
Conquering Aspects with Caesar

Mira Mezini
Darmstadt University of Technology

D-64283 Darmstadt, Germany

mezini @ informatik.tu-darmstadt.de

Klaus Ostermann
Darmstadt University of Technology

D-64283 Darmstadt, Germany

ostermann @ informatik.tu-darmstadt.de

ABSTRACT

Join point interception (JPI), is considered an impor tan t

cornerstone of aspect-oriented languages. However, we claim
tha t JP I alone does not suffice for a modular s t ructur ing of

aspects. We propose CAESAR 1, a model for aspect-oriented

programming with a higher-level module concept on top of

JPI, which enables reuse and componentizat ion of aspects,

allows us to use aspects polymorphically, and introduces a
novel concept for dynamic aspect deployment.

1. INTRODUCTION

A popular view of aspects is one of modules tha t define
(i) points in the execution of a base program to intercept

(joinpoints), and (ii) how to react a t these points. We be-

lieve, however, t ha t more powerful means for s t ructur ing

aspect code are needed on top of join point interception

(JPI), namely, be t te r support (a) for expressing an aspect

as a set of collaborating abstractions, comprising the modu-
lar s t ructure of the world as seen by the aspect, and (b) for

s t ructur ing the interaction between two parts of an aspect:

aspect implementation, and aspect binding (integration) into
a particular code base.

To clarify the terminology, let us consider a simple and
well-known example: the subject-observer pa t te rn [6]. As

far as (a) is concerned: The world as seen by this aspect

consists of two abstractions, subject and observer, which
are mutually recursive in tha t the definition of each of them

refers to the other one. The definition of the observer aspect

should clearly define these two abstract ions as two modules

t ha t interact with each other via well defined interfaces. As
far as (b) is concerned: The implementat ion par t comprises

in this case the implementat ion of methods such as add0b-
s e r v e r () , remove0bserver () and changed () , say by means

of a L inkedLis t . Of course, other implementat ions are pos-
sible, e.g., one tha t executes the observer notifications asyn-
chronously, or one t ha t employs buffering to eliminate du-

1Check out the project homepage for up-to-date news:
www. st. inf ormat ik. tu-darmstadt, delpages/proj ects/caesar/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
AOSD 2003, Boston, MA USA.
Copyright 2003 ACM 1-58113-660-9/03/002 ...$5.00.

plicated notifications. The binding part , on the other hand,

comprises details about how to integrate the observer pro-

tocol into a part icular context mapping the roles "Subject"

and "Observer" to part icular application classes, e.g., JBu t -

t o n and MyAct ionLis t sner . An example for such binding
details would be the extract ion of the par t of the subject

s ta te (e.g., JBut ton) to be passed over to the observers along

a change notification, as well as how the notification is per-
formed in terms of the method to call on the observer site.

The advantage of suppor t ing the definition of an aspect

as a set of mutually recursive abstract ions t ha t interact via
well-defined interfaces is more or less a direct derivate of

the advantages of the object-oriented approach to model-

ing a world of discourse; for this reason it does not require
part icular justification at this stage of the discussion.

A short discussion is needed, though, to justify the re-

quirement for decoupling aspect implementat ion from aspect

binding. An aspect implementat ion t ha t is t ightly coupled
with a part icular aspect binding, by the vir tue of being de-
fined within the same module, cannot be reused with other

possible bindings. Hence, this part icular aspect implementa-

t ion must be rewri t ten for every meaningful binding, thereby

rendering the application tangled, since the aspect imple-
menta t ion becomes itself crosscutting. Especially for non-

trivial aspects with complex implementat ions, this rewriting

of the aspect implementat ion is tedious and error-prone.
An aspect binding t ha t is t ightly coupled to a specific

aspect implementat ion is also undesirable. A binding t rans-

lates the concepts, terms, and abstract ions of the applica-

t ion's world into the world of the part icular aspect domain;

its usage is not limited to a specific aspect implementat ion.

Consider e.g., an aspect binding t ha t t ransforms a particu-

lar business application da ta model to the domain of graphs

with nodes and edges. Such a graph view is useful with
different graph algorithms.

Wi thou t dedicated language suppor t it is ra ther difficult
to separate aspect implementat ion and binding properly.
We will e laborate on this claim in Sec. 2, where we inves-
t igate the AspectJ approach to separat ion of aspect imple-

menta t ion and binding via abs t ract aspects. The discussion

in Sec. 2 will also reveal the deficiencies of AspectJ ' s JPI-
based approach with respect to modeling multiple mutual ly
recursive abstractions.

To solve these problems, we propose the CAESAR model
in Sec. 3, which is based on the notion of collaboration in-
terfazes (CI) presented in [11] as a means to be t te r suppor t

a-posteriori integrat ion of independent components into ex-
isting applications. We show tha t CIs and the related no-

90

public abstract aspect ObserverProtocol {

protected interface Subject { }

protected interface Observer { }

private WeakHashMap perSubjectObservers;

protected List getObservers(Subject s) {

if (perSubjectObservers == null)

perSubjectObservers = new WeakHashMapO;

List observers =

(List) perSubjectObservers.get(s);

if (observers = = null) {

observers = new LinkedListO;

perSubjectObservers.put(s, observers);
}

return observers;
}

public void addObserver(Subject s,Observer o){

getObservers(s).add(o);
}

public void removeObserver(Subject s,Observer o){

getObservers(s).remove(o);
}

abstract protected void

updateObserver(Subject s, Observer o);

abstract protected pointcut subjectChange(Subject s);

after(Subject s): subjectChange(s) {

Iterator iter = getObservers(s).iteratorO;

while (iter.hasNext())

updateObserver(s, ((Observer)iter.nextO));
}

}

F i g u r e 1: R e u s a b l e o b s e r v e r p r o t o c o l in A s p e c t J

tions of separated CI implementat ions and CI bindings, once

properly adopted to the needs of aspect-orientation, can also
be applied to support a more modular s t ructur ing of aspect
code and bet ter aspect reuse. In Sec. 4 we evaluate CAESAR

with respect to the problems identified in Sec. 2. Related

work will be discussed in Sec. 5. Sec. 6 summarizes the
paper and outlines future work.

2. PROBLEM STATEMENT

In this section we discuss the deficiencies of a JPI-based

approach to aspect structuring. Please note tha t the discus-

sion in this section is by no way a critique on the notions
of JPIs and advices. On the contrary, recognizing them as
pivotal concepts of aspect-oriented languages, we emphasize

the need for higher-level module concepts on top of them.

For i l lustrating the problems, we use as an example the
implementat ion of the observer pa t te rn in AspectJ proposed

in [7] by Hannemann and Kiczales , as shown in Fig. 1 and
Fig. 2, whereby Fig. 1 shows a reusable implementat ion of
the observer protocol in Aspect J, while Fig. 2 binds it to
particular classes.

The basic idea in Fig. 1 is tha t the aspect 0 b s e r v e r P r o -
t o c o l declares an abstract pointcut t ha t represents change
events in the Sub jec t classes. The empty interfaces Sub-

j e c t and Observer are marker interfaces tha t are used in
the binding to map the application classes to their roles. The
observers for each subject are stored in a global WeakHash/4ap
(the weak references are required in order to prevent a mem-
ory leak) tha t maps a subject to a list of observers. In case
of a subject change all observers are notified by means of the
abst ract method u p d a t e 0 b s e r v e r () , which is overridden in

public aspect ColorObserver extends ObserverProtocol

declare parents: Point implements Subject;

declare parents: Line implements Subject;

declare parents: Screen implements Observer;

protected pointcut subjectChange(Subject s):
(call(void Point.setColor(Color)) II
ca l l (vo id Line.setColor(Color))) && t a r g e t (s) ;

protected void updateObserver(Subject s, Observer o) {

((Screen) o). display ("Color change. ") ;
}

F i g u r e 2: B i n d i n g o f o b s e r v e r p r o t o c o l in A s p e c t J

the binding aspect in order to fill in the appropriate update
logic.

This proposal has two main advantages. First, Fig. 1 is

indeed a reusable implementat ion of the observer protocol:

Nothing in the implementat ion is specific to a part icular

binding of this functionality. This is because the authors [7]
recognize the need to separate aspect implementat ion and

aspect binding. Second, the same role, e.g., Sub jec t , can be

mapped to multiple different classes, e.g., Po in t and Line as
in Fig. 2. I t would also be no problem to assign two roles,

e.g., Sub j ec t and Observer, to the same class, or assign
the same role twice to the same class in two different bind-

ings. For example, a P o i n t can be simultaneously a subject

concerning coordinate changes ias well as color changes. In
terms of [14], the observer "component" in Fig. 1 is inde-
pendently extensible.

These features are probably the rationale for the author ' s

decision against an al ternative (simpler) implementat ion of

the observer protocol in AspectJ . The al ternative solution of

which we speak is to declare a d d 0 b s e r v e r () and remove0b-
s e r v e r () in the interface Sub jec t and then (in the bind-

ing) inject these methods into the corresponding classes by

means of a so-called introduction, - AspectJ ' s open class

mechanism. Similarly, a L inkedLi s t could be introduced
into every Sub jec t class, thereby rendering the p e r S u b j e c -

t 0 b s e r v e r s map unnecessary. However, with this solution,

a class could not have two different instantiat ions of the

Sub jec t role, because then the class would have multiple
implementat ions of the same method (e.g., add0bse rve r O),

hence resulting in a compiler error. In other words, we would
loose independent extensibility.

Now, let us take a critical look on this solution. We iden-
tify the following problems.

Lacking support f o r multi-abstraction aspects

Note tha t all methods in Fig. 1 and 2 are top-level methods
of the enclosing aspect class. For example, add0bse rve r () ,
which is conceptually a method of the subject role, is a top-
level method whose first parameter is the respective Subj a c t

object. This design is conceptually questionable leading to

a poor separation of concerns inside the aspect: The enclos-
ing class contains all methods of all abstract ions t ha t are
defined in the particular aspect and therefore becomes eas-

ily bloated. In a way, this is a ra ther procedural style of
programming, contradictory to one of the fundamentals of

object-oriented programming, according to which a type def-
inition contains all methods t ha t belong to its interface. I t

91

is also contradictory to the aspect-oriented vision of defining

crosscutting modules in terms of their own modular struc-

ture. The structure of the aspect in Fig. 1 is one of empty

abstractions and unstructured method definitions, and as

such not particularly modular.

The implications of this design decision are not only of a

conceptual, but also of a practical nature. First, we cannot

pass objects that play a role R to other classes that expect an

instance of that role. Envisage, for illustration, a role Com-

pa r ab l e with a method compareTo(). If we want to pass

an object as a Comparable to another class, e.g., a sorting

class, then the approach in Fig. 1 and 2 based on introduc-

ing an empty interface and encoding all methods as top-level

methods of the enclosing class, does not work. The alter-

native would be to use AspectJ 's introduction mechanism

to introduce the interface and its methods directly into the

respective class but then again we would loose independent

extensibility, as discussed above. For example, a Poin't could

be compared to another Poin t by means of their geometri-

cal distance v / ~ + y2 as well as their Manhat tan distance

Hxl] +]ly[I to the origin, which would require two independent

implementations of the Comparable abstraction.

A similar problem shows up, if some interaction between

the abstractions that build up the aspect 's model of the

world - Subjec t and Observer in our example - is needed.

The interaction in Fig. 1 is very simple: a subject passes it-

self on calling the not i : fy method on each observer, but the

parameter gets never used in the binding of the aspect in

Fig. 2. It is more realistic that observers would want more

detailed information of what state change actually happened

on the subject 's site. This would require some query meth-

ods in the interface of the subject. Using the AspectJ design

"pat tern" exemplified in Fig.1 and Fig. 2, where abstractions

are typeless, we would have to declare such query methods

also at the top level, e.g., ge tS ' t a r e (Sub jec t s) . The query

methods would have to be declared abstract in Fig. 1 since

their implementation is binding specific and should be im-

plemented by the concrete binding subaspect in Fig. 2. How-

ever, it is not possible to implement different query methods

for Point and Line, i.e., it is not possible to dynamically

dispatch with regard to the type of the base objects being

decorated with the subject functionality.

With the solution in Fig. 1 and 2 it is also pretty awk-

ward to associate state with the individual abstractions in

the definition of the aspect. For example, the observers of

all subjects are stored in a global hash map p e r S u b j e c t 0 -

b se rve r s . Besides the dangers of such a global bottleneck,

the access and management of state becomes pretty clumsy.

The example in Fig. 1 is relatively simple because state is

associated with only one of the abstractions (Subject) and

this state consists of only one "field". However, the general

case is that multiple abstractions in the module structure

of the aspect may declare multiple fields. A simple exam-

ple would be an implementation where observers maintain a

history of the observed state change, e.g., when they need to

react on change bundles rather than on individual changes.

If we consider the case that all roles need many different

fields then the code might very easily become a mess, if all

these fields are hosted by the outer aspect.

The problem with modeling state becomes even worse,

once we consider the case of role inheritance, e.g., S p e c i a l -

Subjec t inheriting from Subject . In this case, we would

end up simulating shared data fields manually. This prob-

lem with modeling state applies to the aspect binding as

well. There we might also want to associate state with the

objects that are mapped to the aspect roles, e.g., in order

to cache computed values.

Summarizing the problems so far, what we would like to

have is a nested class structure of aspect implementation

and aspect binding within which we can assign methods and

state to every aspect role in isolation.

Lacking support for sophisticated mapping

The second kind of problem with the solution in Fig. 1

and 2 is tha t the mapping from aspect abstractions to base

classes by means of the d e c l a r e p a r e n t s construct works

only when each aspect abstraction has a corresponding base

class to which it is mapped directly. However, this is not

always the case. Consider e.g., a scenario in which there

is no class Line and every Po in t object has a collection of

neighbor points. If we want to map this data structure to

a graph aspect defined in terms of Node and Edge abstrac-

tions, then an edge would be represented by two adjacent

points, but there is no abstraction in the base application

to which we can map the Edge abstraction. The latter is

only implicitly and indirectly represented by the collections

of adjacent points.

Lacking support for reusable aspect bindings

Third, every aspect binding is coupled to one particular im-

plementation. For example, the ColorObserver binding in

Fig. 2 is hardwired to the observer pat tern implementation

in Fig. 1, although the binding itself is not dependent on

the implementation details of the observer pattern. The ob-

server pat tern is not a very good example to illustrate the

usefulness of a binding that can be used with many different

implementations; a bet ter example is that of an aspect bind-

ing that maps an arbitrary data structure, e.g., the classes

of an abstract syntax tree, to a general tree representation.

Many different implementations of a tree make sense in con-

junction with such a binding, e.g., one that displays trees on

the screen or one tha t performs algorithms on trees. That

is, one might want to be able to write some functionality

that is parameterized with a particular binding type, but

is polymorphic with respect to the implementation. This

is, however, not possible, if the binding is coupled to the

implementation.

Lacking support for aspectual polymorphism

The fourth deficiency concerns aspect deployment. We say

that the Co lo r0bse rve r aspect in Fig. 2 is statically de-

ployed. By this we mean that once compiled together with

the package containing the figure classes, the changes in the

particular points in the execution of point and line objects

implied by Colo r0bse rve r aspect are effective. Which is to

say that it is not possible to determine at runtime, whether

to apply the aspect at all, or which implementation of the

aspect to apply, e.g., a L inkedLis t version, or one with asyn-

chronous notifications. We say that aspectual polymorphism
is missing, in the sense that the code is not polymorphic

with respect to the types and implementations of the as-

pects affecting it after compilation.

3. THE CAESAR MODEL

A core feature of CAESAR is the notion of an aspect collab-
oration interface (A CI for short) - an interface definition for

92

aspects with multiple mutually recursive nested types. The

purpose of an ACI is the decoupling of aspect implementa-

tions and aspect bindings which are defined in independent,

but indirectly connected, modules. The idea is that while

being independent of each other, these modules implement

disjoint parts of a common ACI, which indirectly relates

them as parts of a whole. We illustrate our ideas also by

means of the observer example. Fig. 3, 4, and 5 show an

ACI for the observer protocol, an aspect implementation,

and an aspect binding, respectively, each of which will be

discussed in the course of this section.

3.1 Aspect Collaboration Interfaces
An ACI consists, in general, of several mutually recursive

nested ACIs - one for each abstraction in the modular struc-

ture of the aspect. The ACI 0 b s e r v e r P r o t o c o l in Fig. 3,

for example, has two nested ACIs, Subjec t and Observer,

that are mutually recursive in that the name of one type

is used to define the other one and vice versa. A simple

ACI that does not contain other nested ACIs, e.g., Subject ,

is a special kind of interface that lays down a bidirectional

communication protocol between any possible implementa-

tion and binding of the corresponding abstraction. It does

so by distinguishing between two part-interfaces: the pro-

vided and the expected facets of the abstraction, consisting

of methods declared with the modifiers p rov ided and ex-

pected , respectively. Hence, we can redefine an ACI as con-

sisting of expected and provided declarations for the aspect

as a whole as well as a set of mutually recursive nested ACIs

- one for each abstraction in the modular structure of the

aspect.

The provided facet of an aspect lays down what the as-

pect provides to any context in which it is applied. The

observer ACI in Fig. 3 specifies that any implementation of

0bse rve rP ro toco l must provide an implementation of the

three provided methods of Subjec t 2. On the other side, the

expected facet of an aspect makes explicit what the aspect

expects from the context in which it will be applied, in or-

der to be able to supply what the provided facet promises.

Hence, the expected facet declares methods whose imple-

mentation is binding specific.

Consider for instance, the part of the observer protocol

concerned with communicating relevant state from the sub-

ject to observers, when a change is notified. What part of

subject 's state is relevant, and how this state should be ex-

tracted for being passed to observers is highly dependent

on what classes play the the subject and observer roles in a

particular context. Furthermore, the operation to be called

on the observer as part of the notification is also binding-

specific. This is why not if y () and get St a t e () are declared

with the modifier expected in Fig. 3.

An ACI's provided and expected facets are implemented

in different modules, called aspect implementations and as-

pect bindings respectively. However, all implementations

and bindings of the same ACI are indirectly connected to

each other, since they implement two facets of the same

whole. The common ACI serves as a medium for bidirec-

tional communication between them: Any module that im-

plements one of the facets can freely use declarations in the

2In this example, the Observer abstraction does not have
any provided methods. However, one can easily think of
other examples where more than one abstraction declare a
non-empty provided facet.

interface ObserverProtocol {

i n t e r f a c e Subject {

provided void addObserver(Observer o);

provided void removeObserver(Observer o);

provided void changed();

expected String getStateO;
}

interface Observer { expected void notify(Subject s); }

F i g u r e 3: A C I for o b s e r v e r p r o t o c o l

class ObserverProtoeolImpl implements ObserverProtocol {

class Subject {

List observers = new LinkedListO;

void addObserver(Observer o) { observers.add(o);}

void removeObserver(Observer o) {

observers.remove(o);
}

void changed() {

Iterator it = observers.iteratorO;

while (iter.hasNextO)

((Observer)iter.nextO).notify(this);
}

}

}

F i g u r e 4: S a m p l e impl . o f o b s e r v e r p r o t o c o l

other facet. This loose coupling is the key to independent

reuse of implementations and bindings.

3.2 Aspect Implementations
An aspect implementation must implement all methods

in the provided facet of the corresponding ACI, i.e., all as-

pect level p rov ided methods, as well as provided facets of all

nested ACIs. Fig. 4 shows a simple implementation of the

0 b s e r v e r P r o t o e o l ACI. Similarly, we could write another

implementation of ObserverPro toco l , say, a class AsyncOb-

se rve r Impl that implements ObserverPro toco l and real-

izes a notification strategy with asynchronous updates.

As illustrated in Fig. 4, an aspect implementation is a

class that declares itself with an implements clause. Pro-

vided facets of the nested ACIs are implemented in nested

classes which have the same names as their respective nested

ACIs (see e.g., Obse rve rP ro toco l Imp l .Sub jec t in Fig. 4).

The implementation of provided methods can call expec ted

methods of the same or of other abstractions of the same

aspect. For example, Su b j ec t . ch an g ed () calls n o t i f y () ,

which is declared in the expected facet of 0 b s e r v e r P r o t o -

co l . Observer. Nested implementation classes are free to de-

fine additional state and behavior (as, e.g., the obse rve r s

field in Subject) . Since Obse rve rP ro toco l .Obse rve r has

no p rov ided methods, there is no Observer class in Fig. 4,

but we could have added additional state and behavior with

Observer, if necessary.

3.3 Aspect Bindings
An aspect binding implements all expected methods in

the aspect 's CI and in its nested interfaces. Fig. 5 shows a

binding of 0 b s e r v e r P r o t o c o l which maps the subject role to

Poin t and Line and the observer role to S c r e e n . The class

Co lo r0bse rve r declares itself as a binding of 0bse rve rP ro -
t o c o l by means of a b inds clause.

93

class Color0bserver binds 0bserverProtocol {

class PointSubject binds Subject wraps Point {

String getStateO {
return "Point colored "+wrappee.getColorO;

}

}

class LineSubject binds Subject wraps Line {

String getStateO {
return "Line colored "+wrappee.getColorO;

}

}

class Screen0bserver binds Observer wraps Screen {

void notify(Subject s) {
wrappee.display("Color changed: "+s.getState());

}

}

after(Point p): (call(void p.setColor(Color)))

{ PointSubject(p).changedO; }

after(Line i): (call(void l.setColor(Color)))

{ LineSubject(1).changedO; }
}

F i g u r e 5: S a m p l e b i n d i n g o f o b s e r v e r p r o t o c o l

For each nested ACI of 0bse rve rP ro toco l , i.e., Subjec t

and Observer, there might be zero, one, or more nested

bindings inside Color0bserver . The latter are also declared

with a b inds clause and must implement all expec ted meth-

ods in the corresponding interface. The relation between

nested types in an ACI and their binding classes is not es-

tablished by name identity, since there might be more than

one binding for the same abstraction within the same bind-

ing class, as in Fig. 5.

Aspect binding is almost pure OO: A binding class refers

to one or more base objects and uses their interface for im-

plementing the expected facet of the aspect abstraction. The

aspect binding in Fig. 5 uses only three non-OO features: (a)

the wrap clause and the wrappee keyword, (b) wrapper re-

cycling and (c) pointcuts/advices. Features (b) and (c) will

be explained in Sec. 3.4, and 3.5. The wraps clause and the

keyword wrappee are syntactic sugars for the common case,

when each aspect abstraction is mapped to exactly one base

class. For example,

class PointSubject binds Subject wraps Point {...}

is syntactic sugar for

c l a s s PointSubject binds Subject {
Point wrappee ;
PointSubject(Point wrappee) { this.wrappee - wrappee; }

}

In general, a wrapper class may have an arbitrary number of

"wrappees" that can be initialized or computed in the con-

structor. Due to bindings being almost pure OO in CAESAR,

the programmer is able to encode more complicated cases,

where the relation to application objects has to be computed

or is represented by multiple application objects (see [II] for

more details).

3.4 Wrapper Instanfiation
A subtle issue when using wrappers is how to avoid that

multiple wrappers are created for the same base object

(called wrapper identity hell [11]). Our solution is a mecha-

nism called wrapper recycling. Syntactically, wrapper recy-

cling refers to the fact that , instead of creating an instance

class MovableFigures {
class MovableFigure implements Movable wraps Figure {

void moveBy(int x, int y) {};
}

class MovableFigure implements Movable wraps Point {

void moveBy(int x, int y) {

wrappee.setX(wrappee.getXO+x);

wrappee.setY(wrappee.getYO+y);
}

}

class MovableFigure implements Movable wraps Line {
void moveBy(int x, int y) {

MovableFigure(wrappee.getPlO).moveBy(x,y);

MovableFigure(wrappee.getP20).moveBy(x,y);
}

}

}

class Test {

MovableFigures my = new MovablsFiguresO;

void move(Figure f) {
mv.MovableFigure(f).moveBy(5,7);

}

F i g u r e 6: U s i n g m o s t spec i f i c w r a p p e r s

of a wrapper W with a s tandard new W(cons t ruc to ra rgs)

constructor call, a wrapper is retrieved with the construct

o u t e r C l a s s I n s t a n c e . W (c o n s t r u c t o ra rgs) . For illustra-

tion consider the expressions P o i n t S u b j e c t (p) and L ine-

Subjec t (1)3 in the after-advices in Fig. 5. We use the usual

Java seeping rules, i.e., P o i n t S u b j e c t (p) is just an abbre-

viation for t h i s . P o i n t S u b j e c t (p).

The semantics of wrapper recycling is tha t it guarantees

a unique wrapper for every (set of) wrappees in the context

of an o u t e r C l a s s I n s t a n c e . The call to the wrapper recy-

cling operation P o i n t S u b j e c t (p) is equivalent to the corre-

sponding constructor call only if a wrapper for p does not

already exist. That is, two subsequent wrapper retrievals for

a point yield the same P o i n t S u b j e c t instance - the identity

and state of the wrapper are preserved. For more details on

wrapper recycling semantics we refer to [11].

Another interesting feature of CAESAR is its notion of

most specific wrappers: A mechanism tha t determines the

most specific wrapper for an object based on the object 's

runtime type, when multiple nested binding classes with

the same name are available. Consider, e.g., MovableFig-

ures in Fig. 6, which contains three nested classes named

MovableFigure. These classes have different constructors,

though (recall that the wraps clause is just syntactic sugar

for a corresponding constructor). On a constructor- or wrap-

per recycling call, the dynamic type of the argument deter-

mines the actual nested binding to instantiate/recycle. For

example, if Tes t .move(F igure) in Fig. 6 is called with a

Poin t as the actual parameter f , the wrapper recycling call

mv.MovableFigure (f) returns an instance of the Movable-

Figure implementation that wraps Poin t .

The mechanism of most specific wrapper is very similar to

multiple dispatch in languages such as CLOS, Cecil [3], or

Multi Java [4]. More precisely, if one thinks of the construc-

tors of nested classes as factory methods of the enclosing

instance, then our mechanism is an application of multiple

dispatch at these factory methods.

3Recall that the clauses wraps Po in t and wraps Line imply
corresponding constructors.

94

public class ColorObserver binds 0bserverProtocol {

... as before ...

after(Subject s):

(call(void Point.setColor(Color))

with s = PointSubject(target)) [[

(call(void Line.setColor(Color))

with s = LineSubject(target)) {

s.changedO;
}

deploy class CO extends

0bserverProtocol<Color0bserver,0bserverProtocolImpl>{};

void register(Point p, Screen s) {

C0.THIS.PointSubject(p).add0bserver(

CO.THIS.Screen0bserver(s));
}

F i g u r e 9: S t a t i c A s p e c t D e p l o y m e n t

F i g u r e 7: A l t e r n a t i v e b i n d i n g o f o b s e r v e r

class CO extends

ObserverProtocol<ColorObserver,ObserverProtocolImpl> {};

F i g u r e 8: W e a v e l e t compos i t ion

3.5 Pointcuts and Advices

As illustrated in Fig. 5, CAESARalso have advices and

pointcuts, which while being similar to Aspect J, differ from
it in two points. The first difference concerns the decora-

tion of executing (target) objects at a join point with aspect

types. This decoration is implicit in AspectJ . For illustra-
tion, consider the pointcut sub jec tChange in Fig. 2: The
base object, s, brought into the scope of C o l o r 0 b s e r v e r by

the join point t a r g e t , whose type is either Line or Po in t ,

is automatically seen as being of type Sub jec t within Col-
o r 0 b s e r v e r (see the parameter type of the pointcut).

On the contrary, the conversion is explicit in CAESAR~ via

wrapper recycling calls. In Fig. 5, we avoided type conver-
sions in a pointcut, in order to avoid mingling the discussion

on wrapper recycling with t ha t on pointcuts and advices.
For this reason, we defined different pointcuts for Po in t and
Line. A shorter variant of the same binding, where we use

conversions in the pointcuts, in given in Fig. 7. Note the ex-

plicit calls to wrapper recycling operators within the wi th
clauses in Fig. 7; they allow us to decorate basis objects

with different aspect facets in each "case" of the pointcut.

We prefer the explicit variant because it increases program-

mer's expressiveness: H/she can choose among several con-
structors of the binding classes, if more than one is available

(see [11] for more details).

The second and more impor tan t difference between CAE-

SAR and AspectJ pointcuts and advices is at the semantic
level. Compiling a binding class tha t contains advice def-
initions does not have any effect on the base application's

semantics. This is because an aspect (its implementat ion
and binding) must be explicitly deployed in CAESAR. Only
the advice definitions of explicitly deployed aspects are exe-
cuted, as elaborated in the following.

3.6 Weavelets and Deployment

In order to gain a complete realization of an aspect type,
an implementat ion-binding pair needs to be composed into

a new unit called a weavelet. An example of a weavelet is the
class CO in Fig. 8, which represents a complete realization
of the 0 b s e r v e r P r o t o c o l interface tha t combines the im-

plementat ion 0 b s e r v e r P r o t o c o l I m p l with the binding Col-
o r0bse rve r , denoted by the declaration after the extends
clause.

A weavelet is a new class within which the respective im-
plementat ions of the expec ted and p rov ided methods from

the binding and implementat ion parts are composed. The

composition takes place recursively for the nested classes:
All nested classes with a b inds declaration are combined

with the corresponding implementat ion from the implemen-
ta t ion class.

A weavelet has to be deployed in order to activate its

pointcuts and advices. A weavelet deployment is syntac-

tically denoted by the modifier deploy and comprises ba-

sically two steps: (a) create an instance of the weavelet a t

hand and (b) call the deploy operat ion on it. One can choose
between static (load-time) and dynamic deployment.

Static deployment

Static deployment is expressed by using the deploy keyword

as a modifier of a : f ina l s t a t i c field declaration. Semanti-

cally, it means tha t the advices and pointcuts in the instance
tha t has been assigned to the field become active. For ex-

ample, co is deployed when Tes t is loaded in the following
code extract:

class Test . . . {

d e p l o y p u b l i c s t a t i c f i n a l C0 c o = new C 0 () ;

}

The object assigned to co could also be computed in a

s t a t i c method; hence, the weavelet t ha t is actually de-
ployed might also be a subtype of C0, thereby enabling static

aspectual polymorphism. The deploy keyword can also be

used as a class modifier. This variant should be regarded
syntactic sugar in the sense t ha t

d e p l o y c l a s s CO . . . (. . . }

is equivalent to declaring a deployed field named THIS as in:

class C0 . . . {

deploy public static final C0 THIS = new C0();

}

Fig. 9 shows the declaration of a statically deployed color

observer protocol together with sample code which shows

how the deployed weavelet instance can be accessed (reg-

ister()). Since CO.THIS is deployed, the pointcuts of the

observer protocol are active, i.e., color changes in points and

lines will be propagated to C0.THIS.

Using deploy as a class modifier is appropriate if we need

only one instance of the aspect and if aspectual polymor-

phism is not required. By means of deploy as a field modi-

tier we can create and deploy multiple instances of the same

weavelet and select from different weavelets using aspec-

tual polymorphism. Having two instances of, say, the C0

weavelet in the observer example would mean that every

Point and Line would have two independent facets as sub-

ject with independent lists of observers. An example that

95

class Logging {
after(): (call(void Point.setX(int))]l

call(void Point.setY(int))) {

System.out.println("Coordinates changed");
}

}

class VerboseLogging extends Logging {

after(): (call(void Point.setColor(Color)) {

System.out.println("Color changed");
}

}

class Main {

public static void main(String ares[]) {

Logging 1 = null;

Point p[] = createSamplePointsO;

if (args[O].equals("-log"))

i = new Logging();

else if (args[O].equals("-verbose"))

1 = new VerboseLoggingO;

deploy (i) { modify(p); }
}

public static void modify(Point p[]) {

p [s] . setx (5) ;
p[2].setColor(Color.KED);

}

F i g u r e 10: P o l y m o r p h i c a s p e c t d e p l o y m e n t

makes more sense is the association of color to elements of a

da ta s t ructure which can be seen as nodes of a graph. Mul-
tiple independent instances of the corresponding weavelet
would represent multiple independent colorings of the graph.

Other examples can be derived from role modeling, where
frequently one object has to play the same role twice, for

example, a person is employee in two independent compa-
nies. Static aspectual polymorphism is useful if we want

to select a particular weavelet based on conditions tha t are
known at load-time. For example, based on the number of

processors or the mult i - threading support , one might ei ther
choose a usual observer pa t te rn implementat ion or one with

asynchronous updates.

Dynamic Deployment

Dynamic deployment is denoted by the keyword deploy used

as a block s tatement . The rationale behind dynamic deploy-

ment is tha t frequently we cannot determine which variant
of an aspect should be applied (or whether we need the as-

pect a t all) until runtime. Consider e.g., a program with dif-

ferent logging options, i.e., wi thout logging, with s tandard

logging, and with "verbose" logging. In CAESAR, this can be
implemented as in Fig. 104: We have two different logging

aspects related by inheri tancem, Logging and VerBoseLog-
ging) , and we choose one of them at runtime, depending on
the command line arguments with which the program has

been started.
The interesting point is the deploy block s ta tement in

Main.main, which means tha t the advices defined in the an-

notated aspect instance 1 become active in the control flow
of the deploy block, in this case, during the execution of

mod i fy (f) . In particular, other independent threads t ha t

4In order to keep the example simple, we do not use sepa-
ra te binding and implementat ion here - if separat ion of im-
plementat ion and binding would be overkill, we can collapse
bo th parts into a single unit.

deploy class LoggingDeployment {
around(final String s[]): cflow(Main.main(String[])

&~ args(s) && (call(void Main.modify(Point[])) {

Logging 1 = null;

if (...) i = new Logging(); else ... ;

deploy (i) in { proceed(s); }
}

}

class Main {

public static void main(String ares[]) {

Point p[] = createSamplePointsO;

modify(p);
}

public static void modify(Point p[]) {...}
}

F i g u r e 11: A s p e c t d e p l o y m e n t a s p e c t s

execute the same code are not be affected by the deploy

clause. Please note t ha t the advices and pointcuts t ha t will
be activated in the deploy block are not statically known; 1

is only known by its upper bound Logging (1 could have also

been passed as a parameter) . In other words, the advices

are late bound, similarly to late method binding, hence our

te rm aspectual polymorphism. If 1 is n u l l the deploy clause

has no effects at all.
The usefulness of dynamic deployment becomes clear if

we consider a "simulation" of this functionality by means

of stat ic deployment. Wi th stat ic deployment, we would
have to encode the different variants by conditional logic in

the aspect code, 5. The s t ructure of the aspect would get

awkward because all variants of the aspect are tangled inside
a single aspect module. In a way, this is similar to simulating

late binding in a non-OO language, hence we see dynamic

aspectual polymorphism as an imperat ive consequence of
integrat ing aspects into the OO concept world. Also, such

programs would be very fragile with respect to concurrent

programs and addit ional synchronizat ion measures would be

required.
An interesting question is whether the aspect deployment

code should also be separated from the rest of the code. If

desired this can easily be done wi th another aspect whose

responsibility is the deployment of the logging aspect, as
indicated in Fig. 11. In this figure, the aspect LoggingDe-

ployment (which is itself deployed statically) computes and

deploys an appropriate logging aspect by means of an around
advice, i.e., the p r o c e e d () call is executed in the context of

the logging aspect.

3.7 Virtual Classes and Static Typing
In CAESAR, all nested interfaces of a CI and all classes t h a t

implement or bind such interfaces, are virtual types~classes,
as in the family polymorphism approach [5]. Similar to fields

and methods, vir tual types also become properties of objects

of the class in which they are defined. Hence, their deno-
ta t ion can only be dynamically determined in the context

of an instance of the enclosing class. The rat ionale behind
using family polymorphism lies in its power with respect
to reuse and polymorphism at the level of multiple related

SOur example also uses conditional logic in Main.main.
However, we select the logging variant once and never have
to do any checks again (a factory object could have been
used, as well) whereas wi thout dynamic deployment the
check would be redone at every joinpoint.

96

public class LazyColor0bserver extends Color0bserver {

override class ScreenObserver {

int Count = O;

void notify(Subject s) {

count++;

if (count >= i0) { super.notify(s); count = O; }
}

}
}

F i g u r e 12: L a z y co lor o b s e r v e r

abstractions.

If we want to have a variant of a binding, weavelet, or
CI, we can refine the respective enti ty by creating an ex-

tension within which the nested vir tual types/classes can

be overridden. LazyColor0bse rver in Fig. 12 refines the
behavior of C o l o r 0 b s e r v e r in Fig. 5 by using vir tual class

overriding (declared with the keyword o v e r r i d e) - a lazy
Sc reen0bse rve r reacts only after being notified ten times

about a change. The impor tan t observation to make here is

t ha t even if the definition of Po in tSub j e c t and LineSubj ec¢

are inherited unchanged, references to Observer within their
respective implementat ions will automatical ly be bound to

LazyColor0bserver . S c r e e n 0 b s e r v e r during the execution
of any method on an instance of LazyColor0bserver .

However, this flexibility is not paid for with loss of static
typing: An improvement of the type system proposed in [5]

preserves the ability to detect type errors at compile time.
The integration of virtual classes [9] and family polymor-

phism [5] with collaboration interfaces and their implemen-

ta t ion and binding units has already been described in [11].
Hence, for more details on reuse and typing issues we refer
to [11] and [5].

4. EVALUATION
This section discusses how CAESAR copes with the prob-

lems outlined in Sec. 2. In addition, we will elaborate on

how CAESAR's explicit aspect instant ia t ion and deployment
relate to Aspect J-like languages, where aspects are only im-

plicitly created and which do not have a notion of aspect
deployment.

Problems Revisited

Recall t ha t we identified the following problems in Sec. 2:

(1) lacking support for mult i -abstract ion aspects, (2) lacking
support for sophisticated mapping of aspect abstract ions to

base classes, (3) lacking support for reuse of aspect bindings,
(4) acking support for aspectual polymorphism. In the fol-
lowing we will explain how each of these problems is solved
in CAESAR..

Adl: . As was shown in the code in Fig. 3, 4, and 5, each ab-
stract ion in the vocabulary of the world as it is decomposed

from the point of view of an aspect, is defined in its own

full-fledged module with a well-defined interface. Methods
in the interface of one abstract ion can be called by methods
of other abstract ions within the same aspect, or from the
outside. Consider e.g., the call of Sub jec t . n o t i f y (. . .) in
the implementat ion of 0 b s e r v e r P r o t o c o l I m p l in Fig. 4, or
the invocation of C0.THIS. add0bse rve r (. . .) in Fig. 9.

Due to this finer-grained modularizat ion of the aspect it-

self, the runt ime system is able to dispatch methods not only
based on the instance of the aspect, but also based on the

particular abst ract ion in execution. Consider, for example,

the g e t S t a t e () method in the definition of Sub jec t , which

was implemented differently for point-subjects and for line-
subjects, while being uniformly used in the update logic (cf.

Fig. 5). As was pointed out in Sec. 2, the same polymor-

phism would not be possible, if there were only aspect-level

methods. Furthermore, due to the incorporation of vir tual
classes, it is easy to encode different variants of a multi-
abstract ion aspect, as exemplified in Fig. 12.

Let us now consider the issue of defining s tate for the
individual abstract ions per taining to an aspect. As it was

shown by examples in the previous section, each abstrac-

t ion in the modular s t ructure can declare its own state, e.g.,

o b s e r v e r s in Subjec t . Hence, there is no need for defin-
ing da ta s tructures tha t "globally" mainta in aspect-related

s tate of all base objects in a single place, as e.g., perSub-

j e c t 0 b s e r v e r s in Fig. 1. Similarly, s tate can be added to

the abstract ions at the binding side, such as e.g., the count
field in Fig. 12.

Ad2:. In our model bindings are Java classes with some ad-

ditional features. As such, the definition of mappings from

aspect abstract ions to the classes of a base application can
make use of the full expressiveness of an general purpose OO

language. There is nothing to prevent a CAESAR program-

mer in coding any mapping no mat te r how sophisticated.
A more detailed discussion on this issue supported also by
bet ter examples can be found in [11].

Ad 3:. Different weavelets can combine an aspect binding
with different aspect implementations. On the other hand,

different weavelets can combine (and reuse) a particular as-

pect implementat ion with multiple different bindings. For

example, we can combine the observer protocol binding to

JButZon and MyActionListensr with the LinkedList or the

AsynchronousUpdaCe observer implementation, and on the

other hand combine the same observer implementation, say

AsynchronousUpdate, with multiple different bindings, e.g.,

to JButton/MyActionListener and ListModel/JList. As a

consequence, one can define functionality that is polymor-

phic with respect to (a) aspect implementations by being

written to a certain aspect binding type, (b) aspect bind-

ings by being written to a certain aspect implementation

type, or (c) both of them, by being written to an ACI.

Ad 4:. As already discussed in Sec. 3.6, our approach
does support aspectual polymorphism. For example, the

mod i fy (Po in t p[]) method in Fig. 10 is polymorphic with
respect to aspects tha t might be defined in the future. It is

even possible to run the same method concurrently within
two different threads with and without the logging aspect.

Explicit vs. Implicit Aspect Instantiation/Deployment

The question we pose here is: How does our notion of ex-
plicit aspect ins tant ia t ion and deployment relate to Aspect J-

like languages, within which aspects are only implicitly cre-
ated and which do not have a notion of aspect deploy-
ment? In AspectJ , aspect ins tant ia t ion can be controlled by
means of the aspect modifiers i s S i a g l e ¢ o a (this is the de-

fault), perThis/perTarget, and percflow/percflowbelow.

97

In CAESAR, these aspect instant ia t ion strategies tu rn out to
be special cases or "pat terns" of the more general model in

CAESAR.
Tab. 1 describes how the AspectJ instant ia t ion strategies

can be simulated in CAESAR. The isS±ngle . ton case is ob-

vious. The pe rTh i s modifier can be simulated by creating a

wrapper class and using wrapper recycling in order to refer

to the s ta te t ha t is associated with each point. Simulat-

ing perTarge.t is identical to perThis , except t ha t we would
have to exchange "this (p) by t a r g e t (p). More interesting is

AspectJ ' s perc:flow modifier, which means t ha t an instance

of the aspect is created for each flow of control of the join
points picked out by the annota ted pointcut. The semantics

of perc:flow can be simulated by using a deployment aspect

ADepl tha t uses dynamic deployment at the respective s tar ts

of control flow.
W h a t do we gain if all the cases in Tab. 1 can already

be handled very well by Aspect J? To answer this question

recall t ha t AspectJ instant ia t ion strategies are just special

cases of a more general model in CAESAR. This has two
implications. First, we do not need special new keywords to

express the semantics of AspectJ instantiat ion, thereby ren-

dering the conceptual model more slender. Second and more

importantly, our model allows us to express instant ia t ion
and deployment semantics t ha t cannot easily be expressed

in AspectJ.

When using AspectJ ' s perTh±s of perTarge.t modifiers,

s ta te can be only associated with objects t ha t are caller or

callee, respectively, in a pointcut. In CAESAR, s ta te can be

associated with arbi t rary objects and arbi t rary relations be-

tween objects. For example, we could associate s ta te with

every pair of . th is and "target , or with any argument of
a method call. In the perc:flow case we can either simu-

late the AspectJ semantics but we could also do something
more sophisticated, e.g., deploy an instance of an optimiza-

t ion aspect only if the number of calls to the method to be
optimized is executed more than a certain threshold.

5. RELATED WORK

Open classes: An open class is a class to which new fields
or methods can be added without editing the class directly.
For example, in Multi Java [4] addit ional methods can be
at tached to a class. In Aspect J, methods as well as fields

can be added to a class by means of introductions. As al-

ready discussed in Sec. 2, open classes are in contrast to the
concept of independent extensibility [14], an essential pre-

requisite for reusable and extensible software. On contrary,
CAESAR offers an al ternat ive to open classes t ha t is even
more powerful and does not violate independent extensibil-
ity.

Adaptive Plug and Play Components (APPCs) [10] and
their aspect-oriented variant of Aspectual Components [8]

are related to our work in t ha t bo th approaches support
the definition of mult i -abstract ion components /aspects and

have a vague definition of required and provided interfaces.

However, the lat ter feature was not well integrated with
the type system. Recognizing this deficiency, the successor
model of Pluggable Composite Adapters (PCAs) [12] even

dropped this notion and reduced the declarat ion of the ex-
pected interface to a set of s tandard abst ract methods. Wi th

the notion of collaboration interfaces, CAESAR represents a
quali tat ive improvement over all three models, as far as sup-
port for mult i -abstract ion aspects is concerned. Due to the

lack of a CI notion, connectors and adapters in APPC, As-
pectual Components , and PCA models are bound to a fixed

implementat ion of an aspect and cannot; be reused. In addi-
tion, [10] and [8] rely on a dedicated mapping sublanguage

tha t is less powerful than our object-oriented wrappers with

wrapper recycling. Finally, the lack of the notion of vir tual
types is another drawback of these approaches as compared
to the work presented here.

Delegation layers [13] are an approach to decompose a
collaboration into layers and compose these layers dynam-

ically at runtime. We plan to integrate delegation layers

with CAESAR in order to organize aspect implementat ions
and bindings in layers and compose them dynamically.

CAESAR is also related to H y p e r / J and its notion of multi-
dimensional separat ion of concerns (MDSOC) [15]. Our as-

pect bindings, which serve as a t rans la tor from one domain

to another domain, allow to view and use a system from

many different perspectives. This is similar to the MD-

SOC idea of having multiple concern dimensions such t ha t

the program can be projected on each concern hyper plane.
Apar t from tha t , CAESAR is very different from Hyper / J . In

Hyper / J , one can define an independent component in a hy-

perslice. Hyperslices are independent of their context of use

by the feature of being declaratively complete, i .e, they de-
clare as abs t rac t method everything t ha t they need, but can-

not implement themselves. A hyperslice is integrated into

an existing application by means of composition rules speci-

fied in a hypermodule. As the result, new code is generated

by mixing the hyperslice code into the existing code. Similar

to PCAs, Hype r / J [15] also lacks the notion of collaboration

interfaces and the reuse of bindings related to it: Ei ther the

modules to be composed are not independent due to the

usage of the "merge-by-name" composit ion s trategy or the

modules are independent but then the non-reusable compo-
sition specification gets very complex. Similar to A P P C and

Aspectual Component models, Hyper / J ' s approach is class-

based: it is not possible to add the functionality defined in

a hyperslice to individual objects. Furthermore, Hyper / J ' s
sublanguage for mapping specifications from different hy-
perslices is fairly complex and not well integrated into the
common OO framework.

Lasagne [16] is a runt ime architecture t h a t features
aspect-oriented concepts. An aspect is implemented as a

layer of wrappers. Aspects can be composed at run-time,

enabling dynamic customizat ion of systems, and context-
sensitive selection of aspects is realized, enabling client-

specific customizat ion of systems. Al though Lasagne is an

architectural approach focusing on middleware (instead of a

general purpose language extension as CAESAR), it has some

similarity with CAESAR. In particular, Lasagne also features
extensions t ha t are created and deployed at runtime, and it

also provides means to restrict the visibility of an extension
to a part icular scope (as our deploy block s ta tement) .

In [2] an extension of the composit ion filter model [1]

geared more towards aspect-oriented programming is dis-
cussed. Wi th composit ion filters, it is possible to define
various filters for incoming and outgoing messages of an ob-

ject. By means of superimposition [2], it is possible to apply

these filters to objects t ha t are specified via a join point dec-
larat ion similar to AspectJ pointcuts. Composit ion filters

have no dedicated means to separate aspect implementat ion
and binding, and there is notion of deployment or aspectual

polymorphism. In comparison with CAESAR, where almost

98

aspect h isSingleton { State s; }

aspect A perThis(pointChanges) {

pointcut pointChanges():
call (Point.setX(int));

State s;

after(Point p): pointChangesO && this(p) { ...s...)

aspect A percflow(pointChanges) {
pointcut pointChangesO: ca l l (Point .setX(int)) ;
State s;

af te r () : somePointCutO { . . . }
}

deploy class A { State s; }

deploy class h (
class PointWrapper wraps Point { State s; }

after(Point p):
calls(Point.setX(int) && this(p) {

...PointWrapper(p).s;... }

)
class A {

State s;
after(): somePointCut {}

)

deploy class ADepl {
aroundO:call (Point.setX(int)) {

deploy (new AO) { proceed(); }
)

Tab le 1: A s p e c t I n s t a n t i a t i o n in A s p e c t J (l e f t) a n d C a e s a r (r igh t)

everything is specified as usual OO code, composition filters
are more declarative. On one hand, this makes it easier to
express kinds of concerns that are easily expressible with the
declarative sublanguage, but on the other hand it restricts

is applicability to arbitrary kinds of concerns.

6. SUMMARY
In this paper, we argued that join point interception (JPI),

that is, intercepting and eventually modifying the execution
of running code at certain points, alone does not suffice for

a modular structuring of aspects, resulting in tangled as-
pect code. We discussed several problems resulting from the
lack of an appropriate higher-level module construct on top
of join points and advices. We proposed CAESAR, a model
for aspect-oriented programming with a higher-level module
concept on top of JPI, which enables reuse and componenti-
zation of aspects, allows us to use aspects polymorphically,
and introduces a novel concept for dynamic aspect deploy-
ment. CAESAR is based on the notion of an aspect collabora-
tion interface (ACI) presented in [11]. In this paper we show
that ACIs and the related notions of separated ACI imple-
mentations and ACI bindings, once properly adopted to the
needs of aspect-orientation, can also be applied to support a
more modular structuring of aspect code and better aspect

reuse.

7. REFERENCES

[1] M. Aksit~ L. Bergmans, and S. Vural. An
object-oriented language-database integration model:
The composition-filters approach. In Proceedings of
ECOOP '92, 1992.

[2] L. Bergmans and M. Aksit. Composing multiple
concerns using composition filters. 2001. Available at
trese.cs.utwente.nl/composition_filters/.

[3] C. Chambers. Object-oriented multi-methods in Cecil.
In Proceedings ECCOP '92, 1992.

[4] C. Clifton, G. T. Leavens, C. Chambers, and
T. Millstein. Multi Java: Modular open classes and
symmetric multiple dispatch for Java. In Proceedings
OOSPLA '00, 2000.

[5] E. Ernst. Family polymorphism. In Proceedings off
ECOOP '01, LNCS 2072, pages 303-326. Springer,
2001.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, 1995.

[7] J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ. In Proceedings
OOPSLA '02, ACM SIGPLAN Notices, 2002.

[8] K. Lieberherr, D. Lorenz, and M. Mezini.
Programming with aspectual components. Technical
Report NU-CCS-99-01, March 1999.

[9] O. L. Madsen and B. M¢ller-Pedersen. Virtual classes:
A powerful mechanism in object-oriented
programming. In Proceedings of OOPSLA '89. ACM
SIGPLAN, 1989.

[10] M. Mezini and K. Lieberherr. Adaptive plug-and-play
components for evolutionary software development. In
Proceedings OOPSLA '98, A CM SIGPLAN Notices,
1998.

[11] M. Mezini and K. Ostermann. Integrating independent
components with on-demand remodularization. In

Proceedings of OOPSLA '02, 2002.

[12] M. Mezini, L. Seiter, and K. Lieberherr. Component
integration with pluggable composite adapters. In
M. Aksit, editor, Software Architectures and
Component Technology: The State of the Art in
Research and Practice. Kluwer, 2001.

[13] K. Ostermann. Dynamically composable
collaborations with delegation layers. In Proceedings of
ECOOP '02, LNCS 237~, Springer, 2002.

[14] C. Szyperski. Independently extensible systems -
software engineering potential and challenges. In
Proceedings 19th Australian Computer Science
Conference. Australian Computer Science
Communications, 1996.

[15] P. Tart, H. Ossher, W. Harrison, and S. M. Sutton. N
degrees of separation: Multi-dimensional separation of
concerns. In Proc. International Conference on
Software Engineering (ICSE 99), 1999.

[16] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten,
and B. N. Joergensen. Dynamic and selective
combination of extensions in component-based
applications. In Proceedings of the 23rd International
Conference on Software Engineering (ICSE'01), 2001.

99

