1ℓ

K
∞⊗max∗

N
x=1ℓ

K
∞. Since T is a completely positive and unital map, it is necessarily completely

bounded. Thus, it extends to a (completely positive unital) *-representation T̂ (see Ref. 27),

T̂ : ∗N
x=1ℓ

K
∞⊗min∗

N
x=1ℓ

K
∞ → ∗N

x=1ℓ
K
∞⊗max∗

N
x=1ℓ

K
∞. �

Let n ∈ N. Then Mn(N SG(N , K )∗⊗min N SG(N , K )∗) is also an operator system, and hence it

suffices to check the complete isometry for self-adjoint elements (or equivalently it suffices to check

for positivity). This leads naturally to the matrix-valued version of Tsirelson’s problem. Indeed, a

state for Mn(N SG(N , K )∗⊗max N SG(N , K )∗) is given by a commuting representation

[
Ea

x , Fb
y

]
= 0

on a Hilbert space H and a family (ξi )
n
i=1 with

∑n
i=1 ‖ξi‖

2
H = 1. Then, we find the matrix of

coefficients

ωi, j,x,y,a,b = (ξi , Ea
x Fb

y ξ j ) .
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Therefore, the first condition in Lemma 13 asks whether every such matrix-valued probability ω lies

in the set

Smin
n (N , K ) = {(ξi , Ea

x ⊗ Fb
y ξ j ) : ξi ∈ H1 ⊗ H2,

∑

i

‖ξ‖2
H1⊗H2

= 1,

∑

x

Ea
x = 1H1

,
∑

y

Fb
y = 1H2

} .

VI. SUMMARY

We have shown a close connection between Connes’ embedding and Tsirelon’s problem,

relating in this way a major open problem in operator algebras with a basic foundational problem

in quantum mechanics. The connection is yet another consequence of the use of operator space

techniques in the foundations of quantum mechanics, following the steps already started in

Refs. 6,21,29–31.

After this work was completed, we learned that one direction (Connes ⇒ Tsirelson) was

independently obtained by Ref. 32.
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