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ABSTRACT 

Join point interception (JPI),  is considered an impor tan t  

cornerstone of aspect-oriented languages. However, we claim 
tha t  JP I  alone does not suffice for a modular  s t ructur ing of 

aspects. We propose CAESAR 1, a model for aspect-oriented 

programming with a higher-level module concept on top of 

JPI,  which enables reuse and componentizat ion of aspects, 

allows us to use aspects polymorphically, and introduces a 
novel concept for dynamic aspect deployment. 

1. INTRODUCTION 

A popular view of aspects is one of modules tha t  define 
(i) points in the execution of a base program to intercept 

(joinpoints), and (ii) how to react a t  these points. We be- 

lieve, however, t ha t  more powerful means for s t ructur ing 

aspect code are needed on top of join point  interception 

(JPI),  namely, be t te r  support  (a) for expressing an aspect 

as a set of collaborating abstractions,  comprising the  modu- 
lar s t ructure  of the  world as seen by the aspect, and (b) for 

s t ructur ing the  interaction between two parts  of an aspect: 

aspect implementation, and aspect binding (integration) into 
a particular code base. 

To clarify the  terminology, let us consider a simple and 
well-known example: the  subject-observer pa t te rn  [6]. As 

far as (a) is concerned: The world as seen by this  aspect 

consists of two abstractions,  subject  and observer, which 
are mutually recursive in tha t  the  definition of each of them 

refers to the  other one. The definition of the  observer aspect 

should clearly define these two abstract ions as two modules 

t ha t  interact with each other via well defined interfaces. As 
far as (b) is concerned: The implementat ion par t  comprises 

in this case the implementat ion of methods such as add0b- 
s e r v e r  () ,  remove0bserver  () and changed () ,  say by means 

of a L inkedLis t .  Of course, other  implementat ions are pos- 
sible, e.g., one tha t  executes the  observer notifications asyn- 
chronously, or one t ha t  employs buffering to eliminate du- 
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plicated notifications. The  binding part ,  on the  other  hand,  

comprises details about  how to integrate the  observer pro- 

tocol into a part icular  context  mapping the roles "Subject" 

and "Observer" to part icular  application classes, e.g., JBu t -  

t o n  and MyAct ionLis t sner .  An example for such binding 
details would be the  extract ion of the  par t  of the  subject  

s ta te  (e.g., JBut ton)  to be passed over to the observers along 

a change notification, as well as how the notification is per- 
formed in terms of the  method to call on the  observer site. 

The  advantage of suppor t ing the  definition of an aspect 

as a set of mutually recursive abstract ions t ha t  interact  via 
well-defined interfaces is more or less a direct derivate of 

the advantages of the  object-oriented approach to model- 

ing a world of discourse; for this reason it does not  require 
part icular  justification at  this  stage of the  discussion. 

A short  discussion is needed, though,  to justify the  re- 

quirement for decoupling aspect implementat ion from aspect 

binding. An aspect implementat ion t ha t  is t ightly coupled 
with a part icular  aspect  binding, by the vir tue of being de- 
fined within the  same module, cannot  be reused with other  

possible bindings. Hence, this  part icular  aspect implementa- 

t ion must  be rewri t ten for every meaningful binding, thereby 

rendering the  application tangled, since the  aspect imple- 
menta t ion becomes itself crosscutting. Especially for non- 

trivial aspects with  complex implementat ions,  this  rewriting 

of the aspect implementat ion is tedious and error-prone. 
An aspect binding t ha t  is t ightly coupled to a specific 

aspect implementat ion is also undesirable. A binding t rans-  

lates the  concepts, terms, and abstract ions of the  applica- 

t ion's  world into the  world of the  part icular  aspect domain; 

its usage is not limited to a specific aspect implementat ion.  

Consider e.g., an aspect binding t ha t  t ransforms a particu- 

lar business application da ta  model to the  domain of graphs 

with nodes and edges. Such a graph view is useful with 
different graph algorithms. 

Wi thou t  dedicated language suppor t  it is ra ther  difficult 
to separate aspect  implementat ion and binding properly. 
We will e laborate on this  claim in Sec. 2, where we inves- 
t igate the  AspectJ  approach to separat ion of aspect imple- 

menta t ion and binding via abs t ract  aspects. The discussion 

in Sec. 2 will also reveal the  deficiencies of AspectJ ' s  JPI-  
based approach with respect to modeling multiple mutual ly 
recursive abstractions.  

To solve these problems, we propose the  CAESAR model 
in Sec. 3, which is based on the  notion of collaboration in- 
terfazes (CI) presented in [11] as a means to be t te r  suppor t  

a-posteriori integrat ion of independent  components  into ex- 
isting applications. We show tha t  CIs and the related no- 
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public abstract aspect ObserverProtocol { 

protected interface Subject { } 

protected interface Observer { } 

private WeakHashMap perSubjectObservers; 

protected List getObservers(Subject s) { 

if (perSubjectObservers == null) 

perSubjectObservers = new WeakHashMapO; 

List observers = 

(List) perSubjectObservers.get(s); 

if ( observers = =  null ) { 

observers = new LinkedListO; 

perSubjectObservers.put(s, observers); 
} 

return observers; 
} 

public void addObserver(Subject s,Observer o){ 

getObservers(s).add(o); 
} 

public void removeObserver(Subject s,Observer o){ 

getObservers(s).remove(o); 
} 

abstract protected void 

updateObserver(Subject s, Observer o); 

abstract protected pointcut subjectChange(Subject s); 

after(Subject s): subjectChange(s) { 

Iterator iter = getObservers(s).iteratorO; 

while (iter.hasNext() ) 

updateObserver(s, ((Observer)iter.nextO)); 
} 

} 

F i g u r e  1: R e u s a b l e  o b s e r v e r  p r o t o c o l  in  A s p e c t J  

tions of separated CI implementat ions and CI bindings, once 

properly adopted to the needs of aspect-orientation, can also 
be applied to support  a more modular  s t ructur ing of aspect 
code and bet ter  aspect reuse. In Sec. 4 we evaluate CAESAR 

with respect to the problems identified in Sec. 2. Related 

work will be discussed in Sec. 5. Sec. 6 summarizes the 
paper and outlines future work. 

2. PROBLEM STATEMENT 

In this section we discuss the deficiencies of a JPI-based 

approach to aspect structuring.  Please note tha t  the discus- 

sion in this section is by no way a critique on the notions 
of JPIs and advices. On the contrary, recognizing them as 
pivotal concepts of aspect-oriented languages, we emphasize 

the need for higher-level module concepts on top of them. 

For i l lustrating the problems, we use as an example the 
implementat ion of the observer pa t te rn  in AspectJ  proposed 

in [7] by Hannemann and Kiczales , as shown in Fig. 1 and 
Fig. 2, whereby Fig. 1 shows a reusable implementat ion of 
the observer protocol in Aspect J, while Fig. 2 binds it to 
particular classes. 

The basic idea in Fig. 1 is tha t  the aspect 0 b s e r v e r P r o -  
t o c o l  declares an abstract pointcut t ha t  represents change 
events in the Sub jec t  classes. The empty interfaces Sub- 

j e c t  and Observer  are marker interfaces tha t  are used in 
the binding to map the application classes to their  roles. The 
observers for each subject  are stored in a global WeakHash/4ap 
(the weak references are required in order to prevent a mem- 
ory leak) tha t  maps a subject  to a list of observers. In case 
of a subject  change all observers are notified by means of the 
abst ract  method u p d a t e 0 b s e r v e r  () ,  which is overridden in 

public aspect ColorObserver extends ObserverProtocol 

declare parents: Point implements Subject; 

declare parents: Line implements Subject; 

declare parents: Screen implements Observer; 

protected pointcut  subjectChange(Subject s):  
(call(void Point.setColor(Color)) II 
ca l l (vo id  Line.setColor(Color))  ) && t a r g e t ( s ) ;  

protected void updateObserver(Subject s, Observer o) { 

((Screen) o). display ("Color change. ") ; 
} 

F i g u r e  2: B i n d i n g  o f  o b s e r v e r  p r o t o c o l  in  A s p e c t J  

the binding aspect in order to fill in the  appropriate update  
logic. 

This proposal has two main advantages. First, Fig. 1 is 

indeed a reusable implementat ion of the  observer protocol: 

Nothing in the  implementat ion is specific to a part icular  

binding of this functionality. This is because the  authors [7] 
recognize the  need to separate aspect implementat ion and 

aspect binding. Second, the same role, e.g., Sub jec t ,  can be 

mapped to multiple different classes, e.g., Po in t  and Line as 
in Fig. 2. I t  would also be no problem to assign two roles, 

e.g., Sub j ec t  and Observer, to the  same class, or assign 
the same role twice to the same class in two different bind- 

ings. For example, a P o i n t  can be simultaneously a subject  

concerning coordinate changes ias well as color changes. In 
terms of [14], the  observer "component" in Fig. 1 is inde- 
pendently extensible. 

These features are probably the  rationale for the author ' s  

decision against an al ternative (simpler) implementat ion of 

the observer protocol in AspectJ .  The  al ternative solution of 

which we speak is to declare a d d 0 b s e r v e r ( )  and remove0b- 
s e r v e r ( )  in the interface Sub jec t  and then  (in the bind- 

ing) inject these methods into the corresponding classes by 

means of a so-called introduction, - AspectJ ' s  open class 

mechanism. Similarly, a L inkedLi s t  could be introduced 
into every Sub jec t  class, thereby rendering the p e r S u b j e c -  

t 0 b s e r v e r s  map unnecessary. However, with this solution, 

a class could not have two different instantiat ions of the  

Sub jec t  role, because then the  class would have multiple 
implementat ions of the  same method (e.g., add0bse rve r  O ), 

hence resulting in a compiler error. In other words, we would 
loose independent  extensibility. 

Now, let us take a critical look on this solution. We iden- 
tify the  following problems. 

Lacking support f o r  multi-abstraction aspects 

Note tha t  all methods in Fig. 1 and 2 are top-level methods 
of the enclosing aspect class. For example, add0bse rve r  () ,  
which is conceptually a method of the subject  role, is a top- 
level method whose first parameter  is the  respective Subj a c t  

object. This design is conceptually questionable leading to 

a poor separation of concerns inside the  aspect: The enclos- 
ing class contains all methods of all abstract ions t ha t  are 
defined in the particular aspect and therefore becomes eas- 

ily bloated. In a way, this is a ra ther  procedural style of 
programming, contradictory to one of the fundamentals  of 

object-oriented programming, according to which a type def- 
inition contains all methods t ha t  belong to its interface. I t  
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is also contradictory to the aspect-oriented vision of defining 

crosscutting modules in terms of their own modular struc- 

ture. The structure of the aspect in Fig. 1 is one of empty 

abstractions and unstructured method definitions, and as 

such not particularly modular. 

The implications of this design decision are not only of a 

conceptual, but also of a practical nature. First, we cannot 

pass objects that  play a role R to other classes that  expect an 

instance of that  role. Envisage, for illustration, a role Com- 

pa r ab l e  with a method compareTo(). If we want to pass 

an object as a Comparable to another class, e.g., a sorting 

class, then the approach in Fig. 1 and 2 based on introduc- 

ing an empty interface and encoding all methods as top-level 

methods of the enclosing class, does not work. The alter- 

native would be to use AspectJ 's  introduction mechanism 

to introduce the interface and its methods directly into the 

respective class but then again we would loose independent 

extensibility, as discussed above. For example, a Poin't could 

be compared to another Poin t  by means of their geometri- 

cal distance v / ~  + y2 as well as their Manhat tan  distance 

Hxl] + ]ly[I to the origin, which would require two independent 

implementations of the Comparable abstraction. 

A similar problem shows up, if some interaction between 

the abstractions that  build up the aspect 's  model of the 

world - Subjec t  and Observer  in our example - is needed. 

The interaction in Fig. 1 is very simple: a subject passes it- 

self on calling the not i : fy method on each observer, but the 

parameter gets never used in the binding of the aspect in 

Fig. 2. It is more realistic that  observers would want more 

detailed information of what  state change actually happened 

on the subject 's  site. This would require some query meth- 

ods in the interface of the subject. Using the AspectJ design 

"pat tern" exemplified in Fig.1 and Fig. 2, where abstractions 

are typeless, we would have to declare such query methods 

also at the top level, e.g., ge tS ' t a r e (Sub jec t  s) .  The query 

methods would have to be declared abstract in Fig. 1 since 

their implementation is binding specific and should be im- 

plemented by the concrete binding subaspect in Fig. 2. How- 

ever, it is not possible to implement different query methods 

for Point  and Line, i.e., it is not possible to dynamically 

dispatch with regard to the type of the base objects being 

decorated with the subject functionality. 

With the solution in Fig. 1 and 2 it is also pretty awk- 

ward to associate state with the individual abstractions in 

the definition of the aspect. For example, the observers of 

all subjects are stored in a global hash map p e r S u b j e c t 0 -  

b se rve r s .  Besides the dangers of such a global bottleneck, 

the access and management of state becomes pretty clumsy. 

The example in Fig. 1 is relatively simple because state is 

associated with only one of the abstractions (Subject )  and 

this state consists of only one "field". However, the general 

case is that  multiple abstractions in the module structure 

of the aspect may declare multiple fields. A simple exam- 

ple would be an implementation where observers maintain a 

history of the observed state change, e.g., when they need to 

react on change bundles rather than on individual changes. 

If we consider the case that  all roles need many different 

fields then the code might very easily become a mess, if all 

these fields are hosted by the outer aspect. 

The problem with modeling state becomes even worse, 

once we consider the case of role inheritance, e.g., S p e c i a l -  

Subjec t  inheriting from Subject .  In this case, we would 

end up simulating shared data fields manually. This prob- 

lem with modeling state applies to the aspect binding as 

well. There we might also want to associate state with the 

objects that  are mapped to the aspect roles, e.g., in order 

to cache computed values. 

Summarizing the problems so far, what we would like to 

have is a nested class structure of aspect implementation 

and aspect binding within which we can assign methods and 

state to every aspect role in isolation. 

Lacking support for sophisticated mapping 

The second kind of problem with the solution in Fig. 1 

and 2 is tha t  the mapping from aspect abstractions to base 

classes by means of the d e c l a r e  p a r e n t s  construct works 

only when each aspect abstraction has a corresponding base 

class to which it is mapped directly. However, this is not 

always the case. Consider e.g., a scenario in which there 

is no class Line and every Po in t  object has a collection of 

neighbor points. If we want to map this data  structure to 

a graph aspect defined in terms of Node and Edge abstrac- 

tions, then an edge would be represented by two adjacent 

points, but there is no abstraction in the base application 

to which we can map the Edge abstraction. The latter is 

only implicitly and indirectly represented by the collections 

of adjacent points. 

Lacking support for reusable aspect bindings 

Third, every aspect binding is coupled to one particular im- 

plementation. For example, the ColorObserver  binding in 

Fig. 2 is hardwired to the observer pat tern implementation 

in Fig. 1, although the binding itself is not dependent on 

the implementation details of the observer pattern. The ob- 

server pat tern is not a very good example to illustrate the 

usefulness of a binding that  can be used with many different 

implementations; a bet ter  example is that  of an aspect bind- 

ing that  maps an arbitrary data structure, e.g., the classes 

of an abstract  syntax tree, to a general tree representation. 

Many different implementations of a tree make sense in con- 

junction with such a binding, e.g., one that  displays trees on 

the screen or one tha t  performs algorithms on trees. That  

is, one might want to be able to write some functionality 

that  is parameterized with a particular binding type, but 

is polymorphic with respect to the implementation. This 

is, however, not possible, if the binding is coupled to the 

implementation. 

Lacking support for aspectual polymorphism 

The fourth deficiency concerns aspect deployment. We say 

that  the Co lo r0bse rve r  aspect in Fig. 2 is statically de- 

ployed. By this we mean that  once compiled together with 

the package containing the figure classes, the changes in the 

particular points in the execution of point and line objects 

implied by Colo r0bse rve r  aspect are effective. Which is to 

say that  it is not possible to determine at runtime, whether 

to apply the aspect at all, or which implementation of the 

aspect to apply, e.g., a L inkedLis t  version, or one with asyn- 

chronous notifications. We say that  aspectual polymorphism 
is missing, in the sense that  the code is not polymorphic 

with respect to the types and implementations of the as- 

pects affecting it after compilation. 

3. THE CAESAR MODEL 

A core feature of CAESAR is the notion of an aspect collab- 
oration interface (A CI for short) - an interface definition for 
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aspects with multiple mutually recursive nested types. The 

purpose of an ACI is the decoupling of aspect implementa- 

tions and aspect bindings which are defined in independent, 

but indirectly connected, modules. The idea is that  while 

being independent of each other, these modules implement 

disjoint parts of a common ACI, which indirectly relates 

them as parts of a whole. We illustrate our ideas also by 

means of the observer example. Fig. 3, 4, and 5 show an 

ACI for the observer protocol, an aspect implementation, 

and an aspect binding, respectively, each of which will be 

discussed in the course of this section. 

3.1 Aspect Collaboration Interfaces 
An ACI consists, in general, of several mutually recursive 

nested ACIs - one for each abstraction in the modular struc- 

ture of the aspect. The ACI 0 b s e r v e r P r o t o c o l  in Fig. 3, 

for example, has two nested ACIs, Subjec t  and Observer, 

that  are mutually recursive in that  the name of one type 

is used to define the other one and vice versa. A simple 

ACI that  does not contain other nested ACIs, e.g., Subject ,  

is a special kind of interface that  lays down a bidirectional 

communication protocol between any possible implementa- 

tion and binding of the corresponding abstraction. It does 

so by distinguishing between two part-interfaces: the pro- 

vided and the expected facets of the abstraction, consisting 

of methods declared with the modifiers p rov ided  and ex-  

pected ,  respectively. Hence, we can redefine an ACI as con- 

sisting of expected and provided declarations for the aspect 

as a whole as well as a set of mutually recursive nested ACIs 

- one for each abstraction in the modular structure of the 

aspect. 

The provided facet of an aspect lays down what the as- 

pect provides to any context in which it is applied. The 

observer ACI in Fig. 3 specifies that  any implementation of 

0bse rve rP ro toco l  must provide an implementation of the 

three provided methods of Subjec t  2. On the other side, the 

expected facet of an aspect makes explicit what the aspect 

expects from the context in which it will be applied, in or- 

der to be able to supply what the provided facet promises. 

Hence, the expected facet declares methods whose imple- 

mentation is binding specific. 

Consider for instance, the part of the observer protocol 

concerned with communicating relevant state from the sub- 

ject to observers, when a change is notified. What  part of 

subject 's  state is relevant, and how this state should be ex- 

tracted for being passed to observers is highly dependent 

on what classes play the the subject and observer roles in a 

particular context. Furthermore, the operation to be called 

on the observer as part of the notification is also binding- 

specific. This is why not if y () and get  St a t  e () are declared 

with the modifier expected  in Fig. 3. 

An ACI's provided and expected facets are implemented 

in different modules, called aspect implementations and as- 

pect bindings respectively. However, all implementations 

and bindings of the same ACI are indirectly connected to 

each other, since they implement two facets of the same 

whole. The common ACI serves as a medium for bidirec- 

tional communication between them: Any module that  im- 

plements one of the facets can freely use declarations in the 

2In this example, the Observer  abstraction does not have 
any provided methods. However, one can easily think of 
other examples where more than one abstraction declare a 
non-empty provided facet. 

interface ObserverProtocol { 

i n t e r f a c e  Subject { 

provided void addObserver(Observer o); 

provided void removeObserver(Observer o); 

provided void changed(); 

expected String getStateO; 
} 

interface Observer { expected void notify(Subject s); } 

F i g u r e  3: A C I  for  o b s e r v e r  p r o t o c o l  

class ObserverProtoeolImpl implements ObserverProtocol { 

class Subject { 

List observers = new LinkedListO; 

void addObserver(Observer o) { observers.add(o);} 

void removeObserver(Observer o) { 

observers.remove(o); 
} 

void changed() { 

Iterator it = observers.iteratorO; 

while ( iter.hasNextO ) 

((Observer)iter.nextO).notify(this); 
} 

} 

} 

F i g u r e  4: S a m p l e  impl .  o f  o b s e r v e r  p r o t o c o l  

other facet. This loose coupling is the key to independent 

reuse of implementations and bindings. 

3.2 Aspect Implementations 
An aspect implementation must implement all methods 

in the provided facet of the corresponding ACI, i.e., all as- 

pect level p rov ided  methods, as well as provided facets of all 

nested ACIs. Fig. 4 shows a simple implementation of the 

0 b s e r v e r P r o t o e o l  ACI. Similarly, we could write another 

implementation of ObserverPro toco l ,  say, a class AsyncOb- 

se rve r Impl  that  implements ObserverPro toco l  and real- 

izes a notification strategy with asynchronous updates. 

As illustrated in Fig. 4, an aspect implementation is a 

class that  declares itself with an implements clause. Pro- 

vided facets of the nested ACIs are implemented in nested 

classes which have the same names as their respective nested 

ACIs (see e.g., Obse rve rP ro toco l Imp l .Sub jec t  in Fig. 4). 

The implementation of provided methods can call expec ted  

methods of the same or of other abstractions of the same 

aspect. For example, Su b j ec t . ch an g ed ( )  calls n o t i f y ( ) ,  

which is declared in the expected facet of 0 b s e r v e r P r o t o -  

co l .  Observer. Nested implementation classes are free to de- 

fine additional state and behavior (as, e.g., the obse rve r s  

field in Subject ) .  Since Obse rve rP ro toco l .Obse rve r  has 

no p rov ided  methods, there is no Observer class in Fig. 4, 

but we could have added additional state and behavior with 

Observer,  if necessary. 

3.3 Aspect Bindings 
An aspect binding implements all expected methods in 

the aspect 's CI and in its nested interfaces. Fig. 5 shows a 

binding of 0 b s e r v e r P r o t o c o l  which maps the subject role to 

Poin t  and Line and the observer role to S c r e e n .  The class 

Co lo r0bse rve r  declares itself as a binding of 0bse rve rP ro -  
t o c o l  by means of a b inds  clause. 
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class Color0bserver binds 0bserverProtocol { 

class PointSubject binds Subject wraps Point { 

String getStateO { 
return "Point colored "+wrappee.getColorO; 

} 

} 

class LineSubject binds Subject wraps Line { 

String getStateO { 
return "Line colored "+wrappee.getColorO; 

} 

} 

class Screen0bserver binds Observer wraps Screen { 

void notify(Subject s) { 
wrappee.display("Color changed: "+s.getState()); 

} 

} 

after(Point p): (call(void p.setColor(Color))) 

{ PointSubject(p).changedO; } 

after(Line i): (call(void l.setColor(Color))) 

{ LineSubject(1).changedO; } 
} 

F i g u r e  5: S a m p l e  b i n d i n g  o f  o b s e r v e r  p r o t o c o l  

For each nested ACI of 0bse rve rP ro toco l ,  i.e., Subjec t  

and Observer,  there might be zero, one, or more nested 

bindings inside Color0bserver .  The latter are also declared 

with a b inds  clause and must implement all expec ted  meth- 

ods in the corresponding interface. The relation between 

nested types in an ACI and their binding classes is not es- 

tablished by name identity, since there might be more than 

one binding for the same abstraction within the same bind- 

ing class, as in Fig. 5. 

Aspect binding is almost pure OO: A binding class refers 

to one or more base objects and uses their interface for im- 

plementing the expected facet of the aspect abstraction. The 

aspect binding in Fig. 5 uses only three non-OO features: (a) 

the wrap clause and the wrappee keyword, (b) wrapper re- 

cycling and (c) pointcuts/advices. Features (b) and (c) will 

be explained in Sec. 3.4, and 3.5. The wraps clause and the 

keyword wrappee are syntactic sugars for the common case, 

when each aspect abstraction is mapped to exactly one base 

class. For example, 

class PointSubject binds Subject wraps Point {...} 

is syntactic sugar for 

c l a s s  PointSubject binds Subject { 
Point wrappee ; 
PointSubject(Point wrappee) { this.wrappee - wrappee; } 

} 

In general, a wrapper class may have an arbitrary number of 

"wrappees" that can be initialized or computed in the con- 

structor. Due to bindings being almost pure OO in CAESAR, 

the programmer is able to encode more complicated cases, 

where the relation to application objects has to be computed 

or is represented by multiple application objects (see [II] for 

more details). 

3.4 Wrapper Instanfiation 
A subtle issue when using wrappers is how to avoid that  

multiple wrappers are created for the same base object 

(called wrapper identity hell [11]). Our solution is a mecha- 

nism called wrapper recycling. Syntactically, wrapper recy- 

cling refers to the fact that ,  instead of creating an instance 

class MovableFigures { 
class MovableFigure implements Movable wraps Figure { 

void moveBy(int x, int y) {}; 
} 

class MovableFigure implements Movable wraps Point { 

void moveBy(int x, int y) { 

wrappee.setX(wrappee.getXO+x); 

wrappee.setY(wrappee.getYO+y); 
} 

} 

class MovableFigure implements Movable wraps Line { 
void moveBy(int x, int y) { 

MovableFigure(wrappee.getPlO).moveBy(x,y); 

MovableFigure(wrappee.getP20).moveBy(x,y); 
} 

} 

} 

class Test { 

MovableFigures my = new MovablsFiguresO; 

void move(Figure f) { 
mv.MovableFigure(f).moveBy(5,7); 

} 

F i g u r e  6: U s i n g  m o s t  spec i f i c  w r a p p e r s  

of a wrapper W with a s tandard new W(cons t ruc to ra rgs )  

constructor call, a wrapper is retrieved with the construct 

o u t e r C l a s s I n s t a n c e .  W ( c o n s t r u c t  o ra rgs ) .  For illustra- 

tion consider the expressions P o i n t S u b j e c t ( p )  and L ine-  

Subjec t  (1)3 in the after-advices in Fig. 5. We use the usual 

Java seeping rules, i.e., P o i n t S u b j e c t ( p )  is just an abbre- 

viation for t h i s .  P o i n t S u b j e c t  (p). 

The semantics of wrapper recycling is tha t  it guarantees 

a unique wrapper for every (set of) wrappees in the context 

of an o u t e r C l a s s I n s t a n c e .  The call to the wrapper recy- 

cling operation P o i n t S u b j e c t ( p )  is equivalent to the corre- 

sponding constructor call only if a wrapper for p does not 

already exist. That  is, two subsequent wrapper retrievals for 

a point yield the same P o i n t S u b j e c t  instance - the identity 

and state of the wrapper are preserved. For more details on 

wrapper recycling semantics we refer to [11]. 

Another interesting feature of CAESAR is its notion of 

most specific wrappers: A mechanism tha t  determines the 

most specific wrapper for an object based on the object 's  

runtime type, when multiple nested binding classes with 

the same name are available. Consider, e.g., MovableFig- 

ures  in Fig. 6, which contains three nested classes named 

MovableFigure. These classes have different constructors, 

though (recall that  the wraps clause is just syntactic sugar 

for a corresponding constructor). On a constructor- or wrap- 

per recycling call, the dynamic type of the argument deter- 

mines the actual nested binding to instantiate/recycle. For 

example, if Tes t .move(F igure )  in Fig. 6 is called with a 

Poin t  as the actual parameter f ,  the wrapper recycling call 

mv.MovableFigure ( f )  returns an instance of the Movable- 

Figure  implementation that  wraps Poin t .  

The mechanism of most specific wrapper is very similar to 

multiple dispatch in languages such as CLOS, Cecil [3], or 

Multi Java [4]. More precisely, if one thinks of the construc- 

tors of nested classes as factory methods of the enclosing 

instance, then our mechanism is an application of multiple 

dispatch at these factory methods. 

3Recall that  the clauses wraps Po in t  and wraps Line imply 
corresponding constructors. 
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public class ColorObserver binds 0bserverProtocol { 

... as before ... 

after(Subject s): 

( call(void Point.setColor(Color)) 

with s = PointSubject(target)) [[ 

( call(void Line.setColor(Color)) 

with s = LineSubject(target) ) { 

s.changedO; 
} 

deploy class CO extends 

0bserverProtocol<Color0bserver,0bserverProtocolImpl>{}; 

void register(Point p, Screen s) { 

C0.THIS.PointSubject(p).add0bserver( 

CO.THIS.Screen0bserver(s)); 
} 

F i g u r e  9: S t a t i c  A s p e c t  D e p l o y m e n t  

F i g u r e  7: A l t e r n a t i v e  b i n d i n g  o f  o b s e r v e r  

class CO extends 

ObserverProtocol<ColorObserver,ObserverProtocolImpl> {}; 

F i g u r e  8: W e a v e l e t  compos i t ion  

3.5 Pointcuts and Advices 

As illustrated in Fig. 5, CAESARalso have advices and 

pointcuts,  which while being similar to Aspect J, differ from 
it in two points. The first difference concerns the decora- 

tion of executing (target) objects at  a join point with aspect 

types. This decoration is implicit in AspectJ .  For illustra- 
tion, consider the pointcut  sub jec tChange  in Fig. 2: The 
base object,  s, brought  into the scope of C o l o r 0 b s e r v e r  by 

the join point t a r g e t ,  whose type is either Line or Po in t ,  

is automatically seen as being of type Sub jec t  within Col-  
o r 0 b s e r v e r  (see the parameter  type of the  pointcut).  

On the contrary, the conversion is explicit in CAESAR~ via 

wrapper recycling calls. In Fig. 5, we avoided type conver- 
sions in a pointcut,  in order to avoid mingling the discussion 

on wrapper recycling with t ha t  on pointcuts  and advices. 
For this reason, we defined different pointcuts for Po in t  and 
Line. A shorter  variant of the same binding, where we use 

conversions in the pointcuts,  in given in Fig. 7. Note the ex- 

plicit calls to wrapper recycling operators within the  wi th  
clauses in Fig. 7; they allow us to decorate basis objects 

with different aspect facets in each "case" of the pointcut.  

We prefer the explicit variant  because it increases program- 

mer's expressiveness: H/she  can choose among several con- 
structors of the binding classes, if more than  one is available 

(see [11] for more details). 

The second and more impor tan t  difference between CAE- 

SAR and AspectJ  pointcuts  and advices is at  the semantic 
level. Compiling a binding class tha t  contains advice def- 
initions does not have any effect on the  base application's 

semantics. This is because an aspect (its implementat ion 
and binding) must be explicitly deployed in CAESAR. Only 
the advice definitions of explicitly deployed aspects are exe- 
cuted, as elaborated in the following. 

3.6 Weavelets and Deployment 

In order to gain a complete realization of an aspect type, 
an implementat ion-binding pair needs to be composed into 

a new unit called a weavelet. An example of a weavelet is the 
class CO in Fig. 8, which represents a complete realization 
of the 0 b s e r v e r P r o t o c o l  interface tha t  combines the im- 

plementat ion 0 b s e r v e r P r o t o c o l I m p l  with the binding Col-  
o r0bse rve r ,  denoted by the declaration after the extends 
clause. 

A weavelet is a new class within which the respective im- 
plementat ions of the expec ted  and p rov ided  methods from 

the binding and implementat ion parts  are composed. The 

composition takes place recursively for the  nested classes: 
All nested classes with a b inds  declaration are combined 

with the corresponding implementat ion from the  implemen- 
ta t ion class. 

A weavelet has to be deployed in order to activate its 

pointcuts and advices. A weavelet deployment is syntac- 

tically denoted by the  modifier deploy  and comprises ba- 

sically two steps: (a) create an instance of the  weavelet a t  

hand and (b) call the  deploy operat ion on it. One can choose 
between static (load-time) and dynamic deployment. 

Static deployment 

Static deployment is expressed by using the deploy keyword 

as a modifier of a : f ina l  s t a t i c  field declaration. Semanti- 

cally, it means tha t  the  advices and pointcuts  in the instance 
tha t  has been assigned to the  field become active. For ex- 

ample, co is deployed when Tes t  is loaded in the following 
code extract:  

class Test . . .  { 

d e p l o y  p u b l i c  s t a t i c  f i n a l  C0 c o  = new C 0 ( ) ;  

} 

The object assigned to co could also be computed in a 

s t a t i c  method;  hence, the  weavelet t ha t  is actually de- 
ployed might also be a subtype of C0, thereby enabling static 

aspectual polymorphism. The  deploy  keyword can also be 

used as a class modifier. This  variant  should be regarded 
syntactic sugar in the sense t ha t  

d e p l o y  c l a s s  CO . . .  ( . . .  } 

is equivalent to declaring a deployed field named THIS as in: 

class C0 . . .  { 

deploy public static final C0 THIS = new C0(); 

} 

Fig. 9 shows the declaration of a statically deployed color 

observer protocol together with sample code which shows 

how the deployed weavelet instance can be accessed (reg- 

ister()). Since CO.THIS is deployed, the pointcuts of the 

observer protocol are active, i.e., color changes in points and 

lines will be propagated to C0.THIS. 

Using deploy as a class modifier is appropriate if we need 

only one instance of the aspect and if aspectual polymor- 

phism is not required. By means of deploy as a field modi- 

tier we can create and deploy multiple instances of the same 

weavelet and select from different weavelets using aspec- 

tual polymorphism. Having two instances of, say, the C0 

weavelet in the observer example would mean that every 

Point and Line would have two independent facets as sub- 

ject with independent lists of observers. An example that 
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class Logging { 
after(): (call(void Point.setX(int)) ]l 

call(void Point.setY(int)) ) { 

System.out.println("Coordinates changed"); 
} 

} 

class VerboseLogging extends Logging { 

after(): (call(void Point.setColor(Color)) { 

System.out.println("Color changed"); 
} 

} 

class Main { 

public static void main(String ares[]) { 

Logging 1 = null; 

Point p[] = createSamplePointsO; 

if (args[O].equals("-log")) 

i = new Logging(); 

else if (args[O].equals("-verbose")) 

1 = new VerboseLoggingO; 

deploy (i) { modify(p); } 
} 

public static void modify(Point p[]) { 

p [s] .  setx (5) ; 
p[2].setColor(Color.KED); 

} 

F i g u r e  10: P o l y m o r p h i c  a s p e c t  d e p l o y m e n t  

makes more sense is the  association of color to elements of a 

da ta  s t ructure  which can be seen as nodes of a graph. Mul- 
tiple independent  instances of the corresponding weavelet 
would represent multiple independent  colorings of the  graph. 

Other  examples can be derived from role modeling, where 
frequently one object  has to  play the  same role twice, for 

example, a person is employee in two independent  compa- 
nies. Static aspectual polymorphism is useful if we want 

to select a particular weavelet based on conditions tha t  are 
known at load-time. For example, based on the  number  of 

processors or the  mult i - threading support ,  one might ei ther 
choose a usual observer pa t te rn  implementat ion or one with 

asynchronous updates.  

Dynamic Deployment 

Dynamic deployment is denoted by the  keyword deploy  used 

as a block s tatement .  The  rationale behind dynamic deploy- 

ment  is tha t  frequently we cannot  determine which variant  
of an aspect should be applied (or whether  we need the as- 

pect a t  all) until runtime. Consider e.g., a program with dif- 

ferent logging options, i.e., wi thout  logging, with s tandard  

logging, and with "verbose" logging. In CAESAR, this can be 
implemented as in Fig. 104: We have two different logging 

aspects related by inheri tancem, Logging and VerBoseLog- 
ging) ,  and we choose one of them at  runtime, depending on 
the  command line arguments  with which the program has 

been started. 
The interesting point is the deploy  block s ta tement  in 

Main.main, which means tha t  the advices defined in the an- 

notated aspect instance 1 become active in the  control flow 
of the deploy block, in this case, during the  execution of 

mod i fy ( f ) .  In particular,  other  independent  threads t ha t  

4In order to keep the example simple, we do not use sepa- 
ra te  binding and implementat ion here - if separat ion of im- 
plementat ion and binding would be overkill, we can collapse 
bo th  parts  into a single unit. 

deploy class LoggingDeployment { 
around(final String s[]): cflow(Main.main(String[]) 

&~ args(s) && (call(void Main.modify(Point[])) { 

Logging 1 = null; 

if (...) i = new Logging(); else ... ; 

deploy (i) in { proceed(s); } 
} 

} 

class Main { 

public static void main(String ares[]) { 

Point p[] = createSamplePointsO; 

modify(p); 
} 

public static void modify(Point p[]) {...} 
} 

F i g u r e  11: A s p e c t  d e p l o y m e n t  a s p e c t s  

execute the same code are not  be affected by the  deploy 

clause. Please note t ha t  the  advices and pointcuts  t ha t  will 
be activated in the  deploy block are not statically known; 1 

is only known by its upper  bound Logging (1 could have also 

been passed as a parameter) .  In other  words, the  advices 

are late bound,  similarly to late method binding, hence our 

te rm aspectual polymorphism. If 1 is n u l l  the  deploy  clause 

has no effects at  all. 
The usefulness of dynamic  deployment becomes clear if 

we consider a "simulation" of this  functionality by means 

of stat ic deployment. Wi th  stat ic deployment, we would 
have to encode the different variants  by conditional logic in 

the aspect code, 5. The  s t ructure  of the  aspect would get 

awkward because all variants  of the aspect are tangled inside 
a single aspect module. In a way, this is similar to simulating 

late binding in a non-OO language, hence we see dynamic 

aspectual polymorphism as an imperat ive consequence of 
integrat ing aspects into the  OO concept world. Also, such 

programs would be very fragile with  respect to concurrent  

programs and addit ional  synchronizat ion measures would be 

required. 
An interesting question is whether  the  aspect deployment 

code should also be separated from the  rest of the  code. If 

desired this  can easily be done wi th  another  aspect whose 

responsibility is the  deployment of the  logging aspect, as 
indicated in Fig. 11. In this  figure, the aspect LoggingDe- 

ployment (which is itself deployed statically) computes and 

deploys an appropriate  logging aspect by means of an around 
advice, i.e., the  p r o c e e d ( )  call is executed in the  context of 

the logging aspect. 

3.7 Virtual Classes and Static Typing 
In CAESAR, all nested interfaces of a CI and all classes t h a t  

implement or bind such interfaces, are virtual types~classes, 
as in the  family polymorphism approach [5]. Similar to fields 

and methods,  vir tual  types also become properties of objects 

of the class in which they are defined. Hence, their  deno- 
ta t ion  can only be dynamically determined in the context 

of an instance of the  enclosing class. The  rat ionale behind 
using family polymorphism lies in its power with respect 
to reuse and polymorphism at the  level of multiple related 

SOur example also uses conditional logic in Main.main. 
However, we select the  logging variant  once and never have 
to do any checks again (a factory object  could have been 
used, as well) whereas wi thout  dynamic deployment the  
check would be redone at  every joinpoint.  
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public class LazyColor0bserver extends Color0bserver { 

override class ScreenObserver { 

int Count = O; 

void notify(Subject s) { 

count++; 

if (count >= i0) { super.notify(s); count = O; } 
} 

} 
} 

F i g u r e  12: L a z y  co lor  o b s e r v e r  

abstractions. 

If we want to have a variant  of a binding, weavelet, or 
CI, we can refine the respective enti ty by creating an ex- 

tension within which the nested vir tual  types/classes can 

be overridden. LazyColor0bse rver  in Fig. 12 refines the 
behavior of C o l o r 0 b s e r v e r  in Fig. 5 by using vir tual  class 

overriding (declared with the  keyword o v e r r i d e )  - a lazy 
Sc reen0bse rve r  reacts only after being notified ten times 

about  a change. The impor tan t  observation to make here is 

t ha t  even if the definition of Po in tSub j  e c t  and LineSubj ec¢ 

are inherited unchanged, references to Observer  within their  
respective implementat ions will automatical ly be bound to 

LazyColor0bserver .  S c r e e n 0 b s e r v e r  during the execution 
of any method on an instance of LazyColor0bserver .  

However, this flexibility is not paid for with loss of static 
typing: An improvement of the type system proposed in [5] 

preserves the  ability to detect  type errors at  compile time. 
The integration of virtual  classes [9] and family polymor- 

phism [5] with collaboration interfaces and their  implemen- 

ta t ion and binding units has already been described in [11]. 
Hence, for more details on reuse and typing issues we refer 
to [11] and [5]. 

4. EVALUATION 
This section discusses how CAESAR copes with the prob- 

lems outlined in Sec. 2. In addition, we will elaborate on 

how CAESAR's explicit aspect instant ia t ion and deployment 
relate to Aspect J-like languages, where aspects are only im- 

plicitly created and which do not have a notion of aspect 
deployment. 

Problems Revisited 

Recall t ha t  we identified the following problems in Sec. 2: 

(1) lacking support  for mult i -abstract ion aspects, (2) lacking 
support  for sophisticated mapping of aspect abstract ions to 

base classes, (3) lacking support  for reuse of aspect bindings, 
(4) acking support  for aspectual polymorphism. In the fol- 
lowing we will explain how each of these problems is solved 
in CAESAR.. 

Adl: .  As was shown in the code in Fig. 3, 4, and 5, each ab- 
stract ion in the vocabulary of the world as it is decomposed 

from the point of view of an aspect, is defined in its own 

full-fledged module with a well-defined interface. Methods 
in the interface of one abstract ion can be called by methods 
of other abstract ions within the same aspect, or from the 
outside. Consider e.g., the call of Sub jec t  . n o t i f y ( . . .  ) in 
the implementat ion of 0 b s e r v e r P r o t o c o l I m p l  in Fig. 4, or 
the invocation of C0.THIS. add0bse rve r  ( . . . )  in Fig. 9. 

Due to this finer-grained modularizat ion of the aspect it- 

self, the runt ime system is able to dispatch methods not only 
based on the instance of the aspect, but  also based on the  

particular abst ract ion in execution. Consider, for example, 

the g e t S t a t e ( )  method in the  definition of Sub jec t ,  which 

was implemented differently for point-subjects and for line- 
subjects,  while being uniformly used in the  update  logic (cf. 

Fig. 5). As was pointed out in Sec. 2, the same polymor- 

phism would not be possible, if there were only aspect-level 

methods. Furthermore,  due to the  incorporation of vir tual  
classes, it is easy to encode different variants of a multi- 
abstract ion aspect, as exemplified in Fig. 12. 

Let us now consider the issue of defining s tate  for the  
individual abstract ions per taining to an aspect. As it was 

shown by examples in the previous section, each abstrac- 

t ion in the modular  s t ructure  can declare its own state, e.g., 

o b s e r v e r s  in Subjec t .  Hence, there is no need for defin- 
ing da ta  s tructures tha t  "globally" mainta in  aspect-related 

s tate  of all base objects in a single place, as e.g., perSub-  

j e c t 0 b s e r v e r s  in Fig. 1. Similarly, s tate  can be added to 

the  abstract ions at  the  binding side, such as e.g., the count  
field in Fig. 12. 

Ad2:. In our model bindings are Java classes with some ad- 

ditional features. As such, the  definition of mappings from 

aspect abstract ions to the  classes of a base application can 
make use of the  full expressiveness of an general purpose OO 

language. There is nothing to prevent a CAESAR program- 

mer in coding any mapping no mat te r  how sophisticated. 
A more detailed discussion on this  issue supported also by 
bet ter  examples can be found in [11]. 

Ad 3:. Different weavelets can combine an aspect binding 
with different aspect implementations.  On the other  hand,  

different weavelets can combine (and reuse) a particular as- 

pect implementat ion with multiple different bindings. For 

example, we can combine the observer protocol binding to 

JButZon and MyActionListensr with the LinkedList or the 

AsynchronousUpdaCe observer implementation, and on the 

other hand combine the same observer implementation, say 

AsynchronousUpdate, with multiple different bindings, e.g., 

to JButton/MyActionListener and ListModel/JList. As a 

consequence, one can define functionality that is polymor- 

phic with respect to (a) aspect implementations by being 

written to a certain aspect binding type, (b) aspect bind- 

ings by being written to a certain aspect implementation 

type, or (c) both of them, by being written to an ACI. 

Ad 4:. As already discussed in Sec. 3.6, our approach 
does support  aspectual polymorphism. For example, the  

mod i fy (Po in t  p[]) method in Fig. 10 is polymorphic with 
respect to aspects tha t  might be defined in the  future. It  is 

even possible to run the same method concurrently within 
two different threads with and without  the logging aspect. 

Explicit vs. Implicit Aspect Instantiation/Deployment 

The question we pose here is: How does our notion of ex- 
plicit aspect ins tant ia t ion and deployment relate to Aspect J- 

like languages, within which aspects are only implicitly cre- 
ated and which do not have a notion of aspect deploy- 
ment? In AspectJ ,  aspect ins tant ia t ion can be controlled by 
means of the  aspect modifiers i s S i a g l e ¢ o a  (this is the de- 

fault), perThis/perTarget, and percflow/percflowbelow. 
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In CAESAR, these aspect instant ia t ion strategies tu rn  out  to 
be special cases or "pat terns" of the  more general model in 

CAESAR. 
Tab. 1 describes how the AspectJ  instant ia t ion strategies 

can be simulated in CAESAR. The isS±ngle . ton case is ob- 

vious. The pe rTh i s  modifier can be simulated by creating a 

wrapper class and using wrapper recycling in order to refer 

to the  s ta te  t ha t  is associated with each point. Simulat- 

ing perTarge.t  is identical to perThis ,  except t ha t  we would 
have to exchange "this (p) by t a r g e t  (p).  More interesting is 

AspectJ ' s  perc:flow modifier, which means t ha t  an instance 

of the aspect is created for each flow of control of the  join 
points picked out by the  annota ted  pointcut.  The semantics 

of perc:flow can be simulated by using a deployment aspect 

ADepl tha t  uses dynamic deployment at  the  respective s tar ts  

of control flow. 
W h a t  do we gain if all the cases in Tab. 1 can already 

be handled very well by Aspect J? To answer this question 

recall t ha t  AspectJ  instant ia t ion strategies are just  special 

cases of a more general model in CAESAR. This has two 
implications. First, we do not need special new keywords to 

express the  semantics of AspectJ  instantiat ion,  thereby ren- 

dering the conceptual model more slender. Second and more 

importantly,  our model allows us to express instant ia t ion 
and deployment semantics t ha t  cannot  easily be expressed 

in AspectJ.  

When  using AspectJ ' s  perTh±s of perTarge.t  modifiers, 

s ta te  can be only associated with objects t ha t  are caller or 

callee, respectively, in a pointcut.  In CAESAR, s ta te  can be 

associated with arbi t rary  objects and arbi t rary  relations be- 

tween objects. For example, we could associate s ta te  with  

every pair of . th is  and "target ,  or with  any argument  of 
a method call. In the perc:flow case we can either simu- 

late the AspectJ  semantics but  we could also do something 
more sophisticated, e.g., deploy an instance of an optimiza- 

t ion aspect only if the number  of calls to the  method to be 
optimized is executed more than  a certain threshold. 

5. RELATED WORK 

Open classes: An open class is a class to which new fields 
or methods can be added without  editing the  class directly. 
For example, in Multi  Java [4] addit ional methods can be 
at tached to a class. In Aspect J, methods as well as fields 

can be added to a class by means of introductions. As al- 

ready discussed in Sec. 2, open classes are in contrast  to the 
concept of independent  extensibility [14], an essential pre- 

requisite for reusable and extensible software. On contrary, 
CAESAR offers an al ternat ive to open classes t ha t  is even 
more powerful and does not violate independent  extensibil- 
ity. 

Adaptive Plug and Play Components (APPCs) [10] and 
their  aspect-oriented variant  of Aspectual Components [8] 

are related to our work in t ha t  bo th  approaches support  
the definition of mult i -abstract ion components /aspects  and 

have a vague definition of required and provided interfaces. 

However, the  lat ter  feature was not well integrated with 
the  type system. Recognizing this deficiency, the  successor 
model of Pluggable Composite Adapters (PCAs) [12] even 

dropped this  notion and reduced the  declarat ion of the ex- 
pected interface to a set of s tandard  abst ract  methods. Wi th  

the notion of collaboration interfaces, CAESAR represents a 
quali tat ive improvement over all three models, as far as sup- 
port  for mult i -abstract ion aspects is concerned. Due to the 

lack of a CI notion, connectors and adapters  in APPC,  As- 
pectual Components ,  and PCA models are bound to a fixed 

implementat ion of an aspect and cannot; be reused. In addi- 
tion, [10] and [8] rely on a dedicated mapping sublanguage 

tha t  is less powerful than  our object-oriented wrappers with 

wrapper  recycling. Finally, the  lack of the notion of vir tual  
types is another  drawback of these approaches as compared 
to the  work presented here. 

Delegation layers [13] are an approach to decompose a 
collaboration into layers and compose these layers dynam- 

ically at  runtime. We plan to integrate delegation layers 

with  CAESAR in order to organize aspect implementat ions 
and bindings in layers and compose them dynamically. 

CAESAR is also related to H y p e r / J  and its notion of multi- 
dimensional separat ion of concerns (MDSOC) [15]. Our as- 

pect bindings, which serve as a t rans la tor  from one domain 

to another  domain,  allow to view and use a system from 

many different perspectives. This is similar to the  MD- 

SOC idea of having multiple concern dimensions such t ha t  

the program can be projected on each concern hyper plane. 
Apar t  from tha t ,  CAESAR is very different from Hyper / J .  In 

Hyper / J ,  one can define an independent  component  in a hy- 

perslice. Hyperslices are independent  of their  context of use 

by the  feature of being declaratively complete, i .e,  they de- 
clare as abs t rac t  method everything t ha t  they need, but  can- 

not implement  themselves. A hyperslice is integrated into 

an existing application by means of composition rules speci- 

fied in a hypermodule.  As the  result, new code is generated 

by mixing the  hyperslice code into the existing code. Similar 

to PCAs,  Hype r / J  [15] also lacks the notion of collaboration 

interfaces and the  reuse of bindings related to it: Ei ther  the  

modules to be composed are not  independent  due to the  

usage of the  "merge-by-name" composit ion s trategy or the  

modules are independent  but  then the non-reusable compo- 
sition specification gets very complex. Similar to A P P C  and 

Aspectual  Component  models, Hyper / J ' s  approach is class- 

based: it is not possible to add the  functionality defined in 

a hyperslice to individual objects. Furthermore,  Hyper / J ' s  
sublanguage for mapping specifications from different hy- 
perslices is fairly complex and not well integrated into the  
common OO framework. 

Lasagne [16] is a runt ime architecture t h a t  features 
aspect-oriented concepts. An aspect is implemented as a 

layer of wrappers. Aspects can be composed at run-time, 

enabling dynamic customizat ion of systems, and context- 
sensitive selection of aspects is realized, enabling client- 

specific customizat ion of systems. Al though Lasagne is an 

architectural  approach focusing on middleware (instead of a 

general purpose language extension as CAESAR), it has some 

similarity with CAESAR. In particular,  Lasagne also features 
extensions t ha t  are created and deployed at runtime, and it 

also provides means to restrict  the  visibility of an extension 
to a part icular  scope (as our deploy  block s ta tement) .  

In [2] an extension of the  composit ion filter model [1] 

geared more towards aspect-oriented programming is dis- 
cussed. Wi th  composit ion filters, it is possible to define 
various filters for incoming and outgoing messages of an ob- 

ject. By means of superimposition [2], it is possible to apply 

these filters to objects t ha t  are specified via a join point  dec- 
larat ion similar to AspectJ  pointcuts.  Composit ion filters 

have no dedicated means to separate  aspect implementat ion 
and binding, and there is notion of deployment or aspectual 

polymorphism. In comparison with CAESAR, where almost 
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aspect h isSingleton { State s; } 

aspect A perThis(pointChanges) { 

pointcut pointChanges(): 
call (Point.setX(int)); 

State s; 

after(Point p): pointChangesO && this(p) { ...s... ) 

aspect A percflow(pointChanges) { 
pointcut pointChangesO: ca l l  (Point .setX(int)) ;  
State s; 

af te r ( ) :  somePointCutO { . . .  } 
} 

deploy class A { State s; } 

deploy class h ( 
class PointWrapper wraps Point { State s; } 

after(Point p): 
calls(Point.setX(int) && this(p) { 

...PointWrapper(p).s;... } 

) 
class A { 

State s; 
after(): somePointCut {} 

) 

deploy class ADepl { 
aroundO:call (Point.setX(int)) { 

deploy (new AO) { proceed(); } 
) 

Tab le  1: A s p e c t  I n s t a n t i a t i o n  in A s p e c t J  ( l e f t )  a n d  C a e s a r  ( r igh t )  

everything is specified as usual OO code, composition filters 
are more declarative. On one hand, this makes it easier to 
express kinds of concerns that are easily expressible with the 
declarative sublanguage, but on the other hand it restricts 

is applicability to arbitrary kinds of concerns. 

6. SUMMARY 
In this paper, we argued that join point interception (JPI), 

that is, intercepting and eventually modifying the execution 
of running code at certain points, alone does not suffice for 

a modular structuring of aspects, resulting in tangled as- 
pect code. We discussed several problems resulting from the 
lack of an appropriate higher-level module construct on top 
of join points and advices. We proposed CAESAR, a model 
for aspect-oriented programming with a higher-level module 
concept on top of JPI,  which enables reuse and componenti- 
zation of aspects, allows us to use aspects polymorphically, 
and introduces a novel concept for dynamic aspect deploy- 
ment. CAESAR is based on the notion of an aspect collabora- 
tion interface (ACI) presented in [11]. In this paper we show 
that ACIs and the related notions of separated ACI imple- 
mentations and ACI bindings, once properly adopted to the 
needs of aspect-orientation, can also be applied to support a 
more modular structuring of aspect code and better aspect 

reuse. 
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