
Consecutive S-box Lookups: A Timing Attack

on SNOW 3G�

Billy Bob Brumley1, Risto M. Hakala1, Kaisa Nyberg1,2, and Sampo Sovio2

1 Aalto University School of Science and Technology, Finland
{billy.brumley,risto.m.hakala,kaisa.nyberg}@tkk.fi

2 Nokia Research Center, Finland
{kaisa.nyberg,sampo.sovio}@nokia.com

Abstract. We present a cache-timing attack on the SNOW 3G stream
cipher. The attack has extremely low complexity and we show it is ca-
pable of recovering the full cipher state from empirical timing data in a
matter of seconds, requiring no known keystream and only observation
of a small number of cipher clocks. The attack exploits the cipher using
the output from an S-box as input to another S-box: we show that the
corresponding cache-timing data almost uniquely determines said S-box
input. We mention other ciphers with similar structure where this attack
applies, such as the K2 cipher currently under standardization consider-
ation by ISO. Our results yield new insights into the secure design and
implementation of ciphers with respect to side-channels. We also give
results of a bit-slice implementation as a countermeasure.

Keywords: side-channel attacks, cache-timing attacks, stream ciphers.

1 Introduction

Cache-timing attacks are a type of software side-channel attack relying on the
fact that the latency of retrieving data from memory is essentially governed
by the availability of said data in the processor’s cache. Attackers capable of
measuring the overall latency of an operation (time-driven attacks) or a more
granular series of cache hits and cache misses (trace-driven attacks) use this
information to determine portions of the cryptosystem state. Implementations
making use of memory-resident table lookups are particularly vulnerable. For
example, it is not uncommon for a block or stream cipher to implement an S-
box by using some portion of the state as an index into a lookup table: this
potentially leaks a portion of the index and hence state to an attacker.

Zenner established a model for cache-timing attacks against stream ciphers [14].
It facilitates the theoretical analysis of stream cipher cache-timing properties.
This analysis helps identify potential cache-timing vulnerabilities in ciphers. Us-
ing this model, Leander, Zenner, and Hawkes gave an attack framework for

� Supported in part by the European Commission’s Seventh Framework Programme
(FP7) under contract number ICT-2007-216499 (CACE).

M. Soriano, S. Qing, and J. López (Eds.): ICICS 2010, LNCS 6476, pp. 171–185, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



172 B.B. Brumley et al.

a number of LFSR-based ciphers [10]. This included a theoretical attack on
SOSEMANUK, SNOW 2.0, SOBER-128, and Turing. The attack framework
only considers side-channel data related to the LFSR and is mainly concerned
with LFSR state recovery. As such, it leaves any associated FSM state recov-
ery as the most computationally complex part of the attack, and furthermore
requires synchronous keystream to do so.

The global standardization body 3GPP specifies two standard sets of encryp-
tion and integrity algorithms for use in the 3rd generation mobile communica-
tion system. The first set, UEA1 and UIA1, is based on the KASUMI block
cipher. The second set, UEA2 and UIA2, consists of algorithms built around
the SNOW 3G stream cipher [6] as the main cryptographic primitive. The algo-
rithms of the second set have also been adapted for use in the emerging Long
Term Evolution (LTE) system under the acronyms EEA1 and EIA1.

In mobile devices, SNOW 3G is implemented in hardware. Hence, discussing
timing attacks in 3G environment is meaningful only for the cipher implemen-
tation in the network element. In addition to side-channel data, the previous
attack [10] requires also certain amount of known keystream in synchronization
with the side-channel data. In practice, realizations of these two data sources
may be essentially different and their synchronization poses an additional ob-
stacle. The purpose of this paper is to show that SNOW 3G has an internal
structure that can be exploited to recover the internal state based solely on the
side-channel data from the timings, and hence allows us to remove the need for
synchronous keystream. While the most efficient version of the new attack pre-
sented in this paper uses information from all cache timings, within both LFSR
and FSM, the attack also works, with a small penalty in performance, if only
the timing data from the FSM lookups is used. That is, even if countermeasures
to the attack of [10] are implemented, our attack still succeeds.

The main observation is that timings from two consecutive table lookups
determine the inputs almost uniquely. In addition to SNOW 3G such a structure
of the state update function is used in K2 stream cipher [9] currently under
standardization consideration by ISO. We show practical attacks obtained by
analyzing the effect of consecutive table lookups and related feedback equations.
This result gives new insight into the secure design and implementation of ciphers
with respect to side-channels.

Lastly, as a countermeasure to such timing attacks we present a bit-slice im-
plementation of SNOW 3G components. Compared to table-based implementa-
tions, for batch keystream generation our results indicate bit-slicing offers timing
attack resistance without penalizing performance.

2 Attack Model

Zenner [14] proposed a model for theoretically analyzing the cache-timing prop-
erties of stream ciphers. An attacker makes use of the following two synchronous
oracles:

– Keystream(i) returns the ith keystream block.



Consecutive S-box Lookups: A Timing Attack on SNOW 3G 173

– SCA Keystream(i) returns an error-free unordered list of cache accesses
made during the creation of the ith keystream block.

See [10] for a discussion on the features of this model from both the theoretical
and practical perspectives. While our attack on SNOW 3G keystream gener-
ator conforms to the above model, it relaxes it significantly by removing the
assumption of the Keystream oracle; that is, we assume no known keystream.

Assumptions. We restrict to the common case of 64-byte cache lines. Further-
more, we restrict to the case where tables do not overlap with respect to cache
sets—that is, cache accesses can be mapped to distinct tables. These assump-
tions fit well within the above model. From a practical perspective they depend
on the underlying cache size and structure. They will not always hold, but do
hold in our environment described later in Sect. 5.3.

3 SNOW 3G

SNOW 3G [6] is a stream cipher used to preserve confidentiality and integrity
of communication in 3GPP networks. It was developed during the ETSI SAGE
evaluation by modifying the design of SNOW 2.0 [5] to increase its resistance
against algebraic attacks. In the following sections, we give a short description
of the keystream generator of SNOW 3G and note a few implementation details
that are relevant to our analysis.

A finite field with q elements is denoted by IFq. The elements in IF2m are also
identified with the integers in ZZ2m . We use ⊕ to denote the bitwise XOR and
� to denote the addition in ZZ2m . Given an integer x ∈ ZZ2m , we use x � a and
x � a to denote the left and right shifts of x by a bits, respectively.

3.1 Description of SNOW 3G

The SNOW 3G keystream generator uses a combination of a linear feedback
shift register (LFSR) and a finite state machine (FSM) to produce the output
keystream. This structure is depicted in Fig. 1. The state of the LFSR at time
t ≥ 0 consists of sixteen 32-bit values st+i ∈ IF232 , i = 0, . . . , 15, and it is updated
according to the relation

st+16 = αst ⊕ st+2 ⊕ α−1st+11, (1)

where α ∈ IF232 is a 32-bit constant, and the field arithmetic is as specified
for SNOW 3G in [6]. The LFSR feeds st+5 and st+15 into the FSM, which has
three registers, R1, R2, and R3. The contents of these registers at time t ≥ 0
are denoted by R1t, R2t, and R3t, respectively. The output Ft of the FSM is
calculated as

Ft = (st+15 � R1t) ⊕ R2t (2)



174 B.B. Brumley et al.

for all t ≥ 0. The output zt of the keystream generator is given as

zt = Ft ⊕ st. (3)

The registers in the FSM are updated according to

R1t+1 = R2t � (st+5 ⊕ R3t), (4)
R2t+1 = S1(R1t), and (5)
R3t+1 = S2(R2t), (6)

where S1 and S2 are permutations of IF232 . The S1 permutation is composed of
four parallel AES S-boxes followed by the AES MixColumn transformation. The
second permutation, S2, is otherwise identical to S1 but the AES S-box is re-
placed by a bijective mapping derived from a Dickson polynomial. In SNOW 2.0,
the FSM contains only two 32-bit registers, R1 and R2. These registers are up-
dated as R1t+1 = R2t � st+5 and R2t+1 = S1(R1t). The output Ft is calculated
as in SNOW 3G. For a complete description of SNOW 3G, we refer to [6].

Fig. 1. SNOW 3G keystream generator

3.2 Implementation

Our analysis is based on certain operations in SNOW 3G being implemented
by lookup tables. In the specification of SNOW 3G [6], the implementation for
both S1 and S2 has been specified by using four lookup tables with 256 elements
each. Multiplications by α and α−1 have been both specified by one lookup table
with 256 elements. Formally, these operations are implemented as follows. Let
x = x3x2x1x0 ∈ IF232 be an arbitrary 32-bit value, where each xi denotes an
8-bit block in x. Multiplications by α and α−1 in IF232 use 8 × 32-bit lookup
tables T1 and T2, and they are implemented as

αx = (x � 8) ⊕ T1[x3] and

α−1x = (x � 8) ⊕ T2[x0].



Consecutive S-box Lookups: A Timing Attack on SNOW 3G 175

Mappings S1 and S2 use 8×32-bit tables T10, . . . , T13 and T20, . . . , T23, and they
are implemented as

S1(x) = T10[x0] ⊕ T11[x1] ⊕ T12[x2] ⊕ T13[x3] and
S2(x) = T20[x0] ⊕ T21[x1] ⊕ T22[x2] ⊕ T23[x3].

4 Previous Work

We give an overview of the cache-timing attack framework by Leander et al. [10]
and describe how it is used to attack SNOW 2.0, which is one of the ciphers
analyzed in their paper. Although their attack is targeted on SNOW 2.0, it can
also be applied on SNOW 3G with small adjustments. The attack is done under
the model proposed by Zenner [14] (see Sect. 2).

4.1 Attack Framework

The attack framework is built upon the assumption that clocking the LFSR
involves table lookups. Let (st, . . . , st+n−1) ∈ IFn

2m denote the state of the LFSR
at time t ≥ 0. When the LFSR is clocked at time t, each table lookup uses some
bits of st+i, i = 0, . . . , n− 1. Depending on the cache line size, the cache timing
measurements will reveal some of these bits. Since clocking the LFSR is an IF2-
linear operation, each observed bit can be expressed as a linear combination
of the bits in the initial state. Thus, once sufficiently many linear equations
involving initial state bits have been collected, the initial state can be retrieved
by solving the equation system. If b linear equations can be derived in each
clock, about mn/b clocks are needed to recover the initial LFSR state with high
probability.

The framework makes use of information obtained only from LFSR lookups;
cache timings obtained from other lookups, such as S-boxes, are not utilized in
the framework. For this reason, the framework is mostly concerned with recov-
ery of the initial LFSR state. Recovery of other unknown state values, such as
registers in the FSM, are left to be studied separately.

4.2 Application to SNOW 2.0 and SNOW 3G

The LFSR update function in SNOW 2.0 is the same as in SNOW 3G. Multipli-
cations by α and α−1 are implemented with two 8×32-bit tables as explained in
Sect. 3. Hence, each table lookup involves eight state bits. In our environment,
we are able to observe four of these bits from cache measurements. Clocking the
LFSR involves two table lookups, so we get eight linear equations in the ini-
tial state bits from each clock. Recovery of the initial LFSR state thus requires
16 · 32/8 = 64 clocks. To recover the full initial cipher state, the FSM registers
still need to be solved at time t = 0. Two keystream words, z0 and z1, are needed
for this. The initial FSM state can be recovered as follows:



176 B.B. Brumley et al.

1. Guess R20.
2. Compute R10 using (2) and (3) at t = 0.
3. Compute the output at t = 1, and compare it with z1: if they match, output

R10 and R20; otherwise, return to Step 1.

This process takes at most 232 guesses.
In SNOW 3G, recovery of the initial LFSR state can be done as in SNOW 2.0.

To recover the initial FSM state, three keystream words, z0, z1, and z2, are
needed. As in SNOW 2.0, the process takes at most 232 guesses. It can be done
as follows:

1. Guess R31.
2. Compute R20 using (6) at t = 0.
3. Compute R10 using (2) and (3) at t = 0.
4. Compute R21 using (5) at t = 0.
5. Compute R11 using (2) and (3) at t = 1.
6. Compute R30 using (4) at t = 0.
7. Compute the output at t = 2, and compare it with z2: if they match, output

R10, R20, and R30; otherwise, return to Step 1.

We conclude this section with a number of noteworthy observations.

– The previous steps would not be possible without obtaining certain keystream
blocks from the Keystream oracle.

– For SNOW 2.0 and SNOW 3G the obvious albeit often costly countermea-
sure to the Leander et al. attacks is to remove the table lookups for the
multiplications and divisions by α, for example by computing their outputs
each time. Although in the description of our attack below we utilize the
side-channel data from these lookups, an interesting feature of our attack
is it can easily be modified to work in the absence of this data by using
information from the FSM over only a few more clock cycles.

5 Our Attack

We mount a state recovery attack on SNOW 3G under the model explained in
Sect. 2. In the following sections, we describe what information can be obtained
from cache-timing measurements and how this information can be used to recover
the full cipher state. We also present results obtained by running the attack using
empirical cache-timing data.

5.1 Cache Measurements

We can assume cache-timings reveal four out of eight bits involved in each table
lookup; the tables are 1kB each and span 16 cache lines. A 64-byte line fits 16
4-byte values from a table thus there are lg(16) = 4 unknown bits: the timings
reveal what line was accessed, but not the offset. At time t ≥ 0, we are able



Consecutive S-box Lookups: A Timing Attack on SNOW 3G 177

to obtain information about st, st+11, R1t, and R2t when the cipher is clocked.
Table 1 summarizes the information obtained in each clock: the left column
denotes the table lookup, the center column the value involved in the lookup,
and the right column the bits that are revealed. Revealed bits are given using
bit masks in hexadecimal. For example, the four most significant bits of st are
revealed.

Table 1. Revealed bits from each operation

Operation Value Revealed bits

α st 0xF0000000

α−1 st+11 0x000000F0

S1 R1t 0xF0F0F0F0

S2 R2t 0xF0F0F0F0

5.2 State Recovery

We describe how the cipher state can be recovered using obtained information.
Suppose that the cipher is clocked for t = 0, . . . , c − 1, where c ≥ 20, and that
each clock reveals the bits given in Table 1. Let At and Bt denote the set of
candidate values for R1t and st, respectively. In the algorithm, we first initialize
At and Bt using the information obtained from the cache-timings. Then we trim
these sets using the following relations to determine which candidates cannot be
correct:

R1t+3 = S1(R1t+1) � (st+7 ⊕ S2(S1(R1t))) and (7)

st+16 = αst ⊕ st+2 ⊕ α−1st+11. (8)

We have obtained (7) by combining (5) and (6) with (4). Relation (8) is just the
LFSR update function (1).

The state recovery algorithm aims at recovering the cipher state at time t = 7,
that is, (s7, . . . , s22) and (R17, R22, R37). This is the earliest time instance after
which both (7) and (8) can be used efficiently to eliminate incorrect candidates.
We mostly use (7) in testing the candidates, since covering (s7, . . . , s22) and
(R17, R22, R37) with (7) involves state variables from a smaller time window
than covering them with (8). Thus, less clock cycles are needed to obtain suffi-
cient amount of information about the state values. The state can be recovered
in the following five steps. The actual implementation differs slightly from the
description; it is discussed in the next section.

1. We first initialize candidate sets At, t = 0, . . . , c− 2. The candidates for R1t

are determined based on the information about R1t and R2t+1 = S1(R1t)
given in Table 1. For t = 0, . . . , c − 2, we set

At = {x ∈ IF232 | v ∧ x = v ∧ R1t and v ∧ S1(x) = v ∧ R2t+1},



178 B.B. Brumley et al.

where v = 0xF0F0F0F0 and ∧ denotes the bitwise AND. This set can be
created by going through the 216 values of x ∈ IF232 for which v∧x = v∧R1t

and checking if v ∧ S1(x) = v ∧ R2t+1 holds.
2. We then initialize candidate sets Bt, t = 0, . . . , c + 10, based on the infor-

mation given in Table 1. For t = 0, . . . , c + 10, we set

Bt = {x ∈ IF232 | v ∧ st = v ∧ x},

where

v =

⎧
⎪⎨

⎪⎩

0xF0000000, t = 0, . . . , 10,

0xF00000F0, t = 11, . . . , c − 1,

0x000000F0, t = c, . . . , c + 10.

(9)

3. Next, we try to eliminate as many incorrect candidates in the candidate sets
using (7). For t = 0, . . . , c − 5 and for all (x0, x1, x2, x3) ∈ At+3 × At+1 ×
Bt+7 × At, we check whether

x0 = S1(x1) � (x2 ⊕ S2(S1(x3))) (10)

holds: if it does, we mark the corresponding candidate values as possibly
correct. When all combinations have been checked, we remove the candidate
values that have not been marked as possibly correct. Thus, the candidates
that cannot be correct are removed.

4. We then eliminate more incorrect candidates using (8). For t = 7, . . . , c − 9
and for all (x0, x1, x2, x3) ∈ Bt+16 × Bt × Bt+2 × Bt+11, we check whether

x0 = αx1 ⊕ x2 ⊕ α−1x3 (11)

holds: if it does, we mark the corresponding candidate values as possibly cor-
rect. When all combinations have been checked, the candidate values that
have not passed the test are removed. The remaining values form the candi-
dates for (s7, . . . , s22).

5. To recover the full cipher state at time t = 7, we need to recover (R17, R27,
R37) in addition to (s7, . . . , s22). For this we need R17, R16, and R15 since
R27 = S1(R16) and R37 = S2(S1(R15)). We use (10) in checking at t = 3, 4
because those checks involve R1t at t = 5, 6, 7. The values that pass the test
form the candidates for (R17, R27, R37).

The time windows in step 3 and step 4 are determined according to the indices
of the candidate sets involved in these steps. Candidate sets At, At+1, At+3, Bt+7

are pruned in step 3. Since At and Bt have been initialized for t = 0, . . . , c − 2
and t = 0, . . . , c + 10, respectively, we perform the check in step 3 for t =
0, . . . , c− 5. The situation in step 4 is slightly more complicated. Candidate sets
Bt, Bt+2, Bt+11, Bt+16 are pruned in step 4, and we take into account which
of these sets have been checked in the previous step. The check in step 4 is
performed from t = 7 because it is the first time instance when Bt is pruned in
step 3. The check is performed until t = c − 9 since it is the last time instance



Consecutive S-box Lookups: A Timing Attack on SNOW 3G 179

when Bt+11 is pruned in step 3. Experimentation shows that the check in step 4
is useful even if one of the candidate sets has not been pruned before.

We can easily modify the state recovery algorithm to work without the side-
channel data from the α and α−1 lookups. This is achieved by setting Bt = IF232

for t = 0, . . . , c + 10 in step 2.

5.3 Attack Performance

The crux of the state recovery algorithm complexity is the size of the sets At in
step 1, where candidates for R1t are determined based on observed bits of R1t

and R2t+1 = S1(R1t). These bits are enough to determine a very small set of
candidates for R1t. Assuming uniformly distributed R1t values, we calculated
the set size for all x ∈ IF232 . The average is a surprisingly low 4.26. There is
an algorithm requiring 232 steps and 216 storage to verify this average. Step 1
requires c · 216 steps and experiment results show this is easily the most costly
step of the algorithm. Hence we omit any formal complexity analysis of the
remaining steps.

The state recovery algorithm can be implemented as a backtracking algorithm
by combining steps 3 and 4. To make the algorithm more efficient, incorrect
candidates can be eliminated as soon as they are known to be invalid. It is not
necessary to store the whole Bt set into memory in step 2; storing only v ∧ st

is sufficient. A more detailed description about the implementation is given in
Appx. A.

Increasing the number of clock cycles c increases the probability of a unique
solution because check (11) can be applied more times. It can be run c − 15
times: in the ith run, it eliminates incorrect st+i−1 for t = 7, 9, 18, 23. Check
(11) can be used c−20 times such that every st candidate in the check has been
tested with (10) before. For example, this happens only in the first run if the
cipher is clocked c = 21 times.

Simulated Side-Channel. One model present in the literature for obtaining
and/or simulating cache-timing data is to verify theoretical cache-timing attack
results while at the same time abstracting away all details of the underlying
cache structure. This involves modifying the implementation of the cipher to
manually store the top bits of indices used in table lookups. This inherently
simulates an error-free side-channel. For example, Acıiçmez and Koç used this
approach to verify results on an AES trace-driven cache attack [1, Sect. 5].

Table 2 gives the attack results under this model. The last column in the table
gives the average number of operations after step 1.

Empirical Side-Channel. Considering the side-channel model, another ap-
proach is to view the cipher as a black-box where essentially the attacker can
control the rate at which the cipher is clocked. This allows the attacker a certain
level of granularity between successive calls to obtain the needed trace data. Un-
like the previous method, here the cache-timing data is empirical. For example,



180 B.B. Brumley et al.

Table 2. Remaining candidate states and their frequencies

Cycles 1 state 2 states ≥ 3 states Avg. ops

20 0.110 0.247 0.643 3100
21 0.351 0.379 0.270 3157
22 0.991 0.009 0 3105
23 0.995 0.005 0 3121

Osvik, Shamir, and Tromer used this approach to run trace-driven cache attacks
on AES running on an AMD Athlon 64 [12, Sect. 3.7]. They applied their results
to two black-boxes: 1) AES through OpenSSL function calls and 2) AES through
the dm-crypt disk encryption subsystem for Linux.

To implement the attack under this model, we used a C implementation of
SNOW 3G making use of the table lookups described in Sect. 3 with tables
provided by the specification [6]. We considered the AMD Athlon 64 3200+
Venice that has a 64KB 2-way associative L1 data cache and 64-byte cache lines
running 32-bit Ubuntu Linux 8.04. See [8, Chap. 18] for background on trace-
driven cache attacks.

We ran one thousand iterations of the attack, carrying out each iteration as
follows. Here “each set” is perhaps better interpreted as being from the subset
of cache sets where the considered tables map to.

1. Initialize a SNOW 3G instance; it takes the 128-bit key and IV from /dev/
urandom.

2. For each cache set, read from two distinct areas of memory that map to that
cache set. This completely pollutes a two-way associative cache. Osvik et al.
call this the “Prime” step [12, Sect. 3.5].

3. Clock the cipher instance.
4. Measure the time required to read back the previously read data from each

set. Osvik et al. call this the “Probe” step.
5. Repeat these steps for 23 clocks.
6. Using the obtained cache-timing data, run the attack outlined in this section.

In each iteration of the “Probe” step, for each table the result is sixteen latency
measurements, each for a distinct cache set. Hence the cache set with the highest
latency is the best guess for which cache set the cipher accessed and the inferred
input index bits (state bits) follow accordingly.

The attack runs in a matter of seconds. Of these one thousand attack itera-
tions, 647 succeeded in recovering the full LFSR and FSM state of the SNOW
3G instance. In three cases we were left with two candidate states; we arrived at
unique solutions for the remaining cases. As far as the probability of a unique
solution, this agrees with the simulated data in Table 2. Note that values listed
in the table and the observed 64.7% success rate are not the same metric. The
former uses error-free simulated traces and measures the probability of a unique
solution, and the latter empirical traces and the probability of obtaining at least



Consecutive S-box Lookups: A Timing Attack on SNOW 3G 181

one candidate solution. For our spy process on this architecture, we experienced
extremes that either a trace was completely error-free or contained largely er-
rors. Perhaps it is possible to modify the state recovery algorithm to resolve
conflicting state information and compensate for errors, but with such a high
success rate this would have little to no impact in the end.

To summarize, in this environment the expected number of attack iterations
to succeed is only two.

6 Countermeasures

High-speed software implementations of SNOW 3G are largely table-based. In
environments where cache-timing attacks pose a threat, countermeasures are
needed. Straightforward approaches such as aligning the tables in memory at
the same boundary provide little assurance.

Bit-slicing is one approach to eliminate state-dependent table lookups from
memory. In the case of SNOW 3G and a processor with word size w, we repre-
sent w streams of the cipher running in parallel under w distinct keys and IVs,
each stream at a single fixed bit index within the word. This allows a quasi-
hardware design approach to components where instructions implement gates.
Table lookups are replaced by their computational counterpart: computing S-box
outputs instead of looking them up. Bit-slicing is a popular, established paradigm
for high-speed and side-channel secure implementations of cryptographic prim-
itives [3,11,7]. Our main focus here is on processors with Streaming SIMD Ex-
tensions 2 (SSE2) where w = 128. SNOW 2.0 runs on a subset of this machinery,
hence this countermeasure can be directly applied there as well.

We reviewed SNOW 3G components in Sect. 3; here we discuss their
implementation.

The LFSR. On the software side, to avoid excessively relocating data when
clocking the LFSR we employ a standard sliding window; this changes the mem-
ory address of the LFSR instead of moving the data in the LFSR. Briefly, the
trick is to allocate twice (or more) the memory required for the LFSR and keep
a pointer to the current offset; the window representing the current LFSR state
starts at this pointer and covers the length of the original LFSR. Then to clock,
only the pointer increments (the window slides) and the new value from the
feedback polynomial is stored at the end of the window. Thus the rest of the
values can remain where they are, and only when the window runs out of space
all LFSR values are moved back to the beginning and the pointer reset. For
the LFSR feedback function, multiplications and divisions by α each involve a
distinct linear map IF8

2 → IF32
2 . We implement these using 117 and 103 gates,

respectively.

The FSM. We implement modulo 232 additions using a textbook ripple-carry
adder of 154 gates. The S1 component includes four evaluations of the AES S-
box followed by a MixColumns operation. We use the 115 gate design by Boyar
and Peralta [4], requiring 119 gates in the absence of an XNOR instruction.



182 B.B. Brumley et al.

With respect to gate count, the bottleneck of clocking the cipher is the S2
component. This involves four computations of a bijective S-box IF28 → IF28

defined by evaluating the Dickson polynomial

g49(t) = t + t9 + t13 + t15 + t33 + t41 + t45 + t47 + t49

followed by a translation; all of the outputs then go through a MixColumns
operation. A Dickson polynomial gi permutes IFq when gcd(q2 − 1, i) = 1. They
have a recursive definition, and in this setting it holds that

g49(t) = g7(g7(t)), where

g7(t) = t + t5 + t7,

which suggests implementing this S-box with four multiplications (two for each
successive g7 evaluation) in IF28 . We use a composite field isomorphism IF28 →
IF2

24 to employ Paar’s multiplier that requires 110 gates [13, Chap. 6]. We briefly
examined the effect of 64 different isomorphisms on the overall gate count of the
S-box, found it nominal, and settled on the mapping (x5+1)i 	→ ((x2+1)y+x3)i.
With the isomorphism (and inverse), multiplications, squarings, and assorted
additions, we realize this S-box design using 498 gates. Although this is the
smallest public design we are aware of, future work on more compact designs
for this S-box is needed: our implementation spends roughly 46.6% of its time
in this S-box, compared to 10.8% in the AES S-box.

Results. We summarize the design in Table 3. Median timings for our imple-
mentation producing long sequences of keystream running on an Intel Core 2
Quad Q6600 are just over 12K cycles per 512 keystream words, or 5.9 cycles
per stream byte inclusive of keystream conversion from bit-slice representation
(Matsui-Nakajima method [11, Sect. 4.2]). For a terse comparison, a serial table-
based sliding window implementation running on the same machine weighs in at
roughly 23.9 cycles per keystream word, or 6.0 cycles per byte. This suggests that
in environments where batch keystream generation can be applied, bit-slicing af-
fords SNOW 3G cache-timing attack resistance without degrading performance.

Table 3. Gate counts for various components in the design

Component Count Gates

α 1 117
α−1 1 103
AES S-box 4 119
Dickson S-box 4 498
MixColumns 2 152
32-bit addition 2 154
32-bit XOR 5 32



Consecutive S-box Lookups: A Timing Attack on SNOW 3G 183

Furthermore, with Advanced Vector Extensions (AVX) on the horizon, bit-slice
implementations scale nicely with the widened data path (w = 256).

Since the cipher splits a 32-bit word into bytes for the S-box evaluations,
it is tempting to use a bit-slice representation which aligns the bits of these
individual bytes and runs a quarter of the streams instead. However, there are
two components which then become awkward to implement: the modulo 232

addition and the linear maps involving α. We chose the former representation
due to these factors.

7 Conclusion

In this paper, we developed a cache-timing attack on SNOW 3G, the standard
keystream generator for mobile communications, that adheres to an existing
attack model. Our attack is an improvement in several aspects over previous
attacks:

– We presented a new, efficient attack exploiting the special structure of the
FSM used in SNOW 3G, applicable also to K2 currently under standardiza-
tion consideration by ISO. When countermeasures to the Leander et al. [10]
attacks are deployed, our attack still succeeds.

– On the theoretical side, unlike the attack presented by Leander et al. ours
uses all information gained from the SCA Keystream side-channel oracle.
This allows us to mount a substantially more efficient attack and recover
the FSM state without known keystream, and furthermore requires notably
fewer cipher clocks to be observed.

– On the practical side, we ran our attack using empirical cache-timing data
and were able to recover the full cipher state with all probability and no
computational effort to speak of.

Finally, we presented a bit-slice implementation of SNOW 3G, applicable
to SNOW 2.0 as well, to defend against timing attacks in general. For batch
keystream generation, we were able to accomplish this without a performance
hit compared to high-speed table-based implementations.

We close with an important note on further applications of this work. One of
the main reasons we are able to make our attack more efficient is the structure of
the FSM: it has two consecutive S-boxes, S1 and S2, so we get information about
the input and output of S1. This information makes it possible to determine a
small set of candidates for the inputs of S1, i.e., R1t. Similar structures are
present in other ciphers as well:

– The FSM in the K2 cipher [9] also contains consecutive S-boxes.
– SNOW 2.0 [5] and SOSEMANUK [2] do not have consecutive S-boxes, but

their structure still allows us to use a similar idea to recover the FSM state
without the keystream given that the LFSR state is recovered first. For
example, R1 in SNOW 2.0 is updated as

R1t+1 = R2t � st+5 = S1(R1t−1) � st+5.



184 B.B. Brumley et al.

The S1 lookups reveal bits of R1t+1 and R1t−1 as in SNOW 3G. These bits
(and the knowledge of st+5) allow us to determine R1t+1 almost uniquely.
The same idea can be used for SOSEMANUK.

These results should be taken into account when designing stream ciphers re-
silient against side-channel attacks.

References

1. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (short paper). In:
Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer,
Heidelberg (2006)

2. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Gilbert, H., Goubin, L., Gouget,
A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T., Sibert, H.: Sosemanuk,
a fast software-oriented stream cipher. In: Robshaw, M.J.B., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 98–118. Springer, Heidelberg (2008)

3. Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997)

4. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
178–189. Springer, Heidelberg (2010)

5. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Heidelberg
(2003)

6. ETSI/SAGE: Specification of the 3GPP confidentiality and integrity algorithms
UEA2 & UIA2. Document 2: SNOW 3G specification. Version 1.1. Tech. rep.
(2006), http://gsmworld.com/documents/snow_3g_spec.pdf

7. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009)

8. Koç, Ç.K. (ed.): Cryptographic Engineering. Springer, Heidelberg (2009)
9. Kiyomoto, S., Tanaka, T., Sakurai, K.: K2: A stream cipher algorithm using dy-

namic feedback control. In: Hernando, J., Fernández-Medina, E., Malek, M. (eds.)
SECRYPT, pp. 204–213. INSTICC Press (2007)

10. Leander, G., Zenner, E., Hawkes, P.: Cache timing analysis of LFSR-based stream
ciphers. In: Parker, M.G. (ed.) Cryptography and Coding. LNCS, vol. 5921, pp.
433–445. Springer, Heidelberg (2009)

11. Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel core2
processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
121–134. Springer, Heidelberg (2007)

12. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

13. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. Ph.D. thesis, Institute for Experimental Mathematics, Universität Essen,
Germany (1994)

14. Zenner, E.: A cache timing analysis of HC-256. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 199–213. Springer, Heidelberg (2009)

http://gsmworld.com/documents/snow_3g_spec.pdf


Consecutive S-box Lookups: A Timing Attack on SNOW 3G 185

A Implementation Details

We implemented the state recovery algorithm as a backtracking search. The algo-
rithm enumerates partial candidate solutions and eliminates incorrect candidates
as soon as they are known to be invalid.

The first step in the algorithm is the same as described in Sect. 5: candidate
sets At, t = 0, . . . , c − 2, are initialized. In the second step, initial candidates
for st, t = 0, . . . , c + 10, are determined. Instead of storing the candidates as
described in Sect. 5, we simply set Bt = v ∧ st, where v is chosen as in (9). The
algorithm enumerates possible candidate combinations creating a tree structure,
where a node at depth t + 1 represents a candidate from At. If the tree cannot
be further extended, a complete valid solution has been found. When a node at
depth t is extended by picking a new candidate from At, the algorithm checks
if the new candidate can be correct. Depending on the depth t + 1, it performs
up to three checks based on the following relations:

st+16 = αst ⊕ st+2 ⊕ α−1st+11, (12)

v ∧ st+16 = v ∧ (αst ⊕ st+2 ⊕ α−1st+11), and (13)
v ∧ st+7 = v ∧ ((R1t+3 � S1(R1t+1)) ⊕ S2(S1(R1t))), (14)

where � denotes subtraction in ZZ232 and v is chosen as in (9). These relations
have been derived using the relations mentioned in Sect. 5. A path from the root
node to the most recently expanded node in the search tree forms a sequence
consisting of candidates for R1t at different times. Given enough candidates, we
can determine candidates for different LFSR values, which can be used in the
checks. Each time a node is expanded, the algorithm performs three checks using
the above relations to determine whether the newest node can be valid. In each
check, the time t is adjusted such that the candidate represented by the newest
node is involved in the check (if possible).

1. If the depth allows, we use (12) to check the newest node. Using the candi-
dates for R1t at different times and (7), we determine the candidates corre-
sponding the LFSR values in (12). We then check if the relation holds with
the candidate values. We need at least 20 candidates for R1t at consecutive
time instances to perform this check.

2. If the previous check did not fail and if the depth allows, we then use (13)
to check the newest node. We first determine the candidates corresponding
the LFSR values on the right-hand side in (13). Using these candidates and
the known value for v ∧ st+16, we check if the relation holds. At least 15
candidates for R1t at consecutive time instances are needed in this check.

3. If the previous checks have not failed and if the depth allows, we then use
(14) to check the newest node. Using the known value of v ∧ st+7 and the
candidates for R1t at different times we check if the relation holds. At least
4 candidates for R1t at consecutive time instances are needed in this check.

The algorithm can be modified to use only the side-channel data from the FSM
lookups by omitting the two latter checks which also utilize data from the LFSR
lookups.


	Consecutive S-box Lookups: A Timing Attack on SNOW 3G
	Introduction
	Attack Model
	SNOW 3G
	Description of SNOW 3G
	Implementation

	Previous Work
	Attack Framework
	Application to SNOW 2.0 and SNOW 3G

	Our Attack
	Cache Measurements
	State Recovery
	Attack Performance

	Countermeasures
	Conclusion
	References


