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The visualization of brain connectivity becomes progressively more challenging as analytic

and computational advances begin to facilitate connexel-wise analyses, which include

all connections between pairs of voxels. Drawing full connectivity graphs can result in

depictions that, rather than illustrating connectivity patterns in more detail, obfuscate

patterns owing to the data density. In an effort to expand the possibilities for visualization,

we describe two approaches for presenting connexels: edge-bundling, which clarifies

structure by grouping geometrically similar connections; and, connectivity glyphs, which

depict a condensed connectivity map at each point on the cortical surface. These

approaches can be applied in the native brain space, facilitating interpretation of the

relation of connexels to brain anatomy. The tools have been implemented as part of

brainGL, an extensive open-source software for the interactive exploration of structural

and functional brain data.

Keywords: functional connectivity, connectome, visualization software, neuroanatomy, magnetic resonance

imaging

1. INTRODUCTION

The term connexel was first introduced to describe the basic

unit in brain connectomics—the relationship between two three-

dimensional (3D) positions (Worsley et al., 1998). As pixels are

points in a 2D image, and voxels are points in 3D space, the con-

nection between two voxels can be described as a single point

in a 6D space. Connexels are modality-independent, as they

can describe the relationship between pairs of voxels as assessed

using any data type. However, they are particularly well suited

for “pathless” methodologies that solely describe the weight of

a connection between two points. This includes functional con-

nectivity using functional magnetic resonance imaging (fMRI)

data (Biswal et al., 1995) and magnetoencephalography (MEG)

(Brookes et al., 2011) measurements, similarity matrices of prob-

abilistic tractography (Johansen-Berg et al., 2004), and cortical

thickness-based covariance (Lerch et al., 2006; Alexander-Bloch

et al., 2013; Bernhardt et al., 2013), where the connexel captures

all known information. The resulting data are still highly com-

plex, since connectivity can be calculated between every pair of

gray matter locations in the brain. This complexity makes their

visualization and exploration challenging.

While interactive software for the visualization of structural

connectivity is well developed, the visualization of pathless con-

nectivity remains largely bound to technical standards developed

within the task-based fMRI literature (Margulies et al., 2013), dras-

tically reducing the complexity of the data during the visualization

process. For example, seed-based approaches (Biswal et al., 1995)

show the connectivity from a single region-of-interest. Similarly,

principle and independent component analysis (PCA/ICA)-based

methods (Beckmann et al., 2005; Damoiseaux et al., 2006; De Luca

et al., 2006) reduce the data to a set of large-scale networks, which

are usually displayed in separate images.

While graph theory approaches have been integrated into brain

imaging methods (Bullmore and Sporns, 2009; Sporns, 2013) with

a continuously developing toolbox of analytic techniques (Fornito

et al., 2013), the current methods for visualization of connectivity

fail to adequately represent the high dimensionality and resolution

of human brain data (Margulies et al., 2013). Attempts have

been made to visualize functional connectivity data by presenting

a global view of brain connectivity (McGonigle et al., 2011;

Irimia et al., 2012; van Dixhoorn et al., 2012; Zuo et al., 2012).

However, in these cases the brain is mapped to an abstract layout

that changes spatial relations and separates network structure

from the underlying anatomy. Although tools have emerged to

address the specific challenges of embedding network graphs in the

cerebral topography (e.g., BrainNet Viewer, Xia et al., 2013), such

approaches require the data to be reduced to a proportionally

small set of regions-of-interest, which are then depicted using

“ball-and-stick” methods (e.g., Worsley et al., 2005; Xia et al.,

2013). These methods do not offer the possibility of depicting

connexels in the brain’s native 3D space at full resolution, since

simply presenting all connexels as straight line segments renders

the image cluttered and unreadable.

Interactive software alleviates the drawbacks of static visu-

alizations by offering real-time display while manipulating a

seed region (Cox, 1996; van Dixhoorn et al., 2010; Böttger

et al., 2011; Eklund et al., 2011; Saad and Reynolds, 2012). The

visualization tool BrainCove (van Dixhoorn et al., 2012) uses
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multiple synchronized views with different levels of abstraction

and selection techniques. However, such software still requires the

user to iteratively focus on limited aspects of the data at any given

moment, much like exploring a dark room with a searchlight.

The currently available software for the visualization of con-

nexel data provides a multitude of sophisticated tools for the

visualization of connectivity. We refer to (Margulies et al., 2013)

for a review of visualization techniques for connectivity, and

to (Xia et al., 2013) for a compilation of software for graph-

based connectivity visualization. In Table 1, we have compiled an

overview of software tools relevant for the visualization of con-

nexels. None of these tools offer a way to visualize the data at

full resolution in the native anatomical space without assump-

tions that reduce the data, either in resolution, or because it

is only possible to show connectivity from one point or region

at a time. Rather than reduce the connectivity information

to accommodate limitations in the space of visualization, we

propose two methods specific to this technical challenge that

emphasize features of the connexel-space in relation to cortical

anatomy.

1.1. EDGE-BUNDLING

A technique first applied to abstract hierarchical data such as call

graphs for software systems (Holten, 2006) has recently shown

promise for clarifying bundles of connexels by grouping geomet-

rically similar edges (Bottger et al., 2013). Placing connections at

the focus of the image produces an overview of network structure

in the anatomical space, but also reduces the ability to assess its

relation to cortical anatomy.

1.2. CONNECTIVITY GLYPHS

In order to clarify the anatomical position of the connections’

termination points, we present for the first time the connectivity

glyph, a small iconic display of multivariate connexel information

at each location in the rendering.

We describe our integration of edge-bundling and connectiv-

ity glyphs in the open-source software brainGL1. Initially designed

for the interactive exploration of structural connectivity, the

software provides a framework for the manipulation and rapid

interactive display of complex brain data using graphics hard-

ware shaders. For the purposes of illustrating the visualization

and exploratory applications of edge-bundling and connectivity

glyphs, we present examples using functional connectivity data.

2. METHODS

2.1. PROGRAMMING ENVIRONMENT

brainGL is implemented in C++, and uses the portable Qt

framework2, which provides graphical user interface (GUI)

elements, data structures, and OpenGL 3 for hardware-

accelerated rendering. Other external dependencies include

1code.google.com/p/braingl
2qt.digia.com
3www.opengl.org

Table 1 | Overview of software for connexel visualization.

Software Website Description Advantages Shortcomings

Fubraconnex code.google.com/p/

fubraconnex

C++-based functional

connectivity viewer

Multiple abstract and anatomical

layouts

Restricted to relatively low

resolution

Connectome

viewer

cmtk.org/viewer Python-based connectivity

visualization

Ball-and-stick graph visualization

of connectivity

Restricted to relatively low

resolution

Connectome

workbench

www.humanconnectome.org/

connectome

Connectivity visualization

based on Caret

Fully interactive anatomical

surface visualization with full

resolution

Only one seed point at a

time

Brainnet viewer www.nitrc.org/projects/bnv Matlab toolbox for brain

network visualization

Ball-and-stick graph visualization

of connectivity

Restricted to relatively low

resolution

Visualconnectome code.google.com/p/visual

connectome

Matlab toolbox for brain

network analysis and

visualization

Ball-and-stick graph visualization

of connectivity

Restricted to relatively low

resolution

MNET neuroimage.yonsei.ac.kr/mnet Matlab toolbox for brain

network analysis and

visualization

Ball-and-stick graph visualization

of connectivity, hierarchical

edge bundling, abstract and

anatomical views

Edge-bundling restricted to

abstract circular layout,

relatively low resolution

Braincove bitbucket.org/avandixhoorn/

braincove/src

C++-based voxel-wise

functional connectivity

visualization

Volume rendered functional

connectivity networks in full

resolution

Only one seed point at a

time

SUMA afni.nimh.nih.gov/afni/suma C++-based surface

connectivity visualization

Fully interactive anatomical

surface visualization with full

resolution

Only one seed point at a

time

The table includes existing software for the display of pathless connectivity, and their major advantages and shortcomings with respect to the aims of the current

article.
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GLEW4, Visualization Toolkit (VTK) 5 and boost 6. The software

requires advanced features from OpenGL (version >3.3) for the

efficient display of complex geometry using graphics hardware,

and runs on Linux, Windows and MacOS platforms.

2.2. INSTALLATION AND USE

The installation and use of the software is described on the doc-

umentation page at: code.google.com/p/braingl/wiki/Main. We

provide a precompiled binary for Windows. For Linux-based

environments, the source code has to be compiled as described

at: code.google.com/p/braingl/wiki/Installation. The compilation

from source code requires several external libraries to be installed:

boost, Qt4, VTK and GLEW. The libraries can be installed from

the terminal using a package manager such as apt-get or the

software center GUI in ubuntu, by searching for the following

libraries: libboost, libglew, libqt4, libvtk5. The libraries and the

development files (packages ending with -dev) are necessary. A

further prerequisite is the installation of a cmake-based build

system with a C++ compiler.

We also provide tutorials for the interactive use of the soft-

ware for the viewing of connectivity glyphs (code.google.com/p/

braingl/wiki/GlyphTutorial), and bundling of connections (code.

google.com/p/braingl/wiki/ConnectionBundling).

2.3. DATA FORMATS

Displaying connexel data in brainGL requires (1) an anatomical

coordinate space on which to present (2) connectivity information.

Connectivity information can be created from volume time-series

or group morphological data, or loaded from binary files that rep-

resent connectivity matrices. Graph representations in 3D space

can either be derived from the connectivity data, or loaded using

binary (.fib) or ascii (.cxls) files.

2.3.1. Anatomical coordinate space

A crucial feature of brainGL is the visualization of high resolution

connectivity data in relation to the underlying anatomy. The coor-

dinate system used in the software is established by the first input

volume, which is loaded from a NIFTI-format file 7. The header

information from loaded volumes is used to enable the display

of volumes with differing voxel sizes. Note that the volumes have

to be aligned, since any rotational component of the transfor-

mations in their headers is ignored. In addition, cortical surface

meshes, as created by software packages such as FreeSurfer8, can

be loaded as FreeSurfer ASCII-files (.asc) or VTK-files (.vtk).

2.3.2. Surface connectivity matrices

The display of surface connectivity glyphs in brainGL requires

a surface representation (with potentially multiple spatial repre-

sentations, for example pial, inflated or spherical representation),

and a full connectivity matrix between its nodes. It is also possible

to display connectivity glyphs between arbitrary spatial positions,

4glew.sourceforge.net
5www.vtk.org
6www.boost.org
7nifti.nimh.nih.gov
8surfer.nmr.mgh.harvard.edu

for example on slices through a volume, by loading a list of

connexels as described in section 2.3.4.

The required data can be obtained from a four-dimensional

NIFTI-file that contains a set of volumes, either over time or

across individuals. Correlation between the series of values in the

fourth dimension of a pair of voxels can then be used to establish

connectivity measures. Such measures can be based on the cor-

relation of time-series from fMRI measurements, or group-level

covariance of anatomical morphometry data. After loading the

4D-volume and a registered surface mesh, a connectivity matrix

can be created using brainGL by sampling the volume data to the

surface nodes.

Alternatively, it is possible to directly load such data using what

we call a glyphset file structure, which consists of three parts:

• A set of surfaces in FreeSurfer ASCII format described in a text

file which we call a set file

• A binary file with the full square symmetric connectivity

matrix, containing the connectivity values between all pairs of

nodes on the FreeSurfer surfaces

• A file in ASCII format containing the filename of the set file and

the connectivity matrix—this text file also specifies the low-

est connectivity value included in the glyph visualizations (see

section 2.3.3), and has the file ending .glyphset.

2.3.3. Thresholding

While we do not reduce the resolution of the connectivity data

for display, we enable thresholding for two reasons: (1) the total

number of connexels in a full connectivity matrix can be too large

for display on current graphics hardware for high data resolutions

and (2) thresholding can also limit the influence of less significant

connections on the resulting visualizations. Random field the-

ory (Worsley et al., 1998), network-based statistic (NBS) (Zalesky

et al., 2010) and spatial pairwise clustering (SPC) (Zalesky et al.,

2012b) have been proposed to find a statistical threshold with

controlled error rates. Several accepted methods are widely used

for voxel-wise analyses (Nichols and Hayasaka, 2003). However,

the calculation of an optimal threshold with the right mixture

of specificity and sensitivity for connexels is an open research

question.

For these reasons, we have adopted the following strategy in

order to include as much information as is computationally fea-

sible. Starting with the full weighted connectivity matrix as an

input, only a low minimum threshold at load-time is applied to

make fluent interaction with the glyph visualizations feasible.

Using subsequent interactive thresholding during visualization, it

is then possible to set minimum connectivity values and a mini-

mum distance between connexel endpoints. While this does not

resolve the problems of statistical inference, it is beneficial for the

exploration of datasets without additional assumptions.

The edge-bundling algorithm is more computationally

restricted owing to: (1) the use of binary graphs in the cur-

rent implementation, and (2) the complexity of the method,

which makes it applicable only for a smaller number of connexels

than those rendered as connectivity glyphs. While an adaption to

weighted graphs can potentially enable bundling for full connec-

tivity graphs in the future, our current implementation requires
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relatively high thresholds in order to binarize the data and reduce

its complexity prior to application of the edge-bundling method.

2.3.4. Connexel data

Ultimately, our methods operate on connexel data. As described

above, such data can be generated from full connectivity matrices

in brainGL through thresholding. Independently from surfaces,

it is possible to directly load connexel graphs for edge-bundling.

Binary graphs can be loaded in the shape of a .fib file, a binary

representation in VTK format normally used for the representa-

tion of fiber tracking results. To be interpreted as connexels, the

.fib files may contain only lines with two points. Results of the

edge-bundling process can be saved in the .fib format, which is

supported by other software for the visualization of structural

data such as DSI Studio9 and TrackVis10. brainGL also supports

loading of weighted connexel graphs using a plain text file con-

taining a tupel (px py pz qx qy qz c) of seven values on each line,

separated by whitespace. px, py and pz are the 3D coordinates of

one termination point P of the described connexel, qx, qy and qz

the coordinates of the other termination point Q, and c is the con-

nectivity between the two points. An example of a file containing

three weighted connexels looks as follows:

125.3 12.0 31.1 145.2 34.3 25.6 0.61

146.1 25.9 54.2 135.3 24.4 25.2 0.12

156.2 32.8 22.7 154.3 34.5 45.5 0.76

2.3.5. Scene configuration files and screenshots

The configuration of loaded datasets and their properties can be

saved and loaded using scene files (.scn). Screenshots can be cre-

ated using offscreen bitmap images with higher resolution than

the screen (approximately 160002 pixels, depending on the graph-

ics card of the computer). The software also contains a flexible

scripting system that allows for the animation of parameters and

views through a series of screenshots.

2.4. REAL-TIME DISPLAY OF SEED-BASED CONNECTIVITY

brainGL allows for interactive seed-point exploration of the con-

nectivity on a cortical surface. After loading connectivity data,

right-clicking on the surface displays connectivity values from

that point. The colormap is user-defined and can be customized.

The connectivity values are updated in real-time as the user selects

or drags the cursor between nodes. This is similar to other real-

time seed-point tools for the exploration of connectivity data

(Cox, 1996; van Dixhoorn et al., 2010; Böttger et al., 2011; Saad

and Reynolds, 2012).

2.5. EDGE-BUNDLING

As depicted in Figure 1, visualization of high-resolution con-

nexel data with straight lines leads to a cluttered image in which

the structure of the underlying data is not apparent. Edge-

bundling algorithms were initially developed to improve the

display of complex hierarchical graphs by grouping edges into

bundles (Holten, 2006). Algorithms that can operate on arbitrary

9dsi-studio.labsolver.org
10www.trackvis.org

FIGURE 1 | Connectivity data can be described as connexels,

six-dimensional pairs of three-dimensional spatial positions, and an

associated connection strength. As in this example of functional

connectivity, such data can be represented with the node positions of a

cortical surface (Top left), and a matrix of connection strengths (Top right).

Connexels can be visualized with straight lines connecting each pair of

connected nodes, but the structure of the data is unclear when a large

number of connexels are included (Bottom).

graphs have been introduced (Cui et al., 2008; Holten and van

Wijk, 2009; Lambert et al., 2010; Telea and Ersoy, 2010; Ersoy

et al., 2011; Gansner et al., 2011; Hurter et al., 2012) and used

for three-dimensional data (Lambert et al., 2010). Our method

for the bundling of connexels is inspired by Holten and van

Wijk (2009) and Hurter et al. (2012). While Holten and van

Wijk (2009) offer an algorithm that is extendable to three dimen-

sions in a straightforward manner, it depends on several arbitrary

parameters, and a numerical equilibrium of forces. This makes

the results differ dramatically with changing data. Hurter et al.

(2012) describe an algorithm that is numerically stable and inde-

pendent from the density of the data. However, the sampling of

the density contained in their method makes the extension to

three-dimensional space infeasible. Our algorithm is described

in more detail in Bottger et al. (2013), which shows that bun-

dles with very different density bundle evenly with our mean-shift

edge bundling.

The input is a set of binarized connexels, which can be derived

from interactive exploration of weighted connectivity data, or

loaded from a file as previously described in section 2.3.4. Next,

a measure of similarity, termed compatibility, is calculated. The

compatibility is a product of four geometrical criteria ranging

from 1 for connexels with identical termination points to 0 for

maximal dissimilarity. Following Holten and van Wijk (2009), for

a connexel with termination points P and Q, these criteria are:

• Angle compatibility

Ca(P, Q) = | cos(α)|

with α : angle between the connexels
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• Scale compatibility

Cs(P, Q) =
2

lavg · min (|P|, |Q|) + max (|P|, |Q|) /lavg

with lavg : |P|+|Q|
2

• Position compatibility

Cp(P, Q) =
lavg

lavg + ||Pm − Qm||

with Pm, Qm : midpoints of connexels P and Q

• Visibility compatibility

Cv(P, Q) = min(V(P, Q), V(Q, P))

with V(P, Q) : max
(

1 − 2||Pm−Im||
||I0−I1|| , 0

)

and Im : midpoint of

intersection points I0 and I1

A diagram of the different measures is shown in Figure 2. The

overall compatibility Ce is defined as:

Ce (P, Q) = Ca (P, Q) · Cs (P, Q) · Cp (P, Q) · Cv (P, Q)

The edges representing the connexels are then iteratively subdi-

vided. The subdivision points with a compatibility value above

a compatibility threshold cthr are moved toward each other.

The termination points remain fixed in their position. We use

a scheme of 10 cycles consisting of 10 − c iterations, with c the

number of the current cycle. We add equally spaced subdivision

points along the edges between cycles by setting the number of

segments to 1.3c.

To calculate the shifts of the subdivision points, we use

the mean-shift algorithm (Fukunaga and Hostetler, 1975). This

method estimates the density of points in the neighborhood of

the subdivision points using a Gaussian kernel with a fixed radius

r. Points are then iteratively moved toward areas of higher den-

sity by shifting them to the weighted average of all points in that

neighborhood.

The bundling process visually groups compatible connex-

els into bundles, which share screen space in their midsection.

This reduces the clutter inherent in the original visualization

(Figure 2). We have shown that the combination of the concept of

compatibility in connection with density estimation yields a sta-

ble bundling algorithm for connexel visualization (Bottger et al.,

2013). The bundling results are largely independent from the

data, and the use of the same parameters (cthr = 0.8, r = 5 mm)

yields convincing results for diverse datasets.

While edge-bundles improve the visual structure of the con-

nections in a complex graph, the emphasis on the geometry

of these connections makes it difficult to understand the spa-

tial position of the termination points on the cortical surface.

Edge-bundling also introduces ambiguity in the precise connec-

tion relations of the nodes because the curves run on top of each

other in their midsections. The result is a visualization that clari-

fies the structure of dense bundles, but lacks a clear display of the

connectivity patterns at the node-level.

2.6. CONNECTIVITY GLYPHS

The use of glyphs has previously been applied to diffusion

weighted imaging (DWI) data (e.g., Basser et al., 1994; Tuch,

2004; Schultz and Kindlmann, 2010). For this application, glyphs

encode the local diffusivity. However, the visualization of DWI

data is fundamentally different from our pathless connectivity

glyphs. Diffusion glyphs have the purpose of conveying the prob-

ability of anatomical paths at a given point in white matter, while

our pathless connectivity glyphs are used to visualize connectivity

patterns on the cortical surface.

We apply the use of glyphs to functional connectivity data by

visualizing connectivity profiles in the form of glyphs at each con-

nexel termination point on the cortical surface (node). Each glyph

is a small visual summary of all connections from that node to the

rest of the brain with a wide range of visualization parameters that

can be manipulated by the user. This allows for the visualization

of differences in connexels, either across large cortical areas, or at

a local level between neighboring glyphs.

For the input of reduced data, the connectivity matrix is

thresholded and binarized, typically resulting in several million

FIGURE 2 | (A) Edge-bundling groups together geometrically similar

connexels. (B) First, a measure of similarity (compatibility) between connexels

is calculated from four geometrical criteria: length, angle, distance, and overlap

(based on Holten and van Wijk, 2009). (C) Mean-shift edge-bundling then

iteratively subdivides the connexels, and shifts compatible subdivision points

toward their common mean. (D) Using a mean-shift has the advantage of

bundling connexels with different density equally, and makes our method

applicable to different datasets with the same default parameters.
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connexels. Also, short connections below an interactively deter-

mined minimum length can be removed. To create each glyph,

one point, line, or triangle for every remaining connexel is drawn.

The orientation or strength of the connexel is used to derive the

color of these display primitives.

For correct occlusion with the folded cortical surface, the

glyphs are offset by one glyph radius in the camera viewing

direction since otherwise the glyphs would appear mostly behind

the cortical surface. The pie chart glyphs (described below) are

further offset depending on their size, so that smaller pies are

displayed on top of larger pies for multiple datasets.

2.6.1. Glyph types

The user can choose between five different glyph types, which

differ in the way the colored display primitives are spatially dis-

tributed. By representing full connectivity profiles in the very

limited space of each node, each glyph type emphasizes various

aspects of compactness, adherence to anatomy, or differences in

connectivity between neighbors.

• Point glyphs: For each connection, we render a point g:

g = pg + s ·
(

pd − qd

)

pg is the position of one termination point in the space that is

used to render the underlying surface. g is shifted toward the

other termination point by adding a three-dimensional offset.

The offset is determined by scaling the relative position of the

connected node using a scaling factor s.

The result is a glyph on each node, consisting of points

representing each connection from that node, and placing an

emphasis on spatial information. We keep the spatial represen-

tations used for geometric offset (pd and qd), color calculation,

and glyph position (pg) independent. This makes it possible,

for example, to draw glyphs shaped like the pial surface on the

inflated surface while using the spherical representation to cal-

culate the color. Additionally, it is possible to rotate the glyphs

by three arbitrary angles around the principal axes. This allows

for increasing the visibility of connected areas on the back of

the glyph, which may otherwise be obscured.

• Vector glyphs: To better indicate the direction of connec-

tions, a line is drawn between each of the above mentioned

points and the node position. This type of glyph representa-

tion emphasizes long-range connections (Figure 3) and makes

it easy to identify changes in such connectivity between neigh-

boring glyphs. The relative size of the point and vector glyphs

is determined by the scaling factor s, which can be interactively

adjusted to limit overlap with neighboring glyphs.

• Pie chart glyphs: To emphasize the distribution of orientations,

each connection is represented through rendering of a trian-

gular section in a small pie chart. The connections from each

node are sorted according to the hue of their associated orien-

tation colors (grouping connections in a similar direction) or

connectivity value. This places the overall emphasis on color,

and makes it possible to identify large cortical areas with strong

connectivity in a certain direction, or with a certain distribu-

tion of connectivity values. During interactive manipulation of

the viewpoint, the pie charts’ orientations change so that they

always face the viewer.

For the pie charts, the radius r is determined by interpo-

lating between the two following extreme cases: Setting the

radius to ra ∝
√

n, with n being the number of connections,

each connection is represented by an equally large area on

the screen. The number of above-threshold connections from

nodes can differ. This can lead to weakly connected nodes being

very small, or strongly connected nodes overlapping with their

neighbors. Using a constant radius rn emphasizes the differ-

ences in ratio of different connections, but loses the valuable

information about how connected a node is. We therefore

allow for interactive interpolation between a constant radius

and a radius proportional to the number of connected nodes

by manipulating a parameter i. Afterwards, the radius r is

calculated as r = i · rn + (1 − i) · ra (Figure 4).

FIGURE 3 | Functional connectivity is calculated between each pair of

nodes on a set of cortical surface representations, and thresholding

yields a set of connections, here colored by orientation. The colors and

geometry of the connections are then used to calculate diverse glyph

representations of the connectivity profile at each node. The vector and

point glyph geometry is influenced by the choice of surface on a spectrum

from the anatomically determined pial geometry, to the spherical

representation. Drawing points diminishes overdraw, while drawing vectors

emphasizes long-range connections. After sorting the colors by their hue,

the pie charts emphasize the ratio of connections with different

orientations.

FIGURE 4 | The size of the pie charts is linearly interpolated between

conveying the number of connected nodes (Left) and a constant radius

(Right).
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• Anatomical background glyphs: The simplified glyphs are very

efficient to render, and allow for a quick overview of whole-

brain connectivity at interactive frame rates. However, it is

difficult to see which precise anatomical areas contribute to

the visible changes in connectivity between functional areas.

To enable the investigation of such changes, anatomical back-

ground glyphs provide a complete depiction of the anatomical

surface that scales and moves with the glyphs. Since render-

ing such a background for all nodes can easily overburden

the graphics hardware, it is possible to limit the display of

anatomical backgrounds to a specified area-of-interest. It is

also possible to display color-coded connectivity maps on the

anatomical background glyphs (Figure 5).

• Difference glyphs: To aid in the identification of transitions

between adjacent cortical areas, the neighbor information

inherent in the geometrical surface data is used to render dif-

ference glyphs. One glyph is created for each side of every

triangle in the surface mesh, i.e., one glyph at the midpoint

of each set of neighboring nodes. These glyphs display the dif-

ferences between the connectivity profiles of the two nodes at

the endpoints of the respective edge (Figure 6). The unthresh-

olded connectivity values for each connexel are Fisher’s r-to-z

transformed and subtracted, and the absolute values of the

differences are displayed after thresholding with the same

methods previously described.

2.6.2. Color

To emphasize different aspects of the available connectivity infor-

mation, the application of two color schemes to the glyphs is

possible (Figure 7):

• Orientation: To distinguish connections to different parts of

the brain, colors can be assigned according to the orientation

of each connection, similar to the standard scheme used for

the visualization of DTI data (Douek et al., 1991). For each

connected node, the connection vector is normalized, and the

absolute value of the x, y and z components is used as red, green

and blue, respectively. Colors can be assigned according to the

orientation in a surface representation (i.e., pial, inflated, or

sphere) independently from the placement of the glyphs or the

calculation of the offsets.

• Value: To support comparison with connectivity value maps

and provide additional information regarding the strength of

connections, we assign colors to the display primitives using

the same arbitrary color maps as for the seed-based real-time

connectivity exploration (section 2.4). For the figures in this

FIGURE 5 | After painting an area of interest (Left), anatomical background glyphs for an area-of-interest can be displayed. They can either show

color-mapped values on their surface (Top right), or serve to support the simplified glyphs (Bottom right).

FIGURE 6 | Difference glyphs show the boundaries of the primary visual cortex (Left). The triangle mesh is overlaid to illustrate the placement of the

difference glyphs in the middle of each triangle edge in order to show the difference in connectivity profile between two adjacent mesh nodes.
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paper, we use an isoluminant green-to-red opponent-color

scale, which is considered most appropriate for the display of

values on a shaded surface (Borland and Taylor, 2007).

As an alternative to interactive thresholding, we enable manipula-

tion of the transparency, or alpha value, of the display primitives.

Display points can thus become gradually more transparent with

smaller connectivity values (Figure 8).

3. RESULTS

This section describes the results of the implementation of

connectivity glyphs and edge-bundling in brainGL: After an

introduction of the user interface, we present example applica-

tions for the visualization of functional connectivity and experi-

ences regarding the runtimes and interactiveness of the resulting

visualizations.

3.1. USER INTERFACE

The graphical user interface of brainGL is divided into several

views, which can be freely arranged using the intuitive layout

mechanisms of the GUI library. A typical configuration is shown

in Figure 9. The loaded datasets are displayed in the dataset

list, which also allows control over the visibility of the different

datasets.

The main views in brainGL are 3D renderings that support the

interactive exploration of the data with standard techniques such

as zooming, panning, and rotation. In addition to orthographic

views, the software provides a simulated central perspective.

Two coupled views with a synchronized selection cursor allow

FIGURE 7 | Thresholded connectivity for an example point glyph,

represented with different coloring options: the orientation of the

connexel (Left) or the associated connectivity value (Right).

FIGURE 8 | Unthresholded (Left), thresholded (Middle) and transparent

(Right) point glyphs. Thresholding the glyphs leads to characteristic

shapes, which also work well when minimized. Drawing glyphs with alpha

blending makes it possible to perceive different connectivity values.

for multiple flexible application workflows. For example, while

zoomed in to explore a single glyph visualization in detail, the

second view can be used to gain an overview of where the selected

glyph lies in the anatomical context (Figure 10).

Global parameters can either be shared between views or

adjusted to different values. Owing to memory and performance

limitations, glyph parameters are restricted to only one set of

parameters for both views. Interaction with datasets in brainGL

uses two mechanisms:

• Property panels: Properties of the selected dataset in the dataset

list are accessible through property panels, which allow for

manipulation of elementary data-types influencing the render-

ings. Each of these data-types is represented by a widget, for

example, a scrollbar for float values. The glyph property panel

(Figure 9, left) allows the user to influence the rendering of

the connectivity glyphs. Most of the properties result in real-

time feedback during a change. Only the selection boxes for the

manipulation of the geometry and color require a recalculation

of the large arrays of underlying display primitives. Changing

these properties results in a delay before the resulting visualiza-

tion can be explored. Global properties, such as the positioning

of triplanar volume slices and colormaps used for the display

of scalar information, can be customized in separate property

panels.

• Toolbars: Operations on the datasets can be initiated from

dataset-specific buttons that appear next to the standard

toolbar depending on the type of data that is currently selected.

The connectivity dataset toolbar features a button that allows

for the creation of a dataset of connexels using the currently

selected parameters (threshold, minimum length, geometry).

Alternatively, connexels can be loaded from a file and then

edge-bundled with a button in the connexel-dataset toolbar

(using the algorithm described in section 2.5). Depending

on the number of connexels in the dataset, this process may

require long computation times, during which brainGL dis-

plays a progress bar. The bundles can then be explored in

brainGL, or exported to other software for rendering.

3.2. APPLICATION EXAMPLES

3.2.1. Example datasets

The example dataset for connexel visualization is derived from

functional connectivity as calculated from the following resting-

state fMRI data. 65 participants (39 females, 26 males) between

the ages of 11 and 83 years (mean age = 40.6 years, stan-

dard deviation = 19.6 years) from the enhanced Nathan Kline

Institute–Rockland Sample11 were included. The datasets for each

subject consisted of an anatomical scan, and fMRI measurements

during rest.

The fMRI scans were recorded with the following parameters:

TR = 645 ms, voxel dimensions 3 mm isotropic, 900 volumes.

The preprocessing steps included: (1) discarding the first four EPI

volumes from each resting-state scan, (2) motion correction, (3)

slicetime correction, (4) time series despiking, (5) 4D mean-based

11http://fcon_1000.projects.nitrc.org/indi/enhanced/
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FIGURE 9 | The user interface is divided into a list of loaded datasets, three-dimensional views of the data, as well as global and dataset-specific

properties. Depending on which data type is currently selected, different buttons in the toolbar are made available.

intensity normalization, (6) removing linear trends, (7) regress-

ing out eleven nuisance signals [six motion parameters and five

top components from a principal components analysis of high

variance signals (Behzadi et al., 2007; Chai et al., 2012)], and

(8) band-pass temporal filtering (0.01-0.1 Hz). To reduce partial

volume effects, no smoothing was performed.

The anatomical scans were co-registered with the functional

data, and three spatial representations of the cortical surface were

extracted using FreeSurfer (Dale et al., 1999; Fischl et al., 1999).

The resulting pial, inflated, and spherical surface representations

each consist of 10,242 corresponding nodes for each hemisphere

in fsaverage5 space (Figure 3). FreeSurfer segments the cortex

into two separate surfaces for the left and the right hemisphere.

Since these surfaces spatially overlap in their inflated and spher-

ical representations, a constant offset was applied between the

two hemispheres, placing the surfaces close to each other without

overlap.

Functional connectivity between pairs of nodes was calcu-

lated using Pearson correlation between the functional timeseries

projected onto the surface, yielding 65 20484 × 20484 connectiv-

ity matrices. For the group data, the values were Fisher’s r-to-z

transformed, averaged, and transformed back with the inverse

transform. This yielded an average connectivity matrix, which

was included into a first glyphset for visualization in brainGL.

In addition to the group average, correlations were calculated

between age and connexel strength to show which connections

change over the lifespan of the brain. The resulting matrix of

r-values was included in a second glyphset.

3.2.2. Example visualizations

We present here two examples to showcase the possibilities of

connexel visualization using brainGL.

• Average connectivity: For the exploration of connectivity of

the average dataset using glyphs, it was possible to load the

dataset with a minimum threshold of 0.2, leaving 6.6 · 108

connections (32%). The connectivity threshold and the min-

imum length for the removal of short edges were then inter-

actively determined by optimizing the appearance of known

connectivity networks. While varying the minimum length

between 0 and 20 mm, additional details gradually appeared as

shorter connections were omitted, thereby clarifying the con-

nexel structure. For values higher than 20 mm, known func-

tional connections started disappearing until only the longest

connections remained.

The threshold plays a similar role for the emphasis on

stronger and removal of weaker connections. For values higher

than 0.5, only the networks with the strongest connectivity

(e.g., motor and visual connections) and strong local connec-

tions remain. Lowering the threshold results in the inclusion

of more connections, which captures more subtle connectiv-

ity but also deemphasizes the stronger connections. Figure 11

illustrates the possibility of interactive variation of the two

parameters during visual exploration.

Figure 12 was created with a minimum length of 20 mm

and a threshold of r > 0.5. Regardless of the chosen glyph

type, the orientation color scheme makes it possible to imme-

diately distinguish the largest networks in the brain, namely

the motor and the visual cortex. The motor cortex appears

as a laterally symmetrical belt of red connections in the cen-

tral sulcus due to its strong interhemispheric connectivity with

prominent left-right components. The visual cortex is clearly

distinguishable in the occipital part of the brain by its strong

red and blue colors. Other areas with strong connectivity in

the anterior-posterior orientation (depicted in green) are also

clearly distinguishable. Their structure becomes especially vis-

ible with higher minimum length thresholding using vector

glyphs, which help to emphasize long-range connections.

• Correlation of connectivity with age: For the group dataset

containing correlations between connexels and age, edge-

bundling results and pie chart glyph visualizations are shown in

Figure 13. The threshold was interactively adjusted to r > 0.43,
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FIGURE 10 | Synchronized views of the data in brainGL

showing visualization properties (Left), glyphs (Middle) and the

color-mapped connectivity of a selected point (Right). Clicking

on a node leads to the display of coordinate markers in both

3D views, and the display of the associated connectivity map in

the right view. This allows for simultaneous overview of

differences between neighboring nodes and their detailed individual

connectivity.

FIGURE 11 | Interactive exploration of the two free parameters of glyph visualization. This example demonstrates the effects of adjusting the

thresholding (Left) and removing short connections (Right).

and the minimum length to 20 mm to optimize the clar-

ity of visible structure, while limiting the number of con-

nexels to 40,000. After separate bundling of positively and

negatively age-correlated connexels, the resulting bundlings

were loaded simultaneously in brainGL, and the connexel

values color-mapped to a green-blue (positive) and a yellow-

red (negative) color scales. The screenshots of the bundlings

(Figures 13B,C,F) were taken with a high resolution of 16,000

pixels in width.

The utility of these visualizations is accentuated by the

exploratory vantage they provide on the data. For example, the

higher number of connexels decreasing versus increasing in

strength with age has support from previous studies (Andrews-

Hanna et al., 2007; Damoiseaux et al., 2008; Meunier et al.,

2009), and could also be further investigated in the current

dataset with statistical testing. The data also shows an apparent

prevalence of age-related connexel decreases in frontal regions,

and increases between posterior and central regions. Such

observations could facilitate the generation of novel hypothe-

ses, and provide the basis for subsequent statistical tests.

3.3. COMPLEXITY AND EFFICIENCY

Our sample visualizations were created on an 8-core worksta-

tion with 3.4 GHz, 16 GB RAM, and a NVIDIA GeForce GTX

590 graphics adapter with 1.5 GB of RAM. The main memory

is crucial for the bundling algorithm, since the compatibilities

are precalculated between every pair of connexels. On the test

system, the algorithm is therefore limited to 40,000 connexels.

The bundling process for a set of connexels with that size took

approximately 30 min.

For the glyphs, the limiting factor was the amount of graph-

ics memory. Since the data was too complex to fit into the

graphics memory as a whole, the data was restricted using

minimum thresholds (see section 2.3) of 0.2 for the whole

brain average connectivity and the age dependency dataset. For

the pie charts, the additional sorting by color hue or value

took several seconds after a change of parameters. With this

exception, the use of graphics acceleration enabled interactive

manipulation of viewpoint, thresholds, and scaling factor, even

though the datasets contained several million connexels after

thresholding.
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FIGURE 12 | (A) Point, (B) vector and (C) pie chart glyphs for a

whole-brain average functional connectivity dataset (threshold: r > 0.5,

minimum length = 20 mm). Colors represent orientation of the

underlying connections. The motor network presents as a red belt due

to its lateral connectivity, and the visual network presents as collection

of red/blue glyphs in the back of the brain. A multitude of other areas

are distinguishable, representing a subdivision of the cortex into areas

with similar functional connectivity profiles.

4. DISCUSSION

We have implemented edge-bundling and connectivity glyphs as

two novel methods for the visualization of connexel data. These

methods aim to display highly complex connectivity graphs with-

out requiring reduction of the input data. Both methods are

capable of displaying overlapping connexel structures embed-

ded in the anatomical space, but each emphasizes unique aspects

of the underlying data. Edge-bundling emphasizes the structure

of the connections, showing high levels of common intercon-

nections as bundles. Connectivity glyphs emphasize connectivity

in relation to cortical anatomy. These method-specific quali-

ties make edge-bundling more suited for illustration of connexel

structure. Glyphs are more germane to anatomical localization

of connexel patterns such as cortical mapping or presurgical

planning.

4.1. APPLICATIONS

While the application examples in this paper are derived from

resting-state functional connectivity data, the methods them-

selves are modality-independent. They are equally applicable to

any dataset describing connected nodes that are embedded in 3D

space. In addition to the applications presented here of visualiz-

ing group-level functional connectivity and covariance with age,

other applications may include the illustration of statistical group

comparison data, pathological changes, or changes in connectiv-

ity structure over time. The increasing availability of modalities to

measure pathless connection strengths between brain areas elicits

an increasing need for tools to vizualize such information.

4.2. IMPLEMENTATION

The brainGL software provides a push-button implementation

of the edge-bundling algorithm, which is achieved by the default

settings of the two free parameters (compatibility threshold and

radius of the mean-shift Gaussian kernel). The edge-bundling

results are largely independent from the density of the connexel

data (see Figure 2). brainGL also provides the possibility to

deviate from the default parameters to enable individual adap-

tion of the bundling results for data from drastically different

applications or modalities.

In contrast to the plug-and-play implementation of edge-

bundling—made possible largely by the robustness of the method

against variation in the initial parameters—the utility of connec-

tivity glyphs requires flexible interaction. Compromises between

emphasizing certain aspects of the data are often necessary in

order to convey information effectively. For example, vector

glyphs are useful for identifying the presence or absence of par-

ticular features of an area’s connectivity profile. Point glyphs are

more useful for identifying subtle shifts in connectivity between

adjacent regions. This is especially the case in combination with

the anatomical background glyphs, which allow for the localiza-

tion of such shifts in relation to the cortical morphology. The

interactive optimization of the glyph parameters is made possi-

ble by the relatively low computational demand compared with

the edge-bundling, which requires offline calculation.

As outlined in section 3.3, the glyphs rely mainly on the ded-

icated graphics hardware, while the bundling is performed on

the central processing unit. The glyph visualizations consequently

profit most from an advanced graphics card with multiple parallel

stream processors and several gigabytes of graphics memory. For

the bundling, the limiting factor in the current implementation is

the amount of main memory.

The current brainGL implementation is restricted to datasets

of ∼105 connexels for edge-bundling and ∼108 connexels for

glyphs (using the hardware described in Section 3.3). For

glyphs, high-performance graphics-dedicated systems may offer

the processing capability to enable interactive manipulation

of whole-brain, high-resolution connexel data. Edge-bundling,

while also benefitting from high-performance hardware and

improved memory use, will also profit from the implementation

of multi-level bundling schemes (Gansner et al., 2011). Such
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FIGURE 13 | Correlations between age and functional

connectivity-based connexels in a group of 65 participants: the

distribution of correlation values (A) is thresholded (at ±0.43,

minimum length 20 mm). The remaining connections (B) vary strongly

with age: The thresholded connexels in (b, right) gain connectivity

strength over age, while the connexels in (B left) decrease in value (color

represents orientation with xyz mapped to rgb). Edge-bundling (B,

bottom, C) clarifies the structure of the connectivity graph. The same

correlations visualized with surface connectivity glyphs (D,E), which clarify

the anatomical placement of the connections termination points on the pial

(D) and inflated (E) surface representation. Combined visualization with

glyphs and bundlings (F). In (C–F), positive and negative values are shown

in the same visualization (yellow-to-red color scale for negative,

green-to-blue color scale for positive correlation with age).
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bundling schemes start by iteratively grouping close connexels

and then grouping groups of connexels on multiple levels, thus

dramatically reducing the complexity.

4.3. VISUALIZING CONNEXEL UNCERTAINTY

The application of connexel methodology may have resisted

general adoption due to a constellation of various analytic bar-

riers to integrating the concept for brain research. The loss

of signal in exploratory connexelwise analyses when apply-

ing classical conservative multiple comparison corrections such

as Bonferroni (Nichols and Hayasaka, 2003) is one example.

A limited set of less conservative methods have been developed

(Worsley et al., 1998, 2005; Zalesky et al., 2012a), but remain

far from widely adopted in the field. At this point, it is still an

open question what assumptions can be made about connexel

data, and what aspects of the data statistical selection methods can

exploit. The computational complexity of dealing with connexels

instead of voxels is another factor that makes the transfer of meth-

ods difficult. The application of edge-bundling and connectivity

glyphs, however, is independent from the issue of threshold-

ing. The visualization of connexels will profit from advances in

statistical thresholding techniques independently from further

development of rendering algorithms.

Alongside the need for improvement in connexel-specific sta-

tistical correction techniques, the visualization should also opti-

mize the depiction of inherent uncertainty (Margulies et al.,

2013). We have thus far targeted the need for high-resolution con-

nectivity visualization at the expense of probability information.

Especially in the case of glyphs, thresholding is integral to con-

veying differentiable patterns. Although the use of transparency

and line contours has been effective for displaying subthreshold

probability values in voxelwise visualizations (Allen et al., 2012),

our initial integration of transparency into glyphs did not convey

the necessary variance.

5. CONCLUSIONS

The visualization of high-resolution connexel datasets is of grow-

ing importance in brain research. Parallel to the development

of analytic techniques, adaption and refinement of visualization

practices are necessary. We offer edge-bundling and connectiv-

ity glyphs as two novel techniques. The continued development

of similar interactive visualization software for connexel data

will further provide a necessary foundation for mapping and

understanding the connectome.
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