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Abstract— In many cooperative control problems, a shared
knowledge of information provides the basis for cooperation.
When this information is different for each agent, a state of
noncooperation can result. Consensus algorithms ensure that
after some time the agents will agree on the information critical
for coordination, called the coordination variable. In this paper
we show that if the coordination algorithm is input-to-state
stable where the input is considered to be the discrepancy
between the coordination variable known to each vehicle, then
cooperation is guaranteed when a consensus scheme is used
to synchronize information. A coordinated timing example
is shown in simulation to illustrate the notions of stability
when a coordination algorithm is augmented with a consensus
strategy.

I. INTRODUCTION

Replacing large, expensive, monolithic vehicles with
teams of networked vehicles, promises less expensive, more
capable systems. In addition, there are applications where
a team of vehicles can accomplish objectives that would
be impossible for a single vehicle [1], [2], [3]. To a large
extent, the ability of team members to coordinate hinges
on their agreement upon a set of information that we call
the coordination variable [4]. When this information is
the same between team members, centralized coordination
algorithms (replicated on each agent) can be used to achieve
cooperation in a decentralized manner. Unfortunately, in
most real-world applications, perfect synchronization is
not possible necessitating algorithms that ensure that team
members eventually come to a consensus on the value of
the coordination variable. Many good approaches exist to
the consensus problem with varying levels of assumed agent
connectivity. In the most general case, agents must coordi-
nate under dynamically changing interaction topologies [5],
[6], [7], [8]. In [6], necessary and/or sufficient conditions
are shown to ensure asymptotic consensus in the case of
discrete-time update schemes. In a companion paper [9],
a consensus scheme motivated by the Kalman filter is
presented and shown to guarantee asymptotic consensus
and explicitly account for relative agent reliability. In this
paper we show that the Kalman consensus scheme is input-
to-state stable (ISS) with respect to communication noise,
and use this fact to design cooperative timing strategies for
unmanned air vehicles (UAVs).

UAV cooperative timing problems have been investigated
recently in the context of battlefield scenarios where the
UAVs are required to converge to the boundary of a radar
detection area to maximize the element of surprise [10],
[11], [12], [13], [14]. Cooperative timing problems also

arise in refueling scenarios, fire and hazardous material
monitoring, moving area of regard problems, and contin-
uous surveillance problems. In this paper we will investi-
gate a simplified cooperative timing problem that must be
accomplished in the presence of an unreliable, dynamically
changing communication topology.

In the case of cooperative timing problems, the coor-
dination information is the time-over-target for the whole
team. We are particularly interested in the relationship
between the consensus algorithm and the cooperative con-
trol scheme. Specifically, if the action of each UAV is
based on the dynamically changing, local instantiation of
the perceived time-over-target, will the team cooperation
objective still be achieved?

The main contribution of this paper is to derive sufficient
conditions for the coordination scheme when it is used in
connection with an asymptotically stable consensus algo-
rithm. Specifically, we wish to investigate overall system
behavior when a cooperative control scheme, designed to
be stable when the coordination variable is known a priori,
is instead, given an estimate of the coordination variable by
a consensus scheme. The application of these ideas will be
investigated in the context of cooperative timing scenarios.

This paper is organized as follows. An overview of
Kalman consensus scheme is given in Sections II. The
Kalman consensus scheme is shown to be input-to-state
stable (ISS) in Section III and this is used to derive a de-
sign principle for distributed cooperation algorithms. These
principles are applied to a cooperative timing example in
Section IV.

II. KALMAN CONSENSUS

In a companion paper, we present a Kalman-filter-
inspired technique for consensus seeking [9]. The purpose
of the Kalman consensus scheme is to explicitly account for
relative agent reliability while at the same time obtaining
consensus in the presence of a dynamically changing com-
munication topology. Some of the main results are presented
here to facilitate the analysis later of the stability properties
of Kalman consensus. As a matter of notation, we are con-
sidering asymptotic consensus in the sense that consensus
is said to be achieved asymptotically if ‖ξi(t) − ξj(t)‖ → 0
as t → ∞ for each pair of agents (i, j), where ξi is the ith

agent’s estimate of the coordination variable whose value
all agents must agree upon.
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The following update equations describe the Kalman
consensus scheme for the ith agent:

Ṗi = −Pi

⎡
⎣∑

j

gij(t)(Pj + Ωij)−1

⎤
⎦Pi + Qi (1)

Kij = Pi(Pj + Ωij)−1 (2)

ξ̇i =
n∑

j=1

gij(t)Kij ((ξj + νij) − ξi) (3)

where ξi is ith agent’s coordination variable and Pi the
associated relative uncertainty for ξi. gij(t) captures the
connectivity between agent i and j, specifically, when
gij(t) = 1, agent i receives communication from agent j,
otherwise gij(t) = 0. νij is the noise on the communication
channel from agent j to i (assumed to be zero-mean
Gaussian with covariance Ωij). Finally, Qi is the covariance
associated with the zero-mean Gaussian random variable
which corrupts the state-space model in a typical Kalman
filter setting.

Theorem 1: Under switching interaction topologies, the
Kalman consensus scheme given in Equations (1)–(3)
achieves asymptotic consensus if there exist infinitely many
consecutive uniformly bounded time intervals such that the
union of the interaction graph across each interval has a
spanning tree.

Theorem 1 is proven in [9], but deserves mention here
to highlight the conditions under which the Kalman con-
sensus scheme achieves agreement between agents. The
central condition (from [15]) is that under dynamically
switching communication topologies, a spanning tree of the
communication topology graph must be reached infinitely
many times. A spanning tree is the least restrictive graph
arrangement that includes all agents in a way that allows
for consensus. Each time a spanning tree is achieved, the
consensus error is driven closer to zero, so if a spanning
tree is reached infinitely many times, then each agent’s
estimate of the coordination variable approaches the others’
asymptotically. The proof of Theorem 1 also shows that the
transition matrix in each interval in which a spanning tree
is reached is indecomposable and aperiodic (SIA), meaning
limn→∞ Pn = 1yT , where y is a column vector [16]. SIA
matrices are composed of all non-negative entries, have a
row sum of 1 and are essentially averaging matrices in the
sense that a vector operated on by an SIA matrix returns
a new vector whose elements are composed of a weighted
average of all the entries of the original vector. It is this
fact that allows us to conclude uniformity in Section III.

III. CONSENSUS ALGORITHMS ARE INPUT-TO-STATE

STABLE

We are primarily interested in the application of consen-
sus algorithms to cooperative control problem. In this paper
we will explore a control architecture where a consensus
algorithm is in cascade with a coordination algorithm, as
shown in Figure 1. Our purpose in this section is to derive
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Fig. 1. The control architecture consists of a consensus algorithm in
cascade with a coordination algorithm. The consensus algorithm receives
information from the communication network to produce a value of the
coordination variable ξi. The coordination algorithm uses the coordination
variable ξi to produce a command the the vehicle ui. We assume that
the same consensus and coordination algorithms are implemented on each
vehicle.

conditions on the consensus and coordination algorithms
that guarantee that the cooperation objective is achieved.
Toward that end, rewrite Equation (3) as

ξ̇i =
n∑

j=1

gij(t)Kij (ξj − ξi) +
n∑

j=1

gij(t)Kijνij . (4)

Defining the total consensus error vector x as xij = ξi −
ξj and x = (x11, x12, . . . , x1n, x21, . . . , xnn)T , we get the
state-space model

ẋ = A(t)x + B(t)ν (5)

where ν is a column vector created by stacking the com-
munication noise terms νij , and the elements of A(t) and
B(t) are linear combinations of gijKij(t) and can be easily
constructed from Equation (4).

We now state the main technical result of the paper.
Theorem 2: Under the hypothesis of Theorem 1, the

Kalman consensus scheme given by Equations (1), (2),
and (5) is input-to-state stable.

The proof of this theorem requires the following two
lemmas.

Lemma 3: Under the hypothesis of Theorem 1, if the
communication error ν is zero, then the consensus error x
is uniformly stable.

Proof: As shown in [9], the transition matrix as-
sociated with the coordination variable dynamics is SIA.
When gij(t) = 1, the ith coordination variable is up-
dated to a weighted average of all agents’ coordination
variables communicating with i. Since a weighted average
can never be greater (or smaller) than any one of the
components in the average, the updated ξi must be within
[min(ξj), max(ξj)]. Since all agents that receive commu-
nication with other agents use the same averaging scheme,
ξi(t) ∈ [min(ξj(t0)), max(ξj(t0))] for all t and i. Then

‖x‖∞ ≤ ‖x(t0)‖∞ , for t ≥ t0.
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Lemma 4: The norm of B(t) in Equation (5) is bounded.
Proof: Since B(t) is composed of linear combina-

tions of Kij(t), if ‖Kij(t)‖ is bounded for each (i, j),
then ‖B(t)‖ will also be bounded. Referring to Equa-
tion (2) and recalling that Ωij > 0 and Pj(t) > 0,
then ‖Kij‖ will be bounded if ‖Pi(t)‖ is bounded. Using
Equation (1) and noting that Pi > 0, Qi is bounded and
−Pi

[∑
j gij(t)(Pj + Ωij)−1

]
Pi ≤ −Pi(Pi + Ωii)−1Pi,

we see that Pi is uniformly bounded.
Proof of Theorem 2: By Lemma 3, the Kalman consensus

error is uniformly stable. By Theorem 1, ‖ξi − ξj‖ → 0 as
t → ∞ for all (i, j). Since each element of x → 0 then
‖x‖ → 0 as t → ∞ and we conclude uniform asymptotic
stability. Any linear system that is uniformly asymptotically
stable is also uniformly exponentially stable [17]. Addi-
tionally, linear uniformly exponentially stable systems with
‖B(t)‖ < β for finite β are bounded-input bounded-output
stable [18]. Since the Kalman consensus error governed
by Equation (5) is a linear uniformly asymptotically stable
system with ‖B(t)‖ bounded, it is ISS.

Corollary 5: If the continuous-time consensus schemes
presented in [19], [15], [5], and [20] are augmented with
communication noise, then the representation of these
schemes that is equivalent to Equation (5) is ISS.

Proof: The difference between each of these schemes
and Equation 3 is that the consensus gain Kij(t) is time
invariant. Therefore from the proof of Theorem 2 it is clear
that they are ISS.

Referring to Figure 1 we see that the combination of the
communication network and the consensus scheme is an
ISS system. The cascade combination of two ISS systems is
also ISS [21]. Therefore if the feedback loop containing the
coordination algorithm and the ith vehicle is ISS from the
consensus error to the cooperation objective, then the total
system will be ISS from the communication noise to the
cooperation objection. This concept is shown schematically
in Figure 2 and can be summarized by the following
Theorem.

Consensus
Scheme

Coordination
Scheme

Cooperation
Objective

Fig. 2. The distributed cooperative control problem can be thought of as a
cascade connection between the consensus algorithm and the coordination
algorithm. If both are ISS, then the cascade system will be ISS.

Theorem 6: Given a cascade interconnection between a
coordination algorithm and a consensus scheme that is ISS
from the communication noise to the consensus error. If a
coordination scheme is ISS from the consensus error to the
cooperation objective then the interconnection is ISS from
the communication noise to the cooperation objective.

The major implication of Theorem 6 is that communi-
cation noise cannot disrupt overall team cooperation. If a
coordination algorithm is ISS and is driven by a consensus

algorithm that is implemented over noisy communication
channels (communication via sensing, for example), then
Theorem 6 states that the error in the cooperation objective
will be bounded and related to the power of the noise in the
communication. When there is significant communication
noise, then the cooperation objective will still be achieved,
albeit loosely.

IV. ILLUSTRATIVE EXAMPLE - COOPERATIVE TIMING

Suppose that a team of UAVs, flying at distinct altitudes,
is tasked to simultaneously visit a pre-specified location. For
simplicity, also assume that paths have been precomputed
for each UAV as shown in Figure 3.
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Fig. 3. Cooperative timing scenario with five agents involved.

We will also assume that each UAV has autopilot func-
tionality that maintains the UAV on its pre-defined path,
but that the velocity along the path can be adjusted to meet
the simultaneous arrival objective. We will assume that the
velocity hold autopilot has been designed such that

v̇i = vc
i − vi (6)

where vi is the velocity and vc
i the commanded velocity for

the ith UAV. Let Li denote the length of the path remaining
to the target, then

L̇i = −vi.

Given Li and vi, the ith UAV can estimate its expected
time-of-arrival (ETA) as

τi =
Li

vi
.

Differentiating, we obtain

τ̇i =
viL̇i − Liv̇i

v2
i

= −1 − τi

(
vc

i − vi

vi

)
. (7)

The cooperation objective for this problem is that each UAV
arrives at its destination simultaneously, i.e. τi − τj = 0
for each (i, j). The coordination variable for this problem
is chosen as the arrival time. Therefore ξi represents the
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ith UAVs understanding of the team arrival time. Clearly,
to satisfy the simultaneous arrival objective, the team must
come into consensus before the actual arrival time. As in
many practical applications, we desire consensus in finite
time, but consensus is only guaranteed as t → ∞. However,
due to its exponential nature, a consensus algorithm will still
be useful in the presence of finite horizon requirements.

Let the commanded velocity to each UAV be

vc
i = vi +

vi

τi
(γτi − γξi − 1) , (8)

then Equation (7) reduces to

τ̇i = −γτi + γξi. (9)

Note that

(τ̇i − τ̇j) = −γτi + γξi + γτj − γξj

= −γ (τi − τj) + γ (ξi − ξj) ,

and that the system φ̇ = −γφ + γu is input-to-state stable.
In fact we have that

|φ(t)| ≤ e−γ(t−t0)φ(t0) + sup
t0≤σ≤t

|u(σ)| .

Therefore, the combination of the consensus strategy
given by Equations (1)–(3) and the velocity controller
given by Equation (8) is input-to-state stable with the input
being communication noise and the state consisting of both
the consensus discrepancy ξi − ξj and the UAV arrival
discrepancy τi − τj .

The cooperative timing scenario was simulated with an
unreliable switching communication topology. The team is
connected in the graph shown in Fig. 4 where each link
is only available 70 percent of the time. When an agent
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5

Fig. 4. Union of possible communication topologies.

receives communication it updates its estimate of ξi, the
team estimated time-of-arrival (ETAteam), using the Kalman
consensus scheme of Section II. In between consensus
updates, agents control their velocity using Equation (8)
so that the actual time-of-arrival matches the estimate from
the consensus algorithm. Five agents were given a single
target at which to arrive simultaneously, as in Fig. 3.

In the first case, communication noise was set to zero and
each agent started with approximately the same confidence
in its estimate of the team ETA. The reference team ETA
for each vehicle is shown in Fig. 5 and the actual ETA of
each vehicle is shown in Fig. 6. As can be seen, each agent
in the team achieves agreement using consensus, adjusts its
ETA to match the team ETA, and arrives at the target in
approximately 20 seconds.
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Fig. 5. Reference team ETA for each agent with no communication noise.
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Fig. 6. Actual ETA for each agent with no communication noise.

In the second case, significant communication noise is
added. The reference team ETA for each vehicle is shown
in Fig. 7 and the actual ETA of each vehicle is shown in
Fig. 8. As can be seen, each agent in the team achieves
approximate agreement using consensus where the error in
agreement is due to the communication noise.

V. CONCLUSIONS

This paper has shown that the Kalman consensus scheme
presented in [9] is input-to-state stable. As a corollary we
get that most of the consensus schemes presented in the
literature are also ISS. The input-to-state property of the
consensus scheme was used to show that if the consensus
scheme is used in cascade with a multiple vehicle coordi-
nation algorithm that is also ISS, then the fidelity of the
cooperation objective is directly related to the power level
of the communication noise.
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Fig. 7. Reference team ETA for each agent with communication noise.
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Fig. 8. Actual ETA for each agent with communication noise.
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