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Abstract

Mutations in human connexin (Cx) genes have been related to diseases, which we termed connexinopathies. Such

hereditary disorders include nonsyndromic or syndromic deafness (Cx26, Cx30), Charcot Marie Tooth disease (Cx32),

occulodentodigital dysplasia and cardiopathies (Cx43), and cataracts (Cx46, Cx50). Despite the clinical phenotypes of

connexinopathies have been well documented, their pathogenic molecular determinants remain elusive. The

purpose of this work is to identify common/uncommon patterns in channels function among Cx mutations linked

to human diseases. To this end, we compiled and discussed the effect of mutations associated to Cx26, Cx32, Cx43,

and Cx50 over gap junction channels and hemichannels, highlighting the function of the structural channel

domains in which mutations are located and their possible role affecting oligomerization, gating and perm/

selectivity processes.
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Background

Connexin gap junction channels (GJCs) and hemichan-
nels (HCs) are critical for cellular communication. GJCs
allow the intercellular exchange of ions and small mole-
cules (e.g., IP3, cAMP, cGMP, ATP) and diverse metabo-
lites (e.g., sugars, amino acids, glutathione) (reviewed in
[1]). The same molecules and ions can pass through
HCs, but in this case to take part as autocrine and para-
crine signals (reviewed by [2, 3]). Mutations in connex-
ins (Cxs) genes are associated to genetic disorders such
as skin abnormalities, cardiopathies, neurodegenerative
and developmental diseases, cataracts, and most cases of
hereditary deafness (reviewed by [4–6]).
Each HC is formed by the oligomerization of six Cxs

subunits and the end-to-end docking of two HCs forms

GJCs. The membrane topology of Cxs includes four
transmembrane domains (designated as TM1-TM4) con-
nected by two extracellular loops (ECL) and one intra-
cellular loop (ICL). The amino terminus (NT) and the
carboxyl terminus (CT) segments are cytoplasmic
(Fig. 1a). Despite Cxs share high homology, there are im-
portant differences in the amino acid sequence of the
ICL and CT. These segments contain motifs for regula-
tory kinases and cytoskeletal binding proteins [7, 8].
Oligomerization between suited isoforms also contrib-
utes to the assortment of Cx-based channels; for in-
stances, heteromeric GJCs (HCs constituted by more
than one Cxs type) and/or heterotypic channels (two
homomeric HCs each made by a different Cxs type).
These combinations may produce GJCs with particular
functional and regulatory properties. Several works
pointed out to TM3 in Cx32 [9–11] and Cx43 [12], and
TM1 and NT segments in Cx26 [12, 13] as critical to
regulate oligomerization of Cxs. In addition, a salt bridge
between residues Glu-146 (TM3) and Arg-32 (TM1) in
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Cx32; and between Lys-22 (TM1) and Glu-209 (TM4) in
Cx26, might sustain intraprotomer stability [14]. Never-
theless, the crystal structure of Cx26 showed that the
main interactions between protomers occur at the
extracellular side of the TM2 and TM4. Moreover, an
aromatic cluster formed by the extracellular loops and
TM3 also participates in inter-protomer interaction
[15]. However, the oligomerization compatibility be-
tween Cxs has been associated to specific residues in
the NT region [13, 16].
Cxs oligomerize to form a pore whose narrowest part

is observed at the ECLs, near the docking zone [15, 17].
As mentioned above, the differences in the amino acid
sequences among Cxs may influence the channel prop-
erties. It has been proposed that the membrane-
spanning regions of Cxs are not only important for
intra- and inter- protomer interactions, but they also
might determine functional properties such as gating,
permeability and the pore’s structure. Concerning the
pore composition, there is some controversy about
which TMs domains are involved. Some works pointed
out the TM3 in Cx32 channels [11, 18] and TM1 in
Cx46 channels [19, 20] as principal pore helix

components. In support of the role of TM1 as a pore
lining segment, it has been proposed that the voltage
dependent loop-gating mechanism in the Cx32*Cx43
EL1 chimera (in which the ECL1 of Cx43 replaced the
ECL1 of Cx32), involves a rotation of TM1 together with
an inward tilt of the six protomers [21]. The 3.5 Å reso-
lution of the Cx26 crystal structure revealed that TM1 is
the main constituent of the pore [15] (Fig. 1). The struc-
ture also showed that the TM2 lines the pore but in a
minor extent, whereas TM3 and TM4 face the hydro-
phobic membrane environment. The TM1 is tilted,
which narrow the pore diameter to 14 Å from the cyto-
plasmic to the extracellular side of the membrane [15].
More recently, performing molecular dynamic refine-
ments of the crystal structure of Cx26, Kwon and co-
workers (2011) [22], shown that the narrow part of the
pore could be even smaller.
As it was proposed previously for Cx32 [23] and then

confirmed by Maeda and co-workers for Cx26 [15], the
Cx-NT domain is located inside the pore, facing the
TM1s and forming a funnel like structure that might re-
stricts the pore diameter during gating process [15]. The
intra-pore stabilization of the NT is achieved by

Fig. 1 Localization of loss-of-function mutations for Cx26 GJC. a Cartoon representation of a Cx26 monomer, colored with a blue-green gradient

from the N- to the CT region. Localization of loss-of-function mutations are colored in red. b Lateral (c) Top (d) Bottom view of the same

subunit of (a), in the context of the HC assemble. The HC surface is transparent and white. The figure was generated with PyMol and

edited with Gimp
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hydrophobic interactions between residues Trp-3 (NT)
and Met-34 (TM1) from neighboring protomers [15].
This interaction was previously proposed by Oshima
and co-workers (2007), which found a prominent pore
electron-density in the middle of the pore generated
by the deafness mutant Cx26M34A. A reduction of
this pore electron-density was observed when residues
2-7 (Cx26M34A-del2–7) were deleted [24], confirming
the NT as major contributor to the pore occlusion.
Experiments using a chimeric HC of Cx32*Cx43ECL1,

have provided more insight about the gating-mechanism
of Cx-based channels [21]. In this chimera, the Cys sub-
stitution of the Ala residues in positions 40 and 43, lo-
cated at the TM1/E1 border, form disulphide bonds with
adjacent protomers when the cells are bathed in solu-
tions expected to keep HCs closed (5 mM Ca2+or 10 µM
Cd2+). These results strongly suggest a role for these res-
idues in the “loop-gating” mechanism and extracellular
Ca2+ regulation of HCs [21, 25].

GJCs and HCs gating regulation

How gating and permeability are regulated in Cxs- based
channels is a matter of intense debate. To date, three types
of gating mechanism have been proposed: 1) The NT as a

voltage-sensor domain: that plugs the channel vestibule
and contribute to the fast or V(j)-gating [15, 26], 2) The
Loop gating: in which extracellular divalent cations (p.g.,
Ca2+) binds to the extracellular loops and blocks HCs by
stabilizing the closed loop gate conformation [25, 27], and
3) The ball-and-chain model: which proposes that the CT
as part of a ball-and-chain mechanism to regulate the gat-
ing of HCs. The last mechanism involves CT conform-
ational rearrangements elicited by voltage or chemical
(pH, redox, phosphorylation) stimuli, which promote a
link between this segment and the ICL, and regulates the
fast V(j)-gating mechanism [28–33]. This interaction re-
quires the formation of alpha helical structures on the ICL
peptide, in which the CT binds upon intracellular acidifi-
cation [30].
Considering the relevance of the aforementioned

mechanisms for channel function, it is critical to under-
stand how Cxs mutations linked to diseases impair these
processes. In the next sections, we describe genetic dis-
eases associated to four Cxs that we used as models for
the purpose of this review. For space reason, we did not
include information about other important Cxs with
mutations associated to disease, like Cx46 mutations
linked to congenital cataracts [6, 34] or increased risk to
developing diseases, like in polymorphisms in Cx37
genes associated to cardiovascular diseases [35].

Disease associated to Cx26 mutations

Genetic sensorineural hearing loss is associated mainly
to mutations in Cx26 [36] (Table 1). Two clinical

phenotypes derive from Cx26 mutations: 1) non-
syndromic deafness, in which patients evince moderated
to severe deafness with absence of other pathological
manifestation; and 2) syndromic deafness, in which pro-
found sensorineural hearing loss is accompanied by a
range of severe tissue defects such as the observed in
palmoplantar keratoderma [37, 38], keratitis ichthyosis
deafness syndrome (KID) [39–42], Vohwinkel syndrome
[43], histrix-like ichthyosis with deafness syndrome and
Bart-Pumphrey syndrome [44, 45].
Among the attempts to identify the pathogenic mech-

anism of KID syndrome, two transgenic animal models
have been developed. They express the Cx26S17F and
Cx26G45E mutations in the skin and/or cochlea [46, 47]
and exhibit similar phenotypes than humans. Experi-
mental results strongly support that the possible mecha-
nisms in the skin might include the impairment of the
epidermal calcium homeostasis and the disruption of the
water barrier due to abnormal lipid composition of the
stratum corneum [48]. For hearing loss, several hypoth-
eses have been proposed. They include loss of Ca2+

homeostasis and ATP release [49, 50], impaired perme-
ability to Ins(1,3,4) P3 [51], loss of the endocochlear po-
tential by deficient K+ recycling between the epithelial
GJ network and the stria vascularis [52], and develop-
mental malformation or cochlear degeneration induced
by massive cell death [53, 54]. For comprehensive re-
views see [4, 55].

Disease associated to Cx32 mutations

Cx32 is expressed in several cell types, including the
myelin-forming cells in both the peripheral and central
nervous systems (CNS); the Schwann cells and oligoden-
drocytes, respectively. Mutations in this protein are asso-
ciated to the most common X-linked inheritance form
of the Charcot-Marie-Tooth disease (CMT), a pathology
referred as CMT1X that accounts for the 10 % of all the
CMT cases [56–58]. Due to its X-linkage, males display
moderate to severe symptoms [59, 60], while milder phe-
notypes are observed in heterozygous females [61, 62].
In the peripheral nervous system, mutations in Cx32

induce progressive muscular atrophy and variable sen-
sory loss, symptoms associated to slow axonal conduc-
tion and distal axonal loss [63]. However, prolonged
central conductions times of sensory inputs also arise as
consequence of Cx32 missense mutations [64–66].
Cx32 localizes in the axonal paranodes and Schmidt-

Lantermann incisures [67–69] of the peripheral nerves.
Hence, GJC made by this protein do not connect adja-
cent cells but contiguous loops of non-compact myelin.
These channels likely act as a preferential diffusion path-
way, significantly decreasing the distance between the
nucleus and the adaxonal membrane of the myelin
sheaths [67, 70].

García et al. BMC Cell Biology 2016, 17(Suppl 1):17 Page 73 of 150



Table 1 Effect of mutations in Cx26 (GJB2) on the functional state of HCs and GJCs evaluated in a heterologous expression system,

the domain that is affected and its phenotype

Domain Mutation GJCs Function HCs
Function

Deafness Phenotype

NT M1V, T8M, G12V [13, 123, 132–136] (−) n.d. NS, Profound, Moderate

G11E [130, 136, 137] n.d. (+) S, Profound. KID

G12R(+*), N14K [13, 123, 136, 138] (−) (+) S, Mild, Severe. KID/EKV

N14D [139] n.d. (−) NS, Moderate

N14Y(+*) [13, 39, 136] (−) (+) S, Profound. KID

S17F(+*) [13, 40, 123, 136] (−) (−) S, SNHL. KID

TM1 V27I [140] Normal Normal NS, HL and Normal

I33T [141] (−) n.d. NS, Severe to Profound

M34T [36, 115, 142–146] (−) (−) NS, Mild to Moderate; S, Profound.
PPK

V37I, A40G [113, 143, 147–149] (−) (−) NS, Mild-Moderate, Severe

A40V [124, 136, 150, 151] Normal (+) S, Profound. KID

ECL1 DelE42, D66H [152–159] (−) n.d. S, Profound, Moderate to Profound.
PPK

W44C, W44S, D46E, T55N [142, 143, 152, 153, 159–163] (−) n.d. NS, Severe to Profound, HL,
Moderate, Severe

G45E [124, 130, 150, 164–166] Normal (+) S, Profound. KID

E47K [164, 167] (−) (−) NS, Severe to Profound

D50A [168, 169] n.d. (+) S, Profound. KID

D50N [123, 137, 151, 170–172] (−) (+) S, Profound. KID

G59V [144, 173] n.d. (−) NS, Profound

R75Q, R75W [37, 134, 136, 141, 152–154, 174] (−) (−) S, Severe to Profound. PPK

TM2 W77R, F83L, L90V, V95M [37, 135, 142, 143, 147, 173, 175, 176] (−) n.d. NS, Moderate to Profound,
Moderate, Profound

I82M [144, 177] n.d. (−) NS, Profound

V84L [51, 147, 148, 178, 179] Normal/No IP3
transfer

n.d NS. Profound

T86R, A88S, L90P [132, 143, 144, 147, 160, 180] (−) (−) NS, Profound, Moderate to Profound,
Mild to Moderate

A88V [136, 168, 181] n.d. (+) S, Severe to Profound. KID

ICL E114G, R127H [115, 140, 144, 173, 178, 182, 183] (−) (−) NS, Severe to Profound, Profound

DelE120 [141, 143, 147] (−) n.d. NS, Severe to Profound

TM3 R143Q, R153I [133, 152, 153, 183, 184] (−) n.d. NS, Profound

R143W [133, 144, 178, 185, 186] (−) (−) NS, Profound

ECL2 F161S, P173R, D179N, R165W, W172R, R184P, R184Q [132, 141, 143,
147, 152, 153, 187–190]

(−) n.d. NS, HL, Severe to Profound,
Profound

M163L [191] n.d (+) NS, Moderate to Profound

S183F [136, 192] (−) n.d. S, High Frequency HL. PPK

TM4 M195T, A197S,206S, L214P [133, 135, 190, 193, 194] (−) n.d. NS, HL, Moderate, Profound

C202F [153, 193, 195] n.d. (−) NS, Mild to Moderate

I203T, L205V [179, 193, 196] (−) (−) NS, HL, Profound

NS Non-syndromic, S Syndromic, KID Keratitis-Ichthyosis-Deafness, EKV Erythrokeratodermia variabilis, PPK Palmoplantar Keratoderma-deafness, HL Hearing loss.

(+*) = Generate gain of HC function when they are coexpressed with wild type Cx26 or Cx43 [13]

(−) = Loss of function. (+) = Gain of function. n.d. = not determined
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The peripheral pathological mechanisms associated to
Cx32 mutations possibly involve the loss of function of
the GJC (Table 2), either by intracellular retention or the
production of channels with aberrant properties [70–72].
This lack of functionality might reduce the transfer of
signaling molecules, like cAMP, between the adaxonal
portions and the nucleus of the Schwann cell [73].
Furthermore, at least some effects of Cx32 mutations

have been associated to a gain of function of the GJC
(Table 2). Nevertheless, this is based on indirect electro-
physiological studies performed in two patients who do
not express Cx32; these patients display visual and
auditory evoked responses with normal central con-
duction times [74, 75]. However, the absence of cen-
tral functional disruptions in most CMT1X patients
and Cx32-KO animals supports the hypothesis of gain
of function of GJC in patients where disease also af-
fects CNS [61, 76, 77]. However, further studies about

the functional properties of the Cx32 channels are re-
quired to support these hypothesis.

Disease associated to Cx43 mutations

Oculodentodigital Dysplasia (ODDD) is the most im-
portant human disease related to Cx43 mutations
(Table 3). ODDD is a autosomal inherited developmental
disorder affecting face, eyes, teeth and limbs (reviewed
in [1, 78]). This pathology was linked to a germ line
Cx43 gene (GJA1) mutation [79]. The phenotype varies
from syndactyli type III alone, to ODDD without syn-
dactyli [80, 81], camptodactyli [79], cardiac impairments,
mild cognitive retardation [82] and skeletal abnormal-
ities, which could be associated to impaired osteoblast
differentiation [83].
Currently, over 74 mutations related with ODDD have

been reported. However, less than a half of these muta-
tions have been characterized. Missense mutations of

Table 2 Effect of mutations in Cx32 (GJB1) on the functional state of HCs and GJCs evaluated in a heterologous expression system,

the domain that is affected and its phenotype

Domain Mutation GJCs Function HCs Function CMTX Phenotype

NT W3A, W3S, W3Y, G12S, W13L, V13L, R15W, R22G, R22X [127, 197–203] (−) n.d. Mild to Severe, Severe, Mild to
Moderate, Not described

TM1 S26L, M34K, A39V, A40V [70, 71, 204, 205] (−) n.d. Mild, Not Described

M34T, V35M, V38M [70, 205, 206] (−) n.d. Mild to Moderate, Severe

ECL1 G45E [207] n.d. (+) Not Described

ECL1 C53S, C60F, Y65C, R75P [203, 205, 208–210] (−) n.d. Not Described

T55I, R75Q, R75W [72, 204, 205, 209, 210], (−) n.d. Mild

TM2 S85C [127, 211] n.d. (+) Severe, Mild

T86A, T86S, T86N, T87A [70, 212] (−) (−) Not Described, Mild

H94Y, H94Q [127, 206] (−) n.d. Mild to Moderate

M93V, V95M [203, 204, 206] (−) n.d. Not Described, Mild to Moderate

ICL E102G, Null111-116 [71, 198, 202, 213] (−) n.d. Mild, Mild to Moderate

R107W, R129H [203, 214] (−) n.d. Mild to Moderate, Not described

TM3 V139M, V140E, R142W [127, 197, 209, 215–219] (−) n.d. Mild to Moderate, Mild to Severe,
Moderate to Severe

ECL2 L143P, L156R [203, 218] (−) n.d. Mild to Moderate

R164Q, V181A, E186K [197, 204, 206, 213, 214, 216, 219] (−) n.d. Moderate to Severe

R164W, P172R, S182T, R183H [72, 198, 203, 204, 206, 208] (−) n.d. Mild to Moderate, Not Described

TM4 G199R, R203C, N205I [203, 205, 206, 214] (−) n.d. Moderate to Severe, Not Described

E208K, R208K [197, 202, 203, 216, 220, 221] (−) (−) Moderate to Severe

Y211X [203, 222] (−) n.d. Severe

CT R215W [206, 209, 221] (−) (−) Mild to Moderate

C217X [198, 220] n.d. (−) Severe

R220X [71, 197, 198, 206, 220] (−) n.d. Moderate to Severe

F235C [126] n.d. (+) Severe

R265X [198] (−) (−) Severe

(−) = Loss of function. (+) = Gain of function. n.d. = not determined
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Cx43 associated to ODDD are spread through Cx43
amino acid sequence without a clear pattern (Table 3).
However, most mutations concentrate in the first half of
the protein, with few localized at the CT region (Table 3).
The CT domain has several residues that may be phos-
phorylated, and these allow the regulation of processes
like communication, trafficking to the plasma membrane
and assembly and degradation of the gap junction
protein [84]. The CT also interacts with the ZO-1 [85],
v-Scr [86] and other proteins, including cytoskeletal pro-
teins [87].
Several mutations associated to ODDD are located in

the ICL region of Cx43 (Table 3), demonstrating the
importance of this domain for Cx43 based channels
functionality. ICL is critical for both, the pH-mediated
gating and the architecture of the channel pore [88].
For example, the ODDD mutant Cx43G138R, which is
located in this domain, results in unfunctional GJCs
when expressed in N2A cells [89–92]. In contrast, the
mutation increases the HC activity determined by
ATP release measurements [91]. Moreover, a mouse
model carrying this mutation (Cx43G138R) exhibits a
phenotype that resembled the observed in humans, i.e.,
craniofacial alterations, bilateral syndactyli, smaller teeth
(microdontia), unspecialized enamel hypoplasia, osteope-
nia and sparse hair [93].

A principal role of Cx43 GJCs in the myocardium is to
allow a rapid and coordinated electrical excitation im-
portant for the cardiac-action potential propagation.
Cx43 is mainly located at the intercalated discs in the
ventricular myocardium. The geometrical arrangement
of the discs, as well as the total number of GJCs, seems
to be determinant for the characteristic anisotropic con-
duction of the ventricular myocardium. The atrial myo-
cardium expresses high levels of Cx43 and Cx40 in
addition to small quantities of Cx45 [94]. In addition, it
has been reported that cells forming the conduction sys-
tem (responsible for rapid electrical signal localization
from the sinoatrial node to the ventricles), express Cx43,
Cx45, Cx40, and Cx30 [95, 96]. However, patients with
mutation in Cx43 rarely exhibit cardiac problems (Table 3).
In addition, congenital heart diseases are not commonly
associated to Cx43 mutations [97]. Until now, only a few
cases of Cx43 mutations linked to heart diseases have
been reported. For example Ser364Pro, which results in
viscera atrial heterotaxia [98] restrict GJCs communica-
tion in transfected cells. A subsequent work of Thibodeau
et al. [99] showed a frameshift mutation in a patient with
atrial fibrillation. This modification involves a single nu-
cleotide deletion (c.932delC) with 36 aberrant amino acids
with a consecutive stop codon. Interestingly, the mutation
was absent in peripheral blood lymphocytes and the

Table 3 Effect of mutations in Cx43 (GJA1) on the functional state of HCs and GJCs evaluated in a heterologous expression system,

the domain that is affected and its phenotype

Domain Mutant GJCs Function HCs Function Phenotype

NT G2V, D3N, W4A, L7V, L11P, S18P [79, 92, 223–225] (−) n.d. ODDD

G12R, Y17S [79, 90, 92, 223, 226–228] (−) (−) ODDD

TM1 I31M [91, 229] (−) (+) ODDD

R33X [81, 230] (−) n.d. Small deep-set eyes, syndactyli, dental abnormalities

ECL1 A40V, L90V, F52dup [79, 226, 227, 229, 231] (−) (−) ODDD

E42K [232, 233] (−) n.d. Sudden infant death, lethal ventricular arrhythmias

Q49K [79, 227, 231, 234] (−) n.d. ODDD

S69P [235] (−) n.d. Nonsyndromic Hearing Loss

R76H [230, 236] (−) n.d. Hallermann-Streiff syndrome: small stature, hypotrichosis,
teeth and skeletal abnormalities

ICL I130T [79, 89, 226, 227] (−) (−) ODDD

K134E, T154A [89, 226, 236–239] (−) n.d. ODDD

G138R, G143S [79, 89–92] (−) (+) ODDD

H194P [80, 91] (−) Normal ODDD

ECL2 R202H, V216L [79, 92, 226, 228, 229, 231] (−) n.d. ODDD

TM4 Fs230, Fs260 [92, 240] (−) n.d. ODDD

S272P [232] Normal n.d. Sudden infant death

CT T326I [235] (−) n.d. Nonsyndromic Hearing Loss

S364P [98, 241] (−) n.d. Viscero-atrial heterotaxia/heart malformations

(−) = Loss of function. (+) = Gain of function. n.d. = not determined
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immunohistological analysis from left atrial tissue showed
areas with normal GJCs localization but at the same time,
areas with predominant intracellular retention of Cx.

Disease associated to Cx50 mutations

Fibers and epithelial cells in the eye lens are connected
through Cx50 GJCs [100–102]. This communication is
required to maintain the ionic conditions necessary to
avoid the formation of cataract [103], a pathology result-
ing in the opacity of the lens, restricting the amount of
light reaching the retina. The Cx50 mutations (Table 4)
have been identified in members of families with inher-
ited cataracts. The phenotype may vary across patients,
in which missense locations and frame shifts have been
commonly identified (reviewed in [6]).
All Cx50 mutations produce loss of function GJCs, ex-

cept G46V that produce gain of function GJCs [104].
These mutations could generate both, mislocalization
and impaired function of GJCs and HCs (e.g., gating or
charge selectivity) [105–107]. At cellular level, it is pos-
sible that Cx50 mutations affect the intercellular com-
munication mediated by heteromeric Cx46-Cx50 GJCs.
This idea is based on results demonstrating that these
Cxs co-localize at GJCs plaques [108–110]. The defective
GJCs activity could alter the solute transport between
cells and disrupt the Ca2+ homeostasis [111, 112]. The
abnormal ion transport, especially Na+ ions, causes lens
swelling and ameliorates the fluid circulation inside the
structure. These abnormal processes might affect the
nutrient transport and the clearance of noxious metabo-
lites, triggering the cataract formation [112].

Location of mutations associated to diseases and their

functional consequences on GJC and HCs

Taking advantage of the natural occurring mutations in
Cxs and previous studies focuses in the effect of disease-
associated mutations on the functional state of GJCs and
HCs, we looked for similarities and differences between
Cxs regarding the positions of mutations associated to
the respective diseases and its functional consequences
on GJCs and HCs.
Tables summarize experimental results on GJCs and

HCs obtained for different Cxs and disease conditions.
They show that independent of the disease and Cx, all
mutations produce loss of function of the GJCs, which
can be partial or total. The decreased GJCs activity can
be consequence of reduced amount of channels in the
appositional membranes or changes in the functional
properties of single channels.
It has been well established that a loss of function

of the GJCs elicited by Cx mutations is sufficient to
develop pathology. However, it is not clear if the ex-
tent of the loss of function is related to the severity
of the disease. An institutive reasoning is that there is
a good positive correlation between the severity of
the Cx-linked disease and the loss of function of the
corresponding GJCs. Unfortunately, the experimental
data do not support this statement. On one side,
positive correlation can be found when the analysis is
restricted to some missense non-syndromic Cx26 mu-
tations (V37I and A40G). While these genetic modifi-
cations induce GJCs with loss of function (A40G) and
active channels with reduced permeability (V37I)
[113], they produce a severe deafness phenotype and

Table 4 Effect of mutations in Cx50 (GJA8) on the functional state of HCs and GJCs evaluated in a heterologous expression system,

the domain that is affected and its phenotype

Domain Mutation GJCs Function HCs Function Cataract Phenotype

NT R23T [242] (−) n.d. Bilateral nuclear

TM1/ECL1 V44A [243] n.d (−) Suture-sparing nuclear

V44E [110] (−) n.d. Whole lens

W45S [106, 244] (−) (−) Jellyfish-like appearance, Micro cornea

ECL1 G46V [104, 106] (+) (+) Total

D47N [110, 117] (−) n.d. Nuclear Pulverulent

E48K [116, 245] (−) Normal Zonular Nuclear Pulverulent

S50P [114, 118] (−) (−) Altered fiber cell formation, dense cataract
and posterior capsule rupture

TM2 V79L [110] (−) n.d. “Full moon” with Y-suture Opacities

P88S [34, 246] (−) n.d. Zonular Pulverulent

P88Q [247] (−) n.d. Lamellar Pulverulent

CT S276F [248, 249] (−) (−) Nuclear Pulverulent

Cx50fs [250] (−) n.d. Triangular

(−) = Loss of function. (+) = Gain of function. n.d. = not determined
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a milder condition, respectively [4]. However, a clear
correlation cannot be established when other muta-
tions are analyzed, such as some Cx32 mutations as-
sociated to a mild to moderate (Null111-116) and
moderate to severe (R220X) CMTX1 phenotypes. As
expected, the permeability of these channels to different
dye tracers decreases as the size of the probe increases
[114]. However, unlike the channels containing the
Null111-116 mutation, permeability of the R220X-Cx32
GJCs to small probes (neurobiotin) is not significantly dif-
ferent from that observed in wild type channels [115]. In
the same region (TM1-ECL1) other mutations cause non-
functional GJCs and HCs (eg. E48K, D47N, S50P) [110,
116–118]. In contrast, Cx50 W45S acts as a dominant
negative when co-expressed with Cx50, reducing GJCs
coupling between fibers cells [106]. The above evidences
suggest that the disease mechanisms might be produced
by subtle changes in GJCs permeability, which are impos-
sible to detect by the common electrophysiological and
dye coupling methodologies.
In order to know the location of mutations in the chan-

nel structure, we produced several molecular models of
the different Cxs by homology modeling, taking the crystal
structure of Cx26 GJC published by Maeda et al., (2009)
as template [15]. Due to the lack of experimental structure
for human Cx32, Cx43 and Cx50, we generated compara-
tive structural models, using Modeller [119], based on the
structure of human Cx26 as a template (pdb: 2ZW3)
(Figs. 2 and 3). Missing residues of human Cx26 structure
were inserted with Modeller. The backbone of the experi-
mental Cx26 structure was fully conserved. Ten models
were generated in each case and those with the lowest
discrete optimized protein energy (DOPE) score were se-
lected as the final models. Figure 1 shows the model of a
Cx26 monomer in the context of the connexon as well
the location of residues mutated in genetic deafness that
produce loss of function GJCs. Clearly, although loss of
function mutations can be located everywhere in the pro-
tomer, they are concentrated from the NT to the TM2 do-
mains (Fig. 1), regions that line the pore and are critical
for voltage gating, as we mentioned earlier [120]. More-
over, other mutations in the transmembrane regions seem
to be located in protein-protein and protein-lipid inter-
faces (Fig. 1b, c). Those locations could be important for
intra- or inter-protomer interactions [121], which might
stabilize the channel or contribute GJCs channel assembly.
For Cx32, the pattern for location of mutations that pro-
duced loss of function GJCs is very similar to that ob-
served for Cx26 (Fig. 2b), suggesting strong similarities
in the structural features between these two Cxs. For
Cxs 43 and 50, mutations that produce loss of GJCs func-
tion are more restricted. The fact that they localize
mostly from NT to ECL1 (Fig. 2c, d) confirms the
importance of this region for the channel function in

the whole Cx family. However, the ICL Cx43 also
presents important amount of mutations producing
loss of function GJCs (Table 3).

Mutations affecting HCs function

The HCs play important role in physiological and
pathological conditions since they provide a route for
paracrine/autocrine signaling between the cell and the
extracellular environment [2, 122]. Hence, a plausible
underlying mechanism for connexinopathies is the
possibility that some disease condition arise upon
HCs dysfunction. For example, aberrant gain of func-
tion HCs is associated to syndromic Cx26 mutations
that lead to keratitis ichthyosis deafness syndrome
(KID) [13, 123, 124]. For the other Cxs (Cx32, Cx43
and Cx50), very few cases have been reported making
it difficult to establish a common mechanism of dis-
ease (Tables 1, 2, 3 and 4). Exceptions are some mu-
tations in Cx32 (S85C and F235C), which induce
aberrant gain of HC activity in CMTX1 [125, 126],
which behaves similar to the KID-linked Cx26 muta-
tions, i.e., causing a gain of function of the HCs [125]
and a loss of function of the GJCs [127]. Although
the S85C mutant induces abnormal HCs opening
[128], this mutation has not been associated to any
particular severe phenotype of CMTX1 [129].
Most of the mutations eliciting gain of HCs func-

tion are clustered exclusively in the pore lining resi-
dues of the NT, TM1 and the ECL1. They also
localize in TM2 to a lesser extent (Fig. 3). In the case
of Cx26, several mutations related to severe clinical
phenotypes of KID are located at the transition zone
between TM1 and the ECL1, a domain involved in
both voltage gating and the control of HCs by extra-
cellular Ca2+ [25]. Moreover, a cluster of syndromic
mutations is found in the NT domain of the protein,
which is involved in the fast gating of HCs [24, 130].
Nevertheless, a role of other regions on the regulation
of HCs should be further considered. For example,
the Cx32 mutation F235C, localized in the CT of the
protein also induces HCs with gain of function [126].
The gain of HCs function has been also observed in

Cx43 related connexinopathies, since mutations I31M
(TM1), G138R (ICL) and G143S (ICL), all promotes gain
of function (Table 3). As mentioned above, ICL is in-
volved in regulation the fast V(j)-gating, which depend
on the interaction with CT [28–32]. Moreover, Dobro-
wolski and co-workers (2008) [93] found an increased
ATP-release in cultured cardiomyocytes from cardiac
specific G138R-mutant mice. Interestingly, the authors
proposed that HCs with gain of function in G138R-
mutated cardiomyocytes might be one of the causes of
arrhythmias.
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As expected, some mutations induce loss of function
HCs (Table 1 and Fig. 3). For example, mutations related
to non-syndromic sensorineural hearing loss generate
non-functional HCs [113]. Indeed, there are some syn-
dromic mutations that exhibit non-functional HCs that
only become gain of function when are co-expressed
with their wild type partner or under aberrant inter-
action with Cx43 [13, 131].

Finally, It should be considering that in normal tis-
sues cells could express several Cxs isoforms raising
the possibility of interaction among Cxs isoforms. Re-
cent results obtained in Dr. Martinez’ lab [13] and
Dr. White’s group [131] suggest that the interaction
between the mutated Cx and the co-expressed Cxs
forming heterotypic/heteromeric channels needs to be
taking into account to explain the clinical phenotypes

Fig. 2 Mutations affecting function of GJCs. Models of single Cxs chains are represented as cartoons, and colored with a blue-green gradient

from the N- to the CT region, for (a) Cx26 (b) Cx32, (c) Cx43 and (d) Cx50. Positions of loss of function mutations are colored as red and gain of

function mutations as yellow. The figure was generated with Pymol and edited with Gimp
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of connexinopathies. Thus, interaction of mutants
with wild type Cxs might ameliorate or worsen the
clinical phenotypes. This possibility might augment
when mutations affect critical segment involved in
oligomerization compatibility, giving rise to aberrant
heteromeric HCs, which makes pathological condition

and effective treatment complex. In this scenario, fur-
ther studies attempting to explore the pathological
mechanism of connexinopathies should consider to
study Cxs in heteromeric rather than homomeric
states, which more closely resembles native cellular
conditions.

Fig. 3 Mutations affecting function of HCs. Models of single Cxs chains are represented as cartoons, and colored with a blue-green

gradient from the N- to the CT region, for (a) Cx26 (b) Cx32, (c) Cx43 and (d) Cx50. Positions of loss of function mutations are colored as red and

gain of function mutations as yellow. The figure was generated with PyMol and edited with Gimp
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Conclusions

Most mutations causing connexinopathies generates
total or partial loss of GJCs function. However, it is un-
clear if the severity of disease correlates with the level of
GJCs loss of function. Mutations associated with loss of
function GJCs are distributed along the entire protein
sequence with no clear pattern of clustering at any seg-
ment, which suggest that GJC functionality is very sensi-
tive to minor changes in Cxs protein, and that subtle
changes in GJC functionality are sufficient to cause dis-
eases. Less in known about the effect of mutations asso-
ciated to connexinopathies on the functional state of
HCs. The clearest correlation between gain of function
HCs and disease has been found in most types of syn-
dromic deafness associated to Cx26, in particular in KID
syndrome. For others Cxs, few mutations are associated
to gain of HCs function, however, we can not discard
that this condition may be underestimated because most
studies in the past have been more focused in GJCs than
HCs. Therefore, it is yet difficult to make a general state-
ment that represent all Cxs associated to connexinopa-
thies. Nevertheless, it is clear that all mutations eliciting
gain of HCs function are clustered in pore-associated
domains like the NT and the TM1/ECL1, which are crit-
ical regions for gating and regulation.
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