
Consensus Algorithms for Trees and Strings

Jansson, Jesper

2003

Link to publication

Citation for published version (APA):
Jansson, J. (2003). Consensus Algorithms for Trees and Strings. Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/9c6c0039-20b5-444b-a96e-a8db79aac3cd

Consensus Algorithms
for Trees and Strings

Jesper Jansson

Doctoral dissertation, 2003

Department of Computer Science

Lund Institute of Technology

Lund University

This thesis has been submitted to the Board of Researh � FIME (Fysik, Inform-
ationsteknik, Matematik, Elektroteknik) at Lund Institute of Tehnology, Lund
University, in partial ful�llment of the requirements for the degree of Dotor of
Philosophy in Computer Siene.

Jesper Jansson
Department of Computer Siene
Lund University
Box 118
SE-221 00 Lund
Sweden

E-mail: Jesper.Jansson�s.lth.se

Webpage: http://www.s.lth.se/∼jj

Copyright © 2003 by Jesper Jansson

ISBN 91-628-5586-7
ISSN 1404-1219
Dissertation 17, 2003
LU-CS-DISS:2003-2

Abstrat

This thesis studies the omputational omplexity and polynomial-time approx-
imability of a number of disrete ombinatorial optimization problems involving
labeled trees and strings. The problems onsidered have appliations to ompu-
tational moleular biology, pattern mathing, and many other areas of omputer
siene.

The thesis is divided into three parts. In the �rst part, we study some
problems in whih the goal is to infer a leaf-labeled tree from a set of onstraints
on lowest ommon anestor relations. Our NP-hardness proofs, polynomial-time
approximation algorithms, and polynomial-time exat algorithms indiate that
these problems beome omputationally easier if the resulting tree is required to
omply with a prespei�ed left-to-right ordering of the leaves.

The seond part of the thesis deals with two problems related to identifying
shared substrutures in labeled trees. We �rst investigate how the polynomial-
time approximability of the maximum agreement subtree problem depends on
the maximum height of the input trees. Then, we show how the running time of
the urrently fastest known algorithm for the alignment between ordered trees
problem an be redued for problem instanes in whih the two input trees are
similar and the soring sheme satis�es some natural assumptions.

The third part is devoted to radius and diameter lustering problems for
binary strings where distanes between strings are measured using the Ham-
ming metri. We present new inapproximability results and various types of
approximation algorithms as well as exat polynomial-time algorithms for er-
tain restritions of the problems.

iii

List of Publiations

Most of the results presented here have been or will be published in:

• L. G�asienie, J. Jansson, A. Lingas, and A. Östlin. On the omplexity of
onstruting evolutionary trees. Journal of Combinatorial Optimization,
3(2�3):183�197, 1999. A preliminary version appeared in Proeedings of
the 3 rd Annual International Computing and Combinatoris Conferene
(COCOON'97), volume 1276 of Leture Notes in Computer Siene, pages
134�145. Springer-Verlag Berlin Heidelberg, 1997.

• L. G�asienie, J. Jansson, A. Lingas, and A. Östlin. Inferring ordered trees
from loal onstraints. In Proeedings of Computing: the 4 th Australasian
Theory Symposium (CATS'98), volume 20(3) of Australian Computer Si-
ene Communiations, pages 67�76. Springer-Verlag Singapore, 1998.

• L. G�asienie, J. Jansson, and A. Lingas. E�ient approximation algo-
rithms for the Hamming enter problem. Tehnial Report LU-CS-TR:99-
211, Lund University, 1999. A short form version of this artile was
published in Proeedings of the 10 th Annual ACM-SIAM Symposium on
Disrete Algorithms (SODA'99), pages S905�S906, 1999.

• L. G�asienie, J. Jansson, and A. Lingas. Approximation algorithms for
Hamming lustering problems. Journal of Disrete Algorithms, to appear.
A preliminary version appeared in Proeedings of the 11 thAnnual Sym-
posium on Combinatorial Pattern Mathing (CPM 2000), volume 1848 of
Leture Notes in Computer Siene, pages 108�118. Springer-Verlag Berlin
Heidelberg, 2000.

• J. Jansson. On the omplexity of inferring rooted evolutionary trees.
In Proeedings of the Brazilian Symposium on Graphs, Algorithms, and
Combinatoris (GRACO 2001), volume 7 of Eletroni Notes in Disrete
Mathematis, pages 121�125. Elsevier, 2001.

• J. Jansson and A. Lingas. A fast algorithm for optimal alignment between
similar ordered trees. Fundamenta Informatiae, to appear. A preliminary
version appeared in Proeedings of the 12 thAnnual Symposium on Com-
binatorial Pattern Mathing (CPM 2001), volume 2089 of Leture Notes

v

vi List of Publiations

in Computer Siene, pages 232�240. Springer-Verlag Berlin Heidelberg,
2001.

Aknowledgments

First of all, I would like to thank my thesis supervisor Andrzej Lingas for his
invaluable advie and guidane, his endless patiene, and for sharing his broad
knowledge. I also thank Rolf Karlsson who introdued me to algorithm theory
for onvining me to pursue my graduate studies in theoretial omputer siene,
Leszek G�asienie for providing hallenging problems to work on, Anna Östlin for
suessful ollaboration, and Takeshi Tokuyama for some rewarding disussions
whih helped to improve this thesis.

I would also like to express my gratitude to Akiyoshi, Albert, Alf, Alfred,
Anders, Andrea, Andreas, Andy, Anna, Anne-Marie, Aramis, Ariane, Aura,
Bengt, Bertil, Birgitta, Björn, Ceilia, Chano, Chet, Christer, Christos, Cornelia,
Dale, Daniel, Eivor, Elina, Emilia, Emir, Eri, Eva, Eva-Marta, Fred, Fredrik,
Gert, Gertie, Gunilla, Hanna, Harald, Hasse, Igor, Ingegärd, Ingemar, Jak,
Jakob, Jan, Jan-Arne, Jennifer, Jenny, Jens, Jimmy, Jinhee, Joahim, Johan,
Jonas, Karim, Katarina, Kazue, Kenihiro, Kirk, Kunihiko, Lars, Lena, Lennart,
Linus, Magdalene, Magnus, Maja, Marus, Margit, Maria, Marjo, Martin, Matti,
Mattias, Mia, Mikael, Mikiko, Nadia, Nany, Nee, Ola, Olof, Patrik, Paul, Per,
Petra, Renato, Sakura, Sami, Seth, Sonja, Stefan, Susanna, Sven, Sylvia, Thore,
Tim, Tomas, Tony, Veena, Vitoria, Wenli, Willy, Wing-Kin, and Yohei for
inspiration and for ontributing to the ompletion of this thesis in various ways.
Thank you!

Greetings to , , and ...

vii

Contents

1 Introdution 1

1.1 Thesis Objetives . 2

1.2 Organization of Thesis . 3

1.3 Main Results . 4

I Inferring Leaf-Labeled Trees from LCA Constraints 7

2 Inferring Unordered Trees from LCA Constraints 9

2.1 Introdution . 9

2.1.1 Motivation . 11

2.1.2 Previous Results . 13

2.1.3 Our Contributions . 14

2.2 Preliminaries . 15

2.2.1 The Algorithm of Aho, Sagiv, Szymanski, and Ullman 15

2.2.2 The Algorithm of Henzinger, King, and Warnow 16

2.3 MLC and M3LC are NP-Hard . 19

2.4 Polynomial-Time Approximation Algorithms for MLC and M3LC 22

2.4.1 Algorithm Approximation A . 22

2.4.2 Algorithm Approximation B . 24

2.5 Conluding Remarks . 28

3 Inferring Ordered Trees from Rooted Triples 31

3.1 Introdution . 31

3.1.1 Motivation . 33

3.1.2 Previous Results . 33

3.1.3 Our Contributions . 34

3.2 Preliminaries . 34

3.2.1 Segment Trees . 34

3.2.2 Interval Trees . 35

3.2.3 Interval Tries . 36

3.3 A Deremental Interval Union Algorithm 36

3.4 Algorithm Fast O3LC . 40

3.5 A Cubi-Time Algorithm for MO3LC 43

3.6 Conluding Remarks . 47

ix

x Contents

II Identifying Shared Substrutures in Labeled Trees 49

4 On the Approximability of MAST 51
4.1 Introdution . 51

4.1.1 Motivation . 52
4.1.2 Previous Results . 54
4.1.3 Our Contributions . 56

4.2 A Polynomial-Time (n/ log n)-Approximation Algorithm for MAST . . . 57
4.3 MAST Restrited to Trees of Height 2 is Hard to Approximate 58
4.4 Approximations of MAST with O(1) Trees of O(1) Height 61
4.5 Conluding Remarks . 68

5 Fast Optimal Alignment between Two Labeled, Ordered Trees 73
5.1 Introdution . 73

5.1.1 Motivation . 75
5.1.2 Previous Results . 78
5.1.3 Our Contributions . 79

5.2 The Algorithm of Jiang, Wang, and Zhang 80
5.3 d-Relevane . 83

5.3.1 d-Relevant Pairs of Subtrees . 83
5.3.2 d-Relevant Pairs of Subforests . 86

5.4 Testing for d-Relevane . 87
5.5 Enumerating the d-Relevant Pairs of Subtrees 89
5.6 Algorithm Fast Sore . 89
5.7 Algorithm Unspei�ed d . 92
5.8 Conluding Remarks . 95

III Clustering under the Hamming Metri 99

6 Approximation Algorithms for the Hamming Center Problem 101
6.1 Introdution . 101

6.1.1 Motivation . 102
6.1.2 Previous Results . 104
6.1.3 Our Contributions . 106

6.2 A Very Simple 2-Approximation Algorithm 106
6.3 IP Formulation and Optimal Solutions in Polynomial Time 107
6.4 Randomized Rounding . 109
6.5 A Randomized (4

3
+ ε)-Approximation Algorithm 111

6.6 Conluding Remarks . 116

7 Hamming p-Radius and p-Diameter Clustering 117
7.1 Introdution . 117

7.1.1 Motivation . 119
7.1.2 Previous Results . 120
7.1.3 Our Contributions . 121

7.2 Preliminaries . 122
7.3 HRC and HDC are NP-Hard to Approximate 123

7.3.1 NP-Hardness of Approximating the p-Radius and the p-Diameter 123

Contents xi

7.3.2 NP-Hardness of Approximating HDC in Terms of the Number of
Clusters . 126

7.4 Polynomial-Time Optimal Solutions for Restrited Cases 127
7.5 Approximation Algorithms for HRC & HDC 130

7.5.1 A Polynomial-Time 2-Approximation Algorithm for HRC and
HDC . 130

7.5.2 An Approximation Sheme for HRC 131
7.5.3 A Randomized PTAS for HRC with p = O(1) 132

7.6 A Relaxed Type of Approximation of HRC 137
7.7 Conluding Remarks . 138

Bibliography 141

Chapter 1

Introdution

This thesis studies a number of disrete ombinatorial optimization problems of
the form:

Given a set S of objets, ompute an objet that summarizes the
information ontained in S in the best way possible.

A wide range of ombinatorial optimization problems involving di�erent kinds of
objets and using di�erent de�nitions of �the best way possible� �t the desrip-
tion above. We refer to problems of this general type as onsensus problems,
and algorithms for solving or approximating onsensus problems as onsensus
algorithms. Three important ategories of onsensus problems are those whose
respetive goals are:

1. To merge two or more labeled trees into one larger tree so that no (or as
little as possible) branhing information is lost.

2. To identify a subtree ontained in all members of a set of labeled trees.

3. To �nd a representative that resembles all of the strings in a given set.

Some problems from the �rst ategory onsidered here are the maximum
3-leaf onstraints onsisteny problem (M3LC), the ordered 3-leaf onstraints
onsisteny problem (O3LC), and the maximum ordered 3-leaf onstraints on-
sisteny problem (MO3LC). In these problems, the objetive is to ombine a set
of overlapping, rooted, binary trees having preisely three labeled leaves eah
into one distintly leaf-labeled tree; appliations an be found in the onstru-
tion of evolutionary trees. Another problem whih an be lassi�ed as belonging
to the �rst ategory is the alignment between ordered trees problem where two
given node-labeled, ordered trees S and T have to be augmented with nodes
labeled by the blank symbol until they both beome isomorphi to (when node
labels are ignored) some larger tree U in suh a way that parts of S and T whih
are alike orrespond to the same nodes in U. E�ient algorithms for omput-

1

2 Chapter 1. Introdution

ing alignments between trees may be useful in omputational moleular biology,
software onstrution, hange detetion in strutured data, hemial struture
analysis, information retrieval, pattern mathing, and automated natural lan-
guage translation systems.

An example of a onsensus problem from the seond ategory is the maxi-
mum agreement subtree problem (MAST). Given a set of rooted, unordered, leaf-
labeled trees, MAST asks for a tree with the maximum possible number of leaves
ontained in all of the input trees. The primary use of MAST is to ompare a set
of alternative evolutionary trees for a �xed set of objets, obtained by using dif-
ferent tree onstrution methods or di�erent sets of data. Another example of a
onsensus problem from the seond ategory is the tree inlusion problem whih
an be formulated as a speial ase of the alignment between trees problem.

The Hamming enter problem (HCP) is a onsensus problem from the third
ategory. The input to HCP is a set S of binary strings of equal length, and
the objetive is �nd a binary string (not neessarily in S) that minimizes the
maximum Hamming distane to the strings in S. In a generalization of HCP
alled the Hamming p-radius lustering problem (HRC), the representative is
not just one string, but a set of strings. A related problem where the obje-
tive is to partition the input strings into p groups so that the maximum of
the group diameters is minimized is named the Hamming p-diameter luster-
ing problem (HDC). HCP, HRC, and HDC have appliations to oding theory,
omputational moleular biology, and lustering.

1.1 Thesis Objetives

The general goal of this thesis is to ontribute to the understanding of what
makes ertain onsensus problems solvable by e�ient algorithms and others in-
tratable. For this purpose, a number of spei�, well-de�ned problems involving
labeled trees and strings are studied from a omputational omplexity point of
view.

The omputational resoure that we fous on here is time. When measuring
the e�ieny of an algorithm, we are onerned with the asymptoti behavior
of its worst-ase running time as the size of its input tends to in�nity. An
algorithm is said to be e�ient if its asymptoti worst-ase running time is
upper bounded by a polynomial in the size of its input, and a problem is alled
e�iently solvable if it an be solved by an e�ient algorithm. From here on,
an algorithm's asymptoti worst-ase running time is normally just referred to
as its running time.

For eah problem onsidered, if it is e�iently solvable, we try to provide an
exat algorithm with as low running time as possible. On the other hand, if a
problem an be shown to be NP-hard1, we look for polynomial-time approxi-

1If a problem is NP-hard then it is highly unlikely that an e�ient, exat algorithm for
solving it an ever be onstruted; see [10, 32, 49, 90, 105℄.

1.2 Organization of Thesis 3

mation algorithms with as good approximation fators as possible, and attempt
to �nd mathing lower bounds on the polynomial-time approximability. For the
problems whih are NP-hard, we also try to larify whether any non-trivial re-
stritions lead to simpler problems whih we an solve exatly in polynomial
time, or at least obtain better polynomial-time approximation fators for.

1.2 Organization of Thesis

The thesis is divided into three parts that may be read separately. Eah part
is in turn divided into two self-ontained hapters treating one or two spei�
problems in detail, as outlined below.

Part I: Inferring Leaf-Labeled Trees from LCA Constraints

Chapter 2 The maximum LCA onstraints onsisteny problem (MLC)
The maximum 3-leaf onstraints onsisteny problem (M3LC)

Chapter 3 The ordered 3-leaf onstraints onsisteny problem (O3LC)
The maximum ordered 3-leaf onstraints onsisteny problem

(MO3LC)

Part II: Identifying Shared Substrutures in Labeled Trees

Chapter 4 The maximum agreement subtree problem (MAST)

Chapter 5 The alignment between ordered trees problem

Part III: Clustering under the Hamming Metri

Chapter 6 The Hamming enter problem (HCP)

Chapter 7 The Hamming p-radius lustering problem (HRC)
The Hamming p-diameter lustering problem (HDC)

Every hapter begins with an introdution whih formally de�nes the inves-
tigated problems, argues why the problems are worth studying (Motivation),
provides some bakground information (Previous Results), and brie�y desribes
the new results that will be presented in that hapter (Our Contributions). The
last setion of every hapter (Conluding Remarks) summarizes our results and
disusses related open questions.

The reader is assumed to possess a basi knowledge of algorithm theory and
omputational omplexity equivalent to that overed by the widely used text-
books [32℄ and [105℄. Some knowledge of approximation algorithms for NP-hard
problems will also be helpful; good introdutions to this subjet an be found in
the books [10, 63, 128℄.

4 Chapter 1. Introdution

1.3 Main Results

Here, we list the main results presented in this thesis along with referenes to
where they have been published.

Part I: Inferring Leaf-Labeled Trees from LCA Constraints

• A new proof that the maximum LCA onstraints onsisteny problem
(MLC) and the maximum 3-leaf onstraints onsisteny problem (M3LC)
are NP-hard.

(Theorem 2.2 and Corollary 2.3 in Setion 2.3; published in [67℄. A more
ompliated NP-hardness proof for MLC was published in [53℄, but it is not
reprodued here sine the result follows diretly from the NP-hardness of
M3LC. M3LC was independently proved to be NP-hard by Bryant in [21℄.)

• MLC and M3LC (as well as their weighted versions) an be approximated
within a fator of 3 of the optimum in polynomial time.

(Algorithm Approximation A in Setion 2.4.1; published in [53℄.)

• A better polynomial-time approximation fator than the above an be
obtained for instanes of M3LC (and its weighted version) in whih the
optimal solution ontains a large number of the input onstraints.

(Algorithm Approximation B in Setion 2.4.2; an older version ontaining
some minor errors was published in [53℄.)

• An algorithm for maintaining the union of a set of losed intervals under
a sequene of deletions from the set.

(Theorem 3.5 in Setion 3.3; published in [52℄.)

• A polynomial-time algorithm for the ordered 3-leaf onstraints onsisteny
problem (O3LC) whih is in general asymptotially faster than the ur-
rently fastest known algorithms for the orresponding problem for un-
ordered trees.

(Algorithm Fast O3LC in Setion 3.4; published in [52℄.)

• The maximum ordered 3-leaf onstraints onsisteny problem (MO3LC)
an be solved in ubi time.

(Theorem 3.11 in Setion 3.5; preliminary version published in [52℄.)

Part II: Identifying Shared Substrutures in Labeled Trees

• The maximum agreement subtree problem (MAST) an be approximated
within a fator of (n/ log n) in O(kn2) time, where k is the number of input

1.3 Main Results 5

trees and n is the total number of di�erent leaf labels.

(Algorithm Simple MAST-Approx in Setion 4.2.)

• If P6=NP then MAST annot be approximated within a fator of nǫ for
any onstant ǫ where 0 ≤ ǫ < 1

2 in polynomial time, even for instanes
ontaining only trees of height 2. An even stronger inapproximability result
holds if ZPP6=NP.

(Theorem 4.2 in Setion 4.3; published in [53℄.)

• MAST restrited to instanes where both the number of input trees and
the maximum height of at least one tree are bounded by onstants an be
approximated within a onstant fator in polynomial time.

(Theorem 4.3 in Setion 4.4; published in [53℄.)

• The running time of the algorithm of Jiang, Wang, and Zhang [70℄ for the
alignment between ordered trees problem an be redued for instanes in
whih the two input trees are similar and the soring sheme satis�es some
natural assumptions. In partiular, if there exists an optimal alignment
with at most d blank symbols and d is known in advane, the problem an
be solved in O(n · (log n + ∆3) · d2) time, where n is the number of nodes
in the largest input tree and ∆ is the maximum degree of the trees.

(Algorithms Fast Sore and Unspei�ed d in Setions 5.6 and 5.7; published
in [68℄.)

Part III: Clustering under the Hamming Metri

• Several restritions of the Hamming enter problem (HCP) an be solved
exatly in polynomial time.

(Corollary 6.6 in Setion 6.3; published in [50℄.)

• A randomized (4
3 + ε)-approximation algorithm for HCP, where ε an be

seleted to be any onstant > 0.

(Theorem 6.14 in Setion 6.5; published in [50℄.)

• The Hamming p-radius lustering problem (HRC) and the Hamming p-
diameter lustering problem (HDC) are NP-hard to approximate within a
fator of 2− ε for any onstant ε > 0.

(Theorem 7.5 in Setion 7.3.1; published in [51℄.)

• An inapproximability result for the version of HDC in whih the onstraint
on the number of produed lusters is relaxed.

(Theorem 7.6 in Setion 7.3.2 published in [51℄.)

6 Chapter 1. Introdution

• HDC is NP-hard for every �xed p ≥ 3.

(Corollary 7.7 in Setion 7.3.2 published in [51℄.)

• Several restritions of HRC and HDC an be solved exatly in polynomial
time.

(Corollary 7.13 in Setion 7.4; published in [51℄.)

• Approximation algorithms for HRC and HDC.

(Algorithms Farthest-Point Clustering and HRC Approximation Sheme
in Setions 7.5.1 and 7.5.2; published in [51℄. Algorithm HRC Randomized
PTAS in Setion 7.5.3 was obtained by ombining the randomized PTAS
of Ostrovsky and Rabani [101℄ and the PTAS of Li, Ma, and Wang [91℄.)

• An approximation algorithm for HRC whih approximates the p-radius
within a fator of (1 + ε) for any onstant 0 < ε < 1 by slightly inreasing
the number of output strings. Its running time is polynomial as long as
the p-radius is not too large.

(Theorem 7.22 in Setion 7.6; published in [51℄.)

Part I

Inferring Leaf-Labeled Trees

from LCA Constraints

Chapter 2

Inferring Unordered Trees

from Lowest Common

Anestor Constraints

In this hapter, we study an optimization problem related to evolutionary tree
onstrution alled the maximum LCA onstraints onsisteny problem (MLC)
in whih a set of onstraints on lowest ommon anestor relations is given and the
goal is to onstrut an unordered, leaf-labeled tree whih maximizes the number
of satis�ed onstraints. Speial attention is paid to the ase alled the maximum
3-leaf onstraints onsisteny problem (M3LC) where eah of the input LCA
onstraints involves three leaves only.

2.1 Introdution

We begin with some de�nitions.
Let S be a �nite set of elements. A lowest ommon anestor onstraint

on S (LCA onstraint on S) is a onstraint of the form {i, j} < {k, l}, where
i, j, k, l ∈ S, whih spei�es that the lowest ommon anestor of i and j is a
proper desendant of the lowest ommon anestor of k and l. An LCA onstraint
of the form {i, j} < {i, k} is alled a 3-leaf onstraint on S or a rooted triple on S,
and is written as ({i, j}, k) for short.

A tree whose leaves are labeled by elements in S in suh a way that no two
leaves have the same label is said to be distintly leaf-labeled by S. When S is
used to distintly label the leaves of a tree R, eah leaf of R is identi�ed with its
orresponding element in S. Therefore, the elements of S are ommonly referred
to as leaves1. A rooted, unordered tree whih is distintly leaf-labeled by S and

1In some appliations, the elements of S are alled speies.

9

10 Chapter 2. Inferring Unordered Trees from LCA Constraints

an LCA onstraint on S whih is satis�ed in the tree are onsistent with eah
other. See Figure 2.1 for two examples. Note that a 3-leaf onstraint ({i, j}, k)
uniquely determines the relative topology of i, j, and k in any unordered tree
whih is onsistent with it; onversely, any rooted, unordered, binary tree with
three distintly labeled leaves orresponds to a unique 3-leaf onstraint.

l

i j

k

i j

k

Figure 2.1: The tree on the left is one of several unordered trees with four leaves
onsistent with the LCA onstraint {i, j} < {k, l}. The tree on the right is the unique
unordered tree with three leaves whih is onsistent with the 3-leaf onstraint ({i, j}, k).

Aho, Sagiv, Szymanski, and Ullman [3℄ studied the following problem whih
we all the LCA onstraints onsisteny problem (LC):

The LCA onstraints onsisteny problem (LC)

Instane: Finite set S, set T of LCA onstraints on S.

Output: A rooted, unordered tree with leaves distintly labeled by S whih
is onsistent with all of the onstraints in T , if one exists; otherwise,
null.

They also studied the speial ase where eah onstraint is a 3-leaf onstraint:

The 3-leaf onstraints onsisteny problem (3LC)

Instane: Finite set S, set T of 3-leaf onstraints on S.

Output: A rooted, unordered tree with leaves distintly labeled by S whih
is onsistent with all of the onstraints in T , if one exists; otherwise,
null.

LC and 3LC an be turned into optimization problems:

The maximum LCA onstraints onsisteny problem (MLC)

Instane: Finite set S, set T of LCA onstraints on S.

Output: A rooted, unordered tree with leaves distintly labeled by S whih
is onsistent with as many of the onstraints in T as possible.

2.1 Introdution 11

The maximum 3-leaf onstraints onsisteny problem (M3LC)

Instane: Finite set S, set T of 3-leaf onstraints on S.

Output: A rooted, unordered tree with leaves distintly labeled by S whih
is onsistent with as many of the onstraints in T as possible.

Throughout this hapter, we let n denote the ardinality of the set of leaves
and m the number of onstraints, i.e., n = |S| and m = |T | in the problem
de�nitions above. Observe that m = O(n4) in MLC, and m = O(n3) in M3LC.

As an example, let S = {a, b, c, d} and T =
{

({a, b}, c), ({a, c}, d), ({c, d}, b)
}

be an instane of M3LC. There is no tree whih is onsistent with all of T and
whose leaves are distintly labeled by S (as an be veri�ed by applying the
algorithm of Aho et al. desribed in Setion 2.2), but eah of the unordered
trees shown in Figure 2.2 is onsistent with two onstraints in T . Hene, this
problem instane has three optimal solutions.

a b

c

d

a b c d

a c

d

b

Figure 2.2: T = {({a, b}, c), ({a, c}, d), ({c, d}, b)}. The �rst tree is onsistent with
({a, b}, c) and ({a, c}, d), the seond tree is onsistent with ({a, b}, c) and ({c, d}, b),
and the third tree is onsistent with ({a, c}, d) and ({c, d}, b).

2.1.1 Motivation

Aho, Sagiv, Szymanski, and Ullman introdued LC and 3LC in [3℄. Their mo-
tivation for studying these problems originated from a problem in the theory of
relational databases in whih an SPJ-expression is given and the goal is to on-
strut an equivalent SPJ-expression ontaining the minimum possible number of
join operators (see [3℄ for details). Their proposed solution represents the given
SPJ-expression by a tableau A, transforms A into an equivalent minimum row
tableau A′, and then onstruts an SPJ-expression from A′; in the important
speial ase of simple tableaux, an e�ient algorithm for solving LC an be used
to e�iently onstrut SPJ-expressions from row-optimized tableaux in the last
step.

12 Chapter 2. Inferring Unordered Trees from LCA Constraints

3LC and M3LC are also of interest beause of their onnetion to the on-
strution of evolutionary trees2. Reliable methods for determining evolutionary
history are of fundamental importane to biology beause before the mehanisms
of evolution an be explained, its e�ets must be examined and well understood.
By inferring evolutionary trees for di�erent sets of speies, biologists an dedue
in whih order and at what rate geneti hanges have taken plae, whih yields
lues about the auses of evolution. Seondly, lassi�ations of speies based on
their evolutionary history are indiative and meaningful, and help sientists or-
ganize and exhange information. Note that the �speies� do not neessarily have
to be distint biologial speies; they may be entire populations or ategories of
speies, or any other entities assumed to have been subjeted to an evolution-
ary proess suh as proteins, nulei aids, languages, hain letters, or medieval
manusripts [15, 18, 23, 92, 111℄. Therefore, �elds like historial linguistis also
need good methods for onstruting evolutionary trees.

To desribe evolutionary relationships with trees is an old idea. Long before
the present-day theories of moleular biology, Charles Darwin, Edward Blyth,
Ernst Haekel, and other 19th entury natural sientists ompared the devel-
opment of di�erent speies originating from a ommon anestor to a branhing
tree. Initially, biologists built evolutionary trees from data based on observ-
able morphologial features (and intuition). Later, biohemial data and results
from moleular sequene omparisons beame popular as well. The assump-
tions behind what distinguishes good optimization riteria vary aording to
the partiular appliation, the hypothesized model of evolution, and the type
of available data3, whih explains why so many kinds of evolutionary trees and
methods for reonstruting evolutionary history have been invented. No sin-
gle method appears to work well all the time; hene, many di�erent methods
are still ommonly used. Roughly, existing tehniques for inferring evolutionary
trees an be divided into:

Charater-state methods: Represent eah objet by a vetor of harater
states and look for a tree that lusters objets with a lot in ommon.

Distane-based methods: Compute the evolutionary distane between every

2An evolutionary tree (or a phylogeneti tree) is an unordered, leaf-labeled tree that de-
sribes how a set of objets produed by some evolutionary proess are believed to be related.
The objets are represented by leaves and ommon anestors by internal nodes so that the
branhing struture of the tree re�ets the assumed evolutionary relationships. Sometimes
weights are assigned to the edges to illustrate evolutionary distane, i.e., estimates of the time
taken for an anestral objet to evolve into other objets. In some settings, the data does not
uniquely determine a root, whih leads to unrooted (as opposed to rooted) trees. Here, we
onentrate on unweighted, rooted trees.

3For instane, the parsimony priniple (whih says that one should attempt to minimize
the number of state hanges indued by the onstruted tree) is often used when treating
morphologial data but may be less appropriate for DNA sequene data. This is beause DNA
sequene positions do not evolve independently and beause hanges during evolution in DNA
are muh more frequent than hanges in morphologial haraters, implying that many bak
substitutions should be expeted.

2.1 Introdution 13

pair of objets, then try to build an edge-weighted tree whih omplies
with these values.

Maximum likelihood methods: View evolution as a stohasti proess and
use statistial methods to �nd the most probable tree.

Consensus methods: Combine a set of (possibly on�iting) trees into one
�nal tree.

Comprehensive surveys of the �rst three types of methods an be found
in [92, 111, 122, 130℄. Many evolutionary tree onstrution algorithms belonging
to these three ategories have been implemented in PHYLIP [44℄ (a pakage
of omputer programs available for free on the Internet) and in a ommerial
software pakage alled PAUP∗ [121℄. The fourth ategory refers to methods
suh as the quartet approah (see [81℄ for a reent survey), rooted triple-based
methods [71, 72℄, and methods based on splits/lusters ontained in the input
trees (see Setion 6.2 in [21℄) whih all take as input a set of evolutionary trees,
obtained by some other tree inferene method, and output a single tree whih
summarizes the branhing information in the input trees. The rationale for using
onsensus methods to infer new trees is that although omputationally expensive
tree onstrution methods suh as maximum likelihood or maximum parsimony
are infeasible for large sets of objets, they an be applied to obtain highly au-
rate trees for smaller, overlapping subsets of the objets whih an subsequently
be merged into one tree for all the objets by using less omputationally inten-
sive tehniques. Ideally, the optimization riteria for determining the �nal tree
should be seleted in aordane with the assumed model of evolution to guar-
antee the pratial relevane of the optimal solution. But before this is possible,
one must learn about the underlying ombinatorial problems.

This is where 3LC and M3LC ome in. Given a set T of rooted, binary
evolutionary trees where eah tree ontains exatly three leaves (for example,
obtained by Sibley-Ahlquist-style DNA-DNA hybridization experiments [71℄ or
by maximum likelihood methods), the problem of onstruting a rooted, un-
ordered tree onsistent with all of T (if one exists) is preisely 3LC. However,
data obtained experimentally often ontains errors, implying that there prob-
ably will not exist a tree onsistent with all of T . Sine a single erroneous
tree in the input results in the algorithms for 3LC returning the null tree, the
optimization version (M3LC) is perhaps even more important for real applia-
tions. Therefore, we are espeially interested in the omputational omplexity
and polynomial-time approximability of M3LC.

2.1.2 Previous Results

Aho, Sagiv, Szymanski, and Ullman [3℄ presented an algorithm for solving LC
whih runs in O(mn log n) time. For 3LC, its running time is O(mn). The
algorithm returns a tree of minimum height whih is onsistent with all of the
input onstraints, if suh a tree exists.

14 Chapter 2. Inferring Unordered Trees from LCA Constraints

Henzinger, King, and Warnow [62℄ showed how to solve the speial ase 3LC
more e�iently. Assuming that m = Ω(n), their adaptation of the algorithm
of Aho et al. runs in O(mn1/2) time (deterministi version), or in O(m log3 n)
expeted time (randomized version). Henzinger et al. also gave a deterministi
algorithm for 3LC with running time O(m+n2 log n). It is asymptotially faster
than the deterministi algorithm above if m = ω(n3/2 log n), but does not always
onstrut a tree of minimum height.

M3LC was �rst proved to be NP-hard by Bryant in [21℄.

The analog of 3LC for unrooted trees is alled the quartets onsisteny prob-
lem (QC). In QC, the input is a set Q of resolved quartets (unrooted, leaf-labeled
trees eah having 4 leaves and no nodes of degree 2), and the goal is to �nd an
unrooted, leaf-labeled tree whih is onsistent with all of the quartets in Q, if one
exists. The maximum quartets onsisteny problem (MQC) is the optimization
version of QC. 3LC and M3LC an be viewed as the restritions of QC and MQC
to instanes where all the given quartets have one leaf in ommon, orresponding
to the root [116℄. For a brief disussion of how the omputational omplexity
results for 3LC and M3LC ompare to those known for QC and MQC, see the
footnote in Setion 2.5. For further referenes on quartets, see [81℄.

2.1.3 Our Contributions

We provide a new proof for the NP-hardness of M3LC and MLC. Then, sine
no algorithm an solve MLC or M3LC exatly in polynomial time unless P=NP,
we present two polynomial-time approximation algorithms alled Algorithm Ap-
proximation A and Algorithm Approximation B. The �rst one approximates both
MLC and M3LC within a onstant fator, and the seond one yields a better ap-
proximation fator for instanes of M3LC in whih the optimal solution ontains
a large number of the input onstraints. To be more preise, we show that:

• MLC and M3LC (as well as their weighted versions) an be approximated
within a fator of 3 of the optimum in O((m + n) log n) time.

(Algorithm Approximation A in Setion 2.4.1.)

• M3LC (and its weighted version) an be approximated in the following
way. An approximate solution onsistent with a subset of the input on-
straints whose total weight is at least W − nt, where W is the total
weight of all input onstraints and t is the minimum total weight of on-
straints needed to remove in order to ahieve onsisteny, an be on-
struted in min

{

O(mn2 + n3 log n), O(n4)
}

time, or with high probability
in min

{

O(mn log3 n), O(n3 log n)
}

time.

(Algorithm Approximation B in Setion 2.4.2.)

To our knowledge, these are the only results on the polynomial-time approxima-
bility of MLC and M3LC that have ever been published.

2.2 Preliminaries 15

The rest of this hapter is organized as follows. We review existing algorithms
for LC and 3LC in Setion 2.2. In Setion 2.3, we investigate the omputational
omplexities of MLC and M3LC. We present Algorithm Approximation A and
Algorithm Approximation B in Setion 2.4. Finally, in Setion 2.5, some open
problems are disussed.

2.2 Preliminaries

Below, we desribe the algorithms of Aho, Sagiv, Szymanski, and Ullman [3℄
and Henzinger, King, and Warnow [62℄ sine they form the basis for the approx-
imation algorithm given in Setion 2.4.2 and the exat algorithm in Setion 3.4.

2.2.1 The Algorithm of Aho, Sagiv, Szymanski, and Ull-

man

The algorithm of Aho et al. [3℄ for LC partitions the leaves in S into bloks using
the set of input onstraints T . The bloks are hosen so that eah blok onsists
of all leaves that will be desendants of (or equal to) one hild of the root in
the tree being onstruted. To partition the leaves, the algorithm looks for the
largest possible set of bloks obeying the rules:

(1) If {i, j} < {k, l} is an input onstraint then i and j are in the same blok4.

(2) If {i, j} < {k, l} is an input onstraint and k and l are in the same blok
then i, j, k, l are all in this blok5.

For 3LC, only one rule is needed:

(1′) If ({i, j}, k) is an input onstraint then i and j are in the same blok.

If the number of bloks is at least two, the algorithm reursively onstruts a
tree for eah blok, attahes these trees to a ommon parent node, and returns
the resulting tree. When reursing on a blok, only onstraints onsisting entirely
of leaves in that blok are onsidered; all other onstraints are ignored.

Otherwise, there is just one blok. If the blok onsists of a single leaf i, the
algorithm returns a tree with one leaf labeled by i. If the blok ontains more
than one leaf, the algorithm aborts its exeution and returns the null tree sine
no tree an be onsistent with all of the onstraints (see [3℄ for proofs).

4This is beause for any i, j, k, l ∈ S, if {i, j} < {k, l} is an input onstraint then the lowest
ommon anestor of i and j annot be at the root of the tree (otherwise, it ould not be a
proper desendant of the lowest ommon anestor of k and l), so i and j annot belong to two
di�erent bloks.

5Similarly to the above, for any i, j, k, l ∈ S, if {i, j} < {k, l} is an input onstraint then
either k and l must be in di�erent bloks or all four leaves must belong to the same blok.

16 Chapter 2. Inferring Unordered Trees from LCA Constraints

In [3℄, Aho et al. explained how their algorithm for LC an be implemented
to run in O(mn log n) time. They also showed that when restrited to 3LC, it
an be implemented to run in O(mn) time as follows.

For any subset L of leaves in S, let G(L) be the undireted graph with vertex
set L and edge set E(L), where E(L) is the set of edges indued by rule (1′)
applied to the set of onstraints on leaves entirely ontained in L, i.e., if there
is a onstraint ({i, j}, k) and i, j, k ∈ L, then edge {i, j} is inluded in E(L).
Now, the onneted omponents of G(L) represent the bloks of leaves that L is
partitioned into by rule (1′).

Thus, given an instane (S, T) of 3LC, the algorithm builds G(S) and al-
ulates the onneted omponents C1, ..., Cq of G(S). If q ≥ 2, it then makes
q reursive alls to itself on instanes (S1, T1),...,(Sq, Tq), where for 1 ≤ p ≤ q,
Sp is the set of leaves in Cp, and the sets T1, ..., Tq are obtained by sanning T
(for eah ({i, j}, k) ∈ T , if all of i, j, and k belong to the same Sp then ({i, j}, k)
is plaed in Tp; otherwise it is deleted).

At eah of the O(n) reursion levels, the total time required to build all
graphs and to �nd their onneted omponents is O(m). Sanning the on-
straints to ompute the sets Tp also takes O(m) time on eah level. Therefore,
this implementation has a running time whih is O(mn).

2.2.2 The Algorithm of Henzinger, King, and Warnow

The running time of the algorithm of Aho et al. for 3LC as stated is O(mn);
Henzinger et al. [62℄ subsequently improved its e�ieny. By employing an
auxiliary data struture onsisting of two graphsU and D desribed below and an
algorithm for the deletions-only dynami graph onnetivity problem that keeps
trak of the onneted omponents in a graph under a sequene of edge deletions,
they speeded up two bottleneks in Aho et al.'s algorithm: (1) determining
whih of the input onstraints ontain leaves from a spei�ed blok only, and
(2) �nding the onneted omponents of the graphs G(S1), G(S2), ..., G(Sq) (i.e.,
reomputing the onneted omponents of the graph G(S) after a set of edges
has been deleted).

The undireted graph U and the direted graph D are de�ned as:

• U = (S, E) with vertex set equal to the input set of leaves S, and where
for eah onstraint ({a, b}, c) in T , the edges {a, b} and {b, c} are in E.

• D = (S′, A), where for eah onstraint ({a, b}, c) in T , the verties {a, b}
and {b, c} are in S′ and the direted edge {a, b} → {b, c} is in A.

Current bloks of leaves in the algorithm of Aho et al. orrespond to urrent
yellow omponents in U . At the beginning, all edges of U are olored yellow.
During the ourse of the algorithm, D is used to �nd edges of U that are olored
red. Cheking if oloring an edge red results in a yellow omponent being split

2.2 Preliminaries 17

into two yellow omponents is done with a dynami graph onnetivity algorithm
whih uses some internal data struture to represent U .

A maximal vertex in D is a vertex with no outgoing edges. A red edge of U
whose endpoints are in di�erent yellow omponents is alled a separable red edge.

Eah input onstraint is represented by a direted edge in D. Hene, deleting
a vertex in D and its inident edges orresponds to deleting one or more of the
input onstraints. Consider an input onstraint ({a, b}, c). In the algorithm of
Aho et al., it is deleted when b and c no longer belong to the same blok; in the
algorithm of Henzinger et al., the vertex {b, c} and the direted edge {a, b} →
{b, c} are deleted from D and the edge {b, c} is deleted from U when {b, c}
beomes a separable red edge in U , i.e., when b and c belong to di�erent yellow
omponents for the �rst time.

Algorithm Fast 3LC

Input: An instane of 3LC.

Output: A rooted, unordered tree R of minimum height whih is onsistent with
all of the onstraints, if one exists; the null tree, otherwise.

1 Construt U and D.

2 Color all edges in U yellow and initialize the dynami graph onnetivity
algorithm.

3 Create the root of R. Initialize omponents information.

4 for eah maximal vertex {x, y} in D do

If {x, y} is a yellow edge in U then olor it red, delete it in the dynami
graph onnetivity data struture, and query the dynami onnetivity
algorithm �are x and y onneted?�; if �no� then update omponents in-
formation and R.

endfor

5 For eah old yellow omponent Ci, if |Ci| > 1 and Ci was not split into at
least two omponents during step 4 in this iteration then return the null tree.

6 If |Ci| = 1 for every yellow omponent Ci then return R.

Otherwise, �nd all separable red edges and delete these edges from U and the
orresponding verties (plus their inident edges) from D.

7 Go to step 4.

End Fast 3LC

Figure 2.3: Henzinger, King, and Warnow's adaptation of the algorithm of Aho, Sagiv,
Szymanski, and Ullman.

Henzinger et al.'s algorithm is outlined in Figure 2.3. The tree onstruted
by the algorithm is denoted by R. If a yellow omponent C splits into c yellow
omponents C1, C2, ..., Cc in one iteration of the algorithm, then the node in R
orresponding to C will have c hildren orresponding to C1, C2, ..., Cc, respe-
tively. The algorithm keeps information about the urrent yellow omponents so

18 Chapter 2. Inferring Unordered Trees from LCA Constraints

that new nodes an be reated and attahed to their orret parent nodes when
updating R in step 4. We omit the implementation details here.

Updating R in step 4 also inludes heking the new yellow omponents to
see if any of them onsist of a single vertex v. If this is the ase, then the
orresponding node in R is labeled by v.

In any given iteration of the algorithm, the yellow omponents of U right
before the exeution of step 4 are alled old. When step 5 is reahed, if an old
yellow omponent onsisting of more than just one leaf was not split into two or
more new yellow omponents then the algorithm gives up sine some onstraints
involving the leaves in that omponent ontradit eah other.

To �nd the separable red edges e�iently, Henzinger et al. extended an idea
from [39℄. In step 4, if the dynami graph onnetivity algorithm reports that x
and y are not onneted any longer then the yellow omponent C that previously
ontained both x and y has been split into two. The number of verties in at
least one of the two resulting omponents must be less than or equal to half of
the number of verties in C; suh a omponent is alled lesser. When C is split
into two, a lesser omponent an be disovered by searhing in U from x and y,
alternating between the two searhes until one omponent is ompletely visited.
This is then used in step 6, where it would be too time-onsuming to loate the
separable red edges by traversing all the yellow omponents in every iteration.
Instead, the algorithm only searhes in newly reated yellow omponents whih
are lesser; this way, eah edge is visited at most O(log n) times in total until it
beomes a separable red edge and is deleted from U .

Henzinger et al. employed two di�erent algorithms for dynami graph on-
netivity. The �rst one [37, 47℄ is deterministi and allows eah update and
onnetivity query to be performed in O(n1/2) and O(1) time, respetively,
whereas the seond one [61℄ is randomized and allows eah update to be arried
out in O(log3 n) amortized expeted time and eah query in O(log n/ log log n)
time. All other operations in Henzinger et al.'s algorithm take a total of O(n +
m + M ·log n) time, where M is the initial number of edges in the onstruted
graph U . Sine M = O(m), the 3LC algorithm an thus be implemented to run
in O(n + mn1/2) time (deterministially), or in O(n + m log3 n) expeted time
(randomized).

We note that the running time an be improved simply by substituting the
used algorithms for dynami graph onnetivity with more reent ones. It su�es
to use a deremental dynami graph onnetivity algorithm sine all updates
are edge deletions. Furthermore, the number of edges in U is bounded not only
by O(m), but also by O(n2) beause |S| = n, so M = min

{

O(m), O(n2)
}

. In
general, we have the following theorem.

Theorem 2.1 Given an algorithm for deremental dynami graph onnetivity
whih takes u(n) amortized time per update and answers eah onnetivity query
in q(n) time, Henzinger et al.'s algorithm for 3LC an be implemented to run in
O(n + m + M ·(logn + u(n) + q(n))) time, where M = min

{

O(m), O(n2)
}

.

2.3 MLC and M3LC are NP-Hard 19

For example, if we use the deterministi algorithm for fully dynami graph
onnetivity due to Holm, de Lihtenberg, and Thorup [65℄ with u(n)=O(log2 n)
and q(n) = O(log n/ log log n), we obtain a deterministi algorithm for solving
3LC whose running time is min

{

O(n + m log2 n), O(m + n2 log2 n)
}

. Alterna-
tively, we an take the randomized algorithm for fully dynami graph onne-
tivity of Thorup [127℄ with u(n) = O(log n(log log n)3) amortized expeted time
and q(n) = O(log n/ log log log n) to get a randomized algorithm for 3LC with
min

{

O(n + m log n(log log n)3), O(m + n2 log n(log log n)3)
}

expeted running
time. A speialized randomized algorithm for deremental dynami graph on-
netivity by Thorup [126℄ is even more e�ient if U initially ontains many
edges; if M = Ω(n(log n log log n)2), then u(n) = O(log n) amortized expeted
time and q(n) = O(1), resulting in an algorithm with min

{

O(n + m log n),

O(m + n2 log n)
}

= min
{

O(m log n), O(m + n2 log n)
}

expeted running time
for these speial instanes of 3LC.

In [62℄, Henzinger et al. also presented a variant of the above algorithm
whih solves 3LC in O(m + n2 log n) time. It onstruts trees whih are binary,
and hene not neessarily equivalent to the trees of minimum height onstruted
by the algorithm of Aho et al. The main di�erene is that in eah iteration,
at most one new yellow omponent is disovered so that R is extended with at
most two new nodes. In step 4, rather than proessing eah edge individually
(i.e., deleting it in the dynami graph onnetivity data struture and testing
if its endpoints still are onneted), the algorithm �rst deletes all those edges
using a speial bath deletion algorithm and then asks for one new omponent.
Not all newly reated yellow omponents are disovered immediately; thus, a
omponent whih is reported as �new� does not need to have been aused by the
most reent bath of edge deletions. As before, R is updated and a lesser yellow
omponent is identi�ed in order to �nd separable red edges later on. Step 5 is
modi�ed to return the null tree if no new omponent was reported in step 4.

2.3 MLC and M3LC are NP-Hard

In this setion, we prove that MLC and M3LC are NP-hard problems6.

Denote the deision problem versions of MLC and M3LC by MLC(D) and
M3LC(D), respetively. Here, a positive integer D is also given as part of the
input, and the output is the answer to the question �Does there exist a rooted,
unordered tree that is onsistent with D of the input onstraints?�.

6The NP-hardness proof for M3LC given here was published in 2001 [67℄ in response to an
open question from 1999 [53℄. Unknown to us at that time, M3LC had already been proven
to be NP-hard by Bryant in 1997 [21℄. Nevertheless, we have deided to inlude our proof
from [67℄ here sine alternative redutions (Bryant's proof uses a redution from the feedbak

ar set problem to M3LC whereas we redue from yli ordering to M3LC) may be helpful,
e.g., for proving inapproximability results for M3LC in the future.

20 Chapter 2. Inferring Unordered Trees from LCA Constraints

To determine the omputational omplexity of M3LC(D), we will use a re-
sult of Galil and Megiddo [48℄ stating that the following problem (listed as
problem MS2 in [49℄) is NP-omplete.

Cyli ordering

Instane: Finite set A, olletion C of ordered triples (a, b, c) of distint
elements from A.

Question: Is there a one-to-one funtion f : A → {1, 2, ..., |A|} suh that,
for eah (a, b, c) ∈ C, we have either f(a) < f(b) < f(c), or f(b) <
f(c) < f(a), or f(c) < f(a) < f(b)?

We are now ready for the main result of this setion.

Theorem 2.2 M3LC(D) is NP-omplete.

Proof: M3LC(D) is in NP sine verifying if there exists a rooted tree that is
onsistent with a given subset of T an be done in polynomial time with the
algorithm of Aho et al. (see Setion 2.2).

To show the NP-hardness of M3LC(D), we provide a polynomial-time re-
dution from yli ordering to M3LC(D). Given an instane (A, C) of yli
ordering, let S = A ∪ {x0, x1, x2, ..., x|C|} and let D = |A|·(|A|−1)

2 + 2 · |C|. For
eah a, b ∈ A with a 6= b, inlude the two onstraints ({x0, a}, b) and ({x0, b}, a)
in T . Next, for every i in {1, 2, ..., |C|}, add to T the three onstraints ({xi, a}, b),
({xi, b}, c), and ({xi, c}, a), where (a, b, c) is the ith ordered triple in C. Observe
that at most one of ({x0, a}, b) and ({x0, b}, a) and at most two of ({xi, a}, b),
({xi, b}, c), and ({xi, c}, a) an be onsistent with any rooted tree, so the number
of onstraints in T that an be satis�ed at the same time must be ≤ D.

Claim: (A, C) has a yli ordering if and only if there exists a rooted tree
that is onsistent with D of the onstraints in T .

Proof of laim: Suppose the answer to the yli ordering instane is yes.
Then there exists a one-to-one funtion f : A→ {1, 2, ..., |A|} suh that for eah
ordered triple (a, b, c) ∈ C, we have either f(a) < f(b) < f(c), or f(b) < f(c) <
f(a), or f(c) < f(a) < f(b). We an onstrut a rooted tree onsistent with
D onstraints as in Figure 2.4. (If f(αi) < f(βi) < f(γi) for the ith ordered
triple in C, then ({xi, αi}, βi) and ({xi, βi}, γi) are onsistent with the tree in
Figure 2.4. Also, for eah pair a, b ∈ A with a 6= b, exatly one of ({x0, a}, b)
and ({x0, b}, a) is onsistent with the tree. Thus, the tree is onsistent with
2 · |C| + |A|·(|A|−1)

2 of the onstraints in T .)

Conversely, suppose there exists a rooted tree R onsistent with |A|·(|A|−1)
2 +

2 · |C| of the onstraints. At most |A|·(|A|−1)
2 onstraints of type ({x0, a}, b)

and at most 2 · |C| onstraints of type ({xi, a}, b) with i 6= 0 an be onsistent

2.3 MLC and M3LC are NP-Hard 21

x0 x1

f (|A|)-1

x|C|

f (1)

f (2)-1

-1

Figure 2.4: This tree is onsistent with D onstraints.

with R, so R must be onsistent with preisely this many onstraints of eah
type, respetively. |A|·(|A|−1)

2 onstraints of the former type an only be satis�ed
if the subtree of R indued by A∪{x0} is a rooted aterpillar tree whose root is
the parent of a leaf and an internal node, and one of the two leaves at maximum
distane from the root is labeled x0 (otherwise, for some pair a, b ∈ A, neither
({x0, a}, b) nor ({x0, b}, a) would be onsistent with R). For eah a ∈ A, let
f(a) be the number of internal nodes on the path from a to x0 in the subtree
of R indued by A ∪ {x0}. Next, beause of the onstraints of the seond type,
for every ordered triple (a, b, c) ∈ C, exatly two of the three orresponding
onstraints in T are onsistent with R (if, for some ordered triple, just one
onstraint was onsistent with R, then the number of onstraints of this type
onsistent with R ould not add up to 2 · |C|). Therefore, either (1) a is loser to
x0 than b is to x0 and b is loser to x0 than c is to x0, implying f(a) < f(b) < f(c),
or (2) b is loser to x0 than c is to x0 and c is loser to x0 than a is to x0, implying
f(b) < f(c) < f(a), or (3) c is loser to x0 than a is to x0 and a is loser to x0

than b is to x0, implying f(c) < f(a) < f(b).

Hene, M3LC(D) is NP-omplete. ✷

Corollary 2.3 MLC(D) is NP-omplete.

Proof: MLC(D) is in NP beause the algorithm of Aho et al. an hek any
given subset of the LCA onstraints for onsisteny in polynomial time. MLC(D)
is NP-hard sine it admits a diret redution from M3LC(D); just replae eah
3-leaf onstraint ({a, b}, c) in the given instane by {a, b} < {a, c}. ✷

22 Chapter 2. Inferring Unordered Trees from LCA Constraints

2.4 Polynomial-Time Approximation Algorithms

for MLC and M3LC

The approximation algorithms in this setion also work for the natural gener-
alizations of MLC and M3LC in whih a positive weight w(c) is assoiated to
eah input onstraint c, and the objetive is to onstrut a rooted tree whih is
onsistent with a subset of the onstraints of maximum total weight.

If no weights have been assigned to the onstraints, they are all assumed to
have weight 1.

2.4.1 Algorithm Approximation A

In this subsetion, we give a onstant-fator approximation algorithm for MLC
and M3LC whih runs in polynomial time.

De�nition 2.4 For an LCA onstraint {i, j} < {k, l}, where all of the four
leaves are di�erent, k and l are said to have an upper ourrene in the onstraint,
and i and j are said to have a lower ourrene in the onstraint. For a 3-leaf
onstraint ({i, j}, k), i and j are said to have a lower ourrene in the onstraint
and k is said to have an upper ourrene in the onstraint.

De�nition 2.5 The total weight of upper (lower) ourrenes for a leaf l is the
sum of the weights of all onstraints in whih l has upper (lower) ourrenes.

We immediately obtain the following lemma.

Lemma 2.6 In any instane of MLC/M3LC, the sum of all leaves' total weight
of upper ourrenes is at least one third (exatly one half if all onstraints
ontain four di�erent leaves) of the sum of all leaves' total weight of upper and
lower ourrenes.

Proof: Denote the sum of all leaves' total weight of upper ourrenes by
Y and the sum of all leaves' total weight of upper and lower ourrenes by
X . Let A be the set of 3-leaf onstraints in T , and let B be the set of LCA
onstraints in T with four di�erent leaves. For every onstraint c ∈ T , let w(c)
be the weight of c. If c ∈ A, then it ontributes w(c) to Y and 3w(c) to X .
Otherwise, c ∈ B and hene ontributes 2w(c) to Y and 4w(c) to X . Therefore,
Y =

∑

c∈A

w(c) +
∑

c∈B

2w(c) and X =
∑

c∈A

3w(c) +
∑

c∈B

4w(c). Now,

Y ≥ ∑

c∈A

w(c) + 4
3 ·

∑

c∈B

w(c) = 1
3 · X

Y ≤ 3
2 ·

∑

c∈A

w(c) + 2·∑
c∈B

w(c) = 1
2 · X

whih shows that 1
3 ·X ≤ Y ≤ 1

2 ·X . If all onstraints have four di�erent leaves
then A = ∅ and Y = 1

2 ·X . ✷

2.4 Polynomial-Time Approximation Algorithms for MLC and M3LC 23

In partiular, Lemma 2.6 implies that given a nonempty set of onstraints,
there always exists a leaf for whih the total weight of its upper ourrenes
divided by the total weight of its upper and lower ourrenes is ≥ 1

3 . This is
used by Algorithm Approximation A, shown in Figure 2.5, to obtain a fator 3
approximation algorithm for MLC/M3LC.

Algorithm Approximation A

Input: An instane of MLC or M3LC.

Output: A rooted, unordered tree whih is onsistent with a subset of the on-
straints whose total weight is at least one third (at least one half if
all onstraints ontain four di�erent leaves) of the total weight of all
onstraints.

1 REMAINING← T

2 LEAV ES ← S

3 R← a rooted tree onsisting of a single, unlabeled node v

4 while REMAINING 6= ∅ do

4.1 Pik a leaf ℓ in LEAV ES whih ahieves the maximum ratio between
its total weight of upper ourrenes and its total weight of upper and
lower ourrenes in the onstraints in REMAINING.

4.2 L← the set of onstraints in REMAINING whih ontain ℓ

4.3 REMAINING← REMAINING \ L

4.4 LEAV ES ← LEAV ES \ {ℓ}

4.5 Extend R by adding two hildren to v; label the �rst hild by ℓ and
set v to the seond hild.

endwhile

5 Extend R by adding |LEAV ES| hildren to v, label them uniquely with ele-
ments in LEAV ES, and return R.

End Approximation A

Figure 2.5: A polynomial-time 3-approximation algorithm for MLC/M3LC.

Theorem 2.7 Algorithm Approximation A onstruts a tree whih is onsistent
with a subset of the onstraints whose total weight is at least one third (at least
one half if all onstraints ontain four di�erent leaves) of the total weight of all
the onstraints in O((m + n) log n) time.

Proof: By Lemma 2.6 and the hoie of ℓ in step 4.1, the ratio between the total
weight of upper ourrenes and the total weight of upper and lower ourrenes
for ℓ in the onstraints in REMAINING is at least one third. All onstraints
in L in whih ℓ has an upper ourrene are onsistent with R by the onstrution
of R. Thus, every time the algorithm has performed step 4.5, R is onsistent
with a subset of T \ REMAINING whose total weight is at least one third of
the total weight of all the onstraints in T \REMAINING.

24 Chapter 2. Inferring Unordered Trees from LCA Constraints

To implement steps 4.1 and 4.4 e�iently, we arrange LEAV ES in a prior-
ity queue ordered by the ratio between the total weight of their upper our-
renes and the total weight of their upper and lower ourrenes in onstraints
in REMAINING. All priority queue operations (reating the priority queue,
seleting the ℓ's, and updating the priority queue after step 4.3) take a total of
O((n + m) log n) time.

To implement steps 4.2 and 4.3, we lexiographially sort T four times a-
ording to four yli permutations of the four leaves in eah onstraint. For
i = 1, ..., 4, the ith permutation puts the ith leaf as the �rst, the (i + 1)st (in
the yli order) as the seond, et. Next, four searh trees are built based on
the sorted lists. Using the searh trees, we an �nd L in REMAINING and
remove it from REMAINING in O(|L| log n) time. We onlude that steps 4.2
and 4.3 take a total of O((m + n) log n) time, inluding the preproessing. ✷

The rooted tree produed by Algorithm Approximation A has the form of
a linear hain with singular leaves pending, where only the last internal node
on the hain an have degree larger than two. Algorithm Approximation A an
be used to obtain a more balaned tree by modifying it to return the subset of
input onstraints whih are satis�ed by the onstruted tree instead of the tree
itself; a rooted tree of minimum height onsistent with at least one third of the
input onstraints is then obtained in O(mn log n) time by running the algorithm
of Aho et al. (see Setion 2.2) on the instane onsisting of these onstraints.

The absolute approximation fators of three and two, respetively, for Algo-
rithm Approximation A are worst-ase optimal sine any tree an satisfy at most
one of the three onstraints ({a, b}, c), ({b, c}, a), and ({c, a}, b), and therefore
at most one third of the onstraints from a sequene ({ai, bi}, ci), ({bi, ci}, ai),
({ci, ai}, bi), i = 1, ..., k; similarly, for the ase in whih all onstraints on-
tain four di�erent leaves, the sequene {ai, bi} < {ci, di}, {ci, di} < {ai, bi},
i = 1, ..., k, auses a lower bound of two.

However, if the quality of an approximation is measured relative to the to-
tal weight of onstraints onsistent with an optimal solution, polynomial-time
approximation algorithms with better approximation fators might exist. If the
minimum number of onstraints neessary to delete in order to build a tree for the
remaining onstraints is small and the number of onstraints is high ompared
to the number of leaves, an approah di�erent from that of Algorithm Approxi-
mation A an be more useful. In the next subsetion, we give an approximation
algorithm for M3LC with better relative performane than 3 in suh ases.

2.4.2 Algorithm Approximation B

Here, we present a polynomial-time approximation algorithm for M3LC whih is
based on the algorithm of Aho et al. (see Setion 2.2). We analyze its worst-ase
performane and explain how to implement it with the tehniques of Henzinger et
al. (also desribed in Setion 2.2).

2.4 Polynomial-Time Approximation Algorithms for MLC and M3LC 25

High-level desription of Algorithm Approximation B

Our approximation algorithm for M3LC alled Algorithm Approximation B
mimis the algorithm of Aho et al. for 3LC with two modi�ations:

• In Algorithm Approximation B, the graphs G(L) are edge-weighted. Every
time a graph G(L) is built for some subset L of S, we set the weight of eah
edge in E(L) equal to the total weight of the onstraints whih indue it.

• Whenever the algorithm of Aho et al. is stuk at a non-divisible subset L of
the set of leaves and has to return the null tree, AlgorithmApproximation B
�nds a minimum weight edge ut of G(L) with respet to the urrent set of
onstraints. Next, the edges of the min-ut are deleted from G(L) and the
resulting onneted omponents of G(L) are omputed. Consequently, the
onstraints that indue the edges of the min-ut are also deleted7. Approx-
imate trees for the new omponents are then onstruted and onneted
by a ommon parent node.

Worst-ase performane of Algorithm Approximation B

Let (S, T) be an instane of M3LC, and let R be the tree produed by Algo-
rithm Approximation B on (S, T). De�ne t as the minimum total weight of
onstraints needed to remove from T suh that there exists a rooted tree onsis-
tent with all remaining onstraints.

Lemma 2.8 The total weight of onstraints in T whih are not onsistent
with R is at most height(R) times t.

Proof: Let J be a subset of T with minimum total weight (i.e., equal to t) suh
that there exists a rooted tree whih is onsistent with all onstraints in T \ J .

Suppose that Algorithm Approximation B at some stage looks for a min-ut
in a urrently onneted omponent A. Let TA be the subset of T onsisting of
onstraints with all three leaves belonging to the set of verties in A, and let JA

equal J ∩ TA.
Assume that deleting the set of edges orresponding to onstraints in JA

would not disonnet A. Then even more onstraints belonging to TA than
just JA would have to be deleted in order to disonnet A. Let i be the �rst
reursion level at whih the verties of A are plaed in at least two di�erent om-
ponents by the algorithm of Aho et al. when applied to the instane (S, T \ J).
Sine this is the �rst time that the verties in A are separated, the algorithm will
not delete any onstraints in TA until after it has reahed reursion level i (reall
that the algorithm deletes onstraints only when their leaves are ontained in
di�erent omponents). Thus, all onstraints in TA exept those in JA remain

7By the onstrution of G(L), eah onstraint ontributes to just one edge, so deleting an
edge in G(L) orresponds to deleting one or more onstraints from T .

26 Chapter 2. Inferring Unordered Trees from LCA Constraints

when reahing reursion level i, and the assumption above implies that the ver-
ties belonging to A would still be onneted. Contradition. Hene, A will be
split into at least two omponents if JA is deleted.

Clearly, the weight of a min-ut of A is less than or equal to the total weight
of JA. Now, it is su�ient to observe that the subsets JA for distint A's on
the same reursion level of Algorithm Approximation B are pairwise disjoint so
that on eah reursion level, the total weight of deleted onstraints whih are
not onsistent with R is ≤ t. ✷

Sine height(R) ≤ n, we have:

Theorem 2.9 Algorithm Approximation B onstruts a rooted tree whih is
onsistent with a subset of the onstraints in T whose total weight is greater
than or equal to W −nt, where W is the total weight of all the input onstraints.

Note that the number of onstraints in T might be ubi in n and that
Algorithm Approximation B yields a better approximation fator than Algo-
rithm Approximation A for M3LC whenever t < 2W

3n , i.e., when the optimal
solution ontains a large number of the input onstraints.

Implementing Algorithm Approximation B

Algorithm Approximation B an be implemented by modifying steps 1 and 5 in
the algorithm of Henzinger et al. (see Setion 2.2). The result is displayed in
Figure 2.6. Whenever a minimum weight edge ut is omputed in step 5, those
edges are deleted from U and the dynami graph onnetivity data struture.
Also, the orresponding verties and their inident edges are deleted from D.

To �nd minimum weight edge uts in step 5, we an use a deterministi algo-
rithm by Nagamohi and Ibaraki [98℄ or Stoer and Wagner [118℄, or a randomized
Monte Carlo-algorithm by Karger [79℄.

Let M be the initial number of edges in the graph U . As pointed out in Se-
tion 2.2, M = min

{

O(m), O(n2)
}

follows diretly by the onstrution of U . The
next lemma provides a lower bound on M whih is used below when analyzing
the running time of Algorithm Approximation B.

Lemma 2.10 M ≥ m
n .

Proof: Partition the m input onstraints into n sets T1, ..., Tn by plaing eah
onstraint of the form ({ · , · }, x) into Tx. By the pigeonhole priniple, at least
one of the resulting sets ontains ≥ m/n onstraints; let Tk be suh a set.
Initially, there is at least one edge in U for eah onstraint in Tk (e.g., the edge
{a, b} if ({a, b}, k) ∈ Tk). Thus, M ≥ |Tk| ≥ m

n . ✷

2.4 Polynomial-Time Approximation Algorithms for MLC and M3LC 27

Algorithm Approximation B

Input: An instane of M3LC.

Output: A rooted, unordered tree whih is onsistent with a subset of the on-
straints whose total weight is greater than or equal to W − nt, where
W is the total weight of all input onstraints and t is the minimum
total weight of onstraints needed to remove to ahieve onsisteny.

1 Construt U and D. Assign weights to the edges in U . The weight of an
edge {a, b} in U is equal to the sum of the weights of onstraints of the form
({a, b}, ·).

2 Color all edges in U yellow and initialize the dynami graph onnetivity
algorithm.

3 Create the root of R. Initialize omponents information.

4 for eah maximal vertex {x, y} in D do

If {x, y} is a yellow edge in U then olor it red, delete it in the dynami
graph onnetivity data struture, and query the dynami onnetivity
algorithm �are x and y onneted?�; if �no� then update omponents in-
formation and R.

endfor

5 For eah old yellow omponent Ci, if |Ci| > 1 and Ci was not split into at least
two omponents during step 4 in this iteration then �nd a minimum weight
edge ut of Ci with respet to urrently yellow edges, delete the edges in the
ut, and update omponents information and R.

6 If |Ci| = 1 for every yellow omponent Ci then return R.

Otherwise, �nd all separable red edges and delete these edges from U and the
orresponding verties (plus their inident edges) from D.

7 Go to step 4.

End Approximation B

Figure 2.6: Using the tehniques of Henzinger et al. to implement Algorithm Approx-

imation B.

Theorem 2.11 Algorithm Approximation B an be implemented to run in

1. min
{

O(mn2 + n3 log n), O(n4)
}

time, or

2. min
{

O(mn log3 n), O(n3 log n)
}

time, giving a solution that with high
probability8 attains the approximation fator stated in Theorem 2.9.

Proof: A minimum weight edge ut of U an be omputed deterministially in
O(Mn + n2 log n) time [98, 118℄ or with high probability in min

{

O(M log3 n),

O(n2 log n)
}

time [79℄. In the worst ase, this has to be done n− 1 times. Thus,
the alls to the min-ut proedure take a total of O(Mn + n2 log n) · O(n) =

8With high probability means with probability greater than (1 − 1
nc) for some onstant

c > 1.

28 Chapter 2. Inferring Unordered Trees from LCA Constraints

O(Mn2+n3 log n) or min
{

O(M log3 n), O(n2 log n)
}

·O(n) = min
{

O(Mn log3 n),

O(n3 log n)
}

time, respetively. All other operations are performed as in the
algorithm of Henzinger et al., and therefore take O(n + m + M log2 n) time if
we use the deterministi algorithm for dynami graph onnetivity of Holm et
al. [65℄ by the omments following Theorem 2.1.

In the deterministi ase, the total running time of Algorithm Approxima-
tion B is O(Mn2 + n3 log n) + O(n + m + M log2 n) = O(Mn2 + n3 log n) =
min

{

O(mn2 + n3 log n), O(n4)
}

.
In the randomized ase, the total running time beomes min

{

O(Mn log3 n),

O(n3 log n)
}

+O(n+m+M log2 n). Sine O(Mn log3 n)+O(n+m+M log2 n) =

O(Mn log3 n + m), whih is O(Mn log3 n) by Lemma 2.10, and O(n3 log n) +
O(n + m + M log2 n) = O(n3 log n), we see that the total running time is
min

{

O(mn log3 n), O(n3 log n)
}

.
To ensure that Algorithm Approximation B sueeds with high probability

in the randomized ase, we utilize an ampli�ed version of Karger's minimum
weight edge ut algorithm [79℄ running in min

{

O(M log3 n), O(n2 log n)
}

time
and having suess probability at least 1 − 1

n3 (the suess probability an be
ampli�ed from at least 1 − 1

n to at least 1 − 1
nc for any onstant c > 1 with-

out inreasing the asymptoti running time by making c independent alls to
the min-ut algorithm and seleting the best solution found; the probability of
the min-ut algorithm failing all c times is ≤ 1

nc). During its exeution, Algo-
rithm Approximation B alls the ampli�ed min-ut algorithm d times, where
d ≤ n − 1. Let Ai denote the event that the ith all fails. Algorithm Ap-
proximation B fails if and only if the ampli�ed min-ut algorithm fails one or
more times; hene, the probability that Algorithm Approximation B fails is

Pr

[

d
⋃

i=1

Ai

]

≤
d
∑

i=1

Pr[Ai] ≤ (n− 1) · 1
n3 < 1

n2 . ✷

2.5 Conluding Remarks

The fastest known algorithm for LC is still the one by Aho et al. [3℄ with
O(mn log n) running time. In Setion 2.2, we observed that 3LC an be solved
in min

{

O(n + m log2 n), O(m + n2 log2 n)
}

time with the algorithm of Hen-
zinger et al. [62℄ by substituting the used deremental graph onnetivity algo-
rithm with a more e�ient one by Holm et al. [65℄.

We have given a new proof for the NP-hardness of MLC and M3LC in
Setion 2.3, and then, in Setion 2.4, shown that MLC and M3LC and their
weighted versions an be approximated within fator of 3 of the optimum in
O((m + n) log n) time (Algorithm Approximation A). Moreover, M3LC and its
weighted version an be approximated as follows: An approximate solution on-
sistent with a subset of the input onstraints whose total weight is at least W−nt,
where W is the total weight of all input onstraints and t is the minimum to-
tal weight of onstraints needed to remove in order to ahieve onsisteny, an

2.5 Conluding Remarks 29

be onstruted in min
{

O(mn2 + n3 log n), O(n4)
}

time, or with high proba-
bility in min

{

O(mn log3 n), O(n3 log n)
}

time (Algorithm Approximation B).
Here, Algorithm Approximation B has a better approximation ratio than Algo-
rithm Approximation A for instanes of M3LC with t < 2W

3n .

The main open problem onerns the approximability of MLC and M3LC.
Our Algorithm Approximation A approximates both problems within a onstant
fator in polynomial time, but we do not know whether it is possible to �nd a
polynomial-time approximation sheme (PTAS) for either of them. Even if the
problems are MAX SNP-hard, implying that no PTAS exists unless P=NP [8℄,
it might still be useful to �nd polynomial-time algorithms with better approx-
imation fators than Algorithms Approximation A and Approximation B. Spe-
ial ases of the problems might be easier to approximate; for example, we believe
that it is possible to onstrut a PTAS for the restrition of M3LC to omplete
instanes in whih the input ontains one 3-leaf onstraint for eah ardinality 3
subset of the leaves9.

Semple and Steel [110℄ have independently developed a heuristi for ombin-
ing a set of rooted, unordered leaf-labeled trees with overlapping leaf sets whih
uses the same basi idea of �nding minimum weight edge uts in the graphs G(L)
as our Algorithm Approximation B, with some modi�ations. However, no ap-
proximation fator for their algorithm in terms of how many of the input trees
that are onsistent with the output tree was given in [110℄ as their main fous
was on proving how well nestings shared by all the input trees an be preserved
(and some other related properties) rather than trying to maximize the number
of onsistent 3-leaf onstraints in the output tree.

The other open question is: How muh an the asymptoti running times of
Algorithm Approximation B and the exat polynomial-time algorithms for LC
and 3LC be improved? The running time of Algorithm Approximation B is ur-
rently dominated by the time it takes to ompute minimum weight edge uts in
undireted graphs. If faster algorithms for omputing min-uts are invented, the
e�ieny of Algorithm Approximation B an be improved aordingly. Faster
algorithms for deremental dynami graph onnetivity will not help the asymp-
toti running time of Algorithm Approximation B unless faster min-ut algo-
rithms are also employed. On the other hand, by Theorem 2.1, faster algorithms

9The motivation for this is as follows. In the quartets onsisteny problem (QC), the input
is a set Q of resolved quartets (unrooted, leaf-labeled trees eah having 4 leaves and no nodes
of degree 2), and the goal is to �nd an unrooted, leaf-labeled tree whih is onsistent with
all of the quartets in Q, if one exists. The maximum quartets onsisteny problem (MQC)
is the optimization version of QC, and omplete MQC is MQC restrited to instanes where
one quartet for eah ardinality 4 subset of the leaves is inluded in Q. QC is NP-hard [116℄,
and although MQC is MAX SNP-hard in general [69, 116℄ and omplete MQC remains NP-
hard [69℄, omplete MQC admits a PTAS [69℄. In ontrast, 3LC an be solved exatly in
polynomial time by the algorithms desribed in Setion 2.2. Thus, sine 3LC seems so muh
easier than QC, it would be surprising if omplete M3LC was muh harder to approximate
than omplete MQC. Therefore, we onjeture that omplete M3LC has a PTAS as well.

30 Chapter 2. Inferring Unordered Trees from LCA Constraints

for deremental dynami graph onnetivity will diretly improve the running
time of the algorithm of Henzinger et al. for 3LC.

Chapter 3

Inferring Ordered Trees

from Rooted Triples

We now onsider the problem of inferring an ordered, leaf-labeled tree from a
set of rooted triples, where in addition to the input set of rooted triples, a
given left-to-right ordering is imposed on the leaves. We all this problem the
ordered 3-leaf onstraints onsisteny problem (O3LC). As in Chapter 2, we are
also onerned with the orresponding maximization problem, here termed the
maximum ordered 3-leaf onstraints onsisteny problem (MO3LC).

The algorithms for inferring ordered trees presented in this hapter are in
general more e�ient than the orresponding fastest known algorithms for infer-
ring unordered trees. In fat, our algorithm for MO3LC runs in polynomial time
whereas the analogous maximization problem for unordered trees is NP-hard (as
proved in Chapter 2).

An essential part of our algorithm for O3LC is an algorithm for maintaining
the union of a set of losed intervals under a sequene of deletions from the set.
Therefore, in this hapter we also develop an e�ient deremental interval union
algorithm.

3.1 Introdution

Let S be a �nite set of elements. A 3-leaf onstraint on S, also referred to as a
rooted triple on S, is a onstraint of the form ({i, j}, k), where i, j, k ∈ S, whih
spei�es that the lowest ommon anestor of i and j is a proper desendant of the
lowest ommon anestor of i and k1. A rooted tree whose leaves are distintly
labeled by elements in S (i.e., no two leaves have the same label) and a 3-leaf

1Or equivalently, that the lowest ommon anestor of i and j is a proper desendant of the
lowest ommon anestor of j and k.

31

32 Chapter 3. Inferring Ordered Trees from Rooted Triples

1

3

2 2 3

1

Figure 3.1: Let O be the ordering 1, 2, 3. The tree on the left omplies with O and is
onsistent with the 3-leaf onstraint ({1, 2}, 3). The tree on the right is onsistent with
the onstraint ({2, 3}, 1) and Note that no tree an satisfy the onstraint ({1, 3}, 2) and
omply with O at the same time.

onstraint on S whih is satis�ed in the tree are said to be onsistent with eah
other.

The leaf ordering of a rooted, ordered, leaf-labeled tree is the sequene of
labels obtained by sanning its leaves from left to right.

Next, we de�ne two omputational problems alled O3LC and MO3LC, sim-
ilar to the problems 3LC and M3LC studied in Chapter 2. The di�erene is that
in O3LC and MO3LC, the leaf ordering of the onstruted tree is required to
omply with a spei�ed ordering. See Figure 3.1 for an example.

The ordered 3-leaf onstraints onsisteny problem (O3LC)

Instane: Finite set S, set T of 3-leaf onstraints on S, ordering O of S.

Output: A rooted, ordered tree with leaves distintly labeled by S whose
leaf ordering equalsO and whih is onsistent with all of the onstraints
in T , if one exists; otherwise, null.

The maximum ordered 3-leaf onstraints onsisteny problem
(MO3LC)

Instane: Finite set S, set T of 3-leaf onstraints on S, ordering O of S.

Output: A rooted, ordered tree with leaves distintly labeled by S whose
leaf ordering equals O and whih is onsistent with as many of the
onstraints in T as possible.

Heneforth, we assume without loss of generality that the elements of S
are named {1, 2, ..., n} and that the given ordering O is preisely the sequene
1, 2, ..., n. (Any given instane an be transformed into an instane of this type
by relabeling before running our algorithms.)

3.1 Introdution 33

As in Chapter 2, we denote the number of onstraints in T by m. It follows
from the problem de�nitions that m = O(n3) for O3LC and MO3LC.

3.1.1 Motivation

Appliations of 3LC and M3LC (the unordered versions of O3LC and MO3LC)
were disussed in Setion 2.1.1. We study O3LC and MO3LC primarily beause
they are speial ases of 3LC and M3LC whih turn out to be more e�iently
solvable. As mentioned in Chapter 2, it is not always possible to onstrut a
rooted tree whih is onsistent with all of the 3-leaf onstraints in a given set sine
some onstraints may ontradit eah other. In suh ases, an algorithm whih
produes a tree onsistent with as many of the 3-leaf onstraints as possible is
more useful. Unfortunately, to onstrut an unordered tree for the maximum
number of 3-leaf onstraints was proved to be NP-hard in Setion 2.3, implying
that no e�ient algorithm for this problem exists unless P=NP. However, if we
are given the leaf ordering of the �nal tree in advane, the situation improves
drastially: dynami programming an be applied to solve MO3LC in polynomial
time, as we will see later in this hapter.

In ertain evolutionary tree onstrution situations, it may be possible to
determine or aurately estimate the leaf ordering of a planar embedding of the
true tree by taking into aount other kinds of data suh as the geographial
distributions of the speies or data based on some measurable quantitative har-
ateristi (average life span, size, et.) whih an be sorted to obtain a linear
ordering of the speies. O3LC and MO3LC might also arise in graph drawing
appliations where a leaf-labeled tree has to be inferred from a set of 3-leaf on-
straints and additional restritions are plaed on the leaves (for example, that
they must be ordered alphabetially) for ease of presentation.

3.1.2 Previous Results

No algorithms or omputational omplexity results for O3LC and MO3LC an
be found in the literature sine these problems have not been studied before. For
known results related to 3LC, M3LC, and the orresponding quartet onsisteny
problems QC and MQC, please refer to Chapter 2 and the referenes therein.

As for the problem of maintaining the union of a set Y of losed intervals
under a sequene of deletions from Y, a general, fully dynami interval union
algorithm whih also supports insertions of new intervals into Y was given by
Cheng and Janardan in [26℄. Their algorithm allows interval insertions and
deletions be arried out in O(log n) time and the list of intervals in the union
to be reported in O(k) time, where n is the number of intervals urrently in Y
and k is the urrent number of maximal nonoverlapping intervals in the union
of Y. However, sine we only need a deremental interval union algorithm in
our algorithm for O3LC and the algorithm of Cheng and Janardan is somewhat
ompliated, we will provide a simpler solution for the deremental ase.

34 Chapter 3. Inferring Ordered Trees from Rooted Triples

3.1.3 Our Contributions

We observe that in the algorithm of Henzinger et al. [62℄ for 3LC (see Setion 2.2),
if the tree being onstruted is required to have a spei�ed leaf ordering then
yellow edges and yellow omponents in the auxiliary graph U an be represented
as losed intervals and maximal nonoverlapping intervals in their union, respe-
tively. Coloring yellow edges of U red thus orresponds to deleting intervals from
a given set of losed intervals, whih allows us to implement the deremental dy-
nami graph onnetivity omputations needed in the algorithm of Henzinger
et al. with a (faster) deremental interval union algorithm. We develop suh a
deremental interval union algorithm and use it to obtain an algorithm alled
Algorithm Fast O3LC whih solves O3LC in O((m + n) log n) time.

Given a set Y of M losed intervals on the real line, our deremental interval
union algorithm uses O(M log M) time for preproessing, and then maintains the
union of Y under a sequene of δ interval deletions in O(δ log M +M +kδ log M)
time, where kδ is the �nal number of maximal nonoverlapping intervals in the
union. After eah deletion, the newly reated maximal nonoverlapping intervals
in the union an be listed without inreasing the asymptoti time omplexity.
The interval intersetion query (i.e., given an interval q, whih maximal nonover-
lapping intervals in the union of the urrent Y interset q?) an be answered in
O(log M +R) time, where R is the number of maximal nonoverlapping intervals
in the union to report.

We also give a dynami programming-based algorithm for MO3LC whih
runs in O(n3) time.

In Setion 3.2, we reall the de�nitions of segment trees, interval trees, and
interval tries and state some useful fats about these data strutures. In Se-
tion 3.3, we desribe our deremental interval union algorithm whih is the basis
of Algorithm Fast O3LC presented in Setion 3.4. We present the ubi-time
algorithm for MO3LC in Setion 3.5. Setion 3.6 summarizes our results and
proposes some generalizations of the onsidered problems.

3.2 Preliminaries

The deremental interval union algorithm in Setion 3.3 uses segment trees,
interval trees, and interval tries. Below, we brie�y review these three data
strutures and state some known fats from [94℄ and [102℄.

3.2.1 Segment Trees

The segment tree is a data struture for storing a set of intervals on the real
line R along with some additional information.

Let Y be a set of intervals on R whose endpoints belong to a set U =
{xi}ni=1 ⊂ R, where xi < xi+1 for all i = 1, 2, ..., n− 1. Denote by (xi, xi+1) the

3.2 Preliminaries 35

open interval from xi to xi+1 and let [xi, xi] denote the point xi. The segment
tree for Y with respet to U is a balaned binary searh tree of depth O(log n)
with 2n + 1 leaves orresponding to (from left to right) the intervals (−∞, x1),
[x1, x1], (x1, x2), [x2, x2], ..., (xn,∞) alled its atomi segments.

Every node u of the segment tree is assoiated with a node list NL(u). To de-
sribe NL(u), we �rst de�ne xrange(u) as follows. If u is a leaf, xrange(u) is sim-
ply the orresponding atomi segment. If u is an internal node, let xrange(u) =
xrange(l) ∪ xrange(r), where l and r are the left and right hild of u. Now,
de�ne NL(u) as {I ∈ Y | xrange(u) ⊆ I & xrange(parent(u)) 6⊆ I}.

The following is proved in [94℄ (see also [33℄ or [107℄).

Fat 3.1 [94℄ A segment tree for a set of M intervals with both endpoints in
a subset U of R of size n an be onstruted in O(M log n) time. An interval
with both endpoints in U an be inserted into or deleted from the segment tree
in O(g(M) log n) time, where g(M) is the time required to insert or delete an
interval from a node list of size M . Every interval in Y is stored in at most two
di�erent node lists at eah level of the tree, i.e., in a total of O(log n) di�erent
node lists. Furthermore, given an interval I in Y, all nodes u with I ∈ NL(u)
an be found in O(log n) time.

In our appliation, we will use a modi�ed segment tree in whih we only need
to keep trak of how many intervals from Y that belong to eah node list and
do not have to worry about whih ones they are. Hene, rather than expliitly
storing the node lists, we employ node ounters ; the value NC(u) of the node
ounter for a node u is de�ned as the ardinality of the orresponding node
list NL(u), if we were keeping it. Every deletion from or insertion into NL(u)
orresponds to dereasing or inreasing NC(u) by one, whih an be done in
O(1) time. Thus, we have g(M) = O(1).

3.2.2 Interval Trees

The interval tree is a kind of binary searh tree for storing a set Y of intervals
whose left endpoints belong to a �xed �nite subset U of R. It allows intervals to
be deleted from Y as well as new intervals with left endpoints in U to be inserted
into Y in logarithmi time. It an report all intervals in Y with nonempty
intersetion with a given query interval; suh a request is alled an interval
intersetion query.

The following fat summarizes what we need to know about interval trees
for our purposes. For a desription of how information is stored in interval
trees, how interval trees are onstruted and updated e�iently, how queries are
handled, et., see [33℄, [94℄, or [107℄.

36 Chapter 3. Inferring Ordered Trees from Rooted Triples

Fat 3.2 [94℄ Suppose that the left endpoints of the intervals in a set Y belong
to a subset U of R of size n and |Y | = M . An interval tree Q of depth O(log n)
for Y an be onstruted in O(n + M log nM) time. Eah insertion into Y of
an interval with left endpoint in U and eah deletion from Y an be performed
by Q in O(log M + log n) time. The interval intersetion query is supported by
Q in O(log n + R) time, where R is the number of reported intervals.

3.2.3 Interval Tries

The interval trie is another data struture for maintaining a set Y of intervals un-
der a sequene of insertions and deletions. It requires that all interval endpoints
have integer oordinates between 1 and a �xed number n. The interval trie an
be employed to e�iently answer stabbing queries in whih a query point q is
given and the objet is to return a list of all intervals in Y that ontain q. The
next fat, following from [102℄, haraterizes interval tries.

Fat 3.3 [102℄ Let Y be a set of M intervals with both endpoints in {1, 2, ..., n}.
For any onstant ǫ > 0, there is an interval trie for Y whih allows eah insertion
into Y and eah deletion from Y to be performed in O(logǫ n + log log n) time
and whih answers the stabbing query in O(log n

ǫ·log log n + R) time, where R is the

number of reported intervals. It an be onstruted in O(n· log n
ǫ·log log n + M · logǫ n)

time.

The parameter ǫ an be hosen to get the desired tradeo� between update
time and query time.

3.3 A Deremental Interval Union Algorithm

Here we present an algorithm for maintaining the union of a set Y of losed
intervals under a sequene of deletions from Y.

For the rest of this setion, let M be the number of intervals in Y at start, and
let s1, ..., sδ be the sequene of intervals to delete from Y, where all of s1, ..., sδ

initially belong to Y. Denote by U the set of endpoints of the intervals in Y ;
learly, |U| ≤ 2M . The maximal nonoverlapping intervals overed by Y are
alled interval union omponents.

The �rst step of our method onsists of the onstrution of a segment tree W
for Y. Sine |U| = O(M), W an be onstruted in O(M log M) time by Fat 3.1.

For e�ieny, we use node ounters (denoted by NC) instead of the standard
node lists NL, as explained at the end of Setion 3.2.1. Reall that NC(u) for
a node u of W is de�ned as the ardinality of NL(u). Additionally, for eah
node u of W , we set a speial bit r(u) to 1 if and only if all NC ounters along
the path from the root of W to u, inluding NC(u), are set to zero. We an

3.3 A Deremental Interval Union Algorithm 37

determine the initial values of r(u) for all nodes of W by traversing W in a
top-down fashion in time proportional to the size of W , i.e., in O(M) time. The
usefulness of the r-bits stems from the next lemma.

Lemma 3.4 For any leaf w of W , r(w) = 0 if and only if the atomi segment
orresponding to w is overed by an interval union omponent.

Proof: Let p be the path in W from the root to w. If r(w) = 0 then there
exists a node t on p with NC(t) > 0. Sine xrange(t) ⊆ I for some interval I
in Y and xrange(w) ⊆ xrange(t), it follows that xrange(w) is overed by I and
thus by one of the interval union omponents. If r(w) = 1 then sine every node
in the tree whose xrange overlaps with xrange(w) lies on p and therefore has
its NC ounter set to zero, xrange(w) is not ontained in any interval in Y. ✷

Next, we augment eah leaf w of W with two pointers whih point to the
left and right neighbor of w, de�ned as the predeessor of w and the suessor
of w in the onseutive left-to-right ordering of W 's leaves. This an be done in
O(M) time.

Besides the segment tree W , we use an interval tree Q in order to maintain
the interval union omponents of the urrent Y. The set of left endpoints of
intervals to be stored in Q is a subset of the set U of all endpoints of intervals
in Y, and hene O(M). We an �nd the interval union omponents for the
initial Y in O(M log M) time by sorting all endpoints in Y and using a standard
sweep-line tehnique. By Fat 3.2, we an then onstrut Q and insert the initial
interval union omponents in O(M log M) time.

In total, the preproessing steps desribed above take O(M log M) time.

Deleting the interval s1 from Y may a�et the urrent interval union ompo-
nents, as illustrated by the example in Figure 3.2. W and Q need to be modi�ed
aordingly; see Figure 3.3. To update W and Q, we proeed as follows.

To begin with, we loate the O(log M) nodes of W whose node lists would
ontain s1 if we were keeping them, and derease their NC ounters by one.
This an be done in O(log M) time by Fat 3.1. If, for some node u, NC(u)
drops to 0 and r(parent(u)) = 1, we set r(u) to 1 and update r(w) for the
desendants w of u in a top-down and left-right fashion. We also produe the
list LL(u) of onseutive leaf-desendants w of u for whih r(w) beomes 1 due
to the updating (LL(u) an be empty). Next, we onatenate the lists LL(u)
in the order of the ranges of the nodes u and let L denote the resulting list.
The updating of the r(w)'s as well as the onstrution of the list L take time
proportional to the number r1 of nodes that got their r(w)-bit set to 1 for the
�rst time.

We then �nd the interval union omponent C that s1 belongs to by querying Q
with s1. Let x be the left neighbor of the leaf in W orresponding to the left
endpoint of C and let y be the right neighbor of the leaf in W orresponding to
the right endpoint of C. We insert x �rst in L, and similarly, insert y last in L.

38 Chapter 3. Inferring Ordered Trees from Rooted Triples

1 2 3 4 5 6 7 8

Figure 3.2: The union of the intervals {[1, 2], [2, 8], [4, 5], [5, 7], [6, 7], [8, 8]} is a single
interval union omponent C = [1, 8]. Deleting the interval [2, 8] results in C being split
into three interval union omponents: [1, 2], [4, 7], and [8, 8].

Now, Lemma 3.4 implies that for any pair of onseutive leaves a, b in L that
are not neighbors of eah other, the right neighbor of a and the left neighbor
of b yield a new interval union omponent. Hene, we delete C from Q and
insert the new interval union omponents into Q. Let k0 be the number of
interval union omponents of the initial Y, and let k1 be the number of interval
union omponents after the deletion of s1. The interval intersetion query takes
O(log M) time (there is exatly one interval union omponent with nonempty
intersetion with s1), and eah deletion and insertion takes O(log M) time by
Fat 3.2. Thus, updating Q takes O(log M + log M + (k1 − k0 + 1) logM) =
O((k1 − k0 + 1) log M) time.

We onlude that we an update W and Q to maintain the union of the
set of intervals resulting from the deletion of s1 from Y in O(log M + r1) and
O((k1 − k0 + 1) log M) time, respetively.

The next interval deletions are handled similarly. We de�ne ri and ki for
i = 2, ..., δ in the same way as we de�ned r1 and k1 above. It follows that the

sum
δ
∑

i=1

ri is bounded from above by the size of W , i.e., O(M). Furthermore, by

telesoping, we have

δ
∑

i=1

(ki − ki−1 + 1) = kδ − k0 + δ < kδ + δ.

Summarizing, we obtain the main result of this setion:

3.3 A Deremental Interval Union Algorithm 39

NC = 0

(−∞, 1)

r = 1

[1, 1]
NC = 1
r = 0

NC = 0
r = 1

NC = 0
r = 1 r = 1

NC = 0
r = 0

NC = 0
r = 0

NC = 1
r = 0

NC = 0
r = 1

(−∞, 1] (1, 2) [2, 2]

r = 0

(2, 3) [3, 3] (3, 4)
NC = 0

[4, 4] (4, 5)

r = 1
NC = 0

r = 1
NC = 0

NC = 0

r = 1

r = 1

NC = 0

r = 0

r = 1
NC = 0

(−∞, 5)

r = 1
NC = 0

(−∞, 2)

(−∞, 3)

(−∞, ∞)

[2, 3) [3, 4) [4, 5)

[3, 5)

r = 1

NC = 0

NC = 1

NC = 1

(8, ∞)

r = 1
NC = 0NC = 1

r = 0

[5, 5]
NC = 0
r = 0

NC = 0

[6, 6]

r = 0
NC = 0
r = 0 r = 1

NC = 2
r = 0

NC = 1

r = 0

(5, 6) (6, 7) [7, 7] (7, 8)
NC = 0

[8, 8]

r = 1
NC = 0

(−∞, ∞)

r = 0
NC = 0

r = 0

[5, ∞)

r = 1
NC = 0

r = 0
NC = 1

r = 1

NC = 0

[7, ∞)

r = 1
NC = 0

r = 1
NC = 0

[5, 6) [6, 7) [7, 8) [8, ∞)

[5, 7)
NC = 1

Figure 3.3: The segment tree for the example in Figure 3.2 after the deletion of the
interval [2, 8]. A�eted nodes are shaded, and hanges in NC ounters and r-bits are
italiized. Here, L = ((−∞, 1), (2, 3), [3, 3], (3, 4), (7, 8), (8,∞)), so the left and right
endpoints of the new interval union omponents to be inserted in Q are given by [1, 1]
and [2, 2], [4, 4] and [7, 7], and [8, 8] and [8, 8].

40 Chapter 3. Inferring Ordered Trees from Rooted Triples

Theorem 3.5 Let Y be a set onsisting of M losed intervals on the real line.
After O(M log M) time preproessing, the union of Y an be maintained under
a sequene of δ interval deletions in O(δ log M + M + kδ log M) time, where
kδ is the �nal number of interval union omponents. After eah deletion, the
newly reated interval union omponents an be listed without inreasing the
asymptoti time omplexity. The interval intersetion query an be answered
in O(log M + R) time, where R is the number of interval union omponents to
report.

If we only need to answer stabbing queries and all endpoints of the intervals
in Y belong to a set {1, 2, ..., n}, the result an be improved by replaing the
interval tree Q with an interval trie. By Fat 3.3, we obtain the following variant
of the result.

Theorem 3.6 Let Y be a set of M losed intervals with both endpoints in
{1, 2, ..., n}. For any onstant ǫ > 0, the following holds. After O(M log nM+
n· log n

ǫ·log log n + M · logǫ n) time preproessing, the union of Y an be maintained

under a sequene of δ interval deletions in O(n + δ(log n+ logǫ n) + kδ(logǫ n+
log log n)) time, where kδ is the �nal number of interval union omponents. After
eah deletion, the newly reated interval union omponents an be listed without
inreasing the asymptoti time omplexity. The stabbing query an be answered
in O(log n

ǫ·log log n) time.

3.4 Algorithm Fast O3LC

In this setion, we give an algorithm for O3LC whih runs in O((m + n) log n)
time. It ombines the algorithm of Henzinger, King, and Warnow [62℄ for 3LC
desribed in Setion 2.2 with our deremental interval union algorithm from
Setion 3.3.

Reall that given a set S = {1, 2, ..., n} and a set T of 3-leaf onstraints
on S, the algorithm of Henzinger et al. onstruts a rooted, unordered tree R
whose leaves are distintly labeled by S and whih is onsistent with all of the
input onstraints in T , if suh a tree exists. It uses an auxiliary data struture
onsisting of two graphs U and D de�ned as:

• U = (S, E) whose vertex set is the input set of leaves S = {1, 2, ..., n}, and
where for eah onstraint ({a, b}, c) in T , the edges {a, b} and {b, c} are
in E.

• D = (S′, A), where for eah onstraint ({a, b}, c) in T , the verties {a, b}
and {b, c} are in S′, and the direted edge {a, b} → {b, c} is in A.

3.4 Algorithm Fast O3LC 41

All edges of U are initially olored yellow. The graph D is used for �nding
edges in U that are to be olored red; these edges orrespond to verties in D
alled maximal verties whih have no outgoing edges. A separable red edge is
a red edge of U whose endpoints belong to two di�erent yellow omponents. A
maximal vertex in D and its orresponding red edge e in U are deleted when e
beomes a separable red edge.

The tree R is onstruted level by level. During the algorithm's exeution,
eah urrent yellow omponent of U ontains all leaves from the input set S that
will belong to the same subtree in the �nal R, rooted at one of the leaves of the
urrent R.

See Setion 2.2 for more details on the algorithm of Henzinger et al.

For ordered trees, we make the following ruial observation.

Observation 3.7 If R′ is a rooted, ordered tree, leaf-labeled by S, then for any
two leaves a and b it holds that any subtree of R′ ontaining a and b must also
ontain all leaves in the interval [a, b].

Below, we denote the ordered tree whih we are onstruting by R′. By
Observation 3.7, a yellow edge in U fores all leaves in the interval de�ned by
its two endpoints to belong to the same subtree of R′. Transitivity implies that
the set of yellow edges in U indues a set of intervals suh that eah of the
maximal nonoverlapping intervals in the union of these intervals ontains all
leaves from S whih should end up in one subtree of R′. Hene, to onstrut R′,
instead of maintaining the urrent yellow omponents of U as in the algorithm
of Henzinger et al., we maintain the orresponding interval union omponents.

Our algorithm is alled Algorithm Fast O3LC and is listed in Figure 3.4. In
addition to the direted graph D de�ned above, it uses the deremental interval
union algorithm from Setion 3.3 to keep trak of interval union omponents in
the set Y of intervals indued by U, and an interval trie Z to store intervals
orresponding to edges in U that have been olored red. By |Ci| we mean the
number of leaves inluded in the interval union omponent Ci.

The algorithm ontinues until all interval union omponents have been split
into interval union omponents whih over a single leaf eah, or until it disovers
that no ordered tree onsistent with all of T exists.

Theorem 3.8 Algorithm Fast O3LC solves O3LC in O((m + n) log n) time.

Proof: If Algorithm Fast O3LC produes an ordered tree then it is onsistent
with all onstraints in T . To prove this, note that intervals urrently in Y
overing at least two leaves orrespond to urrent yellow edges of U in the
algorithm of Henzinger et al. By the remarks following Observation 3.7, eah
urrent interval union omponent of Y ontains all leaves whih will belong to
one subtree of R′. Intervals in Z orrespond to red edges of U ; furthermore, an

42 Chapter 3. Inferring Ordered Trees from Rooted Triples

Algorithm Fast O3LC

Input: An instane of O3LC.

Output: A rooted, ordered tree R′ whih is onsistent with all of the onstraints,
if one exists; the null tree, otherwise.

1 Construt D.

2 Let Y = {[a, b] | {a, b} ∈ E} ∪ {[a, a] | a ∈ S} and initialize the deremental
interval union algorithm on Y. Create an (initially empty) interval trie Z for
storing a set of intervals with both endpoints in {1, 2, ..., n}.

3 Create the root of R′. Initialize omponents information.

4 for eah maximal vertex {x, y} in D do

If [x, y] belongs to Y then delete it from Y and insert it into Z, and query
the deremental interval union algorithm �are x and y in the same interval
union omponent of Y ?�; if �no� then update omponents information
and R′.

endfor

5 For eah old interval union omponent Ci of Y, if |Ci| > 1 and Ci was not
split into at least two omponents during step 4 in this iteration then return
the null tree.

6 If |Ci| = 1 for every interval union omponent Ci of Y then return R′.

Otherwise, for eah old interval union omponent Ci of Y with |Ci| > 1, let
c1, c2, ..., cj be the new interval union omponents of Y reated from Ci. For
k = 1, ..., j − 1, query Z with the median mk of the right endpoint of ck and
the left endpoint of ck+1, and delete all reported (i.e., ontaining mk) intervals
from Z and the orresponding verties (plus their inident edges) from D.

7 Go to step 4.

End Fast O3LC

Figure 3.4: An algorithm for solving O3LC whih ombines Henzinger, King, and
Warnow's algorithm with our deremental interval union algorithm.

interval orresponds to a separable red edge if and only if it overlaps with at
least two new interval union omponents, i.e., if and only if it is interseted by
at least one of the medians mi, i = 1, 2, ..., k− 1. If Algorithm Fast O3LC fails
to produe an ordered tree then there is no suh tree by Observation 3.7 and the
orretness of the algorithm of Henzinger et al.

The onstrution of the graph D takes O(m) time and the overall time taken
to determine maximal verties is proportional to the size of D, i.e., O(m). By
Theorem 3.5, the total time used to ompute all interval union omponents dur-
ing the ourse of the algorithm (inluding the preproessing) is O((m+n) log n)
sine M = O(m + n), log M = O(log n), δ = O(m), and kδ = n. By Fat 3.3,
the total time needed to onstrut Z, to perform the O(m) insertions into and
deletions from Z, and to answer the O(n) stabbing queries to Z is O(n· log n

ǫ·log log n +

m · (logǫ n + log log n) + n · log n
ǫ·log log n + m) = O((m + n) · log n

log log n) (hoose, e.g.,
ǫ = 0.5). ✷

3.5 A Cubi-Time Algorithm for MO3LC 43

3.5 A Cubi-Time Algorithm for MO3LC

Here, we present an algorithm for MO3LC whih runs in O(n3) time. It bears
resemblane to the well-known ubi-time dynami programming algorithms for
omputing a minimum weight triangulation of a simple polygon [32℄ and for
reognizing whih strings belong to a given ontext-free language [90℄.

We �rst introdue some new notation.

De�nition 3.9 For all i, j ∈ {1, ..., n} with i ≤ j, denote the subset of input
onstraints on leaf-labels entirely in the interval {i, i + 1, ..., j} by Ti,j , and let
mi,j be the maximum number of onstraints in Ti,j onsistent with any ordered
tree.

De�nition 3.10 For all i, j, k ∈ {1, ..., n} with 1 ≤ i ≤ k < j ≤ n, let wi,k,j be
the number of onstraints ({l1, l2}, l3) ∈ T whih satisfy either

• {l1, l2} ⊆ {i, ..., k} & l3 ∈ {k + 1, ..., j}
or

• l3 ∈ {i, ..., k} & {l1, l2} ⊆ {k + 1, ..., j}.

The algorithm for MO3LC is based on the following observation. Let i, j ∈
{1, ..., n} with i < j. Consider an ordered tree R whih is onsistent with
the maximum number of input onstraints in Ti,j . Without loss of generality,
assume that R is binary. The root of R has two hildren; denote the two subtrees
rooted at these nodes by R1 and R2, and let K be the label of the rightmost
leaf in R1 (see Figure 3.5). The input onstraints in Ti,j an be partitioned
into three sets: Ti,K , TK+1,j , and those onstraints that involve at least one
leaf label less than or equal to K and at least one leaf label stritly greater

i

R2

.

R

R

jK K+1

1

Figure 3.5: R is an optimal ordered tree for Ti,j . The rightmost leaf in the left sub-
tree R1 is labeled K, and the leftmost leaf in the right subtree R2 is labeled K + 1.

44 Chapter 3. Inferring Ordered Trees from Rooted Triples

than K. R1 and R2 must be onsistent with the largest possible number of
input onstraints in Ti,K and TK+1,j , respetively, sine otherwise there would
exist another tree R′ whih was onsistent with more onstraints in Ti,j than R,
ontraditing the maximality of R. Next, note that R is onsistent with wi,K,j

onstraints in Ti,j \ (Ti,K∪TK+1,j). We thus obtain a reursive formula for mi,j :

mi,j = mi,K + mK+1,j + wi,K,j

When alulating mi,j , we an assume that all values of wi,k,j , mi,k, and mk+1,j ,
where k ∈ {i, ..., j − 1}, have been omputed already. We don't know K be-
forehand, but sine it must belong to {i, ..., j − 1}, we an try all possibilities,
evaluate eah resulting tree, and selet the best one. This yields:

mi,j = max
k∈{i, ..., j−1}

{mi,k + mk+1,j + wi,k,j} (3.1)

Equation (3.1) leads to a dynami programming-based algorithm for MO3LC.
It uses an auxiliary (n× n)-matrix M whose (i, j)th entry ontains the k whih
maximizes the value of mi,j in equation (3.1). Initially, all values of wi,k,j , where
1 ≤ i ≤ k < j ≤ n, are omputed in O(n3) time as explained below. Then, for
all i ∈ {1, ..., n}, mi,i is set to 0 and M [i, i] is set to i. Next, letting l vary from
1 to n − 1, for every pair i, j ∈ {1, ..., n} with j − i = l, the algorithm �nds a
k ∈ {i, ..., j−1} that maximizes mi,k +mk+1,j + wi,k,j , stores this maximal value
in mi,j , and sets M [i, j] to k. Sine every wi,k,j and every previously omputed
value of mi,k or mk+1,j is aessible in onstant time, this step takes a total of
O(n3) time. After all entries of M have been alulated, an optimal ordered tree
for any Ti,j an be obtained by doing a traebak in O(j − i + 1) time. (If i = j
then return a tree with a single node labeled by i. Otherwise, let k := M [i, j],
reursively onstrut optimal trees R1 and R2 for Ti,k and Tk+1,j , and return a
tree onsisting of a root node with R1 and R2 as its hildren.) The algorithm
returns an optimal ordered tree for T1,n as the �nal solution.

This proves the next theorem.

Theorem 3.11 MO3LC is solvable in O(n3) time.

It remains to desribe how to preompute wi,k,j for all 1 ≤ i ≤ k < j ≤ n in
O(n3) time2. By De�nition 3.10, eah input onstraint ({a, b}, c) with a ≤ b < c
inrements by one those wi,k,j that satisfy 1 ≤ i ≤ a, b ≤ k ≤ c−1, and
c ≤ j ≤ n. Similarly, eah input onstraint ({a, b}, c) with c < a ≤ b inrements
by one those wi,k,j that satisfy 1 ≤ i ≤ c, c ≤ k ≤ a−1, and b ≤ j ≤ n. Every
input onstraint thus de�nes a retilinear region alled a onstraint box in the
�nite three-dimensional spae {1, 2, ..., n} × {1, 2, ..., n} × {1, 2, ..., n} whose
axes orrespond to indies i, k, j of wi,k,j . If a point with oordinates (i, k, j) lies

2A naive approah will aomplish this in O(mn3) = O(n6) time, but we wish to do better.

3.5 A Cubi-Time Algorithm for MO3LC 45

(1,1)

Figure 3.6: The number of retangles that ontain the query point × equals the number
of ⊕-orners minus the number of ⊖-orners inside the query retangle with orners
at (1, 1) and ×.

inside a onstraint box, then wi,k,j is a�eted by the orresponding onstraint,
so the value of wi,k,j equals the total number of onstraint boxes that ontain
the point (i, k, j).

To e�iently determine how many boxes ontain any given point in the spae,
we redue the problem to a range searhing problem. The strategy is to insert
�markers� for the orners of the onstraint boxes, and then dedue how many
onstraint boxes that ontain a query point (i, k, j) by looking at the number of
markers that lie within a query box with orners at (1, 1, 1) and (i, k, j). For this
purpose, we distinguish between two types of onstraint box orners, denoted
by ⊕ and ⊖. Figure 3.6 illustrates the idea for two dimensions. Let A⊕, A⊖,
B⊕, and B⊖ be four ((n + 1) × (n + 1) × (n + 1))-sized arrays of ounters, all
initially set to zero. The A-ounters keep trak of the number of onstraint
box orners in eah point, and the B-ounters are used to ount how many
onstraint box orners of eah type that are loated in the retilinear region
strething from (1, 1, 1) to (i, k, j) for every i, k, j ∈ {1, 2, ..., n + 1}. This way,
wi,k,j for any i, k, j with 1 ≤ i ≤ k < j ≤ n will equal B⊕[i, k, j] − B⊖[i, k, j].

The new range searhing problem an be solved as follows. First, san the
set of input onstraints to assign orret values to the A-ounters. The eight
orners of the onstraint box indued by the onstraint ({a, b}, c) are loated at
(1, b, c), (1, b, n), (1, c− 1, c), (1, c− 1, n), (a, b, c), (a, b, n), (a, c− 1, c), and
(a, c − 1, n) if a ≤ b < c, or at (1, c, b), (1, c, n), (1, a − 1, b), (1, a − 1, n),
(c, c, b), (c, c, n), (c, a − 1, b), and (c, a − 1, n) if c < a ≤ b. However, when
handling a query point loated on the boundary of some onstraint box, that

46 Chapter 3. Inferring Ordered Trees from Rooted Triples

onstraint should be ounted as well, so onstraint box orners whih mark the
end of a onstraint must be inserted one step farther away from the origin. More
preisely, for every input onstraint ({a, b}, c), inrease eah of the following A-
ounters by one:

A⊕[1, b, c],
A⊖[1, b, n + 1],
A⊖[1, c, c],
A⊕[1, c, n + 1],
A⊖[a + 1, b, c],
A⊕[a + 1, b, n + 1],
A⊕[a + 1, c, c],
A⊖[a + 1, c, n + 1]

if a ≤ b < c

A⊕[1, c, b],
A⊖[1, c, n + 1],
A⊖[1, a, b],
A⊕[1, a, n + 1],
A⊖[c + 1, c, b],
A⊕[c + 1, c, n + 1],
A⊕[c + 1, a, b],
A⊖[c + 1, a, n + 1]

if c < a ≤ b

Next, update the B-ounters in order. Here, any strategy whih ensures
that B[i, k, j−1], B[i, k−1, j], B[i, k−1, j−1], B[i−1, k, j], B[i−1, k, j−1],
B[i−1, k−1, j], and B[i−1, k−1, j−1] are taken are of before B[i, k, j] for
every (i, k, j) an be employed. By the priniple of inlusion-exlusion, we have:

B⊕[i, k, j] := A⊕[i, k, j]
+ B⊕[i, k, j−1] + B⊕[i, k−1, j] + B⊕[i−1, k, j]
−B⊕[i, k−1, j−1] − B⊕[i−1, k, j−1] − B⊕[i−1, k−1, j]
+ B⊕[i−1, k−1, j−1],

where B⊕[i, k, j] is de�ned to equal 0 if at least one of the three indies is 0.
Proeed analogously for B⊖[i, k, j].

Finally, wi,k,j for every i, k, j with 1 ≤ i ≤ k < j ≤ n is simply equal to
B⊕[i, k, j] − B⊖[i, k, j].

Initializing the A- and B-ounters takes O(n3) time, sanning the input
onstraints and inserting all orresponding onstraint box orners in the A-
ounters takes O(m) = O(n3) time, and updating all B-ounters takes a to-
tal of O(n3) time beause the operations for eah B-ounter take O(1) time to
exeute and there are O(n3) B-ounters. Thus, the total time omplexity to
alulate all wi,k,j is O(n3). (The spae omplexity is also O(n3) sine eah
index i, k, j requires O(1) words for its ounters. To improve the spae usage
by a onstant fator, only ompute B⊕[i, k, j], B⊖[i, k, j], and wi,k,j for indies
satisfying i ≤ k < j. Also, note that A⊕[i, k, j] an be used to hold the value of
B⊕[i, k, j] after it has been alulated beause the original value of A⊕[i, k, j]
is not needed again from then on; therefore, rather than using four arrays of
ounters, we an manage with only two: one for ⊕ and one for ⊖.) We have:

Lemma 3.12 All values of wi,k,j , where 1 ≤ i ≤ k < j ≤ n, an be preomputed
in O(n3) time.

3.6 Conluding Remarks 47

3.6 Conluding Remarks

The following table summarizes and ompares what is known about the ompu-
tational omplexities of the problems studied in Chapters 2 and 3:

Problem Result Referene

LC O(mn log n) Aho et al. [3℄
3LC min

{

O(n + m log2 n), Henzinger et al. [62℄, Holm et al. [65℄,
O(m + n2 log2 n)

}

and Theorem 2.13

O3LC min
{

O((m + n) log n), Theorem 3.8 and Theorem 3.11
O(n3)

}

MLC NP-hard Corollary 2.3
M3LC NP-hard Theorem 2.2; alternative proof by

Bryant [21℄
MO3LC O(n3) Theorem 3.11

When m = ω(n3

log n), the O(n3)-time algorithm for MO3LC given in Se-
tion 3.5 is asymptotially faster than Algorithm Fast O3LC from Setion 3.4.
We an run both algorithms in parallel until one of them is �nished (and if the
MO3LC algorithm �nishes �rst, hek if the produed solution satis�ed all of
the onstraints) in order to solve O3LC in min

{

O((m + n) log n), O(n3)
}

time.

Our algorithm for O3LC is asymptotially faster than the urrently best
algorithm for 3LC if m = o(n2 log n). It is an open question whether O3LC an
be solved more e�iently than 3LC when m = Ω(n2 log n).

It is noteworthy that MO3LC an be solved in polynomial time while M3LC
is NP-hard. In Chapter 5, we onsider another problem whih is NP-hard for
unordered trees yet polynomial-time solvable for ordered trees.

Our ubi-time algorithm for MO3LC an be generalized to inlude other
forms of lowest ommon anestor onstraints, e.g., onstraints of the form �the
lowest ommon anestor of i and j has to be a proper desendant of the lowest
ommon anestor of k and l� onsidered by Aho et al. in [3℄. In this ase, equa-
tion (3.1) still holds, but the de�nition of wi,k,j needs to be modi�ed aordingly,
resulting in a slower (but still polynomial time) algorithm.

It would also be interesting to onsider the more general situation where only
a partial ordering of the leaf labels is given a priori. One ould look here for
e�ient algorithms for onstruting ordered trees that would take advantage of
the input partial ordering as muh as possible.

3By Theorem 2.1, a faster algorithm for deremental dynami graph onnetivity than the
one in [65℄ automatially improves the result for 3LC.

Part II

Identifying

Shared Substrutures

in Labeled Trees

Chapter 4

On the Approximability of the

Maximum Agreement Subtree

Problem

Given a set of rooted, unordered, leaf-labeled trees, the maximum agreement
subtree problem (MAST) asks for a tree ontained in all of the input trees with
as many labeled leaves as possible. The omputational omplexity of MAST
restrited to instanes where the number of input trees is bounded and/or the
maximum degree of the input trees is bounded has been studied previously in
the literature; here, we investigate how the polynomial-time approximability of
MAST depends on another important parameter, namely the maximum height
of the input trees.

4.1 Introdution

A tree whose leaves are labeled by elements belonging to a �nite set S in suh
a way that no two leaves have the same label is said to be distintly leaf-labeled
by S. Below, eah leaf in suh a tree is identi�ed with its orresponding element
in S. The lowest ommon anestor of any two leaves a and b in a rooted tree T
is denoted by laT (a, b), and we de�ne laT (a, a) = a. The degree of a node u
in a rooted tree is the number of hildren of u, and the degree of a node u in an
unrooted tree is the number of edges inident to u. The degree of a tree T is the
maximum degree of all nodes in T .

Let S be a �nite set and let T be a rooted, unordered tree distintly leaf-
labeled by S. For any subset S′ of S, T |S′ is the rooted, unordered tree with
node set {laT (a, b) | (a, b) ∈ S′ × S′} and edges de�ned so that laT |S′(a, b) =
laT (a, b) for every (a, b) ∈ S′ × S′. Algorithmially, T |S′ an be obtained by
�rst deleting from T all leaves whih are not in S′ and all internal nodes without

51

52 Chapter 4. On the Approximability of MAST

any desendants in S′ along with their inident edges, and then ontrating
every edge between a node having just one hild and its hild (see Figure 4.1).
T |S′ is uniquely determined by S′ [40℄.

Given a set T = {T1, T2, ..., Tk} of rooted, unordered trees, eah distintly
leaf-labeled by S, an agreement subtree of T is a rooted, unordered tree U
suh that for some S′ ⊆ S it holds that U is distintly leaf-labeled by S′ and
U = T1|S′ = T2|S′ = ... = Tk|S′. A maximum agreement subtree of T is an
agreement subtree of T with the maximum possible number of leaves. See Fig-
ure 4.2 for an example1.

The maximum agreement subtree problem (MAST), also referred to as the
maximum homeomorphi agreement subtree problem or the maximum homeo-
morphi subtree problem (MHT) by some researhers, is de�ned as follows:

The maximum agreement subtree problem (MAST)

Instane: Finite set S, set T = {T1, T2, ..., Tk} of rooted, unordered trees,
where eah Ti ∈ T is distintly leaf-labeled by S and no Ti ∈ T has a
node of degree 1.

Output: A maximum agreement subtree of T .

In this hapter, n and k represent the ardinalities of S and T. The minimum
and the maximum of the heights of the trees in T are denoted by h and H ,
i.e., h = min{height(Ti) | 1 ≤ i ≤ k} and H = max{height(Ti) | 1 ≤ i ≤ k}.

The problem de�nition requires that no tree in T has a node with a single
hild. Thus, the number of nodes in eah input tree is always O(n). Also,
H = O(n). (Note that given an invalid instane I = (S, T) with one or more
degree 1 nodes, we an replae Ti by Ti|S for all input trees in total time whih
is linear in the size of I to make it valid sine U is an agreement subtree of T if
and only if U is an agreement subtree of {T1|S, T2|S, ..., Tk|S}.)

An algorithm A is said to approximate MAST within a fator of f if for any
instane (S, T) of the problem, A outputs an agreement subtree with at least
|S∗|/f leaves, where |S∗| is the number of leaves in a maximum agreement sub-
tree for (S, T). In this ase, A is also alled a fator f approximation algorithm
(or just an f -approximation algorithm) for MAST.

4.1.1 Motivation

An agreement subtree represents branhing struture shared by two or more
leaf-labeled trees in a given set. Hene, one of the main motivations for studying

1The data used in this example is �titious. Any resemblane to real-life data is purely
oinidental.

4.1 Introdution 53

gfe

a

dc

a

c d

b

Figure 4.1: Let T be the tree on the left. Then T |{a, c, d} is the tree shown on the
right.

T :

Reptilia

Mammalia

Aves Amphibia
Arachnida

T :2

MammaliaReptilia
Arachnida

Aves

Amphibia

T :

1

3

Reptilia

Mammalia

Arachnida

Amphibia

Aves

Mammalia Aves

Amphibia Reptilia

U:

Figure 4.2: U is a maximum agreement subtree of the set of trees {T1, T2, T3}.

54 Chapter 4. On the Approximability of MAST

algorithms for onstruting maximum agreement subtrees is the following: Sup-
pose a number of trees, eah one desribing the possible evolution of a �xed
set of biologial speies, have been obtained by applying di�erent tree onstru-
tion methods or di�erent lustering riteria to some available data. (Another
possibility is that one suh method has been used on several alternative sets
of data originating from di�erent soures or repeated experiments onduted
on one soure.) Furthermore, suppose that these trees do not ompletely agree
beause of distortions due to assumptions inherent to the methods used or be-
ause of measurement errors. It would then be informative to �nd a subtree
ontained in every one of the trees with as many leaves labeled by speies as
possible sine suh a subtree more likely represents genuine evolutionary stru-
ture in the data [45℄. In this way, one would get an indiation of whih anestral
relationships an be regarded as resolved and whih speies need to be subjeted
to further experiments.

Moreover, maximum agreement subtrees an be used to measure the simi-
larity of the input trees [40, 45, 78℄ or to estimate a lassi�ation's stability to
small hanges in the data [45℄. MAST-based algorithms have also been used to
prepare and improve bilingual ontext-using ditionaries for automated language
translation systems [28, 95℄.

Unfortunately, MAST is NP-hard [6℄ and thus annot be solved exatly in
polynomial time in the full generality in whih it was de�ned (unless P=NP). We
are therefore interested in determining whether ertain speial ases of MAST
admit polynomial-time algorithms. In partiular, we would like to �nd out how
restriting various parameters for MAST a�ets the omputational omplexity.
Then, for the appliation mentioned above, if the method used to obtain the
trees provides su�iently strong upper bounds on these parameters, we an be
ertain that we an ompute a maximum agreement subtree e�iently even if
the number of leaves is large.

Previous researh on MAST has mostly foused on restriting the number
of input trees and/or their maximum degrees (see Setion 4.1.2 for a survey of
known results). However, sometimes there are thousands of trees to ompare [54℄.
Also, many of the tree-onstrution methods used today do not guarantee any
upper bounds on the degrees of the produed trees [42℄. Therefore, it may
be bene�ial to study the dependeny of MAST's omputational omplexity on
other parameters besides these two. Our main goal in this hapter is to establish
how the omputational omplexity of MAST is related to the maximum height
of the input trees.

4.1.2 Previous Results

Various aspets of MAST and related problems have been studied in the lit-
erature. We summarize some of the algorithmi and ombinatorial highlights
below.

4.1 Introdution 55

Most of the published results on MAST involve algorithms for the speial ase
k = 2. This line of researh was initiated by Finden and Gordon [45℄ who pre-
sented a polynomial-time heuristi (not guaranteed to �nd an optimal solution)
for MAST restrited to instanes onsisting of two binary trees. A few years later,
Kubika, Kubiki, and MMorris [86℄ gave an exat algorithm with superpolyno-
mial running time in the worst ase for the unrooted maximum agreement subtree
problem (UMAST)2 for two binary, unrooted trees. Steel and Warnow [117℄ pre-
sented the �rst exat polynomial-time algorithms to solve MAST and UMAST
for two trees with unbounded degrees. Sine then, a plethora of improvements
have been published (e.g., [28, 41, 42, 54, 73, 74, 75, 76, 77, 78, 87, 108, 119℄).
The fastest urrently known algorithm for MAST with k = 2, invented by Kao,
Lam, Sung, and Ting [78℄, runs in O(

√
D n log(2n/D)) time, where D is the max-

imum degree of the two input trees3. Note that this is O(n log n) for trees with
maximum degree bounded by a onstant and O(n1.5) for trees with unbounded
degrees; inidentally, this mathes the running times of the fastest algorithms
for UMAST so far: O(n log n) for two unrooted trees with maximum degree
bounded by a onstant [74℄, and O(n1.5) for two unrooted trees with unbounded
degrees [119℄. Finally, for two rooted, ordered trees, a maximum agreement
subtree an be omputed in O(n log2 n) time [119℄.

Amir and Keselman [6℄ onsidered the more general ase k ≥ 2. They proved
that MAST is NP-hard already for three trees with unbounded degrees, but
solvable in polynomial time for three or more trees if the degree of at least
one of the input trees is bounded by a onstant. For the latter ase, Farah,
Przytyka, and Thorup [40℄ gave an algorithm with improved e�ieny running
in O(kn3 + nd) time, where d is an upper bound on at least one of the input
trees' degrees; Bryant [21℄ proposed a oneptually di�erent algorithm with the
same running time. Bryant's approah led to a reent result in the �eld of
parameterized omplexity theory stating that it is possible to determine whether
an instane of MAST has an agreement subtree with at least n − µ leaves for
any integer 0 ≤ µ ≤ n in O(kn3 + 2.270µ) time4 (see [5℄).

In [6℄, Amir and Keselman also presented a fator 4 approximation algorithm
with O(kn5) running time for the problem of �nding a subset of S of minimum
ardinality whose removal leaves a set S̃ suh that T1|S̃ = T2|S̃ = ... = Tk|S̃,
where all trees are unrooted.

Hein, Jiang, Wang, and Zhang [60℄ proved the following inapproximability
result: MAST with three trees with unbounded degrees annot be approxi-
mated within a fator of 2logδ n in polynomial time for any onstant δ < 1,
unless NP ⊆ DTIME[2polylog n℄. This inapproximability result also holds for

2UMAST is de�ned like MAST exept that all trees are unrooted and T |S′ now denotes
the tree obtained by �rst deleting from T all nodes (and their inident edges) whih are not
on any path between two leaves in S′, and then ontrating every node with degree 2.

3In fat, the result still holds for D equal to the smaller of the two input trees' degrees [120℄.
4Note that O(kn3 + 2.270µ) running time might be preferable to O(kn3 + nd) if d is

unrestrited and the number of leaves we are willing to exlude is small.

56 Chapter 4. On the Approximability of MAST

UMAST [60℄. Bonizzoni, Della Vedova, and Mauri [19℄ showed that it an be
arried over to the maximum isomorphi agreement subtree problem (MIT)5 re-
strited to three trees with unbounded degrees as well, and that even stronger
bounds an be proved for MIT in the general ase. Akutsu and Halldórsson [4℄
and Khanna, Motwani, and Yao [82℄ proved lower and upper bounds on the ap-
proximability of another related problem known as the largest ommon subtree
problem (LCST)6.

Finally, we mention some known results of a more enumerative nature.
Kubika, Kubiki, and MMorris [85℄ demonstrated that even if UMAST is re-
strited to two binary, unrooted trees, there exist instanes whih have (61/4)n,
i.e., an exponential number of di�erent maximum agreement subtrees (adjusting
the idea used in their onstrution to two binary, rooted trees yields an analogous
exponential worst-ase lower bound for MAST). In the same paper, the authors
gave lower bounds on the number of leaves in any maximum agreement sub-
tree of two binary, unrooted trees; these bounds were subsequently strengthened
(and extended to over the ase of binary, rooted trees) by Goddard and Ku-
biki [55℄.

4.1.3 Our Contributions

In Setion 4.2, we show how Akutsu and Halldórsson's general-purpose approx-
imation algorithm for the largest ommon subtree problem given in [4℄ an be
modi�ed to obtain a simple fator (n/ log n) approximation algorithm for MAST
whose running time is O(kn2).

Then, in Setion 4.3, we prove that: (1) if P 6=NP then MAST annot be
approximated within a fator of nǫ for any onstant ǫ where 0 ≤ ǫ < 1

2 in
polynomial time, even for instanes ontaining only trees of height 2; and (2) if
ZPP 6=NP then MAST annot be approximated within a fator of nǫ for any
onstant ǫ where 0 ≤ ǫ < 1 in polynomial time, even for instanes ontaining
only trees of height 2. This implies that if we only restrit the maximum height
of the input trees then MAST remains hard to approximate.

On the other hand, we show in Setion 4.4 that if both the number of input
trees and the height of at least one tree are bounded by onstants then MAST
an approximated e�iently. More preisely, we prove that MAST restrited
to instanes with k = O(1) and h = O(1) an be approximated within a on-
stant fator in polynomial time. Furthermore, if all of the input trees' heights
are required to be bounded by a onstant (H = O(1)), then MAST an be
approximated within a onstant fator in O(n log n) time.

5MIT is de�ned like MAST exept that when omputing T |S′, nodes having just one hild
are left that way, i.e., no edges are ontrated.

6In LCST, the input is a set of rooted, unordered trees in whih all nodes are labeled and
the same label may be assigned to more than one node, and the objet is to �nd a node-labeled
tree with the maximum possible number of nodes that is isomorphi to an indued onneted
subgraph in eah of the input trees.

4.2 A Polynomial-Time (n/ log n)-Approximation Algorithm for MAST 57

4.2 A Polynomial-Time (n/ logn)-Approximation

Algorithm for MAST

Akutsu and Halldórsson's general-purpose approximation algorithm for the larg-
est ommon subtree problem from [4℄ an be adapted to obtain a polynomial-time
(n/ log n)-approximation algorithm for MAST. Observe that this does not on-
tradit the inapproximability result of Hein et al. [60℄ (see Setion 4.1.2) sine
n/ log n = 2log n−log log n = ω(2logδ n) for any �xed δ < 1. The resulting algo-
rithm is alled Algorithm Simple MAST-Approx and is presented in Figure 4.3.

Algorithm Simple MAST-Approx

Input: An instane of MAST.

Output: An agreement subtree of T whose number of leaves is at least log n
n

times the number of leaves in a maximum agreement subtree of T .

1 Arbitrarily partition S into ⌊n/ log n⌋ sets S1, S2, ..., S⌊n/ log n⌋, eah of size at
most ⌈log n⌉+ 1.

2 Let Z := ∅.

3 for eah subset S′
i of eah set Si do

If |S′
i| > |Z| and T1|S

′
i = T2|S

′
i = ... = Tk|S

′
i then let Z := S′

i.

endfor

4 return T1|Z.

End Simple MAST-Approx

Figure 4.3: Akutsu and Halldórsson's approximation algorithm applied to MAST.

Theorem 4.1 Algorithm Simple MAST-Approx is an n
log n -approximation al-

gorithm for MAST and an be implemented to run in O(kn2) time.

Proof: Let S∗ be the leaves in a maximum agreement subtree of T . Beause
of the pigeonhole priniple, at least one of the sets S1, S2, ..., S⌊n/ log n⌋ ontains

≥ 1
⌊n/ log n⌋ of the elements in S∗; thus, |Z| ≥ |S∗|

⌊n/ log n⌋ ≥
|S∗|

n/ log n .

To implement step 3 of the algorithm, �rst onstrut T1|Si, T2|Si, ..., Tk|Si

for all the sets Si. Eah tree Tj |Si an be obtained in O(n) time and ontains at
most log n+2 leaves and hene O(log n) nodes in total sine every internal node
of Tj|Si has at least two hildren. Next, every set Si has at most 2log n+2 = O(n)
subsets to be onsidered by the algorithm; eah suh subset S′

i an be evaluated
in O(k log n) time by heking if (T1|Si)|S′

i = (T2|Si)|S′
i = ... = (Tk|Si)|S′

i.
Thus, Algorithm Simple MAST-Approx an be implemented to run in O(n

log n ·
k · n + n

log n · n · k log n) = O(kn2) time. ✷

As in [4℄, if at least one of the input trees is known to ontain muh fewer
than n leaves, the running time of Algorithm Simple MAST-Approx an be

58 Chapter 4. On the Approximability of MAST

redued by only onsidering the leaves in that tree rather than all of the leaves
in S (replae Step 1 by �Arbitrarily partition the m leaves of the smallest tree
in T into ⌊m/ logm⌋ sets S1, S2, ..., S⌊m/ log m⌋, eah of size ≤ ⌈logm⌉+1.�) sine
any leaf whih belongs to S∗ must also belong to all of the input trees and, in
partiular, to the smallest input tree.

4.3 MAST Restrited to Trees of Height 2 is Hard

to Approximate

Our main result in this setion is the next theorem.

Theorem 4.2 For any onstant ǫ where 0 ≤ ǫ < 1
2 , MAST, even if restrited

to trees of height 2, annot be approximated within a fator of nǫ in polynomial
time, unless P=NP. Furthermore, for any onstant ǫ where 0 ≤ ǫ < 1, MAST,
even if restrited to trees of height 2, annot be approximated within a fator
of nǫ in polynomial time, unless ZPP=NP.

Proof: We �rst desribe a redution from the maximum independent set prob-
lem to MAST. Then, we show that if MAST ould be approximated within a
fator of nǫ in polynomial time then the problem of �nding a maximum inde-
pendent set in a graph with l verties ould be approximated within a fator
of lǫ+o(1). Finally, we apply a known result about the inapproximability of the
maximum independent set problem to get our result.

Given a graph G = (V, E) where V = {v1, ..., vl} and E = {e1, ..., ek} with
k > 1, onstrut k rooted trees T1, ..., Tk on l + q labeled leaves (q is an integer
that will be spei�ed below) ontaining all the adjaeny information about the
verties of G as follows. For eah edge ei = {va, vb} ∈ E, build a rooted tree Ti

on the set of leaves labeled by w1, ..., wl, wl+1, ..., wl+q. Let the root ri of Ti be
the parent of (l − 1) + q hildren, where the �rst hild (�the non-leaf hild�) is
a node with two hildren leaves labeled wa and wb, and the remaining hildren
of ri are leaves labeled by the elements in {wj | 1 ≤ j ≤ l + q and j 6∈ {a, b}}.
Thus, ri has exatly one pair of grandhildren, and we write GC(Ti) = {wa, wb}.

v
7

v5

v4

e2

e3

e
4

e6 e7

e8

v3

v
2

v1

v6

e1

5e

Figure 4.4: An instane of the maximum independent set problem with l = 7, k = 8.

4.3 MAST Restrited to Trees of Height 2 is Hard to Approximate 59

T :1

7+1
7+2w

w

1 4

2 3 5 6 7w w

w w

w w w

r
1

T :2

w w

w w

w w w

7+1
7+2w

w

r

1 2 3

4

4 5

6 7

T :4

7+1
7+2w

w

7w w

w

w w w

r

w

3

1 5

2 3 4 6

T :3

7+1
7+2w

w

6 7w w

w w

w w w

r
5

2 5

1 3 4

T :T :5 6

5 6 7w w

w w

w w w

1

3 4

2

7+1
7+2w

w

r2

7w w

w w

w w w

7+1
7+2w

w

r6

2 6

1 3 4 5

T : T :7 8

w w

w w

w w w

7+1
7+2w

w

r8

6 7

1 2 3 4 5

7+1
7+2w

w

7w w

w

w w w

r
7

3 w6

1 2 4 5

Figure 4.5: The trees Ti orresponding to the graph in Figure 4.4.

60 Chapter 4. On the Approximability of MAST

7+1
7+2w

w

2w w 7ww3 4

T:
r

Figure 4.6: The maximum agreement subtree of T1, ..., T8 shown above tells us that
{v2, v3, v4, v7} is a maximum independent set of the graph in Figure 4.4.

Now, let T be a maximum agreement subtree of T1, ..., Tk. Denote the set
of leaves in T by S′. We hoose q large enough to guarantee that eah of the
roots r1, ..., rk will orrespond to the root of T , i.e., so that ri is still the root of
Ti|S′ for every i ∈ {1, ..., k}. Atually, q = 2 is su�ient. (To see this, assume
that for some i, the non-leaf hild of ri turns out to be the root of Ti|S′. By the
onstrution above, all non-leaf hildren have two leaf hildren, so the number of
leaves in this agreement subtree an be no larger than two. But we an always
�nd an agreement subtree with three leaves by seleting ri as root and inluding
wl+1 and wl+2 in addition to any �xed leaf wj , where 1 ≤ j ≤ l. Contradition.
In the same way, if any of the other desendants of ri beomes the root of Ti|S′

then the resulting agreement subtree an not be maximal.)
The root r of T has no non-leaf hildren beause if it did, then there would

exist some x and y suh that for eah i, where 1 ≤ i ≤ k, GC(Ti) would
be equal to {wx, wy}. Consequently, G would only have one edge, whih on-
tradits k > 1. Thus, the hildren of r are m + q (= m + 2) leaves labeled
wµ1 , wµ2 , ..., wµm , wl+1, wl+2. If va is adjaent to vb in G then at most one of wa

and wb an be a hild of r. Otherwise, GC(Ti) would not be equal to {wa, wb}
for any Ti, and ei 6= {va, vb} would hold for all i, ontraditing the adjaeny
of va and vb in G. Hene, the verties vµ1 , vµ2 , ..., vµm form an independent
set in G. Conversely, given an independent set I in G, we an onstrut an
agreement subtree with |I|+ 2 leaves onsisting of a root node with |I| hildren
distintly labeled by {wj : vj ∈ I}, and two hildren labeled by wl+1 and wl+2.
By the maximality of T , m equals the ardinality of a maximum independent
set in G. Thus, an exat algorithm for MAST would immediately yield an exat
algorithm for the maximum independent set problem. See Figures 4.4�4.6 for
an example of the redution.

The trees T1, ..., Tk an learly be onstruted from G in polynomial time.
Also, note that they are of height 2. Below, we only onsider approximations
that an be arried out in polynomial time. Assume that MAST ould be ap-
proximated within a fator of nǫ for some ǫ ≥ 0. Then OPT

APPR ≤ nǫ, where
OPT refers to the number of leaves in an optimal solution for a given instane
of MAST and APPR is the number of leaves in its approximate solution. In
partiular, for the instane of MAST obtained in the redution above, we would
have m+2

APPR ≤ (l + 2)ǫ, and the size of the orresponding approximate indepen-

4.4 Approximations of MAST with O(1) Trees of O(1) Height 61

dent set would be APPR − 2. For APPR − 2 ≥ 1, this would imply that the
problem of �nding a maximum independent set in a graph ould be approxi-
mated within a fator of m

APPR−2 ≤ 3 · m+2
APPR ≤ 3(l + 2)ǫ = lǫ+o(1). However,

Håstad proved in [66℄ that this problem is not approximable within:

(1) l1/2−δ for any onstant δ > 0, unless P=NP; and

(2) l1−δ for any onstant δ > 0, unless ZPP=NP

If ǫ = 1
2−τ for some onstant τ > 0 then lǫ+o(1) = l1/2−τ+o(1) = l1/2−δ, where

δ = τ − o(1). For large enough l, δ is stritly greater than 0 sine τ − o(1)→ τ
as l → ∞. Thus, from (1) it follows that if P 6= NP then no polynomial-time
algorithm an approximate arbitrary instanes of MAST restrited to trees of
height 2 within a fator of nǫ for any onstant ǫ with 0 ≤ ǫ < 1

2 .

Similarly, by (2), MAST restrited to trees of height 2 annot be approxi-
mated in polynomial time within a fator of nǫ for any onstant ǫ with 0 ≤ ǫ < 1,
unless ZPP=NP. ✷

Engebretsen and Holmerin [36℄ obtained an even tighter inapproximability
result for the maximum independent set problem than the one ited above, under
the slightly stronger assumption that NP 6⊆ ZPTIME[2O(log n(log log n)3/2)℄ (note
that if this assumption is true, then NP 6= ZPP automatially follows). More
preisely, they showed that the maximum independent set problem annot be ap-
proximated in polynomial time within a fator of n1−O(1/

√
log log n), where n is the

number of verties in the input graph, unless NP ⊆ ZPTIME[2O(log n(log log n)3/2)℄.
This result an be used to extend Theorem 4.2 aordingly.

4.4 Approximations of MAST with O(1) Trees of
O(1) Height

We know that MAST remains hard to approximate even if we restrit the number
of input trees to any onstant greater than or equal to three [60℄, or if we restrit
the heights of the trees to be bounded by a onstant greater than or equal to two
(Theorem 4.2). The natural question arises whether or not MAST for instanes
with a onstant number of trees, eah one of height bounded by a onstant,
an be tightly approximated in polynomial time. In this setion, we prove the
following theorem, whih together with Theorem 4.2 yields a haraterization of
the approximability of MAST restrited to instanes with trees of O(1) height
(in fat, the theorem only requires that at least one of the trees' heights is
bounded by a onstant). Reall that k denotes the number of input trees and
that h = min{height(Ti) | 1 ≤ i ≤ k} and H = max{height(Ti) | 1 ≤ i ≤ k}.

Theorem 4.3 MAST restrited to instanes with k = O(1) and h = O(1) an
be approximated within a onstant fator in polynomial time.

62 Chapter 4. On the Approximability of MAST

Before proving Theorem 4.3, we introdue some notation. For any tree T ,
V (T) stands for the set of nodes of T and Λ(T) for the set of labels of the leaves
in T . Let v be a node of a rooted tree T . The subtree of T rooted at v (i.e., the
minimal subgraph of T whih inludes v and all of its desendants) is denoted
by T [v]. The set of hildren of v in T is denoted by C(v). Furthermore, by a
k-partite hypergraph H we mean a pair (V1 ∪ ... ∪ Vk, E), where V1 through Vk

are pairwise disjoint sets and E is a subset of V1 × ... × Vk. The elements of
V1 ∪ ... ∪ Vk are alled verties of H whereas the elements of E are alled edges
of H. A mathing of H is a subset of E in whih no two edges inlude a ommon
vertex.

Given an instane of MAST, for every (v1, ..., vk) ∈ V (T1)×...×V (Tk), de�ne
Mast(v1, ..., vk) as the number of leaves in a maximum agreement subtree of the
trees T1[v1], ..., Tk[vk]. Next, de�ne Diag(v1, ..., vk) = max

{

Mast(w1, ..., wk) |
(w1, ..., wk) ∈ ({v1} ∪ C(v1))× ...× ({vk} ∪ C(vk)) − {(v1, ..., vk)}

}

. Finally, let
H(v1, ..., vk) denote the k-partite hypergraph (C(v1) ∪ ... ∪C(vk), C(v1)× ...×
C(vk)) in whih eah edge (w1, ..., wk) has weight equal to Mast(w1, ..., wk), and
let Match(v1, ..., vk) be the maximum weight of a mathing in the hypergraph
H(v1, ..., vk).

The next lemma is a generalization of the main lemma behind the dynami
programming approah to MAST for the ase k = 2 presented in [41℄ and [117℄.

Lemma 4.4 For every (v1, ..., vk) ∈ V (T1)× ...× V (Tk),

Mast(v1, ..., vk) =

|Λ(T1[v1]) ∩ ... ∩ Λ(Tk[vk])|, if at least one of
v1, ..., vk is a leaf

max
{

Diag(v1, ..., vk), Match(v1, ..., vk)
}

, otherwise

Proof: If at least one of v1, ..., vk is a leaf ℓ then Mast(v1, ..., vk) equals 0
or 1 depending on whether ℓ ours in all of the trees T1[v1], ..., Tk[vk], i.e.,
Mast(v1, ..., vk) = |Λ(T1[v1]) ∩ ... ∩ Λ(Tk[vk])|.

Next, if none of v1, ..., vk is a leaf then let T be a maximum agreement subtree
of T1[v1], ..., Tk[vk] and write L = Λ(T) so that |L| = Mast(v1, ..., vk). There are
two possibilities:

1. (The Diag ase.)
In at least one tree Ti, the lowest ommon anestor of L lies below vi.

2. (The Match ase.)
In every tree Ti, vi is the lowest ommon anestor of L.

In the �rst ase, T is also a maximum agreement subtree of any set of trees
T1[x1], ..., Tk[xk], where eah xi belongs to the set of nodes on the path from
vi to the lowest ommon anestor of L in Ti. Thus, we have Mast(v1, ..., vk) =

4.4 Approximations of MAST with O(1) Trees of O(1) Height 63

1 kvv v2

Figure 4.7: (The Diag ase.) Here, T is also a maximum agreement subtree
of T1[v1], T2[z], ..., Tk[vk], where z is a hild of v2. Hene, Mast(v1, v2, ..., vk) =
Mast(v1, z, ..., vk).

v1 kvv2

Figure 4.8: (The Match ase.) T has three hildren, eah of whih is the root of a
maximum agreement subtree for a set of trees T1[w1], ..., Tk[wk], where wi is a hild
of vi for all 1 ≤ i ≤ k. Mast(v1, ..., vk) is given by the maximum weight of a mathing
in H(v1, ..., vk).

Mast(w1, ..., wk) for some (w1, ..., wk) ∈ ({v1} ∪ C(v1))× ...× ({vk} ∪ C(vk)) −
{(v1, ..., vk)}. This ase is illustrated in Figure 4.7.

In the seond ase, illustrated in Figure 4.8, for every i ∈ {1, ..., k} the
elements in L are desendants of at least two of Ti[vi]'s hildren. Sine T is an
agreement subtree of T1[v1], ..., Tk[vk], the partition of L into disjoint, nonempty
sets eah onsisting of desendants of one of vi's hildren is idential for all
trees Ti[vi]. Hene, the elements of L an be partitioned into L1, ..., Lq with
q ≥ 2 suh that for eah j ∈ {1, ..., q}, T |Lj is a maximum agreement subtree of
a set of trees T1[w1], ..., Tk[wk], where wi ∈ C(vi) for all 1 ≤ i ≤ k. Denote the
k-tuple (w1, ..., wk) ∈ C(v1)× ...×C(vk) of anestors of Lj by Γj . Observe that
Mast(Γj) = |Lj| for every j ∈ {1, ..., q} and that beause L1, ..., Lq are disjoint,
Γ1, ...,Γq are also disjoint. Thus, {Γ1, ...,Γq} is one of the mathings in the k-
partite hypergraph H(v1, ..., vk). By the de�nition of H(v1, ..., vk), the weight
of this mathing equals Mast(Γ1) + ... + Mast(Γq) = |L1| + ... + |Lq| = |L|.
Moreover, it is a maximum weight mathing sine otherwise there would exist an
agreement subtree of T1[v1], ..., Tk[vk] with more than |L| leaves, ontraditing
the maximality of T . Therefore, Mast(v1, ..., vk) = Match(v1, ..., vk).

Finally, we note that in the Diag ase, Match(v1, ..., vk) ≤ |L|, and similarly,
in the Match ase, Diag(v1, ..., vk) < |L|. Thus, the lemma follows. ✷

64 Chapter 4. On the Approximability of MAST

Lemma 4.4 implies that we ould ompute Mast(v1, ..., vk) exatly for any k-
tuple (v1, ..., vk) in V (T1)× ...×V (Tk) if we knew the values of Mast(w1, ..., wk)
for all (w1, ..., wk) ∈ ({v1} ∪ C(v1))× ...×({vk} ∪ C(vk)) − {(v1, ..., vk)}. Hene,
to ompute the number of leaves in a maximum agreement subtree of T1, ..., Tk,
we ould employ dynami programming to alulate all values of Mast in a
bottom-up manner, e.g., by evaluating the k-tuples in V (T1) × ... × V (Tk) in
inreasing order in the lexiographi ordering O of V (T1)× ...×V (Tk) where the
nodes in eah V (Ti) are postordered (�x an arbitrary left-to-right ordering of
the hildren of eah node to obtain a well-de�ned postordering). The resulting
algorithm (Algorithm Compute Mast) is listed in Figure 4.9.

Algorithm Compute Mast

Input: An instane of MAST.

Output: The number of leaves in a maximum agreement subtree of T .

1 Let O be the lexiographi ordering of V (T1) × ... × V (Tk), where the nodes
in eah V (Ti) are ordered aording to postorder.

2 for eah (v1, ..., vk) ∈ V (T1)× ...× V (Tk) in inreasing order in O do

Compute Mast(v1, ..., vk) by using the expression in Lemma 4.4.

endfor

3 return Mast(r1, ..., rk), where ri is the root of Ti for 1 ≤ i ≤ k.

End Compute Mast

Figure 4.9: A dynami programming algorithm for omputing all values of Mast.

However, the running time of Algorithm Compute Mast may be very large
for two reasons.

First of all, there are O(nk) k-tuples in V (T1) × ... × V (Tk). For most of
these, Mast equals zero beause there is no leaf whih is ontained in all of the
subtrees rooted at that k-tuple. Therefore, most k-tuples do not ontribute to
the Mast values of other k-tuples. In the proof of Lemma 4.6 below, we will
show that the number k-tuples with Mast stritly greater than 0 is bounded
by n(H + 1)k, allowing the running time to be redued orrespondingly by only
onsidering these k-tuples.

Seondly, and more problematially, we annot expet to be able to om-
pute the exat value of Match(v1, ..., vk) in the expression for Mast(v1, ..., vk)
in Lemma 4.4 in polynomial time sine �nding a maximum weight mathing in a
k-partite hypergraph is NP-hard already for the speial ase with k = 3 and all
weights set to 1 [49, 105℄. For this reason, we rely upon a greedy, polynomial-time
algorithm for approximating Match(v1, ..., vk), whih in turn yields an approx-
imation of Mast(v1, ..., vk). The performane and running time of the greedy
algorithm are given by the next lemma.

4.4 Approximations of MAST with O(1) Trees of O(1) Height 65

Lemma 4.5 Let H = (V, E) be a k-partite hypergraph with positive integer
weights. A mathing of H with total weight within a fator k of the maximum
an be onstruted in O(|V |+ k|E|+ |E| log |E|) time.

Proof: Compute a maximal mathing M of H with the following greedy al-
gorithm. Initially, let M be the empty set. Repeat until E is empty: �nd the
heaviest edge e in E, remove e from E, add e to M , and delete from E all edges
whih overlap e. Finally, return M .

To analyze the greedy algorithm's performane, let M∗ be a maximum weight
mathing of H. For any edge f ∈ M∗, f is eventually removed from E by the
greedy algorithm due to some overlapping edge e being seleted for inlusion
in M ; we say that f is aounted for by e and write f ∈ A(e) (if f itself belongs
to M then f is aounted for by f). Note that f must be aounted for by some
edge in M sine at least one vertex in f is in an edge of M . Now, whenever an
edge e is added to M by the algorithm, every edge that remains in E has weight
less than or equal to weight(e). Furthermore, e an overlap at most k edges
in M∗, so the total weight of the edges in M∗ that remain in E at that point
and overlap e is less than or equal to k · weight(e), i.e.,

∑

e∗∈A(e)

weight(e∗) ≤ k · weight(e)

Summing over all edges in M gives us

∑

e∈M

∑

e∗∈A(e)

weight(e∗) ≤ k ·
∑

e∈M

weight(e)

The left-hand side equals
∑

e∗∈M∗

weight(e∗), so weight(M) ≥ 1
k · weight(M∗).

To implement the greedy algorithm, san the edges in E one to produe
a list L(v) for every vertex v ∈ V of all edges in E inident to v. This takes
O(|V |+k|E|) time. Next, sort the edges in E aording to noninreasing weights
in O(|E| log |E|) time and store them in a doubly linked list. Then, when an
edge is to be added to M , selet the �rst element e in the sorted list and loate
all edges whih overlap e using the L(v)-lists with v ∈ e. For eah suh edge,
heking if it still belongs to the sorted list and in that ase deleting it takes
O(1) time, so this step takes a total of O(k|E|) time. Therefore, the running
time of the greedy algorithm is O(|V |+ k|E|+ |E| log |E|). ✷

By modifying Algorithm Compute Mast and applying Lemma 4.5, we obtain
the following:

66 Chapter 4. On the Approximability of MAST

Lemma 4.6 Mast(r1, ..., rk), where ri is the root of Ti for 1 ≤ i ≤ k, an be
approximated within a fator of kh in O(2k ·n(H + 1)k ·(log n + k log H)) time,
where h = min{height(Ti) | 1 ≤ i ≤ k} and H = max{height(Ti) | 1 ≤ i ≤ k}.

Proof: For any (v1, ..., vk) ∈ V (T1)× ...×V (Tk), denote by s(v1, ..., vk) the size
of the set Λ(T1[v1]) ∩ ... ∩ Λ(Tk[vk]). Clearly, Mast(v1, ..., vk) ≤ s(v1, ..., vk),
and in partiular, if at least one of the vi's is a leaf then Mast(v1, ..., vk) =
s(v1, ..., vk). For every leaf j, we an determine all k-tuples (v1, ..., vk) for whih
j ∈ Λ(T1[v1]) ∩ ... ∩ Λ(Tk[vk]) by �nding the nodes on the path of length ≤ H
from the leaf j to the root in eah Ti, i = 1, ..., k. It follows that the number of
suh k-tuples is ≤ (H + 1)k. Consequently, the set L of all k-tuples for whih
s(v1, ..., vk) > 0 has size not exeeding n(H + 1)k. To generate L, we sort the
pointers to the leaves by their labels in O(n log n) time for eah of the k trees
and then list the elements of L (inluding repetitions) by following appropriate
tree paths, using a total of O(kn log n + |L|·k) time.

For every k-tuple (v1, ..., vk) not in the set L, we have Mast(v1, ..., vk) = 0
sine Mast(v1, ..., vk) ≤ s(v1, ..., vk). For every (v1, ..., vk) ∈ L where at least
one of v1, ..., vk is a leaf, s(v1, ..., vk) = 1 and Mast(v1, ..., vk) = 1. To e�-
iently ompute approximations of Mast(v1, ..., vk) for the rest of the k-tuples
in L, we �rst build a balaned searh tree SL for L (without repetitions of
k-tuples) with respet to the lexiographi ordering O. Then, we follow the
sheme of Algorithm Compute Mast but only evaluate k-tuples whih belong
to L (we an traverse SL to enumerate them in the orret order). For every
k-tuple (v1, ..., vk) in L, we apply the greedy algorithm desribed in Lemma 4.5
to approximate Match(v1, ..., vk) in the hypergraph HL(v1, ..., vk), de�ned as
the hypergraph H(v1, ..., vk) restrited to edges in L.

To onstrut the HL-hypergraphs, we augment eah k-tuple (v1, ..., vk) in L
with a list E(v1, ..., vk). Any (w1, ..., wk) ∈ L may our as an edge in the HL-
hypergraphs only for HL(v1, ..., vk) where vi is the parent of wi for i = 1, ..., k,
i.e., at most one. Hene, when (w1, ..., wk) has been evaluated, if none of
the nodes w1, ..., wk is a root, we �nd (v1, ..., vk) and then store the k-tuple
(w1, ..., wk) and the approximate value of Mast(w1, ..., wk) in E(v1, ..., vk) us-
ing SL. Beause of the ordering O, when the algorithm later on needs to ap-
proximate Match(v1, ..., vk), E(v1, ..., vk) ontains all edges in HL(v1, ..., vk) and
their approximate weights.

We an employ a similar tehnique to obtain the Diag-values. Equip eah
k-tuple in L with a list D, and whenever some k-tuple (w1, ..., wk) has been
evaluated, store the approximate value of Mast(w1, ..., wk) in the D-lists of the
at most 2k−1 di�erent k-tuples in {v1, w1}× ...×{vk, wk}−{(w1, ..., wk)} where
for i = 1, ..., k, vi is the parent of wi (let vi equal wi if wi is the root of Ti),
using SL. Then, when the algorithm has to evaluate a k-tuple (v1, ..., vk), its
D-list ontains approximate Mast-values of all k-tuples in ({v1} ∪ C(v1))× ...×
({vk} ∪ C(vk)) − {(v1, ..., vk)}, and by the de�nition of Diag, Diag(v1, ..., vk)
an be obtained by taking the maximum value in its D-list.

4.4 Approximations of MAST with O(1) Trees of O(1) Height 67

We now prove by indution on h that the approximation fator of this
method is kh. First observe that all non-optimal values obtained in the Mast-
omputations are due to approximations of Match. Thus, the returned solution
di�ers from the optimum only if it uses one or more approximate Match-values.
This immediately implies that if h = 0 then Mast(r1, ..., rk) is omputed ex-
atly. Next, for h > 0, assume indutively that kh−1-approximations of every
Mast(w1, ..., wk), where wi ∈ V (Ti)−{ri} for 1 ≤ i ≤ k, are available. Let Tj be
a tree in {T1, ..., Tk} with height h. By the indution hypothesis, we have kh−1-
approximations of the weights of all edges in the hypergraphHL(v1, ..., rj , ..., vk)
for any (v1, ..., rj , ..., vk) ∈ V (T1)×...×{rj}×...×V (Tk). We subsequently obtain
an approximation of Match(v1, ..., rj , ..., vk) whih is within a fator of kh of the
optimum when using Lemma 4.5. It follows that Diag(v1, ..., rj , ..., vk) for any
(v1, ..., rj , ..., vk) ∈ V (T1) × ... × {rj} × ... × V (Tk), and hene Mast(r1, ..., rk),
is approximated within a fator of kh.

Finally, we analyze the running time. To generate L takes O(kn log n+|L|·k)
time, where |L| ≤ n(H +1)k as shown above, and to build SL takes O(|L| log |L|)
time. Denote the number of edges in HL(v1, ..., vk) by e(v1, ..., vk). Then
HL(v1, ..., vk) has at most k · e(v1, ..., vk) verties. Sine the HL-hypergraphs
have no more than |L| edges in total (reall that eah k-tuple in L appears as
an edge in at most one HL-hypergraph), we have

∑

(v1,...,vk)∈L

e(v1, ..., vk) ≤ |L|.
By Lemma 4.5, the time required to onstrut all HL and approximate all
Match-values is therefore bounded by

O(k + log |L|) · |L|
+

∑

(v1,...,vk)∈L

O
(

k · e(v1, ..., vk) + k · e(v1, ..., vk) + e(v1, ..., vk) log e(v1, ..., vk)
)

whih is O((k+log |L|)·|L| + k|L| + k|L| + |L|·log n) = O(|L| log |L|). Creating
the D-lists takes a total of O((k + 2k · log |L|) · |L|) time, and the time needed
to san all the D-lists (to �nd maximum values) is proportional to the sum of
their lengths, whih is O(2k · |L|); thus, the Diag omputations take a total of
O(2k·|L| log |L|) time. Adding everything together, we see that the total running
time is O(2k ·|L| log |L|) = O(2k ·n(H + 1)k ·(log n + k log H)). ✷

To ompute an atual approximate maximum agreement subtree and not just
the number of leaves it ontains, extend the modi�ed Algorithm Compute Mast
in the proof of Lemma 4.6 in the following way. Assoiate an initially empty list
M(v1, ..., vk) to eah k-tuple (v1, ..., vk) in L. When Mast(v1, ..., vk) is omputed,
insert pointers to the k-tuples whih ontribute to the value of Mast(v1, ..., vk)
into M(v1, ..., vk). (If at least one of v1, ..., vk is a leaf then M(v1, ..., vk) is left
empty. Otherwise, if the approximate value of Diag(v1, ..., vk) is greater than or
equal to the approximate value of Match(v1, ..., vk) then insert a pointer to a k-
tuple in the expression for Diag yielding the maximum value of Mast(v1, ..., vk);

68 Chapter 4. On the Approximability of MAST

if the approximate value of Diag(v1, ..., vk) is less than the approximate value
of Match(v1, ..., vk) then insert pointers to all k-tuples whih are edges in the
seleted mathing of HL(v1, ..., vk).) After Mast(r1, ..., rk) has been alulated,
the set S′ of elements in an approximate maximum agreement subtree an be
reonstruted by following pointers in the M -lists, starting at M(r1, ..., rk). Fi-
nally, return the tree T1|S′ as the solution.

The additional time needed to build all of the M -lists and to follow pointers
to obtain S′ is O(|L| log |L|), and the time required to onstrut T1|S′ is O(n), so
the total running time is still O(2k·n(H +1)k·(log n+k log H)). Sine k = O(1),
h = O(1), and H = O(n) imply that this expression is a polynomial in n and
that kh is a onstant, we have just proved Theorem 4.3.

If we also require the height of every input tree to be bounded by a onstant
(i.e., H = O(1)) then the asymptoti running time is only O(n log n) sine
(H + 1)k is O(1).

Corollary 4.7 MAST restrited to instanes with k = O(1) and H = O(1) an
be approximated within a onstant fator in O(n log n) time.

We end this setion with the observation that an algorithm of Berman [17℄
based on loal searh an be used to approximate maximum weight mathings in
k-partite edge-weighted hypergraphs in polynomial time7. The resulting approx-
imation fator is k+1

2 , whih beats the approximation fator of k of the greedy
algorithm desribed in Lemma 4.5; however, its running time an be muh slower
than that of the greedy algorithm. Thus, we an improve the approximation fa-
tor in Lemma 4.6 to (k+1

2)h if we are willing to sari�e some additional running
time.

4.5 Conluding Remarks

Below, we summarize how restriting the parameters h, H , and k a�ets the
omputational omplexity of MAST. The �rst table lists hardness results, and
the seond one shows how well we an approximate MAST in polynomial time.

Arrows indiate when a result follows diretly from another by generalization
(for example, MAST restrited to instanes with H = 2 and k = 3 is NP-hard,

7Given a d-law free graph (i.e., a graph in whih no vertex has d neighbors whih form
an independent set) G = (V, E) and a funtion w : V → R+, the algorithm in [17℄ �nds
an independent set I suh that w(I∗)/w(I) ≤ d/2, where I∗ is an independent set whih
maximizes w(I∗). Consider the vertex-weighted graph GH formed from a k-partite edge-
weighted hypergraph H by representing eah hyperedge in H by a vertex with the same weight,
and inluding an edge between two verties in GH if and only if the orresponding hyperedges
in H interset. Any independent set in GH orresponds to a mathing of H. Furthermore, if
a hyperedge e in H overlaps k + 1 hyperedges then at least two of them must overlap e in the
same vertex in H and therefore be neighbors in GH, so no set of k + 1 neighbors of e in GH

an onstitute an independent set, i.e., GH is (k + 1)-law free.

4.5 Conluding Remarks 69

so the more general ase with H = 2 and k = O(1) annot be any easier)
or by speialization (e.g., the O(1)-approximation algorithm for the ase with
h = O(1) and k = O(1) still works for the more restrited ase with h = 2 and
k = O(1)). Note that sine h ≤ H , any upper bound imposed on H implies
an upper bound on h. Thus, although the ase with H = O(1) and k = 3 is
NP-hard, it admits a polynomial-time O(1)-approximation algorithm.

Negative results k = 3 k = O(1) k unrestrited

H = 2 NP-hard NP-hard Hard to
(Amir and approximate

Keselman [6℄ 8) (←) (Theorem 4.2)
H = O(1) NP-hard NP-hard Hard to

approximate
(↑) (տ) (↑)

H unrestrited Hard to Hard to Hard to
approximate approximate approximate

(Hein et al. [60℄) (←) (← or ↑)

Positive results k = 3 k = O(1) k unrestrited

h = 2 O(1)-approx. O(1)-approx. n/ logn-approx.
(ց) (↓) (↓)

h = O(1) O(1)-approx. O(1)-approx. n/ logn-approx.
(→) (Theorem 4.3) (↓)

h unrestrited n/ logn-approx. n/ logn-approx. n/ logn-approx.
(→) (→) (Theorem 4.1)

We onlude that only restriting the heights of the input trees or the number
of input trees is not enough to render e�ient approximation algorithms with
small approximation fators possible. However, MAST restrited to instanes
where the height of at least one of the input trees and the number of input
trees are known to be upper bounded by onstants an be approximated within
a onstant fator in polynomial time.

We also remark that other tehniques for approximating MAST might be
useful for instanes in whih the maximum agreement subtree is known to on-
tain many leaves. For example, onsider the problem of �nding a subset of S
of minimum ardinality whose removal leaves a set S̃ suh that T1|S̃ = T2|S̃ =
... = Tk|S̃. This problem is supplementary to MAST in the sense that an exat
algorithm for one of the two problems automatially yields an exat algorithm for

8A loser inspetion of the proof of Amir and Keselman in [6℄ reveals that the NP-hardness
holds even if the problem is further restrited to H = 2 sine all trees onstruted in the
redution have height 2.

70 Chapter 4. On the Approximability of MAST

the other, but approximation fators are not preserved9. In [6℄, Amir and Kesel-
man gave a polynomial-time, fator 4 approximation algorithm for supplemen-
tary UMAST; we note that given an instane (S, T) of UMAST, removing a 4-
approximate solution to the supplementary problem from S provides an approx-
imate solution to the original problem whih has at least n−4(n−m) = 4m−3n
leaves, where m is the number of leaves in a maximum agreement subtree. There-
fore, this method yields a good approximation for UMAST if m is known to be
large: e.g., if m ≥ 0.95n then 4m−3n ≥ 0.8n. We further note that the approx-
imation algorithm for supplementary UMAST an be turned into a polynomial-
time, fator 3 approximation algorithm for supplementary MAST10, and that
given an instane (S, T) of MAST, removing a 3-approximate solution to sup-
plementary MAST from S provides an approximate solution to MAST with at
least n− 3(n−m) = 3m− 2n leaves. As above, this results in a good approxi-
mation fator for MAST if m is large: e.g., if m ≥ 0.95n then 3m− 2n ≥ 0.85n;
indeed, this method gives a onstant approximation fator for MAST whenever
m ≥ 0.67n.

Finally, we list some open problems related to the approximability of MAST
suitable for further researh.

1. Our results in this hapter show that MAST restrited to instanes with
h = 2 and k = 3 an be approximated in polynomial time within a fator
of 32 = 9. For this speial ase, is it possible to onstrut a polynomial-time
approximation sheme (PTAS), or at least a polynomial-time approxima-
tion algorithm with better approximation fator than 9? If so, an the same
tehniques be applied to obtain tighter approximations for other ases of
MAST as well?

2. MAST restrited to instanes with H = 1 an be solved exatly in poly-
nomial time with a trivial algorithm. On the other hand, only requiring
that h = 1 does not help to make the problem easier to solve sine the
inapproximability results of Theorem 4.2 an be extended to over this
ase11. The NP-hardness proof of Amir and Keselman [6℄ an be modi�ed

9The same situation ours for the maximum independent set problem (MIS) and its �sup-
plement�, the minimum vertex over problem (MVC). MIS annot be approximated within a
fator of l1/2−δ , where l is the number of verties in the input graph, for any onstant δ > 0
in polynomial time unless P=NP [66℄, whereas MVC an be trivially approximated within a
fator of 2 by �nding a maximal mathing in the graph and outputting the set of mathed
verties [49, 105, 128℄.

10Instead of onstruting the set S4 of all 4-element subsets of S whih do not indue idential
topologies in all of the input trees and then greedily omputing an approximate minimum over
of S4 (see [6℄), onstrut the set S3 of rooted triples on S whih are not onsistent with all
the input trees and return a 3-approximate minimum over of S3.

11In the proof, also onstrut a rooted tree Tk+1 onsisting of a root node attahed to
l + 2 leaves labeled by w1, ...,wl, wl+1, wl+2. Clearly, Tk+1 has height 1. Furthermore, any
maximum agreement subtree of T1, ..., Tk is also a maximum agreement subtree of T1, ..., Tk+1,
and vie versa. Thus, the inapproximability results hold even if h = 1 and H = 2.

4.5 Conluding Remarks 71

in a similar way to show that MAST restrited to h = 1 and k = 4 is
NP-hard. But what happens to the omputational omplexity of MAST
when h = 1 and k = 3? Is the problem still NP-hard, or does it beome
possible to solve exatly in polynomial time?

3. What is the omputational omplexity of the maximum agreement subtree
problem for rooted, ordered trees? Sung [119℄ showed that MAST for two
rooted, ordered trees an be solved in O(n log2 n) time, whih is less than
the running times of the urrently fastest algorithms for two rooted, un-
ordered trees and for two unrooted trees (see Setion 4.1.2). Moreover, as
shown in Chapters 2 and 3, the maximum 3-leaf onstraints onsisteny
problem is NP-hard for unordered trees but beomes solvable in polyno-
mial time for ordered trees. Also, the problem of omputing an optimal
alignment between two node-labeled trees whih we study in Chapter 5
is NP-hard for unordered trees, yet polynomial-time solvable for ordered
trees. We onjeture that MAST for ordered trees an also be solved in
polynomial time even though MAST for unordered trees is NP-hard. If,
however, MAST for ordered trees turns out to be NP-hard, an it be ef-
�iently approximated even if the trees are allowed to have unbounded
degrees and the parameters h, H , and k remain unrestrited?

Chapter 5

Fast Optimal Alignment

between Two Labeled,

Ordered Trees

Jiang, Wang, and Zhang [70℄ proposed the onept of an alignment between two
node-labeled, rooted trees as a way to measure their similarity and to identify
parts of the trees whih are alike. They presented an algorithm for omputing
an optimal alignment between two node-labeled, ordered trees, but left it as
an open question to determine whether its running time an be improved. We
show that the answer is �yes� for problem instanes where the two input trees
are similar, i.e., where the sore of an optimal alignment between them is high,
under some natural assumptions on the soring sheme.

5.1 Introdution

In this hapter, a tree is said to be labeled if eah node in the tree is labeled
by a symbol from a �xed �nite set Σ or by a speial blank symbol '−' whih
we assume does not belong to Σ. An ordered tree is a rooted tree in whih the
left-to-right order of the hildren of eah node is signi�ant.

An insert operation on a labeled, rooted tree adds a new node u, labeled by
the blank symbol '−'. The operation either:

(1) turns the urrent root of the tree into a hild of u and lets u beome the
new root;

or

73

74 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

(2) makes u the parent of a subset of (if the tree is unordered) or onseutive
subsequene of (if the tree is ordered) hildren1 of an existing node v, and
u a hild of v.

Figure 5.1 shows an example of an insert operation.

Let S and T be two rooted trees, labeled by Σ. An alignment between S
and T is a tree obtained by �rst performing insert operations on S and T so
that the two resulting trees S′ and T ′ are isomorphi when labels are ignored
and then overlaying S′ on T ′. In addition, it is required that no node of the
alignment orresponds to two nodes s′ ∈ S′ and t′ ∈ T ′ whih are both labeled
by blank symbols. The sore of the alignment is the sum of the sores of all pairs
of aligned nodes, where the sore of a pair of nodes is determined by a given
funtion µ de�ned on Σ′ × Σ′ \ {(−,−)} with Σ′ = Σ ∪ {−}. See Figure 5.2
for an example.

An optimal alignment between a pair of labeled, rooted trees is an alignment
between them ahieving the highest possible sore2.

From here on, we assume that Σ and µ have been �xed beforehand so that
µ is not part of the atual input. Also, we onsider ordered trees only; thus, we
fous on the following problem3:

The alignment between ordered trees problem

Instane: Two labeled, ordered trees S and T .

Output: An optimal alignment between S and T under the soring fun-
tion µ.

For any tree S, |S| represents the number of nodes in S. The degree of
a node u in a rooted tree is the number of hildren of u and is denoted by
deg(u). The degree of a rooted tree S is the maximum degree of all nodes in S
and is denoted by deg(S). Given an instane (S, T) of the alignment between
ordered trees problem, we write m = min{|S|, |T |} and n = max{|S|, |T |}, and
let ∆ = max{deg(S), deg(T)}.

1Observe that subsets and onseutive subsequenes an onsist of zero elements.
2In [70℄, Jiang, Wang, and Zhang de�ned an optimal alignment as one with the lowest

possible sore.
3We would have preferred to all it the tree alignment problem (in analogy to the string

alignment problem), but this name is already in use for another optimization problem, de�ned
in, e.g., [10, 58, 111℄. See also Setion 6.1.1.

5.1 Introdution 75

a

b d e

a

b

ec d

−
c

Figure 5.1: An insert operation of type (2). The new node beomes the parent of a
onseutive subsequene of hildren of the node labeled by a, and then beomes a hild
of that node.

b c d e

(a)

a

a ec

(c)

a, a()

(, a)

be −, e() (−, b)

(, −)d

(b)

a

b (c c) (e , e),

Figure 5.2: Let Σ = {a, b, c, d, e} and de�ne the soring funtion µ as follows: for every
x, y ∈ Σ with x 6= y, let µ(x, x) = 3, µ(x, y) = −1, and µ(x,−) = µ(−, x) = −2. Then
the sore of the alignment in () between the two labeled trees shown in (a) and (b) is
equal to 2.

5.1.1 Motivation

Many areas of omputer siene use labeled, ordered trees to represent hierarhi-
ally strutured information. It is sometimes neessary to measure the similarity
between two or more suh trees or to �nd parts of the trees whih are similar:

• In omputational moleular biology, labeled ordered trees an be used to
desribe RNA moleules' seondary strutures [112℄, allowing researhers
investigating, e.g., evolutionary relationships between RNA moleules to
obtain additional lues by measuring and omparing the similarities of
their seondary struture trees [29℄4. Also, when trying to determine the

4This seems espeially helpful when the strings representing the primary strutures of the
moleules annot be reliably aligned, as in the ase of pRNA and mrpRNA studied in [29℄. In

76 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

seondary struture of a given RNA moleule, it is useful to look for fre-
quently reurring patterns among a set of andidate seondary strutures
obtained by simulating the folding proess of the moleule [89℄. Further-
more, likely loations of ertain regulatory sequenes in a DNA moleule
an be revealed by �nding ourrenes of partiular patterns in the se-
ondary struture of the orresponding mRNA. For example, [38℄ employed
a method based on energy-soring funtions and a simple mRNA seondary
struture mathing riterion to predit where in twelve di�erent baterial
genomes that rho-independent transription terminators our; if the se-
ondary struture of the RNA is known, algorithms for identifying more
omplex patterns in the seondary struture trees may failitate the searh
for other important regions.

• The ability to detet hanges in eletroni douments and strutured data
is ruial for information management and data arhiving appliations.
Often, the entire history of modi�ations made to a data �le is unavailable
but snapshots of previous versions of the �le an be obtained and then
analyzed and ompared to the urrent version [25℄. Hene, algorithms for
omparing labeled, ordered trees in order to �nd hanges between di�er-
ent versions of hierarhially strutured douments suh as LaTeX- and
SGML-�les have been developed [25, 129℄.

• In software onstrution, the soure ode of omputer programs (or dif-
ferent versions of one program) an be represented by labeled, ordered
trees and then ompared in order to identify syntati di�erenes between
them [132℄. Algorithms for �nding orrespondenies between labeled, or-
dered trees thus provide a useful tool for programmers and software main-
tainers who need to know where in the soure ode strutural hanges have
been made between di�erent versions, or for a team of programmers who
want to merge their work5.

A related appliation is desribed in [14℄. Suppose a omputer program
ontrolling an industrial proess has been running for some time and that
the program has to be updated. However, the urrent values of ounters
and ertain other variables need to be preserved, e.g., to monitor when
various hardware omponents require maintenane. Rather than restart-
ing the program from srath and manually assigning the old values to
the relevant variables during exeution or modifying their initial values di-
retly in the soure ode by hand before reompiling the program (indeed
a tedious task if there are thousands of ounters, many with similar names,

general, if the RNA moleules to be ompared have evolved for a long time, methods that also
take into aount seondary struture information are potentially more aurate than those
that only rely upon the primary struture [100℄.

5Instead of omputing the di�erenes between versions, it may be more pratial (when
possible) to let the programming environment keep trak of the modi�ations whih have been
made, for example by using tehniques suh as the ones desribed in [9℄. (This an save a lot
of time if the trees are very large and orrespondenies have to be reported many times.)

5.1 Introdution 77

and perhaps even some with idential names, ourring in di�erent bloks
of the program), it would be desirable to automatize this step by identi-
fying parts of the program whih remain unhanged so that information
an be transferred from the old version of the program to the new version
easily. For this purpose, the algorithms given in [14℄ attempt to �nd pairs
of mathing nodes among two labeled, rooted trees representing the two
versions being ompared.

• By omparing various subtrees or subforests of a labeled, ordered tree rep-
resenting a omputer program, one an loate fragments of the soure ode
whih are idential to eah other. Deteting and replaing suh �lones�
by, e.g., subroutines or maros may improve the struture of (and thus
derease the maintenane osts of) software [11℄.

• Compilers need mehanisms for automati error reovery to be able to
report more than just one error per run when analyzing the soure ode of
a omputer program. To selet the best way to reover from an enountered
syntati error so that the parsing proess an ontinue, a ompiler an
measure the similarity between the erroneous part of the program and
various valid replaements by using omparison algorithms for strings as
well as for the orresponding labeled, ordered parse trees [124℄.

Pratial uses of omparing labeled, unordered trees an be found in suh ap-
parently unrelated disiplines as hemial struture analysis, image reognition,
and information retrieval in next-generation database systems (see the refer-
enes in [70, 113℄). Also, identifying strutural similarities in pairs of labeled,
unordered trees representing sentenes expressed in two di�erent languages (e.g.,
English and Japanese) to build an example base or to extrat translation pat-
terns is useful in the preparation of automated natural language translation
systems [95℄.

The appliations listed above employ a variety of tehniques and heuristi
mathing rules; it might be possible to improve the performane of some of these
methods by inorporating alignments between trees. In any ase, it is advanta-
geous to have many methods to hoose from sine alternative ways of measuring
the similarity between labeled trees or alternative riteria for mathing nodes
may be suitable in di�erent ontexts. Hene, algorithms for omputing optimal
alignments between trees are valuable beause of the generality and �exibility
provided by the freedom of the programmer to selet the soring funtion µ as
appropriate.

Moreover, in pratial appliations, it is preferable to have algorithms whih
exeute e�iently. The fastest known algorithms for omputing optimal align-
ments between trees have lower time omplexity than the fastest known algo-
rithms for another measure of similarity alled the tree edit distane [124℄, both
for unordered trees whose degrees are bounded by a onstant [70, 133℄ and for
ordered trees whose degrees are muh smaller than their depths [70, 134℄.

78 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

Further motivation for studying the alignment between ordered trees problem
omes from the fat that it generalizes some well-known ombinatorial problems.
For instane, the speial ase in whih all internal nodes of the trees have exatly
one hild6 is known as the string alignment problem, and the speial ase of the
string alignment problem where the soring funtion satis�es µ(x, x) = 1 and
µ(x,−) = µ(−, x) = µ(x, y) = 0 for every x, y ∈ Σ with x 6= y is the longest
ommon subsequene problem (LCS) [58℄. These two problems have been studied
extensively beause of their numerous appliations to omputer siene, mole-
ular biology, abstrat algebra, speeh reognition, dendrohronology, and many
other �elds [58, 106, 111, 115, 130, 131℄. As an example, the indispensable
UNIX utility diff for omparing two text �les interprets eah line of the in-
put �les as one symbol and then applies an LCS-based algorithm [115℄. Given
the extreme usefulness of algorithms for solving the string alignment problem
and LCS, e�ient algorithms for the more general problem should also be useful.
The maximum (ordered) re�nement subtree problem [60℄, the smallest ommon
(ordered) supertree problem [99℄, and the (ordered) tree inlusion problem [83℄ are
other noteworthy problems whih an be ast as speial ases of the alignment
between (ordered) trees problem (see [60℄ and [70℄).

The algorithm presented in this hapter is designed to e�iently solve in-
stanes of the alignment between ordered trees problem where S and T are
similar, meaning that an optimal alignment between S and T has a high sore.
The motivation for this is that in many appliations, the two input trees be-
ing ompared an be assumed to be losely related and therefore do not di�er
greatly (for example, if only a few hanges have been made between two versions
of an eletroni doument). Then, an algorithm that just onsiders alignments
without a lot of blank symbols and mismathes an ompute an optimal align-
ment more e�iently than an algorithm whih does not make this assumption.
For the speial ase of string alignments, Setion 12.2 of [58℄ lists several ex-
amples where two or more very similar strings need to be ompared and where
the speedups obtained by exploiting bounded di�erene methods are of great
pratial importane.

5.1.2 Previous Results

Jiang, Wang, and Zhang [70℄ generalized string alignments to alignments between
labeled trees and gave an algorithm for the alignment between ordered trees
problem with O(|S| · |T | ·∆2) running time.

Jiang et al. [70℄ also observed that although the sore of an optimal alignment
between two strings and their edit distane are equivalent notions (see, e.g., [58,
106, 111, 130℄), the sore of an optimal alignment between two trees (ordered
or unordered) and their tree edit distane [124℄ are not. In fat, they provided

6More formally, the restrition of the alignment between ordered trees problem to instanes
with ∆ = 1 and where no insert operation may result in a node with degree > 1.

5.1 Introdution 79

a polynomial-time algorithm for omputing an optimal alignment between two
labeled, unordered trees when ∆ = O(1) (and showed the latter problem to
be MAX SNP-hard if at least one of the input trees is permitted to have an
arbitrary degree), whereas omputing the tree edit distane for two labeled,
unordered trees is MAX SNP-hard even if ∆ = O(1) [133℄.

The standard algorithm for the speial ase of string alignments runs in
O(mn) time, where m and n are the lengths of the two input strings [58, 106,
111, 130℄. By modifying the algorithm as desribed in Setion 3.3.4 of [111℄ (see
also Setion 12.2 of [58℄), an optimal alignment between two strings of length n
an in fat be omputed in O(nf) time under ertain assumptions on the soring
sheme, where f is the di�erene between the sore of two idential strings of
length n and the optimal sore of the two input strings.

5.1.3 Our Contributions

Inspired by the fast method for omputing an optimal alignment between two
similar strings desribed in Setion 3.3.4 of [111℄, we present an algorithm for
the alignment between ordered trees problem whih is faster than the algorithm
of Jiang et al. when the sore of an optimal alignment between the two input
trees is high and the soring sheme satis�es some natural assumptions.

We �rst give an algorithm alled Algorithm Fast Sore whih omputes the
sore of an optimal alignment between S and T in O(n · (log n + ∆3) · d2) time
if an optimal alignment with at most d blank symbols exists and d is spei�ed
in advane. The main idea behind Algorithm Fast Sore is to speed up the
algorithm of Jiang et al. by only onsidering what we all d-relevant pairs of
subtrees and subforests. Next, we present a more general algorithm alled Algo-
rithm Unspei�ed d for when no upper bound on d is provided whih omputes
the sore of an optimal alignment in O(n · (log n + ∆3) · f2) time, where (as-
suming that the soring sheme satis�es ertain properties) f is the di�erene
between the highest possible sore for any alignment between two trees having a
total of |S|+ |T | nodes and the sore of an optimal alignment between S and T .
Furthermore, if there exists an optimal alignment between S and T with b blank
symbols and O(b) node pairs of the form (x, y), where x 6= y, then (under some
slightly stronger assumptions on the soring sheme) Algorithm Unspei�ed d
runs in O(n · (log n+∆3) · b2) time, even if b is not known in advane. In parti-
ular, if the degrees of both input trees are bounded by a onstant, the running
times stated above redue to O(n log n · d2), O(n log n · f2), and O(n log n · b2),
respetively.

In Setion 5.2, we desribe the algorithm of Jiang et al. from [70℄. Then,
in Setion 5.3, we de�ne the new onept we all d-relevane. In Setion 5.4,
we show how to test whether a given pair of subtrees or subforests is d-relevant,
and in Setion 5.5, we desribe an e�ient method for enumerating all d-relevant

80 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

pairs of subtrees. Next, we present and analyze Algorithm Fast Sore and Al-
gorithm Unspei�ed d in Setions 5.6 and 5.7. In Setion 5.8, we summarize our
results and disuss some open problems.

5.2 The Algorithm of Jiang, Wang, and Zhang

The algorithm of Jiang, Wang, and Zhang [70℄ for aligning two labeled, ordered
trees is based on the standard dynami programming algorithm for the string
alignment problem whih alulates the sores of optimal alignments between
pairs of pre�xes (or symmetrially, su�xes) of the two input strings in bottom-
up order by using a two-dimensional table to store the omputed sores, and
then, when the table is omplete, performs a traebak to obtain an optimal
alignment (see, e.g., [58, 106, 111, 130℄). The algorithm of Jiang et al. omputes
and stores the sores of optimal alignments between pairs of ordered subtrees
of S and T and between pairs of ordered subforests of S and T in a bottom-up
fashion. After the algorithm is �nished, an atual optimal alignment between S
and T an also be reovered by doing a traebak.

Some notation is neessary to desribe the algorithm in more detail.

De�nition 5.1 For an ordered tree S and a node u of S, let S[u] denote the
ordered subtree of S rooted at u (i.e., the minimal subgraph of S whih inludes u
and all of its desendants). Let deg(u) be the degree of u, and denote the hildren
of u by u1, ..., udeg(u) aording to their left-to-right order. S(u, i, j) refers to
the ordered subforest S[ui], ..., S[uj], and S(u) is short for S(u, 1, deg(u)). The
number of nodes in a subtree or subforest S∗ is denoted by |S∗|. Finally, deg(S)
is de�ned as the maximum degree of all nodes in S.

Thus, S(u) is the omplete ordered forest obtained by removing u and all
edges inident to u from S[u]. Also observe that S(u, i, i) = S[ui].

De�nition 5.2 The sore of an optimal alignment between two subtrees or two
subforests S∗ and T∗ is denoted by D(S∗, T∗).

To obtain a bottom-up ordering of the subtrees and subforests suitable for
dynami programming, the nodes in an ordered tree with n nodes are numbered
1 through n aording to postorder so that D(S[|S|], T [|T |]) will ontain the
sore of an optimal alignment between S and T . Heneforth, Θ represents the
empty tree and gS(u) is the label of node number u in the labeled tree S.

The next lemma forms the basis of the algorithm of Jiang et al.

Lemma 5.3 Let S and T be two labeled ordered trees with u ∈ S and v ∈ T .
Then:

5.2 The Algorithm of Jiang, Wang, and Zhang 81

1. D(Θ, Θ) = 0

D(S[u], Θ) = D(S(u), Θ) + µ(gS(u),−), D(S(u), Θ) =
deg(u)
∑

q=1
D(S[uq], Θ)

D(Θ, T [v]) = D(Θ, T (v)) + µ(−, gT (v)), D(Θ, T (v)) =
deg(v)
∑

q=1
D(Θ, T [vq])

2. D(S[u], T [v]) =

max

D(S(u), T (v)) + µ(gS(u), gT (v))

D(S[u], Θ) + max
1≤q≤deg(u)

{

D(S[uq], T [v])−D(S[uq], Θ)
}

D(Θ, T [v]) + max
1≤q≤deg(v)

{

D(S[u], T [vq])−D(Θ, T [vq])
}

3. For any j and l suh that 1 ≤ j ≤ deg(u) and 1 ≤ l ≤ deg(v),

D(S(u, 1, j), T (v, 1, l)) =

max

D(S(u, 1, j − 1), T (v, 1, l)) + D(S[uj], Θ)

D(S(u, 1, j), T (v, 1, l− 1)) + D(Θ, T [vl])

D(S(u, 1, j − 1), T (v, 1, l− 1)) + D(S[uj], T [vl])

µ(gS(uj),−) + max
1≤q<deg(l)

{

D(S(u, 1, j − 1), T (v, 1, q − 1)) +

D(S(uj), T (v, q, l))
}

µ(−, gT (vl)) + max
1≤q<deg(j)

{

D(S(u, 1, q − 1), T (v, 1, l− 1)) +

D(S(u, q, j), T (vl))
}

Proof: See [70℄. ✷

The algorithm of Jiang et al. (Algorithm Sore) is displayed in Figure 5.3. As
the various values of D(S∗, T∗) are omputed using the reurrenes in Lemma 5.3,
they are stored in a data struture whih allows them to be retrieved in O(1)
time from then on.

Algorithm Sore employs an auxiliary proedure alled Proedure 1 (not
shown here) that takes as input two subforests of the form S(u, i, deg(u)) and
T (v, k,deg(v)), where at least one of i and k is equal to 1, and then omputes
D(S(u, i, j), T (v, k, l)) for all j and l suh that i ≤ j ≤ deg(u) and k ≤ l ≤ deg(v)
by repeatedly applying Lemma 5.3.3. Note that for every pair of subtrees S[u]
and T [v], although the algorithm omputes D(S(u, i, j), T (v)) for all 1 ≤ i ≤

82 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

j ≤ deg(u) and D(S(u), T (v, k, l)) for all 1 ≤ k ≤ l ≤ deg(v), it does not need
to ompute the values of D(S(u, i, j), T (v, k, l)) for all 1 ≤ i ≤ j ≤ deg(u) and
1 ≤ k ≤ l ≤ deg(v).

Eah all to Proedure 1 is proved in [70℄ to take O((deg(u) + deg(v)) ·
deg(u) · deg(v)) time, and the total running time of the algorithm is shown to
be O(|S| · |T | ·∆2).

Algorithm Sore

Input: Two labeled ordered trees S and T .

Output: The sore of an optimal alignment between S and T .

D(Θ, Θ) := 0

for u := 1 to |S| do

Initialize D(S[u], Θ) and D(S(u), Θ) aording to Lemma 5.3.1.

endfor

for v := 1 to |T | do

Initialize D(Θ, T [v]) and D(Θ, T (v)) aording to Lemma 5.3.1.

endfor

for u := 1 to |S| do

for v := 1 to |T | do

for i := 1 to deg(u) do

Call Proedure 1 on S(u, i, deg(u)) and T (v).

endfor

for k := 1 to deg(v) do

Call Proedure 1 on S(u) and T (v, k, deg(v)).

endfor

Compute D(S[u], T [v]) as in Lemma 5.3.2.

endfor

endfor

return D(S[|S|], T [|T |])

End Sore

Figure 5.3: The algorithm of Jiang, Wang, and Zhang.

By adding a traebak step at the end, the algorithm an be extended to
return an alignment orresponding to the optimal sore without inreasing the
asymptoti running time7. Hene, Jiang et al. proved the following result.

Theorem 5.4 The alignment between ordered trees problem an be solved in
O(|S| · |T | ·∆2) time.

7An optimal alignment an be reovered by realulating the terms on the right-hand side
of Lemma 5.3 for eah pair of subtrees or subforests enountered during the traebak to
determine whih of the possibilities that resulted in the highest sore; alternatively, one an
modify the algorithm to also reord information about how eah value D(S∗, T∗) is obtained
as it is omputed, e.g., by saving pointers.

5.3 d-Relevane 83

5.3 d-Relevane

5.3.1 d-Relevant Pairs of Subtrees

Before de�ning the new onept of d-relevane, we need to introdue some no-
tation.

De�nition 5.5 Let S be a labeled ordered tree and u a node of S. S[u] stands
for the ordered subtree of S obtained when removing from S the subtree S[u]
and (if u is not the root of S) the edge between u and the parent of u. Next,
L(S[u]) denotes the set of leaves in S that are to the left of the leaves of S[u].

Reall that the number of nodes in S is denoted by |S|. The ardinality of
the set L(S[u]) is denoted by |L(S[u])|.

We are now ready to de�ne what we mean by a d-relevant pair of subtrees,
a d-desendant, and a d-anestor.

De�nition 5.6 Let d be a positive integer. For two ordered trees S and T
ontaining two nodes u and v respetively, the pair of subtrees (S[u], T [v]) is
alled d-relevant if and only if both of the following onditions hold:

• ||S[u]| − |T [v]|| ≤ d

• ||L(S[u])| − |L(T [v])|| ≤ d

De�nition 5.7 Let d be a positive integer, and let T be an ordered tree ontain-
ing two nodes v and w. T [w] is alled a d-desendant of T [v] if w is a desendant
of v and |T [v]| − |T [w]| ≤ d. Symmetrially, T [w] is alled a d-anestor of T [v]
if w is an anestor of v and |T [w]| − |T [v]| ≤ d.

De�nitions 5.6 and 5.7 are illustrated in Figure 5.4.

The following important lemma implies that if a pair of subtrees (S[u], T [v])
is not d-relevant then any alignment between S and T whih onsists of an
alignment between S[u] and T [v] and an alignment between S[u] and T [v] must
ontain more than d blank symbols. Thus, if only alignments with at most
d blank symbols for some spei�ed value of d are of interest (as in the ase
of Algorithm Fast Sore given in Setion 5.6), we an limit our attention to
d-relevant pairs.

Lemma 5.8 Let S and T be labeled ordered trees, let u and v be two nodes
belonging to S and T respetively, and let A be an alignment between S and T
onsisting of an alignment between S[u] and T [v] and an alignment between S[u]

and T [v]. If A uses at most d blank symbols then (S[u], T [v]) is
(

d+||S|−|T ||
2

)

-

relevant for S and T .

84 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

S: T:

u

v

w

Figure 5.4: In this example, (S[u], T [v]) is 3-relevant, (S[u], T [w]) is 2-relevant, and
T [w] is a 2-anestor of T [v].

Proof: Let d1 be the total number of insert operations performed on S and
d2 the total number of insert operations performed on T to obtain A. Denote by
d′1 and d′2 the number of insert operations performed on S[u] and T [v] respe-
tively to onstrut the alignment between S[u] and T [v]. Clearly, d′1 ≤ d1 and
d′2 ≤ d2.

First, onsider the alignment between S[u] and T [v]. By the above, d′1 insert
operations on S[u] su�e to obtain a tree isomorphi to T [v] with d′2 nodes
inserted, so |S[u]| + d′1 = |T [v]| + d′2, i.e., |S[u]| − |T [v]| = d′2 − d′1 ≤ d′2 ≤
d2 ≤ max{d1, d2}. In the same way, |T [v]|− |S[u]| ≤ d1 ≤ max{d1, d2}. Thus,
we have ||S[u]| − |T [v]|| ≤ max{d1, d2}.

Next, beause S[u] and T [v] are aligned, |L(S[u])| + d′′1 = |L(T [v])| + d′′2
for some d′′1 ≤ d1 and d′′2 ≤ d2. This yields |L(S[u])| − |L(T [v])| = d′′2 −
d′′1 ≤ d′′2 ≤ d2 ≤ max{d1, d2} and |L(T [v])| − |L(S[u])| ≤ max{d1, d2}. Thus,
||L(S[u])| − |L(T [v])|| ≤ max{d1, d2}.

Now, sine d1+d2≤d and |S|+d1 = |T |+d2, it follows that d1 ≤ d+(|T |−|S|)
2

and d2 ≤ d+(|S|−|T |)
2 . Hene, max{d1, d2} ≤ d+||S|−|T ||

2 . ✷

For ease of presentation, we will use the somewhat weaker result implied by
Lemma 5.8 that if A uses at most d blank symbols then (S[u], T [v]) is d-relevant
for S and T . (Note that here d+||S|−|T ||

2 ≤ d.)

The next three lemmas are used to derive an upper bound on the number of
d-relevant pairs.

5.3 d-Relevane 85

Lemma 5.9 For any positive integer d, if the two pairs of subtrees (S[u], T [v])
and (S[u], T [w]) are d-relevant for two ordered trees S and T , and w is an
anestor (or, desendant) of v in T , then T [w] is a 2d-anestor (or, 2d-desendant)
of T [v].

Proof: Let w be an anestor of v in T . Sine (S[u], T [v]) and (S[u], T [w]) are
d-relevant, we have ||S[u]| − |T [v]|| ≤ d and ||S[u]| − |T [w]|| ≤ d, and hene
|S[u]| − |T [v]| ≤ d and |T [w]| − |S[u]| ≤ d. Then it follows that |T [w]| − |T [v]| =
(|T [w]| − |S[u]|) + (|S[u]| − |T [v]|) ≤ d + d = 2d.

The proof for the ase where w is a desendant of v is analogous. ✷

Lemma 5.10 Let d be a positive integer. For any node u of an ordered tree S,
the number of d-anestors of S[u] is at most d.

Proof: Assume that the number of d-anestors of S[u] is greater than d. Then
there exists a d-anestor S[u′] whose root u′ is loated at distane greater than
d from u. But this would imply |S[u′]| − |S[u]| > d, whih is a ontradition. ✷

Lemma 5.11 Let d be a positive integer and let {(S[u], T [vi])}li=0 be a sequene
of distint d-relevant pairs in two ordered trees S and T suh that vi is not a
desendant of vj for any 0 ≤ i, j ≤ l. Then l ≤ 2d.

Proof: We may assume without loss of generality that the sequene of nodes
{vi}li=0 is ordered in aordane with the left-to-right ordering in T . Sine
(S[u], T [vl]) is d-relevant, it holds that ||L(S[u])| − |L(T [vl])|| ≤ d, giving us
|L(T [vl])| − |L(S[u])| ≤ d and thus −|L(T [vl])| + |L(S[u])| ≥ −d. On the other
hand, |L(T [vl])| − |L(T [v0])| ≥ l. Hene, if l > 2d then |L(S[u])| − |L(T [v0])| =
(|L(S[u])| − |L(T [vl])|) + (|L(T [vl])| − |L(T [v0])|) > (−d) + 2d = d, whih
ontradits the d-relevane of (S[u], T [v0]). ✷

By ombining Lemmas 5.9�5.11, we obtain an upper bound on the number
of d-relevant pairs of subtrees.

Theorem 5.12 Let d be a positive integer. For any two ordered trees S and T
and a node u of S, the number of distint d-relevant pairs of subtrees in whih
u partiipates is O(d2).

Proof: Let {(S[u], T [vi])}li=0 be a maximal sequene of distint d-relevant pairs
of subtrees for two ordered trees S and T suh that for eah 0 ≤ i ≤ l there
is no d-relevant pair (S[u], T [v]), where v is a desendant of vi. It follows from
Lemma 5.9 that for eah d-relevant pair (S[u], T [w]), it either belongs to the
sequene or T [w] is a 2d-anestor of a member in the sequene. Hene, the
number of d-relevant pairs in whih u partiipates is at most (2d + 1) · (l + 1)
by Lemma 5.10. Finally, it is su�ient to observe that l annot exeed 2d by
Lemma 5.11. ✷

Corollary 5.13 For any positive integer d and two ordered trees S and T , there
are O(m · d2) d-relevant pairs of subtrees for S and T , where m = min{|S|, |T |}.

86 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

5.3.2 d-Relevant Pairs of Subforests

The algorithm of Jiang et al. omputes sores not only between pairs of subtrees
of the input trees, but also between ertain pairs of subforests. Therefore, we
need to generalize the onepts of d-relevane, d-desendants, and d-anestors
for pairs of nodes induing full subtrees to inlude pairs of subforests of the form
(S(u, i, j), T (v, k, l)).

De�nition 5.14 Let S(u, i, j) be an ordered subforest in a labeled ordered
tree S. S(u, i, j) stands for the ordered subtree of S obtained when remov-
ing from S the forest S(u, i, j) and all edges inident to S(u, i, j). L(S(u, i, j))
denotes the set of leaves in S that are to the left of the leaves of S(u, i, j).

The number of nodes in S(u, i, j) is denoted by |S(u, i, j)| and the ardinality
of L(S(u, i, j)) by |L(S(u, i, j))|.

De�nition 5.15 Let d be a positive integer. For two ordered trees S and T
ontaining nodes u and v respetively, the pair of ordered subforests (S(u, i, j),
T (v, k, l)) is alled d-relevant if and only if both of the following onditions hold:

• ||S(u, i, j)| − |T (v, k, l)|| ≤ d

• ||L(S(u, i, j))| − |L(T (v, k, l))|| ≤ d

De�nition 5.16 Let d be a positive integer, and let T be an ordered tree on-
taining two nodes v and w. T (w, k′, l′) is alled a d-desendant of T (v, k, l) if
w is a desendant of v, T (w, k′, l′) is ontained in T (v, k, l), and |T (v, k, l)| −
|T (w, k′, l′)| ≤ d. Symmetrially, T (w, k′, l′) is alled a d-anestor of T (v, k, l)
if w is an anestor of v, T (v, k, l) is ontained in T (w, k′, l′), and |T (w, k′, l′)| −
|T (v, k, l)| ≤ d.

The de�nition of d-relevane for pairs of subforests yields the next lemma,
analogous to Lemma 5.8.

Lemma 5.17 Let S and T be labeled ordered trees, let S(u, i, j) and T (v, k, l)
be two ordered subforests in S and T respetively, and let A be an alignment
between S and T onsisting of an alignment between S(u, i, j) and T (v, k, l) and
an alignment between S(u, i, j) and T (v, k, l). If A uses at most d blank symbols

then (S(u, i, j), T (v, k, l)) is
(

d+||S|−|T ||
2

)

-relevant for S and T .

The proofs of the next three lemmas are analogous to the orresponding
proofs of Lemmas 5.9�5.11.

Lemma 5.18 For any positive integer d, if the two pairs of subforests (S(u, i, j),
T (v)) and (S(u, i, j), T (w)) are d-relevant for two ordered trees S and T , and
w is an anestor (or, desendant) of v in T , then T (w) is a 2d-anestor (or,
2d-desendant) of T (v).

5.4 Testing for d-Relevane 87

Lemma 5.19 Let d be a positive integer. For any node u of an ordered tree S,
the number of d-anestors of the form S(w) of the forest S(u) is at most d.

Lemma 5.20 Let d be a positive integer and let {(S(u, i, j), T (vq)}lq=0 be a
sequene of distint d-relevant pairs in two ordered trees S and T suh that vq′

is not a desendant of vq′′ for any 0 ≤ q′, q′′ ≤ l. Then l ≤ 2d.

By ombining Lemmas 5.18�5.20, we obtain an upper bound on the number
of d-relevant pairs (S(u), T (v, k, l)) and (S(u, i, j), T (v)) like in Theorem 5.12
and Corollary 5.13.

Theorem 5.21 Let d be a positive integer. For any two ordered trees S and T
and a node u of S, the number of distint d-relevant pairs of the form (S(u, i, j),
T (v)) is O(d2 · (deg(S))2). Symmetrially, for any node v of T , the number of
distint d-relevant pairs of the form (S(u), T (v, k, l)) is O(d2 · (deg(T))2).

Corollary 5.22 For any positive integer d and two ordered trees S and T , there
are O(n · d2 ·∆2) d-relevant pairs of subforests of the form (S(u), T (v, k, l)) and
(S(u, i, j), T (v)) for S and T , where n = max{|S|, |T |} and ∆ = max{deg(S),
deg(T)}.

5.4 Testing for d-Relevane

In this setion, we show how to preproess S and T in linear time so that any
pair of subtrees or subforests of S and T an be tested for d-relevane in onstant
time.

First, ompute |S[u]| and |L(S[u])| for all u ∈ S. Figure 5.5 demonstrates
how this an be done reursively in O(|S|) time by using the Euler tour teh-
nique [125℄. The algorithm is started by alling Euler Tour (root, 0). As the
values of |S[u]| and |L(S[u])| for various nodes u are omputed, store them in a
tree Ŝ whih is isomorphi to S and equipped with auxiliary data �elds.

Next, augment eah node u of Ŝ with an integer array s of size deg(u) + 1
for storing the umulative sums (from left to right) of the sizes of the subtrees
rooted at the hildren of u. To assign values to the entries of s, set s[0] := 0

and for q := 1 to deg(u) let s[q] := s[q− 1] + |S[uq]| so that s[i] =
i

∑

q=1
|S[uq]| for

any i ∈ {1, ...,deg(u)}. The total time needed to �ll in the s-arrays for all nodes
in S is

∑

u∈S

O(deg(u)) = O(|S|).

Then, ompute |T [v]| and |L(T [v])| for all v ∈ T in O(|T |) time in the same
way as for S and store them in a tree T̂ . Augment eah node of T̂ with an
integer array t de�ned analogously as the s-arrays and assign values to them in
O(|T |) time.

88 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

Algorithm Euler Tour

Input: Node u, integer left.

Output: Integer sumNodes, integer sumLeaves.

|L(S[u])| := left

sumNodes := 1

if u is a leaf then

sumLeaves := 1

else

sumLeaves := 0

for all hildren w of u in left-to-right order do

sN, sL := Euler Tour (w, left + sumLeaves)
sumLeaves := sumLeaves + sL
sumNodes := sumNodes + sN

endfor

endif

|S[u]| := sumNodes
return sumNodes, sumLeaves

End Euler Tour

Figure 5.5: The Euler tour algorithm for omputing |S[u]| and |L(S[u]|) for all u ∈ S.

After having onstruted Ŝ and T̂ as above, all the information required to
determine whether a given pair of subtrees or subforests is d-relevant is immedi-
ately available. To test a pair (S[u], T [v]) or (S(u, i, j), T (v, k, l)) for d-relevane
in onstant time, we simply hek if the onditions in De�nition 5.6 or De�ni-
tion 5.15 are satis�ed by using the values of |S[u]|, |T [v]|, |L(S[u])|, and |L(T [v])|,
or |S(u, i, j)|, |T (v, k, l)|, |L(S(u, i, j))|, and |L(T (v, k, l))|:

• For a subtree S[u], the values of |S[u]| and |L(S[u]) an be obtained diretly
from Ŝ.

• For a subforest S(u, i, j), |L(S(u, i, j))| equals |L(S[ui])| and we an obtain
|S(u, i, j)| from node u's s-array in Ŝ by using the formula s[j] − s[i − 1]
sine for any i, j ∈ {1, ...,deg(u)} with i < j, we have

s[j]− s[i− 1] =

j
∑

q=1

|S[uq]| −
i−1
∑

q=1

|S[uq]| =

j
∑

q=i

|S[uq]| = |S(u, i, j)|

We summarize the above in the next theorem.

Theorem 5.23 Let S and T be two ordered trees. After O(|S|+ |T |) time pre-
proessing, any given pair of subtrees (S[u], T [v]) or pair of subforests (S(u, i, j),
T (v, k, l)) an be tested for d-relevane in O(1) time.

5.5 Enumerating the d-Relevant Pairs of Subtrees 89

5.5 Enumerating the d-Relevant Pairs of Subtrees

In order to improve on the quadrati running time of the algorithm of Jiang et
al., we need an e�ient method to enumerate all d-relevant pairs of subtrees.
We annot a�ord to test all of the O(|S| · |T |) possible pairs for d-relevane
individually; instead, we proeed as follows.

First, we ompute Ŝ and T̂ in O(|S| + |T |) time as desribed in Setion 5.4
so that the values of |S[u]| and |L(S[u])| for any u ∈ S and the values of |T [v]|
and |L(T [v])| for any v ∈ T are aessible in O(1) time. We then traverse T̂ .
At eah node v, we feth the values of |T [v]| and |L(T [v])|, and insert the
point (|T [v]|, |L(T [v])|) into a standard data struture for two-dimensional range
searh, e.g., a layered range tree [33, 107℄. The onstrution of the data struture
takes O(|T | · log |T |) time. Then, for eah u in S, we query the range searh data
struture with the square entered at (|S[u]|, |L(S[u])|) having side length 2d
(note that a point (x, y) lies inside this square if and only if ||S[u]| − x| ≤ d
and ||L(S[u])| − y| ≤ d). Eah suh query takes O(log |T |+ r) time, where r is
the number of reported points. Sine eah of the reported points is in one-to-
one orrespondene with a node v suh that the pair (S[u], T [v]) is d-relevant,
r = O(d2) holds by Theorem 5.12.

Next, we build and lexiographially sort the list of all O(|S| · d2) d-relevant
pairs of subtrees in O(|S| · d2 · log |S|) time.

Putting everything together, we obtain the next theorem.

Theorem 5.24 Given two ordered trees with at most n nodes eah and a pos-
itive integer d, a lexiographially sorted list of all d-relevant pairs of subtrees
an be onstruted in O(n log n · d2) time.

5.6 Algorithm Fast Sore

Our Algorithm Fast Sore for omputing the sore of an optimal alignment
between two labeled, ordered trees S and T is displayed in Figure 5.6. It works
under the assumption that there exists an optimal alignment whih uses at most
d blank symbols, for some spei�ed positive integer d.

First, Algorithm Fast Sore onstruts Ŝ and T̂ and a list of all d-relevant
pairs of subtrees of S and T . Aording to Theorem 5.23 and Theorem 5.24,
this preproessing takes O(n log n · d2) time. The sores for all pairs ontaining
an empty subtree or subforest are also preomputed, whih takes O(|S|+ |T |) =
O(n) time.

We then modify the algorithm of Jiang et al. to only evaluate sores for
d-relevant pairs of subtrees and d-relevant pairs of subforests. (By Lemmas 5.8
and 5.17, the other pairs orrespond to alignments using more than d blank sym-
bols and an therefore be ignored.) Whenever one of the formulas in Lemma 5.3.2

90 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

Algorithm Fast Sore

Input: Two labeled ordered trees S and T , positive integer d.

Output: The sore of an optimal alignment between S and T (assuming there
exists an optimal alignment with at most d blank symbols).

Construt Ŝ and T̂ as desribed in Setion 5.4 and onstrut a lexiographially
sorted list L of all d-relevant pairs of subtrees as desribed in Setion 5.5.

D(Θ, Θ) := 0

for u := 1 to |S| do

Initialize D(S[u], Θ) and D(S(u), Θ) aording to Lemma 5.3.1.

endfor

for v := 1 to |T | do

Initialize D(Θ, T [v]) and D(Θ, T (v)) aording to Lemma 5.3.1.

endfor

for all d-relevant pairs of subtrees (S[u], T [v]), determined by traversing L,
do

for i := 1 to deg(u) do

if (S(u, i, deg(u)), T (v)) is d-relevant then

Call Proedure 1′ on S(u, i, deg(u)) and T (v).

endif

endfor

for k := 1 to deg(v) do

if (S(u), T (v, k, deg(v))) is d-relevant then

Call Proedure 1′ on S(u) and T (v, k, deg(v)).

endif

endfor

Compute D(S[u], T [v]) as in Lemma 5.3.2, only onsidering d-relevant
pairs on the right-hand side of the expression.

endfor

return D(S[|S|], T [|T |])

End Fast Sore

Figure 5.6: The fast algorithm for omputing the sore of an optimal alignment between
two ordered trees whih uses at most d blank symbols.

or Lemma 5.3.3 is to be applied, we test eah of the omponents on the right-
hand side for d-relevane. If the test is positive, we feth the sore for that pair
(by the bottom-up ordering, it has been evaluated by this time); otherwise, we
set the sore to minus in�nity. Proedure 1′ referred to in Figure 5.6 is the same
as Proedure 1 with suh tests for d-relevane inluded. Now, any given pair
of subtrees or subforests an be tested for d-relevane in O(1) time by using Ŝ
and T̂ as explained in Setion 5.4. We onlude that the ost of determining
the sore of an optimal alignment for a d-relevant pair on the left-hand side in

5.6 Algorithm Fast Sore 91

Lemma 5.3 by using the sores of optimal alignments for d-relevant pairs our-
ing on the right-hand side inreases by at most a fator of O(1). Hene, eah
all to Proedure 1′ still takes O((deg(u)+deg(v)) ·deg(u) ·deg(v)) time. In the
following, we denote the running time of one all to Proedure 1′ by P1′.

For eah d-relevant pair of subtrees (S[u], T [v]), the algorithm tests deg(u)
and then deg(v) pairs of subforests for d-relevane and makes at most this many
alls to Proedure 1′. Next, it evaluates D(S[u], T [v]) by testing deg(u)+deg(v)
pairs of subtrees and one pair of subforests on the right-hand side of the relation
in Lemma 5.3.2 for d-relevane. Thus, eah d-relevant pair of subtrees on-
tributes O(deg(u) · (O(1)+P1′)+ deg(v) · (O(1)+P1′)+ (deg(u)+ deg(v)+ 1) ·
O(1)) = O((deg(u) + deg(v))2 · deg(u) · deg(v)) to the total running time. Sum-
ming over all d-relevant pairs of subtrees, we see that the entire main loop takes

∑

d-relevant pairs of

subtrees (S[u], T [v])

O((deg(u) + deg(v))2 · deg(u) · deg(v))

= O(∆3 · ∑

d-relevant pairs of

subtrees (S[u], T [v])

deg(u))

= O(∆3 · ∑

u∈S

∑

v ∈ T and

(S[u], T [v])
is d-relevant

deg(u))

= O(∆3 · ∑

u∈S

d2 · deg(u))

= O(∆3 · d2 · n)

time by using Theorem 5.12 and the fat that
∑

u∈S

deg(u) = n.

Inluding the preproessing, the total running time is O(n log n · d2 + n +
∆3 · d2 · n) = O(n · (log n + ∆3) · d2), whih gives us the main theorem of this
setion.

Theorem 5.25 If there exists an optimal alignment between S and T whih
uses at most d blank symbols and d is given, we an ompute its sore in O(n ·
(log n + ∆3) · d2) time.

We remark that Algorithm Fast Sore an be modi�ed to return an optimal
alignment without inreasing the asymptoti running time by adding a traebak
step just like for the algorithm of Jiang et al. (see Setion 5.2). Thus, we an
solve the alignment between ordered trees problem in O(n · (log n + ∆3) · d2)
time if there exists an optimal alignment between S and T whih uses at most
d blank symbols and d is known in advane.

Also note that if ∆ = O(1) then the running time of Algorithm Fast Sore
beomes O(n log n · d2).

92 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

5.7 Algorithm Unspei�ed d

Here, we extend our Algorithm Fast Sore from Setion 5.6 to ompute the sore
of an optimal alignment between the two input trees even if no upper bound on
the number of blank symbols in an optimal alignment is given. We show that
under some natural assumptions on the soring sheme, the resulting method
is faster than the algorithm of Jiang et al. for problem instanes onsisting of
similar trees (i.e., instanes in whih the sore of an optimal alignment is high).
The tehnique we employ stems from Setion 3.3.4 in [111℄, where it is applied to
ompute the sore of an optimal alignment between two strings of equal length
by using an algorithm whih only evaluates a band of spei�ed width around the
main diagonal of the dynami programming matrix.

As before, write m = min{|S|, |T |} and n = max{|S|, |T |}. The algorithm of
Jiang et al. runs in O(m · n · ∆2) time, regardless of the number of insertions
required by an optimal solution (see Setion 5.2). On the other hand, by The-
orem 5.25, Algorithm Fast Sore runs in O(n · (log n + ∆3) · d2) time, where d
is the maximum number of insertions allowed. Thus, Algorithm Fast Sore is
asymptotially faster than the algorithm of Jiang et al. if d is small8. The draw-
bak is that Algorithm Fast Sore needs a value of d to be spei�ed beforehand;
the running time may be muh worse than that of the algorithm of Jiang et al.
if no su�iently strong upper bound on d is known9. One way to overome this
di�ulty is by running Algorithm Fast Sore with suessively larger values of
d until a ertain stop ondition is satis�ed, as explained below.

Let M be maximum value of µ(s, t) over all pairs of symbols (s, t) belonging
to Σ × Σ, and let B be maximum value of µ(s, t) over all pairs (s, t) in (Σ ×
{−}) ∪ ({−} × Σ), i.e., all pairs where preisely one of s and t is equal to the
blank symbol. Assume that M > 0 and B ≤ 0.

Lemma 5.26 For any positive integer d, if an alignment between S and T uses

at least d+1 blank symbols then its sore is at most (d+1)·B + m+n−(d+1)
2 ·M .

Proof: Let A be an alignment between S and T with at least d + 1 blank
symbols. Then the total number of nodes in S and T whih an be paired o�
with eah other is at most |S|+ |T | − (d + 1). The maximum possible sore of A
is ahieved when all suh pairs of nodes have sore M ; thus, the sore of A is at
most (d + 1)·B + |S|+|T |−(d+1)

2 ·M . ✷

For any positive integer d, let Dd be the value returned by Algorithm Fast
Sore on input (S, T, d). As d inreases, Dd inreases or remains the same while

8More preisely, if d = o

�q
m·∆2

log n+∆3

�
.

9For example, just plugging in the trivial upper bound d = |S| + |T | ≤ 2n does not help
here.

5.7 Algorithm Unspei�ed d 93

the value of (d + 1)·B + m+n−(d+1)
2 ·M dereases beause B ≤ 0 and M > 0.

Thus, by gradually inreasing d, Dd eventually beomes larger than or equal to
(d + 1)·B + m+n−(d+1)

2 ·M . This yields a useful stop ondition beause when it
ours, Lemma 5.26 ensures that all alignments ontaining more blank symbols
than the urrent value of d will have sores whih are lower than or equal to Dd

and therefore do not need to be onsidered.

The algorithm is alled Algorithm Unspei�ed d and is listed in Figure 5.7.
Initially, it sets d to (n −m) + 1 sine all alignments between S and T use at
least n −m blank symbols. It then �nds the sore of an optimal alignment by
doubling d until the stop ondition is satis�ed.

Algorithm Unspei�ed d

Input: Two labeled ordered trees S and T .

Output: The sore of an optimal alignment between S and T .

d := n−m + 1

Dd := Fast Sore(S, T, d)

while Dd < (d + 1)·B + m+n−(d+1)
2

·M do

d := d · 2

Dd := Fast Sore(S, T, d)

endwhile

return Dd

End Unspei�ed d

Figure 5.7: An algorithm for omputing the sore of an optimal alignment between
two ordered trees when no upper bound on the number of blank symbols is provided.

We now analyze the running time of Algorithm Unspei�ed d. Denote the
algorithm's �nal value of d by d̃. The �rst all to Algorithm Fast Sore takes
O(n · (log n + ∆3) · (n−m +1)2) time, the seond one O(n · (log n + ∆3) · (2(n−
m + 1))2) time, et., and the last one O(n · (log n + ∆3) · d̃2) time. Sine

x2 + (2x)2 + (4x)2 + (8x)2 + ... + d̃2 = x2 ·
log2(

d̃
x)

∑

i=0

(2i)2 =
4d̃2 − x2

3
,

the running time is O(n · (log n + ∆3) · (d̃2 − (n−m + 1)2)).

We then proeed as in [111℄ to obtain a nontrivial upper bound on d̃ in terms
of m, n, M , B, and s, where s is the sore of an optimal alignment between S
and T . When the algorithm stops, there are two possibilities:

94 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

• If Dd̃ = Dd̃/2 then s = Dd̃/2. The inequality Dd̃/2 < (d̃
2 + 1) ·B +

m+n−(d̃
2 +1)

2 ·M (due to the algorithm not �nishing in the previous iteration)

then implies that d̃ < 2(m+n)M−4s
M−2B − 2.

• If Dd̃ > Dd̃/2 then any optimal alignment ontains > d̃
2 blank symbols so

that by Lemma 5.26, s ≤ (d̃
2 + 1)·B +

m+n−(d̃
2 +1)

2 ·M . Rearranging gives

us d̃ ≤ 2(m+n)M−4s
M−2B − 2.

Thus, in both ases we have the upper bound

d̃ ≤ 2

(

(m + n)M − 2s

M − 2B
− 1

)

(5.1)

The sore of an optimal alignment between S and T is at most m · M .
Therefore, s ≤ m+n

2 ·M . By inequality (5.1), if the sore of an optimal alignment
between S and T is high (so that s is lose to m+n

2 ·M) then d̃ is small. Assuming
that M − 2B is a onstant, we an express the running time of Algorithm Un-
spei�ed d as follows.

Theorem 5.27 If M−2B is a onstant and B ≤ 0, M > 0 then Algorithm Un-
spei�ed d omputes the sore of an optimal alignment between S and T in
O(n · (log n + ∆3) · f2) time, where f = m+n

2 ·M − s and s is the sore of an
optimal alignment between S and T .

We also note the following:

Corollary 5.28 If there exist onstants α, β, and γ suh that α > 0, β ≤ 0,
γ ≤ α and for every x, y ∈ Σ with x 6= y it holds that µ(x, x) = α, µ(x,−) =
µ(−, x) = β, and µ(x, y) = γ, and if there exists an optimal alignment between S
and T with b blank symbols and O(b) node pairs of the form (x, y) with x 6= y,
then Algorithm Unspei�ed d runs in O(n · (log n + ∆3) · b2) time.

Proof: Write s = b · β + q · γ + m+n−b−2q
2 · α, where q is the number of node

pairs (x, y) with x 6= y and x, y ∈ Σ. Combining this with inequality (5.1) yields

d̃ ≤ 2
(

b(α−2β)+2q(α−γ)
α−2β − 1

)

. Now, q = O(b) implies that d̃ = O(b). ✷

In partiular, if ∆ = O(1) then the running times given in Theorem 5.27 and
Corollary 5.28 redue to O(n log n · f2) and O(n log n · b2), respetively.

Finally, as mentioned at the end of Setion 5.6, it is possible to modify
Algorithm Fast Sore (and hene also Algorithm Unspei�ed d) to return an
optimal alignment by performing a traebak with no inrease in the asymptoti
running time.

5.8 Conluding Remarks 95

5.8 Conluding Remarks

We have introdued the onept of d-relevane in order to speed up the algorithm
of Jiang et al. for instanes of the alignment between ordered trees problem
where the two input trees are similar.

The next table summarizes the running times of the algorithms desribed in
this hapter; su�ient onditions for the respetive asymptoti upper bounds on
the running times to hold are also listed.

Algorithm Condition Running time Referene

Jiang et al. � O(m · n ·∆2) [70℄; see also
Setion 5.2.

Fast Sore There exists O(n · (log n + ∆3) · d2) Theorem 5.25
an optimal
alignment with
≤ d blank
symbols and
d is given.

Unspei�ed d M − 2B is a O(n · (log n + ∆3) · f2), Theorem 5.27
onstant and where f = m+n

2 ·M − s
B ≤ 0, M > 0. and s is the sore of

an optimal alignment.
Unspei�ed d µ satis�es O(n · (log n + ∆3) · b2), Corollary 5.28

µ(x, x) = α, where b is the smallest
µ(x,−) = β, number suh that
µ(−, x) = β, there exists an optimal
and µ(x, y) = γ alignment with b blank
for all x, y ∈ Σ symbols and O(b) node
with x 6= y, pairs of the form (x, y).
where α, β, γ
are onstants
suh that
α > 0, β ≤ 0,
and γ ≤ α.

We note that if the onditions in Theorem 5.27 are satis�ed, then Algo-
rithm Unspei�ed d is faster than the algorithm of Jiang et al. if, for example,
∆ = o(m

log3 n
) and m+n

2 ·M = s + O(log n). In ertain other ases, the algo-
rithm of Jiang et al. is faster. By running both algorithms in parallel, exeuting
them one step at a time and alternating between them until one of them is
�nished, we an alulate the sore of an optimal alignment between S and T
in min{O(m · n · ∆2), O(n · (log n + ∆3) · f2)} time. Similarly, if the ondi-
tions in Corollary 5.28 are satis�ed then this tehnique yields a running time of

96 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

min{O(m · n ·∆2), O(n · (log n + ∆3) · b2)}.
We also note that the value of n ·(logn+∆3) ·d2 is muh larger than m ·n ·∆2

when d is lose to its upper bound m + n. Thus, we would like to know: Is it
possible to lower the time omplexity of Algorithm Fast Sore, espeially the
exponent 2 of d?

It remains to demonstrate the pratial usefulness of alignments between
trees. We believe that some of the appliations listed in Setion 5.1.1 an ben-
e�t greatly from using alignments, something whih should be investigated by
implementing the algorithms desribed in this hapter, evaluating the quality
and relevane of the solutions they produe, and omparing them to existing
methods.

Our method does not seem immediately adaptable to unordered trees. In-
deed, the proof of Lemma 5.11 relies on having a �xed left-to-right ordering on
the nodes. It is an interesting open problem whether a substantial speedup in
the onstrution of optimal alignments between two similar labeled, unordered
trees whose degrees are bounded by a onstant is ahievable.

Another issue worth exploring is if there exist any nontrivial polynomial-time
approximation algorithms for the alignment between unordered trees problem
when at least one of the two input trees an have arbitrary degree. This question
was posed by Jiang et al. in [70℄ (where the authors proved the problem to be
MAX SNP-hard) but has not yet been answered.

Finally, a few omments on generalizations. Many of the extensions of the
string alignment problem disussed in [58, 106, 111, 130℄ an be arried over
diretly to the alignment between trees problem. As an example, letting the in-
put ontain more than two trees results in the multiple alignment between trees
problem10. Other extensions inlude omputing optimal loal alignments (for
�nding substrutures of S and T with high similarity), using soring shemes
with non-onstant gap weights, allowing non-�xed alphabets (e.g., where Σ is
allowed to grow with the size of the input), and omputing suboptimal align-
ments11. However, although the alignment between trees problem is easy to ex-
tend by examining famous variants of the string alignment problem, it is muh
harder to extend the algorithm of Jiang et al. with the various re�nements of
the standard dynami programming algorithm for the string alignment problem

10A potential di�ulty here is how to de�ne the sore of a multiple alignment between trees
in a good way. The sum-of-pairs (SP) soring funtion for multiple string alignments (de�ned
as the sum of the sores of all indued pairwise string alignments) is a popular soring sheme
whih an be generalized to alignments between trees in a straightforward manner and whih
may be pratial beause of its simpliity.

11As pointed out in [58℄, an �optimal� string alignment is only optimal with respet to a
given objetive funtion, and is not neessarily the most biologially relevant one. Therefore,
it is sometimes useful to generate a andidate set of nearly optimal alignments whih is then
evaluated by some additional riteria.

5.8 Conluding Remarks 97

whih have been proposed. For example, we do not know if any divide-and-
onquer tehnique similar to the one developed by Hirshberg for reduing the
spae omplexity (see [58, 106, 111, 130℄) an be applied to the algorithm of
Jiang et al.

Part III

Clustering under

the Hamming Metri

Chapter 6

Approximation Algorithms for

the Hamming Center Problem

The Hamming enter problem (HCP) for a set S of binary strings, eah of
length n, is to �nd a binary string of length n (not neessarily in S) that is
lose to every one of the strings in S, where distanes between strings are mea-
sured using the Hamming metri. HCP is known to be NP-hard [46℄. In this
hapter, we desribe some exat polynomial-time algorithms for speial ases of
HCP as well as some approximation algorithms for the general ase.

6.1 Introdution

We start by introduing some notation and de�ning the problem studied in this
hapter. Let {0, 1}n be the set of all strings of length n over the alphabet {0, 1}.
For any α ∈ {0, 1}n, we use the notation α[m] to refer to the symbol plaed at the
mth position of α, where m ∈ {1, ..., n}, and we let α[i..j] represent the substring
of α starting at position i and ending at position j, where i, j ∈ {1, ..., n} and
i < j. The Hamming distane between two strings α1, α2 ∈ {0, 1}n is the number
of positions in whih the strings di�er, and is denoted by dH(α1, α2).

The Hamming enter problem (HCP) is:

The Hamming enter problem (HCP)

Instane: Finite set S = {α1, ..., αk} with S ⊆ {0, 1}n for some positive
integer n.

Output: A string β ∈ {0, 1}n whih minimizes the value of max
αi∈S

dH(αi, β).

101

102 Chapter 6. Approximation Algorithms for the Hamming Center Problem

HCP is referred to as the minimum radius problem in [46℄, the losest string
problem in [57, 88, 91℄, and the Hamming p-radius lustering problem (HRC)
with p = 1 in Chapter 7 of this thesis.

Given an instane S of HCP, the smallest possible value of max
αi∈S

dH(αi, β)

over all strings β ∈ {0, 1}n is alled the radius of S, and is denoted by r. Any
β ∈ {0, 1}n whih attains this optimal value is alled a enter of S, or a 1-enter
of S. It follows from the de�nitions above that k ≤ 2n and r ≤ n for any instane
of HCP.

Observe that although some instanes of HCP only have one 1-enter (for
example, if S onsists of the n di�erent strings of length n with exatly n−1 zeros
and 1 one then the only optimal solution is the string of n zeros), some instanes
may have exponentially many alternative 1-enters (for example, if S onsists of
the two length n strings 000...0 and 111...1 where n is a positive even integer,
there are

(

n
n/2

)

1-enters, whih is exponential sine
(

n
n/2

)

> 2n

n+1).

An algorithm A is said to approximate HCP within a fator of f if for any
instane of the problem, A outputs a β′ ∈ {0, 1}n suh that max

αi∈S
dH(αi, β

′) ≤
f · r. In this ase, A is also alled a fator f approximation algorithm (or just
an f -approximation algorithm) for HCP. From here on, optimal solutions to
instanes of HCP will be denoted by β, and approximate enters omputed by
our approximation algorithms by β′.

The Hamming distane funtion dH satis�es the relations listed in Fat 6.1
below (see, e.g., p. 274 in [22℄). Hene, dH is a metri on {0, 1}n and dH is
therefore also known as the Hamming metri.

Fat 6.1 [22℄ Let n be any positive integer. Then, for all x, y, z ∈ {0, 1}n,

• dH(x, y) ≥ 0, with equality if and only if x = y.

• dH(x, y) = dH(y, x).

• dH(x, y) ≤ dH(x, z) + dH(z, y) (�the triangle inequality�).

6.1.1 Motivation

A fundamental onept in oding theory is the overing radius of a ode [27℄.
Given a set S ⊆ {0, 1}n, alled the set of ode words, the overing radius of S
is de�ned as the smallest integer ̺ suh that all strings in {0, 1}n are within
Hamming distane ̺ of some ode word belonging to S. The overing radius is
a basi geometri parameter of a ode whih measures its quality. For example,
if a ode is used for data ompression, the overing radius is a measure of the

6.1 Introdution 103

maximum distortion [16, 27℄, and if the ode is used for error orretion, the
overing radius gives the maximum weight of a orretable random error [27℄.
A related onept is the overing radius of a lattie in Eulidean spae, whih has
appliations to quantization and to oding for the Gaussian hannel [27, 30, 31℄.

For any S ∈ {0, 1}n, it holds that r + ̺ = n [27, 46, 80℄. Hene, the deision
problem version of the Hamming enter problem1 is omputationally equivalent
to the problem of deiding whether the overing radius of a given ode is less
than a given integer.

The Hamming enter problem (and in partiular, its generalization to larger
onstant-size alphabets than {0, 1}) also has appliations to omputational mo-
leular biology and data mining.

When lassifying biomoleular sequenes, onsensus representatives are use-
ful. For example, the around 100000 di�erent proteins in humans an be divided
into 1000 (or less) protein families, whih makes it easier for researhers to un-
derstand their strutures and biologial funtions [58℄. A lot of information
about a newly disovered protein may be dedued by establishing whih family
it belongs to. Here, it is more e�ient to ompare the sequene of the new
protein (where the sequene of a protein is a string over the 20-letter amino
aid alphabet [58, 106, 111, 130℄) with representatives for various families than
with individual family members. As another example, given a set S of k related
sequenes, one way to �nd other similar sequenes is by omputing a represen-
tative for S and then using the representative to probe a genome database. The
representative should resemble2 all sequenes in the given set S, and must be
hosen arefully. For instane, the sequene s that minimizes the sum of all pair-
wise distanes between s and elements in S is biased towards similar sequenes
that our frequently in S, so if the experiments used to obtain S lead to ertain
sequenes being overrepresented then s will not re�et the true diversity of S.
Using a 1-enter as representative an help avoid this problem [13℄.

Another onnetion between the Hamming enter problem and omputa-
tional moleular biology is the following. In a problem termed the phylogeneti
alignment problem or the tree alignment problem [10, 58, 111℄ (not to be on-
fused with the problem studied in Chapter 5!), we are given an unrooted tree T
distintly leaf-labeled by a set L of strings, and the objet is to determine a
labeling of T 's internal nodes so that the indued edge weights are small. (Next,
one an derive a multiple alignment that is onsistent with the fully labeled
tree, and then remove all strings orresponding to internal nodes to obtain a
good multiple alignment for L [58℄.) HCP is the speial ase of the phylogeneti

1The deision problem version of HCP is de�ned in the same way as HCP, exept that it
also takes as input a positive integer D, and the output is the answer to the question �Is the
radius of S less than or equal to D?�.

2Depending on the appliation, the di�erene between strings is sometimes measured in
terms of edit distane, whih also takes insertions and deletions into aount, rather than
Hamming distane, whih just onsiders substitutions.

104 Chapter 6. Approximation Algorithms for the Hamming Center Problem

alignment problem in whih T is a star graph with k leaves, eah leaf is labeled
by a string from S, the funtion used to determine the weight of an edge is the
Hamming metri, and the optimization riterion is that the maximum weight of
all edges in T should be minimized.

A lassial problem in operations researh and omputational geometry is
the smallest enlosing irle problem3: Given k points in the plane, �nd the
smallest irle that enloses them. In other words, the objetive is to �nd a
point β whih minimizes the maximum of all Eulidean distanes between β
and the given points. See Figure 6.1 for an example. This problem may arise
when deiding where to build an emergeny faility (e.g., a �re station or a
hospital) so that the worst-ase response time to some spei�ed points on a map
is minimized [107℄. The Hamming enter problem an be regarded as the analog
of the smallest enlosing irle problem in whih the number of dimensions is
unrestrited, eah oordinate of the input points and the returned solution is
required to be 0 or 1, and distanes are measured using the L1 metri. (This
also motivates the use of the terms enter and radius for HCP.)

2

α4

α5
α3

α1

α 2

α4

α5
α3

α1

α

β

Figure 6.1: An instane of the smallest enlosing irle problem (left) and its optimal
solution (right).

6.1.2 Previous Results

Franes and Litman [46℄ proved that the deision problem version of the Ham-
ming enter problem is NP-omplete via a redution from 3SAT.

As for polynomial-time approximations, there exists a trivial 2-approximation
algorithm for HCP (desribed in Setion 6.2) whih is essentially a speial ase

3The smallest enlosing irle problem is sometimes alled the minimum spanning irle

problem or the 2D-Eulidean enter problem.

6.1 Introdution 105

of Gonzalez' farthest-point lustering algorithm [56℄ (see Setion 7.5.1). Ben-
Dor, Lania, Perone, and Ravi [13℄ showed that randomized rounding an be
used to obtain approximate solutions to HCP whih are lose to the optimal
with high probability for instanes where the radius is large ompared to the
input size (for instanes where the radius is small, their method may yield poor
approximations). Then, two groups of authors independently gave randomized
(4
3 + ε)-approximation algorithms for HCP, where ε an be seleted to be any
onstant > 0; the one by G�asienie, Jansson, and Lingas [50℄ (to be desribed
in this hapter) is guaranteed to run in polynomial time if r is at least superlog-
arithmi in k or if r = O(1) (for other instanes, this method still ahieves an
approximation fator of 4

3 + ε with high probability but the running time may
be exponential in the size of the input), whereas the algorithm by Lantot, Li,
Ma, Wang, and Zhang [88℄ runs in polynomial time for all r. This was followed
by a polynomial-time approximation sheme (PTAS) for HCP by Li, Ma, and
Wang [91℄.

Gramm, Niedermeier, and Rossmanith [57℄ studied the parameterized om-
plexity of HCP and proved that if an upper bound R on r is provided then HCP
an be solved in O(kn+kRR+1) time. Hene, HCP an be solved in O(kn) time
if r is known in advane to be less than or equal to a given onstant. In [57℄,
Gramm et al. also showed that HCP restrited to instanes with k = 3 an be
solved in O(n) time.

Below, we brie�y desribe some known results for other, related problems.
The losest substring problem is: Given a set {α1, ..., αk} of binary strings of

length n and a positive integer L with L ≤ n, output a string β ∈ {0, 1}L mini-
mizing r suh that for every input string αi, there exists a length L substring γi

of αi with dH(γi, β) ≤ r. Li, Ma, and Wang [91℄ gave a PTAS for the losest
substring problem based on their PTAS for HCP.

The R-mismath problem is: Given a set of strings {α1, ..., αk} of length n
and positive integers L and R, (if possible) output a string β of length L and
an integer m suh that dH(αi[m..(m + L − 1)], β) ≤ R for all 1 ≤ i ≤ k.
Gramm, Niedermeier, and Rossmanith [57℄ showed that the R-mismath problem
is solvable in O(kL+(n−L)kRR+1) time whih in linear in the size of the input
if R = O(1).

The distinguishing string seletion problem is: Given a set G of �good� strings
of length n, a set B of �bad� strings of length at least n, and two integers rG, rB,
output a string β (if one exists) suh that minαi∈G dH(αi, β) ≥ rG and suh that
for every αj ∈ B, there exists a length n substring γj of αj with dH(γj , β) ≤ rB.
Deng, Li, Li, Ma, and Wang [34℄ gave a PTAS for the problem whih, for any
given onstant ε > 0, �nds a string β′ of length n suh that for every αi ∈ G,
dH(αi, β

′) ≥ (1 − ε)·rG and suh that for every αj ∈ B, there exists a length n
substring γj of αj with dH(γj , β

′) ≤ (1 + ε) ·rB . Gramm, Niedermeier, and
Rossmanith [57℄ showed how to solve the speial ase where all strings in B have
length n and rB = O(1) exatly in polynomial time.

106 Chapter 6. Approximation Algorithms for the Hamming Center Problem

The generalization of HCP to the problem of �nding p enters is alled the
Hamming p-radius lustering problem (HRC). It is treated in depth in Chapter 7,
where several new results are presented.

Finally, we omment on the smallest enlosing irle problem mentioned
above. Aording to [93℄, it was posed by Sylvester [123℄ in 1857. After the �rst
algorithm for the problem had been suggested, a great number of people tried to
�nd inreasingly e�ient algorithms (see [93℄ for referenes) until Megiddo [93℄
�nally settled the issue in 1982 by showing how to solve it in O(k) time, mathing
the lower bound of Ω(k). Unfortunately, the methods used to solve the smallest
enlosing irle problem, its generalizations to higher dimensions, and other vari-
ants listed in, e.g., the survey by Agarwal and Sharir [2℄ do not appear to work
diretly for HCP due to the disreteness of {0, 1}n. Therefore, the tehniques
developed for HCP are quite di�erent.

6.1.3 Our Contributions

The main result of this hapter is a randomized (4
3 +ε)-approximation algorithm

for HCP with suess probability at least 1
2 , where ε an be seleted to be any

onstant greater than 0. Its running time is guaranteed to be polynomial if
r ≥ 12.7 ln(4k)

ε3 or if r = O(1). It was originally published in [50℄, and although
its performane has subsequently been surpassed by that of the PTAS of Li,
Ma, and Wang [91℄ (whih is deterministi and an approximate HCP within a
fator of 1+ε for any onstant ε > 0 in polynomial time), we inlude the original
version of our algorithm here.

The rest of the hapter is organized as follows. First, we desribe the trivial
fator 2 approximation algorithm for HCP in Setion 6.2. Then, in Setion 6.3,
we provide an integer programming formulation of HCP whih an be used to
obtain exat solutions in nO(k) time, whih is polynomial in the input size if
k = O(1). We also note that if n = O(log k) or if r = O(1) then exhaustive
searh �nds exat solutions in polynomial time. Next, in Setion 6.4, we analyze
the method of randomized rounding applied to the linear programming relax-
ation of our integer programming formulation of HCP. We show that it yields
approximate solutions whih are lose to the optimum with high probability if
r ≫

√
4n lnn and k ≪ n2, or if the minimum generalized distane between the

optimal solution of the relaxed version of the instane and a string in the instane
is large. Finally, in Setion 6.5, we present our randomized (4

3 +ε)-approximation
algorithm for HCP.

6.2 A Very Simple 2-Approximation Algorithm

Consider the following approximation algorithm:

6.3 IP Formulation and Optimal Solutions in Polynomial Time 107

Given an instane {α1, ..., αk} of HCP, set the approximate solu-
tion β′ to αl, where l is hosen arbitrarily from {1, ..., k}.

It an immediately be shown to yield a onstant approximation fator:

Theorem 6.2 The above algorithm approximates HCP within a fator of 2.

Proof: Let β be an optimal solution to the given instane. For every i in
{1, ..., k}, the inequality dH(αi, β

′) ≤ dH(αi, β)+dH(β, β′) holds due to Fat 6.1
and dH(αi, β) + dH(β, β′) = dH(αi, β) + dH(β, αl) ≤ r + r = 2r holds by the
de�nition of r. ✷

The algorithm has been disovered independently by many researhers. It an
be regarded as a speial ase of Gonzalez' farthest-point lustering algorithm [56℄
with the parameter p set to 1 (see Setion 7.5.1).

6.3 Integer Programming Formulation and Op-

timal Solutions in Polynomial Time for Re-

strited Cases

The Hamming enter problem is equivalent to a speial ase of the integer pro-
gramming problem. Any given instane {α1, ..., αk} of HCP, where αi ∈ {0, 1}n
for 1 ≤ i ≤ k, an diretly be expressed as a system of k linear inequalities as
follows.

Let x1, ..., xn be 0 − 1-variables representing the n onseutive positions of
a enter β of {α1, ..., αk} and let y be an integer variable orresponding to the
(unknown) radius of the instane. For i = 1, ..., k, let the ith inequality be

∑

αi[m] = 0
1 ≤ m ≤ n

xm +
∑

αi[m] = 1
1 ≤ m ≤ n

(1− xm) ≤ y

The left-hand side of inequality i equals the Hamming distane between αi and β.
(For eah position m, if αi[m] = 0 then the sum is inremented by one if and
only if xm = 1, and onversely, if αi[m] = 1 then the sum is inremented by one
if and only if xm = 0.) The onstraint �≤ y� ensures that dH(αi, β) is smaller
than or equal to the radius.

Next, the above system of inequalities an be transformed into the form
Ax ≤ b, where A is a (k×n)-matrix with every entry belonging to the set {−1, 1},
x is the (n× 1)-vetor (x1, ..., xn) of 0− 1-variables, and b is a (k × 1)-vetor of
expressions involving y. The salar produt of any pre�x of any row in A with
a 0 − 1-vetor of the same length is neither less than −n nor greater than n.
Therefore, we an solve the transformed system of k inequalities by a dynami

108 Chapter 6. Approximation Algorithms for the Hamming Center Problem

programming proedure, proeeding in stages [104℄. In stage l, we ompute the
set Wl of all (k×1)-vetors whih an be expressed as

∑l
m=1 cmzm, where cm is

the mth olumn of A and zm ∈ {0, 1}. Sine the ardinality of Wl annot be
larger than (2n + 1)k and there are n stages, this proedure takes a total of
O((2n + 1)k · k · n) time. Next, for eah v ∈ Wn, solve the inequality v ≤ b in
O(k) time to identify a v∗ whih yields the smallest possible value of y (i.e., equal
to the given instane's r). A enter β for the given instane is then obtained
by setting β[m] = z∗m for 1 ≤ m ≤ n, where v∗ =

∑n
m=1 cmz∗m. The whole

algorithm uses O((2n + 1)k ·k·n + (2n + 1)k ·k + n) = nO(k) time.

We have just proved the next theorem.

Theorem 6.3 HCP is solvable in nO(k) time.

On the other hand, if n = O(log k) then exhaustive searh an be employed
to �nd a enter in polynomial time. Eah andidate enter an be evaluated in
O(k · n) time, so generating and testing all of the 2n binary strings of length n
takes O(2n · k · n) = kO(1) time.

Theorem 6.4 HCP restrited to instanes with n = O(log k) is solvable in kO(1)

time.

Alternatively, an optimal solution an be obtained by exhaustive searh as
follows.

Theorem 6.5 HCP is solvable in O(r · nr+1 · k) time.

Proof: Choose an l arbitrarily from {1, ..., k}. Then, with R initially set to
zero and inreasing by one after eah iteration, evaluate the

∑R
j=0

(

n
j

)

= O(nR)

strings in {0, 1}n within Hamming distane R of αl until a string with Hamming
distane at most R to every string in S has been disovered (some optimal
enter β will be evaluated when R reahes r sine dH(αl, β) ≤ r). The running
time for this method is

∑r
R=0 O(nR) · O(k · n) = (r + 1) · O(nr) · O(k · n) =

O(r · nr+1 · k). ✷

We summarize the above in a orollary.

Corollary 6.6 The following are solvable in polynomial time:

• HCP restrited to instanes with k = O(1).

• HCP restrited to instanes with n = O(log k).

• HCP restrited to instanes with r = O(1).

6.4 Randomized Rounding 109

6.4 Randomized Rounding

By relaxing the integer onstraints on the 0 − 1-variables x1, ..., xn in the in-
teger programming formulation of HCP desribed in Setion 6.3, thus allowing
eah variable xm to assume a real number in the interval [0, 1], we get a linear
programming problem that an be solved in polynomial time by standard meth-
ods [109℄. Randomization an then be applied to the solution of the relaxed
problem to obtain an approximate 0− 1-solution β′ to the original problem.

We use the following randomized rounding sheme:

For eah m, where 1 ≤ m ≤ n, set β′[m] to 1 with probability x̂m

and to 0 with probability 1 − x̂m, where x̂m is the value assigned
to xm in the optimal solution to the relaxed linear program.

Cherno� bound tehniques desribed in, e.g., Chapter 11 in [63℄ or Chapter 4
in [96℄ an be applied to analyze this method. We proeed as in the analysis
of the randomized rounding sheme for the lattie approximation problem given
on pp. 449�450 in [63℄. Denote the probability of an event A by Pr[A] and the
expetation of a random variable X by E[X]. We will use the following two
variants of the Cherno� bound.

Fat 6.7 [63℄ Let X1, ..., Xn be a sequene of independent 0−1 random variables
suh that Pr[Xm = 1] = pm and Pr[Xm = 0] = 1− pm for every m ∈ {1, ..., n}.
De�ne Y =

∑

Xm so that E[Y] =
∑

pm. Then:

1. Pr
[

|Y −E[Y]| >
√

4n lnn
]

≤ 1
n2 , and

2. For any ε ∈ [0, 1], Pr
[

|Y −E[Y]| > ε·E[Y]
]

≤ 2 exp(−0.375·ε2·E[Y]).

To simplify things later on, we introdue the following terminology.

De�nition 6.8 For any two z1, z2 ∈ [0, 1]n, the generalized distane between z1

and z2 is

dG(z1, z2) =
n

∑

m=1

|z1[m]− z2[m]|

Also, de�ne β̂ ∈ [0, 1]n to be the vetor (x̂1, ..., x̂n) obtained from the optimal
solution to the relaxed version of the instane. Note that max

αi∈S
dG(αi, β̂) ≤ r.

110 Chapter 6. Approximation Algorithms for the Hamming Center Problem

Lemma 6.9 Given an instane S of HCP, let β′ be the approximate solution
omputed by our randomized rounding sheme. Then the maximum Hamming
distane between β′ and any string in S is at most:

1. r +
√

4n lnn with probability ≥ 1− k
n2 , and

2. r(1 + ε) for any ε ∈ [0, 1] with probability ≥ 1 − k · 2 exp(−0.375 ·ε2 ·w),

where w is the minimum generalized distane between a string in S and β̂.

Proof: Selet an i ∈ {1, ..., k}. For eah m, where 1 ≤ m ≤ n, let Xm be the
random variable that has the value 1 if αi[m] = 0 and the randomized rounding
sheme sets β′[m] to 1, or if αi[m] = 1 and the randomized rounding sheme
sets β′[m] to 0; otherwise, Xm = 0. Then

E[Xm] =

{

x̂m, if αi[m] = 0

1− x̂m, if αi[m] = 1

Hene, E[Xm] = dG(αi[m], β̂[m]). Now, Y =
∑

Xm is a random variable repre-
senting the Hamming distane between αi and β′. By linearity of expetation,
E[Y] = E

[
∑

Xm

]

=
∑

E[Xm], whih is equal to the generalized distane

between αi and β̂. This implies that E[Y] ≤ r, so

Pr
[

dH(αi, β
′) > r +

√
4n lnn

]

= Pr
[

Y > r +
√

4n lnn
]

≤ Pr
[

Y > E[Y] +
√

4n lnn
]

≤ Pr
[

|Y −E[Y]| >
√

4n lnn
]

≤ 1
n2

by Fat 6.7.1 and

Pr
[

dH(αi, β
′) > r(1 + ε)

]

= Pr
[

Y > r(1 + ε)
]

≤ Pr
[

Y > E[Y]·(1 + ε)
]

≤ Pr
[

|Y −E[Y]| > ε·E[Y]
]

≤ 2 exp(−0.375·ε2·E[Y])

≤ 2 exp(−0.375·ε2·w)

by Fat 6.7.2 together with w = min
αj∈S

dG(αj , β̂) ≤ dG(αi, β̂) = E[Y].

Sine the previous argument an be repeated for all i ∈ {1, ..., k},

Pr

[

max
αi∈S

dH(αi, β
′) > r +

√
4n lnn

]

= Pr

[

⋃

αi∈S

(

dH(αi, β
′) > r +

√
4n lnn

)

]

≤ ∑

αi∈S

Pr
[

dH(αi, β
′) > r +

√
4n lnn

]

≤ k · 1
n2

6.5 A Randomized (4
3

+ ε)-Approximation Algorithm 111

and we have Pr

[

max
αi∈S

dH(αi, β
′) ≤ r +

√
4n lnn

]

≥ 1− k
n2 .

In the same way, Pr

[

max
αi∈S

dH(αi, β
′) ≤ r(1 + ε)

]

≥ 1− 2 exp(−0.375·ε2·w). ✷

Corollary 6.10 Given an instane S of HCP, let β′ be the approximate solution
omputed by our randomized rounding sheme. Then the following holds:

1. For any positive q, if r ≥ q·
√

4n lnn then the maximum Hamming distane
between β′ and any string in S is at most r(1+ 1

q) with probability≥ 1− k
n2 .

2. If the minimum generalized distane w between a string in S and the

optimal relaxed solution is at least ln(4k)
0.375ε2 then the maximum Hamming

distane between β′ and any string in S is at most (1+ε)r with probability
≥ 1

2 .

In other words, the method of randomized rounding is likely to yield nearly
optimal solutions if the radius r is substantially larger than

√
4n lnn and k is

substantially smaller than n2, or if the minimum generalized distane w is su�-
iently large.

6.5 A Randomized (4
3 + ε)-Approximation Algo-

rithm

In this setion, we present a randomized algorithm that for any instane of HCP
and any onstant ε > 0 returns a solution whih with probability at least 1

2 is
within a fator of (4

3 + ε) of the optimum. The running time depends exponen-
tially on 1/ε, but if ε is �xed then the running time is polynomial in n and k as
long as r is superlogarithmi in k or r = O(1). Thus, we will assume that ε is a
onstant whih has been spei�ed in advane.

Reall that r is de�ned as

r = min
β∈{0,1}n

(max
αi∈S

dH(αi, β))

where β refers to an optimal solution to the given instane. The approxi-
mate solution found by our algorithm is alled β′, and we denote the value
of max

αi∈S
dH(αi, β

′) by r′.

We �rst desribe the algorithm and then analyze its approximation fator.

112 Chapter 6. Approximation Algorithms for the Hamming Center Problem

Desription of the algorithm

First of all, alulate the diameter d of the instane, de�ned as the maximum
over all Hamming distanes between any two of the input strings, i.e.,

d = max
αj∈S

(max
αi∈S

dH(αi, αj)).

Next, ompute 12.7 ln(4k)
ε3 using the spei�ed value of ε. If d < 12.7 ln(4k)

ε3 then let

the algorithm branh to Case 1 below to obtain β′; if d ≥ 12.7 ln(4k)
ε3 then branh

to Case 2 to obtain β′.

Case 1: d < 12.7 ln(4k)
ε3

Note that r ≤ d (sine r ≤ min
αj∈S

(max
αi∈S

dH(αi, αj)) ≤ d). Find an exat solution

by exhaustive searh, using the method desribed in the proof of Theorem 6.5.
Let β′ be the solution found.

This takes O(r · nr+1 · k) = O(nd+2 · k) time.

Case 2: d ≥ 12.7 ln(4k)
ε3

The seond ase is divided into two subases: d ≤ 4
3r and d > 4

3r.

At this stage, the algorithm annot know whih subase holds for the given
instane sine r is still unknown. To get around this, the algorithm runs both
proedures desribed below, evaluates the two approximate solutions obtained,
and hooses the better one as the �nal approximate solution β′.

Subase 2a: d ≤ 4
3r

Set β′ to αl, where l is hosen arbitrarily from {1, ..., k}.

Subase 2b: d > 4
3r

Rearrange the αi's so that dH(α1, αk) = d. Then, normalize the strings as
follows:

old_α1 := α1

for m := 1 to n do
if α1[m] = 1 then

for i := 1 to k do αi[m] := 1− αi[m]

In this way, the new α1 will be the string 0n, where 0m for any positive integer m
denotes the string onsisting of exatly m 0s. The transformation does not
hange any of the pairwise Hamming distanes beause whenever some position
in a string is hanged, the orresponding position in every other string is hanged
as well. Next, let some permutation σ : {1, ..., n} → {1, ..., n} at on the olumns
of the strings so that the d positions of αk that ontain 1s end up at αk[1..d]

6.5 A Randomized (4
3

+ ε)-Approximation Algorithm 113

(see Figure 6.2). This operation does not a�et the pairwise Hamming distanes
either.

α1

αk

α2

β

0 0 0 0 0 . . . 0

0 0 0 0 0 . . . 0
1 1 0 1 0 . . . 0

n-d

β

0 0 0 0 0 . . . 0
0 1 0 0 1 . . . 1

1 1 1 1 1 . . . 1

d

β [1 . . d] [(d+1) . . n]

Figure 6.2: After normalization, α1 and αk are two strings that are the farthest apart.
They di�er at preisely positions 1..d.

Now onsider the 0− 1-integer programming problem orresponding to the nor-
malized instane with the integer onstraints relaxed as desribed in Setion 6.4.
Add onstraints whih fore the last n − d positions of any valid solution to
be 000..0. Let ρ be an optimal solution to this problem, and set γ to that
αi[1..d] 0n−d, i = 1, ..., k, whih minimizes the generalized distane between γ
and ρ. Next, apply the randomized rounding sheme from Setion 6.4, and all
the obtained solution µ. Let β′ be the one of the two strings γ, µ with the small-
est maximum distane to the strings αi, i = 1, ..., k. At this point, β′ always
ontains 0s on its last n− d positions (see Figure 6.3).

β
,

0 0 0 0 0 . . . 0
β

,
β

,
[1 . . d] [(d+1) . . n]

Figure 6.3: For Subase 2b, the last n−d positions of β′ are 0s.

Finally, β′ needs to be transformed bak to the original instane. Apply σ−1

to β′ and then perform:

for m := 1 to n do
if old_α1[m] = 1 then

β′[m] := 1− β′[m]

and Subase 2b is done.

114 Chapter 6. Approximation Algorithms for the Hamming Center Problem

Algorithm analysis

The only operation that might take more than polynomial time to perform is
the exhaustive searh in Case 1. Hene, for instanes with d ≥ 12.7 ln(4k)

ε3 , the
algorithm always runs in polynomial time.

Next, we prove that in all ases, r′ ≤ (4
3 + ε) r with probability ≥ 1

2 .

Case 1: d < 12.7 ln(4k)
ε3

The algorithm �nds an exat solution, so r′ = r.

Subase 2a: d ≥ 12.7 ln(4k)
ε3 and d ≤ 4

3

Sine r′ ≤ d ≤ 4
3r, we are done.

Subase 2b: d ≥ 12.7 ln(4k)
ε3 and d > 4

3

First, we observe that an optimal solution β an not have a lot of ones in the
last n− d positions.

Lemma 6.11 β[(d+1)..n] ontains less than 1
3r ones.

Proof: Suppose that β[(d+1)..n] ontains ≥ 1
3r ones. Sine dH(α1, β) ≤ r,

β[1..d] must ontain ≤ 2
3r ones. Similarly, dH(αk, β) ≤ r implies that β[1..d]

ontains ≤ 2
3r zeros. But this would mean that d ≤ 2

3r + 2
3r = 4

3r, whih is a
ontradition sine d > 4

3r. ✷

Next, de�ne ζ to be a string in {0, 1}n with zeros on the last n − d positions
that minimizes the value of max

αi∈S
dH(αi, ζ).

Lemma 6.12 max
αi∈S

dH(αi, ζ) ≤ 4r
3 .

Proof: Let ξ be the onatenation of the �rst d symbols of β and the string on-
sisting of n−d zeros, i.e., ξ = β[1..d] 0n−d. From the de�nitions and Lemma 6.11,
we see that

max
αi∈S

dH(αi, ζ) ≤ max
αi∈S

dH(αi, ξ) ≤ max
αi∈S

(dH(αi, β) + dH(β, ξ)) ≤ r +
1

3
r =

4r

3
.

✷

Lemma 6.13 If d ≥ 12.7 ln(4k)
ε3 then r′ ≤ (1+ 3ε

4)·max
αi∈S

dH(αi, ζ) with probability

at least 1
2 .

6.5 A Randomized (4
3

+ ε)-Approximation Algorithm 115

Proof: We have

r′ = max
αi∈S

dH(αi, β
′) ≤ max

αi∈S
(dG(αi, ρ)+dG(ρ, β′)) ≤ (max

αi∈S
dH(αi, ζ))+dG(ρ, β′).

Let w be the minimum generalized distane between ρ and αi[1..d] 0n−d, where
i = 1, ..., k. If w is at most 3ε

8 d, then

dG(ρ, β′) ≤ dG(ρ, γ) ≤ 3ε

8
d ≤ 3ε

4
r =

3ε

4
·max
αi∈S

dH(αi, β) ≤ 3ε

4
·max
αi∈S

dH(αi, ζ)

sine d = dH(α1, αk) ≤ dH(α1, β) + dH(β, αk) ≤ 2r.

Otherwise, w satis�es w > 3ε
8 d > ln(4k)

0.375(3ε
4)2

, and the lemma follows from the

relation max
αi∈S

dH(αi, β
′) ≤ max

αi∈S
dH(αi, µ) and the seond part of Corollary 6.10

along with a slight modi�ation to aount for the onstraint requiring zeros on
the last n−d positions of the solution and with ε set to 3ε

4 . ✷

Now, it is easy to verify that in Subase 2b, we ahieve the approximation
fator stated earlier. Beause of d ≥ 12.7 ln(4k)

ε3 , it follows from Lemma 6.12 and
Lemma 6.13 that

r′ ≤ (1 +
3ε

4
) · 4r

3
= (

4

3
+ ε) r

holds with probability ≥ 1
2 .

This onludes Subase 2b. We have thus proved the main theorem of this
setion.

Theorem 6.14 The approximate enter β′ returned by the algorithm is within
distane (4

3 + ε) r of all strings in S with probability ≥ 1
2 . If the diameter d of

the input instane satis�es d ≥ 12.7 ln(4k)
ε3 then the algorithm runs in polynomial

time. If d < 12.7 ln(4k)
ε3 then β′ is atually an optimal solution, and the algorithm

runs in O(r · nr+1 · k) = O(n
12.7 ln(4k)

ε3 +2 · k) time.

Note that sine d ≥ r, if r ≥ 12.7 ln(4k)
ε3 then the algorithm is guaranteed to run

in polynomial time. On the other hand, if r = O(1) then the running time is
also polynomial.

Finally, we remark that the suess probability an be ampli�ed from ≥ 1
2 to

≥ 1 − (1
2)c for any positive integer c by running the algorithm independently

c times and seleting the best one of the obtained approximate solutions. (The
probability that the algorithm fails to produe any approximate solution whih
is good enough is ≤ (1− 1

2)c = (1
2)c.)

116 Chapter 6. Approximation Algorithms for the Hamming Center Problem

6.6 Conluding Remarks

We have shown that HCP an be solved exatly in polynomial time if restrited
to instanes with k = O(1) (Theorem 6.3), or n = O(log k) (Theorem 6.4), or
r = O(1) (Theorem 6.5). In the general ase, HCP an be approximated within
a fator of two in polynomial time (Theorem 6.2). The method of randomized
rounding yields good approximations for instanes of HCP in whih r is large
ompared to

√
4n lnn, or k is small ompared to n2, or the minimum generalized

distane between the optimal solution of the relaxed version of the instane and a
string in the instane is large (Corollary 6.10). Our main result was a randomized
approximation algorithm for HCP that for any given onstant ε > 0 returns a
solution whih with probability at least one half is within a fator of (4

3 + ε) of

the optimum, and whose running time is polynomial if r ≥ 12.7 ln(4k)
ε3 or r = O(1)

(Theorem 6.14).

After reading about the randomized, polynomial-time (4
3 +ε)-approximation

algorithm of Lantot et al. [88℄, we realized that a minor modi�ation to our
algorithm will atually make it run in polynomial time for all instanes of HCP.
The idea is to hange Case 1 (d < 12.7 ln(4k)

ε3) so that instead of �nding an exat
solution (whih might take exponential time), we let the algorithm look for
an approximate solution within the (4

3 + ε)-bound using only polynomial time.
More preisely, let the approximate solution for Case 1 be the best of the two
approximate solutions obtained from the following subases:

• Return αl, where l is hosen arbitrarily from {1, ..., k} (i.e., the same
method as for Subase 2a). If d ≤ 4

3r then this gives r′ ≤ d ≤ 4
3r.

• Transform the instane as for Subase 2b and let ζ be a string in {0, 1}n
with zeros on the last n−d positions that minimizes max

αi∈S
dH(αi, ζ). Find ζ

by testing all of the 2d < (4k)
12.7·ln(2)

ε3 strings in {0, 1}n with zeros on the
last n − d positions. The number of strings whih have to be tested is
polynomial in k sine ε is onstant, and eah suh string an be evaluated
in O(kn) time; therefore, the time required is polynomial in n and k.
Transform ζ bak to the original instane and return ζ. If d > 4

3r then
r′ = max

αi∈S
dH(αi, ζ) ≤ 4r

3 by Lemma 6.12.

As for further improvements on the polynomial-time approximability of HCP,
there is not muh left to be done. The PTAS of Li, Ma, and Wang [91℄ an
approximate HCP within a fator of 1 + ε for any onstant ε > 0 in polynomial
time; furthermore, it is deterministi and works for strings over any onstant-size
alphabet. However, it has a high time omplexity and may be di�ult to use in
pratie (see p. 159 in [91℄). Therefore, the main open problem onerning HCP
is to �nd a simpler PTAS whose running time is upper bounded by a polynomial
of smaller degree than the one in [91℄.

Chapter 7

Hamming p-Radius and
p-Diameter Clustering

Here, we onsider the Hamming versions of two lassial lustering problems.
The �rst one, the Hamming p-radius lustering problem (HRC), is the natural
generalization of HCP (the problem we studied in detail in Chapter 6) where
instead of �nding one binary string β of length n whih is lose to all of the
input strings, we want to �nd p binary strings {β1, ..., βp} of length n suh
that every input string is lose to at least one string in the set {β1, ..., βp}.
The seond problem we onsider is alled the Hamming p-diameter lustering
problem (HDC). It is the related problem in whih the objetive is to partition
the input strings into p groups so that the maximum of the group diameters is
minimized.

We extend our investigation of the omputational omplexity of HCP to
HRC and HDC, leading us to new inapproximability results, exat polynomial-
time algorithms for ertain restritions of the problems, and various types of
approximation algorithms.

7.1 Introdution

As in Chapter 6, let {0, 1}n be the set of all strings of length n over the alpha-
bet {0, 1}. For any α ∈ {0, 1}n, we use the notation α[m] to refer to the symbol
plaed at the mth position of α, where m ∈ {1, ..., n}. The Hamming distane
between two strings α1, α2 ∈ {0, 1}n is the number of positions in whih the
strings di�er, and is denoted by dH(α1, α2).

The Hamming p-radius lustering problem (HRC) is de�ned as:

117

118 Chapter 7. Hamming p-Radius and p-Diameter Clustering

The Hamming p-radius lustering problem (HRC)

Instane: Finite set S = {α1, ..., αk} suh that S ⊆ {0, 1}n for some positive
integer n, positive integer p with p ≤ k.

Output: A set {β1, ..., βp} ⊆ {0, 1}n whih minimizes the value of

max
αi∈S

min
1≤q≤p

dH(αi, βq) (7.1)

Suh an optimal set {β1, ..., βp} of strings is alled a p-enter set of S or a
p-enter of S. The orresponding value of (7.1) is alled the p-radius of S, and is
denoted by r. The de�nitions imply that p ≤ k ≤ 2n and r ≤ n. Note that HRC
restrited to instanes with p set to 1 is the Hamming enter problem (HCP),
the problem whih was studied in detail in the previous hapter.

Radius lustering is also alled minmax radius lustering or entral lustering
in the literature [63℄. The orresponding problem for graphs is often termed the
p-enter problem [63, 103℄.

The Hamming p-diameter lustering problem (HDC) is de�ned on the same
set of instanes as HRC. However, the goal is de�ned di�erently:

The Hamming p-diameter lustering problem (HDC)

Instane: Finite set S = {α1, ..., αk} suh that S ⊆ {0, 1}n for some positive
integer n, positive integer p with p ≤ k.

Output: A partition of S into p disjoint subsets S1, ..., Sp whih minimizes
the value of

max
1≤q≤p

max
αi,αj∈Sq

dH(αi, αj) (7.2)

The minimum value of (7.2) is alled the p-diameter of S, and is referred to
by d. A partition of S into p disjoint subsets whih ahieves this minimum value
is alled a p-luster set of S, and eah element of a p-luster set of S is a p-luster
of S. Again, from the problem de�nitions it follows that p ≤ k ≤ 2n and d ≤ n.
For any subset S′ of S, the 1-diameter of S′ is the value of max

αi,αj∈S′
dH(αi, αj).

Diameter lustering is sometimes alled minmax diameter lustering or pair-
wise lustering [63℄.

An algorithm A is said to approximate HRC within a fator of f if for any
instane of the problem, A outputs a set B′ = {β′

1, ..., β
′
p} ⊆ {0, 1}n suh that

max
αi∈S

min
β′

q∈B′
dH(αi, β

′
q) ≤ f · r. Similarly, an algorithm A is said to approximate

HDC within a fator of f if for any instane of the problem, A outputs a parti-
tion {S′

1, ..., S
′
p} of S suh that max

1≤q≤p
max

αi,αj∈S′
q

dH(αi, αj) ≤ f · d. An algorithm

7.1 Introdution 119

whih approximates HRC/HDC within a fator of f is also alled a fator f ap-
proximation algorithm (or just an f -approximation algorithm) for HRC/HDC.
We say that a problem is NP-hard to approximate within a fator of f if it
annot be approximated within a fator of f by any polynomial-time algorithm
unless P=NP.

7.1.1 Motivation

A lustering problem is a omputational problem in whih the elements of a
given set have to be divided into groups so that all elements within a group
are similar to eah other. Important appliations of algorithms for lustering
problems have turned up in operations researh, pattern reognition, data min-
ing, onept learning, statistial data analysis, astrophysis, and data ompres-
sion, and more reently, in the automati lassi�ation of web pages and in the
study of gene expression data in omputational moleular biology (see below
and [1, 2, 7, 101℄ for referenes). In eah suh appliation, a given pratial
problem is modeled as a spei�, well-de�ned lustering problem whih is then
solved exatly, or approximately if an exat solution annot be obtained. The
most appropriate measure of similarity and objetive funtion to use depend on
the appliation at hand and the nature of the elements that are being analyzed.
For instane, the Hamming metri has been used as the measure of similarity
in appliations involving elements represented as binary strings of equal length;
examples inlude ompressing orrelated bitmaps [20℄, automati sript identi-
�ation from sanned images (e.g., distinguishing between Arabi, Armenian,
Burmese, et.) [64℄, reonstruting unknown Boolean funtions from inomplete
sets of samples [97℄, and gene expression analysis [114℄.

There is a vast literature on algorithms and omputational omplexity results
for lustering problems in the graph theoreti and �xed-dimensional geometri
settings (see, e.g., [7, 10, 24, 35, 56, 59, 63, 103, 128℄ and [1, 2, 7, 10, 43, 56, 63,
101℄, respetively), but not as muh is known about the polynomial-time solvabil-
ity of geometri lustering problems where the dimension is unrestrited [101℄.
Our goal in this hapter is to determine the omputational omplexities of the
two unrestrited dimensional lustering problems that use the Hamming metri
and the general-purpose riteria orresponding to minimizing expression (7.1)
or (7.2) on p. 118 as their objetive funtion, i.e., HRC and HDC.

In many appliations, the number of lusters that need to be produed is
relatively small [101℄. On the other hand, p might be large in ertain pattern
mathing appliations; a system for Chinese harater reognition, for example,
would need to be able to disriminate between thousands of haraters. We are
therefore interested in the omputational omplexities of HRC and HDC both
when p is small and when p is unrestrited.

HRC generalizes the Hamming enter problem from Chapter 6. Hene, an-
other potential use for HRC (and HDC) is the appliation desribed in Se-
tion 6.1.1 in whih an unbiased representative (i.e., an unbiased onsensus string)

120 Chapter 7. Hamming p-Radius and p-Diameter Clustering

for a given set S of k related biomoleular sequenes has to be omputed, e.g.,
to ategorize other sequenes later on, or to probe a database in order to dis-
over similar sequenes. It an be extended diretly to the problem of omputing
p > 1 representatives for S, where p≪ k. Here, the p representatives an be the
members of a p-enter set of S, or simply p sequenes from di�erent p-lusters
of S.

HRC an be viewed as a faility loation problem where p failities have to
be assigned to loations in {0, 1}n. However, sine any p-enter of a given set S
indues a partition of S (as explained in Setion 7.2), we an think of HRC as a
lustering problem as well. Indeed, in this hapter, we use the name the Ham-
ming p-radius lustering problem rather than the Hamming p-enter problem to
emphasize the lose relationship to the Hamming p-diameter lustering problem.

7.1.2 Previous Results

Many omputational omplexity results related to p-radius and p-diameter lus-
tering in the graph theoreti and geometri settings have been published previ-
ously; see [1, 2, 10, 35, 43, 56, 63, 101, 103, 128℄ and the numerous referenes
therein. Below, we mention the ones that are the most relevant for this hapter.

Both the p-radius and the p-diameter lustering problems on edge-weighted,
omplete, undireted graphs are NP-hard to approximate within a fator of 2−ε
for any ε > 0 even if the edge weights satisfy the triangle inequality (see [10, 63,
128℄). Feder and Greene [43℄ proved that the p-radius and p-diameter lustering
problems in the plane under the L2 metri are NP-hard to approximate within
a fator of 1.822 and 1.969, respetively; moreover, they proved that under the
L1 metri and the L∞ metri, the problems are NP-hard to approximate within
a fator of 2− ε for any ε > 0.

Gonzalez' farthest-point lustering algorithm [56℄ an be used to obtain an
approximation fator of 2 in polynomial time for p-radius and p-diameter luster-
ing problems whenever the used distane funtion satis�es the triangle inequality;
see Theorem 8.14 in [63℄ for a short proof. Fat 6.1 immediately implies that
HRC and HDC are polynomial-time approximable within a fator of 2 (details
are given in Setion 7.5.1).

Some of the few known lustering results whih are spei�ally tied to the
Hamming metri are listed next.

Franes and Litman [46℄ proved that HRC is NP-hard already for p = 1
(inidentally, this suggests that HRC is at least as hard as the orresponding p-
radius lustering problem on an edge-weighted, omplete, undireted graph sine
the latter an be solved exatly in polynomial time by exhaustive searh when
restrited to any onstant p). Li, Ma, and Wang [91℄ gave a polynomial-time
approximation sheme (PTAS) for HRC restrited to p = 1. See Chapter 6 for
other known results on HRC with p = 1.

7.1 Introdution 121

The Hamming p-median lustering problem (HMC) is de�ned on the same
set of instanes as HRC and HDC, but its objetive is to �nd a set {β1, ..., βp} ⊆
{0, 1}n whih minimizes the value of

k
∑

i=1

min
1≤q≤p

dH(αi, βq). It is solvable in O(kn)

time for p = 1 by setting position m of the solution to majority(αi[m])k
i=1 for

every 1 ≤ m ≤ n, but NP-hard for every �xed p ≥ 2 [84℄. Ostrovsky and
Rabani [101℄ provided a randomized PTAS for HMC restrited to p = O(1), and
showed how it an be used to obtain randomized polynomial-time approximation
shemes for p-median lustering problems with p = O(1) in ertain other metri
spaes.

7.1.3 Our Contributions

In this hapter, we derive several new results onerning the polynomial-time
solvability and approximability/inapproximability of HRC and HDC. We outline
our results below.

Setion 7.2 demonstrates that while the p-diameter of a set of binary strings
is not neessarily equal to its p-radius, it is always within a fator of two.

In Setion 7.3, we prove not only that HRC and HDC are NP-hard in the
general ase1, but that both HRC and HDC are in fat NP-hard to approximate
within a fator of 2 − ε for any onstant ε > 0. We also onsider another kind
of approximation of HDC obtained by relaxing the onstraint on the number
of produed lusters (but still requiring that none of their 1-diameters exeed
the p-diameter of the instane) and show that it is NP-hard to approximate the
number of lusters within a fator of pk1/7−ε for any onstant ε > 0. As a
orollary, we obtain that HDC is an NP-hard problem already for p = 3.

Restrited ases of HRC and HDC are studied in Setion 7.4. We prove that
HRC an be solved exatly in polynomial time if k = O(1), or if p = O(1)
and n = O(log k), or if p = O(1) and r = O(1). We prove that HDC is solvable
in polynomial time if p = O(1) and k = O(log n), or if p = 2. The tehniques
we use are based on integer programming, exhaustive searh, and breadth-�rst
searh.

In Setion 7.5, we �rst observe that an approximation fator of two for the
general ase of HRC and HDC an be ahieved in O(pkn) time by using Gon-
zalez' farthest-point lustering algorithm [56℄. It follows from our inapprox-
imability result mentioned above that this is the best possible polynomial-time
onstant approximation fator for the unrestrited versions of HRC and HDC,
unless P=NP. We then provide a (deterministi) approximation sheme whih
approximates HRC within a fator of (1 + ε) for any given onstant ε, where
0 < ε < 1, in kO(p/ε) ·2O(rp/ε) ·n time, whih is polynomial for problem instanes
with p = O(1) and r = O(log(k + n)). Next, we ombine the randomized PTAS

1As pointed out earlier, HRC was �rst proved to be NP-hard even if restrited to p = 1
in [46℄.

122 Chapter 7. Hamming p-Radius and p-Diameter Clustering

of Ostrovsky and Rabani [101℄ for the Hamming p-median lustering problem
with the PTAS of Li, Ma, and Wang [91℄ for HRC restrited to p = 1 to obtain
a randomized PTAS for HRC restrited to p = O(1) that has a high suess
probability.

Finally, in Setion 7.6, we give an approximation algorithm for HRC whih
approximates the p-radius within a fator of (1+ε) for any onstant 0 < ε < 1 at
the expense of a slight inrease in the number of output strings: it produes at
most (1+ ln k) · p strings that together approximate a p-enter set. This twofold
approximation algorithm runs in O((k ·2r)2/ε · (n + k) ·k · log n) time, whih is
polynomial whenever r = O(log(k + n)) even if p is unbounded.

Our onlusions and some open problems related to HRC and HDC are pre-
sented in Setion 7.7.

7.2 Preliminaries

HRC and HRC are de�ned for the same set of instanes, but the p-radius r
and the p-diameter d of a set of binary strings are in general di�erent, as the
following example illustrates.

Example 7.1

Consider the instane S = {00010000, 00100000, 01000000, 10000000, 11110000,
11111111} with p = 2.

An optimal solution to HRC is {β1 = 00000000, β2 = 11110101} with r = 2.

On the other hand, an optimal solution to HDC is
{

S1 = {00010000, 00100000,
01000000, 10000000, 11110000}, S2 = {11111111}

}

with d equal to 3. ✷

Let (S, p) be an instane of HRC/HDC. A p-enter set {β1, ..., βp} of S with
p-radius r indues an approximate p-luster set {S̃1, ..., S̃p} of S with diameter d̃
(for i = 1, ..., k, if βq is the string in the p-enter losest to αi with the lowest
index then let αi ∈ S̃q). In the same way, a p-luster set {S1, ..., Sp} of S with
p-diameter d indues an approximate p-enter set {β̃1, ..., β̃p} of S with radius r̃

(for q = 1, ..., p, let {β̃q} be a 1-enter set for the set of strings belonging to Sq).

Example 7.2

Let S be the instane in Example 7.1.

The approximate 2-luster set indued by {β1, β2} is
{

S̃1 ={00010000, 00100000,
01000000, 10000000}, S̃2 = {11110000, 11111111}

}

, so the orresponding value
of d̃ is 4.

An approximate 2-enter set indued by {S1, S2} is {β̃1 = 01010000, β̃2 =
11111111}, whih implies r̃ = 3. ✷

7.3 HRC and HDC are NP-Hard to Approximate 123

The next lemma shows that an approximate solution to HDC indued by an
optimal solution to HRC is within a fator of two of optimum, and vie versa.
Moreover, it shows that the p-diameter of a set of binary strings is always less
than or equal to twie its p-radius.

Lemma 7.3 Given an instane of HRC/HDC, de�ne r, r̃, d, and d̃ as above.
Then:
(a) r̃ ≤ 2r; (b) d̃ ≤ 2d; () r ≤ d ≤ 2r

Proof: By de�nition, we have (1) r ≤ r̃ and (2) d ≤ d̃. Also, (3) r̃ ≤ d
beause setting β̃q to an arbitrary string in Sq for eah q ∈ {1, ..., p} gives an
approximate p-enter set with radius less than or equal to d. Next, sine the
Hamming distane funtion obeys the triangle inequality (see Fat 6.1), the
distane between two strings αi, αj that end up in the same S̃q must be less
than or equal to dH(αi, βq) + dH(βq, αj) ≤ 2r, so it holds that (4) d̃ ≤ 2r.

Now, (a) follows from (3), (2), and (4); (b) follows from (4), (1), and (3).
Finally, () follows from (1), (3), (2), and (4). ✷

7.3 HRC and HDC are NP-Hard to Approximate

In this setion, we prove that both HRC and HDC are NP-hard to approximate
within any onstant fator smaller than two. We also prove that for any onstant
ε > 0, it is NP-hard to split S into at most pk1/7−ε disjoint lusters whose 1-
diameters do not exeed the p-diameter of S. It follows from the redution we
use to prove the latter result that solving HDC exatly is NP-hard for every
�xed p ≥ 3.

7.3.1 NP-Hardness of Approximating the p-Radius and

the p-Diameter

The starting point for proving the hardness results in this subsetion is the re-
dution in [43℄ from vertex over for planar graphs of degree at most three to
the p-radius and p-diameter lustering problems in the plane under the L1 met-
ri2. We �rst show that all points in the resulting instane of the orresponding
p-lustering problem as well as the points in an approximate p-enter an be
required to lie on an integer grid whose size is polynomial in the size of the in-
put planar graph, giving us the following tehnial strengthening of Theorem 2.1
in [43℄.

2The p-radius lustering problem in the plane under the L1 metri is the following: Given
a �nite set S of points in the plane, �nd a set P of p points in the plane that minimizes
max
s∈S

min
u∈P

d1(s, u), where d1 is the L1 distane. The p-diameter lustering problem in the plane

under the L1 metri is de�ned analogously.

124 Chapter 7. Hamming p-Radius and p-Diameter Clustering

Lemma 7.4 The p-radius and p-diameter lustering problems in the plane un-
der the L1 metri for a �nite set S of points, where the points in S lie on an
integer square grid whose size is polynomial in |S| and where the approximate
solution to the radius version is required to lie on the grid, are NP-hard to
approximate within a fator of 2− ε for any onstant ε > 0.

Proof: The redution in [43℄ embeds an instane of vertex over for planar
graphs of degree at most three in the plane by replaing eah edge with a path
omposed of an odd number of unit-length edges. The midpoints of these unit-
length edges form an instane I of p-radius or p-diameter lustering in the plane
whih admits a solution with p-radius 0.5 or p-diameter 1, respetively, if and
only if the embedded graph has a vertex over of size p. The key observation
is that the distane between the midpoints of any two nonadjaent edges is at
least 2 in ase of the L1 metri (see Figure 7.1). It follows that �nding an
approximate solution to I within any fator smaller than 2 is as hard as �nding
an exat solution, yielding the NP-hardness of approximating the p-radius and p-
diameter lustering problems in the plane under the L1 metri within any fator
smaller than 2. For further details onerning the redution, see [43℄ or [63℄.

Consider the smallest square box B with sides parallel to the x- and y-
axes whih ontains the embedded graph onstruted in the redution. Sine
the graph an be assumed to be onneted, the length of a side of the box is
O(l), where l is the number of points in the instane of the radius or diameter
lustering problem in the plane. Note that l has to be polynomial in the size n
of the original vertex over instane [43℄. We onlude that the size of the box
is polynomial in n.

Form a uniform point grid within B suh that the distane between nearest
neighbors in the grid is δ, where 0 < δ ≤ 0.01. Move eah of the midpoints in I
to its nearest grid point. Suh a movement hanges the relative distane between
two midpoints by at most 2δ. Adding the requirement that an approximate p-
enter must also lie on the grid an further inrease the radius by at most δ. It
follows that I admits a lustering with p-radius 0.5 or p-diameter 1, respetively,
if and only if the resulting instane I ′ of lustering on the grid admits a solution
with p-radius ≤ (0.5 + δ) + δ = 0.5 + 2δ or p-diameter ≤ 1 + 2δ. It also follows
that I has p-radius at least 1 or p-diameter at least 2 if and only if I ′ has p-
radius ≥ 1 − 2δ or p-diameter ≥ 2 − 2δ. Now, if the p-radius of I ′ ould be
approximated within 2− 12δ then the p-radius of I ould be omputed exatly
sine (0.5 + 2δ) · (2 − 12δ) < 1− 2δ. Similarly, if the p-diameter of I ′ ould be
approximated within 2−6δ then the p-diameter of I ould be omputed exatly
sine (1 + 2δ) · (2− 6δ) < 2− 2δ.

Sine δ an be seleted arbitrarily lose to 0 and I ′ an be onstruted in
time whih is polynomial in n for any �xed δ, it is su�ient to transform the
grid to an integer grid by resaling by 1/δ in order to obtain the theorem in both
ases. ✷

7.3 HRC and HDC are NP-Hard to Approximate 125

Figure 7.1: The L1 distane between two edge midpoints (shown as �lled irles) is 1
if the edges are adjaent, and ≥ 2 otherwise.

By embedding the L1 metri on an integer square grid into the Hamming
metri, we obtain the main result of this subsetion.

Theorem 7.5 HRC and HDC are NP-hard to approximate within a fator of
2− ε for any onstant ε > 0.

Proof: Let S be a set of points on an integer square grid of size W ×W, where
W is bounded by some polynomial in |S|. For eah s ∈ S, denote the x- and
y-oordinates of s by sx and sy, respetively. Enode eah s ∈ S by the binary
string e(s) of length 2W omposed of sx onseutive 1's followed by W − sx

onseutive 0's, then sy onseutive 1's, and �nally, W−sy onseutive 0's. Then,
for any two points s′ and s′′ in S, their L1 distane is the absolute di�erene in
x-oordinates plus the absolute di�erene in y-oordinates, whih is equal to the
Hamming distane between their enodings e(s′) and e(s′′) (see Figure 7.2 for
an example). This observation, together with Lemma 7.4, yields the theorem
for HDC.

Next, onsider an approximate solution {a1, ..., ap} to HRC for the strings
e(s), s ∈ S. For q = 1, ..., p, transform aq to a′

q having the form 1l0W−l1m0W−m

for some l, m ≤ W by moving all the 1's ontained in the left half of aq to the
beginning of the left half, and all the 1's in the right half of aq to the beginning
of the right half. The resulting set of strings {a′

1, ..., a
′
p} is a solution whih is at

least as good as {a1, ..., ap}. Also, it an be diretly deoded into a set of grid

126 Chapter 7. Hamming p-Radius and p-Diameter Clustering

dH= 7

1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0

1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0

(3,7)

(5,2)

d = 71

Figure 7.2: The L1 distane between any two points in S equals the Hamming distane
between the two enoding strings.

points {g1, ..., gp} suh that a′
q = e(gq) for q = 1, ..., p. Lemma 7.4 now gives us

the theorem for HRC. ✷

7.3.2 NP-Hardness of Approximating HDC in Terms of

the Number of Clusters

Let G be an undireted graph. A partition of G into q liques is a partition of
the set of verties of G into disjoint subsets V1, ..., Vq suh that for j = 1, ..., q,
the subgraph of G indued by Vj is a omplete graph. The minimum lique
partition problem is: Given an undireted graph G, �nd a partition of G into
as few liques as possible. A partition of G into q liques indues a oloring
with q olors of the omplement graph G of G and vie versa sine two verties
in G are nonadjaent (i.e., an be assigned the same olor) if and only if they
are adjaent in G. Thus, known inapproximability results for minimum graph
oloring [12℄ imply that for any onstant ε > 0, the problem of �nding an
approximate solution to the minimum lique partition problem onsisting of at
most p·|V |1/7−ε liques, where |V | is the number of verties in the input graph G
and p is the number of liques in an optimal solution, is NP-hard.

By a redution from the minimum lique partition problem to HDC, we
obtain:

Theorem 7.6 For any onstant ε > 0, the problem of �nding a partition of a
set of k binary strings of length O(k2) into at most pk1/7−ε disjoint lusters suh
that eah luster has 1-diameter not exeeding the p-diameter is NP-hard.

7.4 Polynomial-Time Optimal Solutions for Restrited Cases 127

Proof: Given an instane G of the minimum lique partition problem, let |V |
denote the number of verties in G and onstrut an undireted graph G′ with
2|V | verties by augmenting G with |V | new verties and then, for every vertex v
appearing in G, adding edges between v and new verties until v gets degree |V |
in G′. Enumerate the edges of G′ from 1 to m, where m = O(|V |2). For every
vertex v in G, form a binary string s(v) of length m suh that there is a 1 on the
ith position of s(v) if and only if the ith edge of G′ is inident to v. Note that for
any pair of verties v1, v2 in G, the Hamming distane between s(v1) and s(v2)
is 2|V | − 2 if they are adjaent, otherwise it is 2|V |. Therefore, any partition
of G into p liques yields a p-luster set of the resulting strings whose maximum
1-diameter is less than or equal to 2|V | − 2, and onversely, any q-luster set of
the resulting strings whose maximum 1-diameter is less than or equal to 2|V |−2
trivially yields a partition of G into q liques. The theorem follows from the
inapproximability result ited above, with k = |V |. ✷

As for the orresponding approximation problem for HRC (i.e., produing
a larger set of approximate enters suh that eah input string is within the
p-radius of at least one of them), we doubt whether it is as hard to approximate.
Indeed, if we weaken the requirement of being within the p-radius by a multi-
pliative fator of 1 + ε, then the problem admits a logarithmi approximation
in polynomial time if r = O(log(k + n)), as shown in Setion 7.6.

We also note the following. The partition into liques problem is: Given an
undireted graph G and a positive integer p, is it possible to partition G into
p liques? The partition into liques problem is NP-omplete for every �xed
p ≥ 3 (see [49℄), so the redution in the proof of Theorem 7.6 also implies:

Corollary 7.7 HDC is NP-hard for every �xed p ≥ 3.

7.4 Polynomial-Time Optimal Solutions for Re-

strited Cases

Although HRC and HDC are NP-hard in general by the result of Franes and
Litman [46℄ and Corollary 7.7 above, ertain speial ases of HRC and HDC
(e.g., HRC restrited to instanes with p = k and HDC restrited to instanes
with p = 1 or p = k) an be solved by trivial algorithms. Here, we investigate
some other, more interesting ases of HRC and HDC whih an be solved in
polynomial time.

Reall from Setion 6.3 that HRC with p = 1 an be expressed as a spe-
ial ase of the integer programming problem whih is solvable in nO(k) time
(Theorem 6.3). We �rst show that HRC an be solved in (pn)O(k) time for
p > 1.

Theorem 7.8 HRC is solvable in (pn)O(k) time.

128 Chapter 7. Hamming p-Radius and p-Diameter Clustering

Proof: Let (α1, ..., αk, p) be a given instane of HRC, where αi ∈ {0, 1}n for
1 ≤ i ≤ k and p ∈ {1, ..., k}. For eah of the O(pk) ways to partition the k strings
into p subsets {S1, ..., Sp}, onstrut p instanes of HRC with p set to 1 suh
that for 1 ≤ q ≤ p, instane q onsists of the strings in subset Sq. Then use the
method of Theorem 6.3 to solve eah instane optimally, and let the value of
the urrent partition equal the maximum of the p resulting 1-radii. As the �nal
solution, return the set of 1-enters of a partition that yields the smallest value.

To prove the orretness of this method, onsider an optimal p-enter set
{β1, ..., βp}. It indues a partition {S̃1, ..., S̃p} of {α1, ..., αk} where for 1 ≤ i ≤ k,
αi ∈ S̃q if βq is the string in the p-enter losest to αi with the lowest index.
Let r be the p-radius. By the de�nition of a p-enter set, dH(αi, βq) ≤ r for
all αi ∈ S̃q. Thus, the distane between an optimal 1-enter of S̃q and a string
in S̃q annot be greater than r. All partitions of the input strings, inluding
{S̃1, ..., S̃p}, are tested, so an optimal solution will be found.

The method takes a total of O(pk) ·O(p) · nO(k) = (pn)O(k) time. ✷

We onlude that HRC with k = O(1) an be solved exatly in polynomial
time.

Exhaustive searh over all possible p-enters results in a kO(p)-time algorithm
when n = O(log k) beause there are (2n)p andidate solutions, eah of whih
an be evaluated in O(kpn) time. We have:

Theorem 7.9 HRC restrited to instanes with n = O(log k) is solvable in
kO(p) time.

Exhaustive searh over sets of strings of inreasing distane to the input
strings an also be used to obtain an optimal solution, as the next theorem
shows.

Theorem 7.10 HRC is solvable in O(r · kp+1 · npr+1 · p) time.

Proof: Initialize a ounter R to zero. Repeat the following until a solution B
has been found, inrementing R by one after eah iteration: For every ar-
dinality p subset {γ1, ..., γp} of the set of input strings S, evaluate all di�er-
ent sets of the form {y1, ..., yp} where for 1 ≤ q ≤ p, yq ∈ {0, 1}n and yq is
within Hamming distane R of γq; if there exists suh a set {y1, ..., yp} satisfying
maxαi∈S min1≤q≤p dH(αi, yq) = R then let B := {y1, ..., yp}.

To see that this method always �nds an optimal solution, let {β1, ..., βp} be
any p-enter set of S. As in the proof of Theorem 7.8, it indues a partition
{S̃1, ..., S̃p} of {α1, ..., αk} where for 1 ≤ i ≤ k, αi ∈ S̃q if βq is the string in
the p-enter losest to αi with the lowest index. Now, for 1 ≤ q ≤ p, if S̃q is
nonempty then de�ne γ̂q to be the string in S̃q with lowest index; note that
dH(γ̂q, βq) ≤ r, and furthermore, γ̂q 6∈ S̃j for all j 6= q. Next, for 1 ≤ q ≤ p, if
S̃q is empty then de�ne γ̂q to be any element in S whih is di�erent from all γ̂j

7.4 Polynomial-Time Optimal Solutions for Restrited Cases 129

de�ned so far and set βq to γ̂q (if S̃q is empty then βq an be replaed by any
string in {0, 1}n without a�eting the value of (7.1) in the de�nition of HRC
on p. 118). The resulting set {β1, ..., βp} is a p-enter set of S whih will be
evaluated at some point when R has reahed r and the subset {γ̂1, ..., γ̂p} is
onsidered.

In every iteration, there are
(

k
p

)

= O(kp) subsets of S to onsider. There are
R
∑

j=0

(

n
j

)

= O(nR) strings in {0, 1}n within Hamming distane R of any string

in S, and eah andidate solution an be evaluated in O(kpn) time, so the total
running time is

∑r
R=0 O(kp+1 · npR+1 · p) = O(r · kp+1 · npr+1 · p). ✷

One of the main di�erenes between HDC and HRC is that the former does
not involve strings outside the input set S. For this reason, it seems simpler
to solve exatly than HRC does3. It an be solved in O(k2n + pkk2) time by
preomputing all Hamming distanes between pairs of strings in S and then
doing an exhaustive searh, whih immediately yields the following result.

Theorem 7.11 HDC restrited to instanes with k = O(log n) is solvable in
nO(log p) time.

Finally, we observe that the Hamming 2-diameter lustering problem admits
a rather straightforward polynomial-time algorithm.

Theorem 7.12 HDC restrited to instanes with p = 2 is solvable in O(k2n)
time.

Proof: Let d be a andidate value for the 2-diameter of S. Form a graph G
whose verties are in one-to-one orrespondene with the input strings, and
onnet a pair of verties by an edge whenever the Hamming distane between
the orresponding strings is less than or equal to d. The problem of partitioning S
into two subsets whose 1-diameters are at most d is now equivalent to the problem
of partitioning G into two liques; the latter problem in turn redues to 2-oloring
the omplement graph G of G (see Setion 7.3.2). A 2-oloring of G (if one exists)
an be found in O(k2) time by breadth-�rst searh. To determine the smallest
possible d for whih a 2-oloring of G exists, use the proedure just desribed
for di�erent values of d, generated by a binary searh. Calulating all pairwise
Hamming distanes requires O(k2n) time, but this an be done before starting
the searh for d. The total running time is O(k2n + k2 ·log n) = O(k2n). ✷

The results of this setion are summarized in the next orollary. It generalizes
Corollary 6.6.

3However, as for approximations in terms of the number of lusters, it might be more
di�ult, as indiated by the results in Setions 7.3.2 and 7.6.

130 Chapter 7. Hamming p-Radius and p-Diameter Clustering

Corollary 7.13 The following are solvable in polynomial time:

• HRC restrited to instanes with k = O(1).

• HRC restrited to instanes with p = O(1) and n = O(log k).

• HRC restrited to instanes with p = O(1) and r = O(1).

• HDC restrited to instanes with p = O(1) and k = O(log n).

• HDC restrited to instanes with p = 2.

7.5 Approximation Algorithms for HRC & HDC

In this setion, we desribe three approximation algorithms. The �rst one works
for both HRC and HDC, whereas the seond and third are more speialized and
work only for HRC.

7.5.1 A Polynomial-Time 2-Approximation Algorithm for

HRC and HDC

We apply Gonzalez' farthest-point lustering algorithm [56℄ to HRC and HDC,
respetively, as shown in Figure 7.3 to obtain an approximation fator of two for
both problems. This algorithm an be viewed as an extension of the 2-approx-
imation algorithm for HRC restrited to p = 1 given in Setion 6.2.

Algorithm Farthest-Point Clustering

Input: An instane of HRC or HDC.

Output: An approximate solution whih is within a fator of 2 of the optimum.

1 Set B to {αl}, where αl is an arbitrary string in S.

2 for q := 2 to p do

Augment B by a string α ∈ S that maximizes minβ′∈B dH(α, β′), i.e.,
a string that is as far away as possible from the strings already in B.

endfor

3 (HRC) return B.

(HDC) Assign eah string in S to a losest member in B and return the
resulting lusters.

End Farthest-Point Clustering

Figure 7.3: Gonzalez' farthest-point lustering algorithm applied to HRC and HDC.

By Fat 6.1, the Hamming distane funtion satis�es the triangle inequality.
Therefore, by the proof of Theorem 8.14 in [63℄, Algorithm Farthest-Point Clus-
tering yields an approximate solution to HRC or HDC that is always within a
fator of two of the optimum.

7.5 Approximation Algorithms for HRC & HDC 131

We an implement the algorithm by updating the Hamming distane from
eah string outside B to the nearest string in B after eah augmentation of B.
To update and then ompute a string in S farthest from B takes O(kn) time in
eah iteration; hene, we obtain the next theorem.

Theorem 7.14 HRC and HDC an be approximated within a fator of two in
O(pkn) time.

Theorem 7.5 implies that if P 6=NP then this is the best onstant approxi-
mation fator for the unrestrited versions of HRC and HDC ahievable by any
algorithm running in polynomial time. Interestingly, Algorithm Farthest-Point
Clustering does not even onsider any strings outside the input set S.

7.5.2 An Approximation Sheme for HRC

Here, we present an algorithm that for any given onstant ε, where 0 < ε < 1,
approximates HRC within a fator of (1 + ε), and show that its running time is
polynomial if p = O(1) and r = O(log(k +n)). The algorithm is partly based on
the idea used in the PTAS for HRC restrited to p = 1 by Li, Ma, and Wang [91℄.

Our algorithm is alled Algorithm HRC Approximation Sheme and is shown
in Figure 7.4.

Algorithm HRC Approximation Sheme

Input: An instane of HRC, positive number ε < 1.

Output: An approximate solution whih is within a fator of (1 + ε) of the
optimum.

1 Let R := min{⌈ 1+ε
2ε
⌉, k} and set C to the empty set.

2 for eah subset S′ of S with exatly R strings do

Compute the set Q onsisting of all positions m, 1 ≤ m ≤ n, on whih
all strings in S′ ontain the same symbol. Set P to {1, ..., n} \Q.
For every possible f : P → {0, 1}, let qf be the string in {0, 1}n whih
agrees with the strings in S′ on all positions in Q and ontains f(j) on
eah position j ∈ P . Augment C by qf .

endfor

3 Let Cp be the set of all ardinality p subsets of C.

4 Test every set in Cp and return a B ∈ Cp that minimizes max
1≤i≤k

min
c∈B

dH(αi, c).

End HRC Approximation Sheme

Figure 7.4: An approximation sheme for HRC.

For instanes of HRC with k ≤ ⌈ 1+ε
2ε ⌉, Algorithm HRC Approximation

Sheme will �nd an exat solution sine C ontains all possible strings whih

132 Chapter 7. Hamming p-Radius and p-Diameter Clustering

an belong to a p-enter. To prove that the algorithm attains the spei�ed ap-
proximation fator for the remaining ases (i.e., when k > ⌈ 1+ε

2ε ⌉), we need the
next lemma. It follows from Lemma 2.1 in [91℄ together with the part of the
proof of Lemma 2.5 in [91℄ whih uses enumeration to �nd an optimal ompletion
of the string obtained from Lemma 2.1.

Lemma 7.15 For any subset U of S, there is a c in C suh that

max
α∈U

dH(α, c) ≤ (1 +
1

2R− 1
) · min

β∈{0,1}n
max
α∈U

dH(α, β)

Theorem 7.16 For any given ε, where 0 < ε < 1, Algorithm HRC Approxima-
tion Sheme approximates HRC within a fator of (1 + ε) in kO(p/ε) · 2O(rp/ε) ·n
time.

Proof: To prove the orretness and the laimed approximation fator of Algo-
rithm HRC Approximation Sheme, onsider an optimal p-enter {β1, ..., βp}
of S. Partition S into disjoint subsets U1 through Up suh that for all 1 ≤ q ≤ p
and any α ∈ Uq, βq has minimum Hamming distane to α among β1, ..., βp. By
Lemma 7.15, the set Cp onstruted in Step 3 ontains a set {β′

1, ..., β
′
p} suh that

for all 1 ≤ q ≤ p and any α ∈ Uq, the Hamming distane between α and β′
q is

at most 1 + 1
2R−1 times the radius of Uq. Thus, Algorithm HRC Approximation

Sheme yields a solution within 1+ 1
2R−1 of the optimum. Now, for all instanes

of HRC with k > ⌈ 1+ε
2ε ⌉, we have R = ⌈ 1+ε

2ε ⌉ ≥ 1+ε
2ε and 1 + 1

2R−1 ≤ 1 + ε. (If
k ≤ ⌈ 1+ε

2ε ⌉ then the algorithm returns an exat solution.)

To derive an upper bound on the running time of AlgorithmHRC Approxima-
tion Sheme, �rst observe that eah of the sets P in Step 2 has size at most r·R so
that for eah subset S′ onsidered, at most 2rR strings of the form qf are added
to C, taking O(Rn + 2rRn) = O(2rRn) time. Hene, |C| ≤ kR2rR, and C an be
onstruted in O(kR2rRn) time. Consequently, Cp is of size at most kRp2rRp and
its onstrution from C takes O(kRp2rRpn) time. Eah set in Cp an be tested in
O(kpn) time. The total running time is therefore O(kRp+1 · 2rRp · p · n), whih
is bounded by kO(p/ε) · 2O(rp/ε) · n sine R ≤ ⌈ 1+ε

2ε ⌉ < 1+ε
2ε + 1 = 1+3ε

2ε < 2
ε

and p ≤ k. ✷

Corollary 7.17 Algorithm HRC Approximation Sheme yields a polynomial-
time approximation sheme for HRC restrited to instanes with p = O(1) and
r = O(log(k + n)).

7.5.3 A Randomized PTAS for HRC with p = O(1)

Ostrovsky and Rabani [101℄ provided a randomized polynomial-time approxima-
tion sheme for the Hamming p-median lustering problem (see Setion 7.1.2)

7.5 Approximation Algorithms for HRC & HDC 133

restrited to p = O(1). In this subsetion, we show that a modi�ation to the
evaluation phase of their algorithm makes the algorithm work for HRC, too. To
be more preise, we apply the PTAS of Li, Ma, and Wang [91℄ for HRC restrited
to p = 1 to obtain a randomized PTAS for HRC restrited to p = O(1) whose
suess probability inreases with inreasing k.

Preliminaries

Let An,m(q) be the probability distribution on the (m×n)-matries over {0, 1} in
whih the entries are independent, identially distributed random 0−1-variables
with Pr[1] = q. For any (m×n)-matrix A over {0, 1} (heneforth also referred to
as a linear transformation from {0, 1}n to {0, 1}m) and vetor x ∈ {0, 1}n, Ax is
the vetor in {0, 1}m obtained by multiplying A and x (modulo 2). Ostrovsky
and Rabani [101℄ proved the following.

Lemma 7.18 [101℄ For every γ > 0 there exists a λ > 0 suh that for every ε,
0 < ε ≤ 1

8 , and all integers k, n, and l with l ∈ {1, ..., n}, the following holds:

Let S ⊆ {0, 1}n with |S| = k. Let m = λ ln k/ε4, and let A be
a random matrix drawn from An,m(ε2/l). Then with probability
at least 1 − k−γ , for all x, y, z ∈ S with l ≤ dH(y, z) ≤ 2l, if
dH(Ax, Ay) ≤ dH(Ax, Az) then dH(x, y) ≤ (1 + 8ε) · dH(x, z).

De�nition 7.19 A tournament is a direted graph in whih there is exatly
one direted edge between eah pair of verties. An apex of a tournament is a
vertex of maximum outdegree.

The next lemma was stated without proof in [101℄.

Lemma 7.20 Let a be an apex of a tournament T , and let c be any vertex in T .
Then there is a direted path of length at most 2 from a to c.

Proof: Denote the maximum outdegree of T by M . Let B be the set of verties
of T whih are reahable by following one direted edge from a, i.e., |B| = M .

Assume that there is no direted path of length ≤ 2 from a to c. Then eah
direted edge between c and a vertex in {a} ∪ B must originate from c, whih
means that the outdegree of c is at least M +1. This ontradits the maximality
of a. ✷

The algorithm

The algorithm is alled Algorithm HRC Randomized PTAS and is listed in Fig-
ure 7.5. It is substantially based on the approah used in [101℄ for approximat-
ing the Hamming p-median lustering problem. The only di�erene between the
PTAS of [101℄ and Algorithm HRC Randomized PTAS is the evaluation phase;

134 Chapter 7. Hamming p-Radius and p-Diameter Clustering

Algorithm HRC Randomized PTAS

Input: An instane of HRC with p = O(1), positive onstants γ, ε, and f .

Output: An approximate solution whih is within a fator of (1 + 8ε)2 · (1 + f)
of the optimum with probability at least 1− 2·k−γ .

Set λ to the onstant in Lemma 7.18 (depends on γ).

m := λ · ln(k + p)/ε4

for eah l ∈ {1, ..., n} do

Draw a random matrix from An,m(ε2/l) and all it A(l).

endfor

for all (ls,t)1≤s<t≤p ∈ {1, ..., n}(
p
2) do

for all hoies of (ci,j)
i6=j
1≤ i,j ≤ p ∈ ({0, 1}m)p(p−1) do

(S1, ..., Sp) := (∅, ..., ∅)

for x ∈ S do

Construt a tournament T over vertex set {1, ..., p} as follows:

for 1 ≤ i < j ≤ p do

if dH(A(li,j)x, ci,j) ≤ dH(A(li,j)x, cj,i) then

Let ij be an edge of T .

else

Let ji be an edge of T .

endif

endfor

Compute an apex a of T .
Sa := Sa ∪ {x}

endfor

for q := 1 to p do

B′
q := PTAS(Sq, f)

endfor

ost := max
1≤q≤p

{max
α∈Sq

dH(α, B′
q)}

endfor

endfor

return The {B′
1, ..., B

′
p} whih indues the smallest ost.

End HRC Randomized PTAS

Figure 7.5: The randomized PTAS of Ostrovsky and Rabani, modi�ed to approximate
HRC restrited to p = O(1).

whereas it is easy to ompute the exat ost of eah andidate lustering for the
Hamming p-median problem, it is NP-hard for HRC (see below).

To understand the general idea behind the algorithm, �rst onsider the ase
p = 2. The initial part of the algorithm generates a set of n linear transfor-
mations from {0, 1}n to {0, 1}m, where m = O(log k), whih are applied to the
input strings later on to redue the number of dimensions. (Note that the el-

7.5 Approximation Algorithms for HRC & HDC 135

ements of {0, 1}m an be enumerated in polynomial time.) In the main loop,
for every possible projetion (c1,2, c2,1) in ({0, 1}m)2 of a 2-enter in ({0, 1}n)2,
the original strings are partitioned into two sets (S1, S2); a string is plaed in S1

or S2 depending on if its projetion is loser to the string c1,2 or the string c2,1,
with ties broken arbitrarily. By enumerating over all elements in ({0, 1}m)2,
some (c̃1,2, c̃2,1) in the redued spae whih is the image of an optimal solution
(β1, β2) in the original spae will be enountered. Denote the partition of S in-
dued by (c̃1,2, c̃2,1) by (S̃1, S̃2). Now, if the linear transformation would preserve
all relations between pairwise distanes between strings, every string in S̃1 would
be loser to β1 than to β2. This is not true in general though, but Lemma 7.18
guarantees that we an selet a linear transformation from An,m(ε2/l1,2) at ran-
dom, where l1,2 is the distane between β1 and β2, so that for any string x

whih is plaed in S̃1, the distane between x and β1 is at most (1 + 8ε) times
the distane between x and β2 with high probability. Thus, even if x is plaed
in the �wrong� set, this does not worsen the quality of the approximation too
muh. Sine the atual distane between β1 and β2 is unknown, all possible
values for l1,2 are tried.

For p > 2, the algorithm enumerates over all possible pairwise distanes
in the original spae between luster enters as well as over all elements in
({0, 1}m)p(p−1). For some hoie of distanes and some element (c̃1,2, c̃1,3, ...,
c̃p,p−2, c̃p,p−1) in ({0, 1}m)p(p−1), eah string c̃i,j orresponds to the proje-
tion in {0, 1}m of βi using the linear transformation assoiated with the length
dH(βi, βj), where {β1, ..., βp} is an optimal p-enter in {0, 1}n. (For a linear
transformationA(l), Lemma 7.18 an be applied to pairs of luster enters (βi, βj)
whih satisfy l ≤ dH(βi, βj) ≤ 2l. Thus, one linear transformation is employed
for eah pair of luster enters, i.e.,

(

p
2

)

linear transformations at a time.) To
deide in whih lusters to plae the input strings, a tournament T among lus-
ter enters is onstruted for every x ∈ S; for eah pair of enters (i, j), the edge
between verties i and j in T is direted away from the enter whose proje-
tion is loser to the projetion of x. Then, x is assigned to a luster Sq only if
no vertex in T has more outgoing edges than vertex q. Again, for the orret
hoie of distanes between luster enters, Lemma 7.18 ensures that with high
probability, pairwise distanes in the redued spaes are not greatly distorted.
Assume that x is plaed in S̃a but that the luster enter whih is losest to x
is βc. By Lemma 7.20, there is a path of length at most two from a to c in T , so
at most two appliations of Lemma 7.18 are needed to obtain an upper bound
on dH(x, βa) in terms of dH(x, βc).

Sine the algorithm enumerates over many possible solutions in order to
�nd the best one, a method for evaluating the quality of a proposed lustering
is also required. Unfortunately, it is NP-hard to alulate the 1-radius (in the
original spae) of eah luster S̃q [46℄. Furthermore, the algorithm should output
p binary strings that approximate the p-enter of the instane. Therefore, for
eah omputed partition of S into (Sq)

p
q=1, we run the PTAS for HRC with

p = 1 by Li, Ma, and Wang [91℄ p times. For any onstant f > 0 and S′ ⊆ S,

136 Chapter 7. Hamming p-Radius and p-Diameter Clustering

PTAS(S′, f) returns an approximate 1-enter in polynomial time whose dis-
tane to every string in S′ is less than or equal to the 1-radius of S′ multiplied
by (1 + f).

Algorithm analysis

If p, f , γ, and ε are onstant, the total running time of Algorithm HRC Random-
ized PTAS is polynomial sine there are O(np(p−1)/2) sets of pairwise distanes to
try, the number of hoies for (ci,j)

i6=j
1≤ i,j ≤ p is bounded by O(2m·p(p−1)) = O(kC)

where C is a onstant less than p(p−1)λ/ε4, eah tournament an be onstruted
in polynomial time, and eah all to PTAS(S, f) takes polynomial time when f
is onstant.

Next, we show that every solution returned by the algorithm is lose to
the optimum with high probability, despite the inexatness introdued by the
projetion from {0, 1}n into {0, 1}m and the approximations of 1-enters.

Theorem 7.21 Let f be a onstant, 0 < f < 1. For every γ > 0 and ε, where
0 < ε ≤ 1

8 , Algorithm HRC Randomized PTAS approximates HRC restrited to
p = O(1) within a fator of (1 +8ε)2 · (1 + f) with probability at least 1− 2·k−γ

in polynomial time.

Proof: Let λ be the onstant in Lemma 7.18, let {β1, ..., βp} be an optimal
p-enter set for the given instane, and onsider the iteration of the algorithm in
whih ls,t = dH(βs, βt) for all 1 ≤ s < t ≤ p. One of the hoies of (ci,j)

i6=j
1≤ i,j ≤ p

tried by the algorithm is when eah ci,j is preisely A(li,j)βi (where li,j is set to
equal lj,i for j < i); denote the partition of S obtained for this (ci,j)

i6=j
1≤ i,j ≤ p by

(S̃1, ..., S̃p).
By Lemma 7.18, it holds that for any x ∈ S, if dH(A(li,j)x, A(li,j)βi) ≤

dH(A(li,j)x, A(li,j)βj) then dH(x, βi) ≤ (1 + 8ε) · dH(x, βj) with probability at
least 1− k−γ . Suppose that the algorithm plaes x in some luster S̃a, and that
βc is losest to x among {β1, ..., βp}. Sine a is an apex of T , Lemma 7.20 implies
that there is a path in T from a to c of length at most 2. If the path has length 2,
let b be its middle vertex. By the onstrution of T , dH(A(la,b)x, A(la,b)βa) ≤
dH(A(la,b)x, A(la,b)βb) and dH(A(lb,c)x, A(lb,c)βb) ≤ dH(A(lb,c)x, A(lb,c)βc). Oth-
erwise, if the path has length 1, set b equal to c; if the path has length 0, then
let a = b = c. Thus, with probability at least 1− (k−γ + k−γ) we have that

dH(x, βa) ≤ (1 + 8ε) · dH(x, βb) ≤ (1 + 8ε)2 · dH(x, βc).

For eah 1 ≤ q ≤ p, let B̃q be an optimal 1-enter for S̃q and let B̃′
q be the

approximate 1-enter omputed by PTAS(Sq, f). Beause

max
x∈S̃q

dH(x, B̃′
q) ≤ (1 + f) ·max

x∈S̃q

dH(x, B̃q) ≤ (1 + f) ·max
x∈S̃q

dH(x, βq),

7.6 A Relaxed Type of Approximation of HRC 137

the solution returned by Algorithm HRC Randomized PTAS has a ost whih
is less than or equal to

max
1≤q≤p

max
x∈S̃q

dH(x, B̃′
q) ≤ (1 + f) · max

1≤q≤p
max
x∈S̃q

dH(x, βq)

≤ (1 + f) · (1 + 8ε)2 ·max
x∈S

min
1≤q≤p

dH(x, βq)

with probability at least 1− 2·k−γ . ✷

7.6 A Relaxed Type of Approximation of HRC

We now show how to �nd, for any given onstant ε with 0 < ε < 1, a set L of at
most O(p log k) strings of length n suh that for eah string in S there is at least
one string in L within distane (1 + ε) · r. This yields a twofold approximation
algorithm for HRC with O((k·2r)2/ε ·(n + k)·k·logn) running time.

Let ε be a given onstant, 0 < ε < 1. Given an instane of HRC, ompute R
and the set C as in Algorithm HRC Approximation Sheme in Setion 7.5.2. If
k ≤ ⌈ 1+ε

2ε ⌉ then for every c in C, de�ne S(c) to be the set of all strings in S within
Hamming distane r of c; there exists a set of p suh sets that overs all of S
beause C ontains an exat p-enter. If k > ⌈ 1+ε

2ε ⌉ then for every c in C, de�ne
S(c) to be the set of all strings in S within Hamming distane (1+ 1

2R−1) ·r of c;
by Lemma 7.15, there exists a set onsisting of p suh sets, overing all of S.
Also note that by the proof of Theorem 7.16, if k > ⌈ 1+ε

2ε ⌉ then 1
2R−1 ≤ ε.

Now, if r is known, onstrut S(c) for all c ∈ C and run the lassial greedy
approximation algorithm for minimum set over (see [63℄ or [128℄) on the instane
(

S, {S(c) | c ∈ C}
)

to �nd a set of at most (1 + ln k) · p sets of the form S(c)
overing S, and return the orresponding elements of C as the solution. Other-
wise, perform a binary searh to �nd the smallest possible r; for eah andidate
value of r, onstrut a new instane of minimum set over by reomputing the
sets S(c) using this value of r, run the greedy minimum set over algorithm, and
test whether the size of the resulting over is ≤ (1 + ln k) · p.

Reall from the proof of Theorem 7.16 that |C| ≤ kR2rR and that C an be
onstruted in O(kR2rRn) time. The instane of minimum set over for a given
value of r an be onstruted in O(|C|kn) time and the greedy minimum set
over algorithm an be implemented to run in O(|C|k2) time. Sine the binary
searh for the optimal value of r takes O(log n) iterations and R < 2

ε , we obtain
the following theorem.

Theorem 7.22 For any onstant 0 < ε < 1, in O((k ·2r)2/ε ·(n + k) ·k · log n)
time we an �nd a set L of at most (1 + ln k) · p strings suh that eah string
in S is within Hamming distane (1 + ε) · r of at least one string in L.

The time bound in Theorem 7.22 is polynomial in n and k for every �xed ε
as long as r = O(log(k + n)).

138 Chapter 7. Hamming p-Radius and p-Diameter Clustering

7.7 Conluding Remarks

In this hapter, we have proved that the unrestrited versions of HRC and HDC
annot be approximated within any onstant fator less than two in polynomial
time, unless P=NP (Theorem 7.5). On the other hand, an approximation fator
of two in polynomial time is always ahievable for both problems (Theorem 7.14).

We have also proved that it is possible to ompute exat solutions or approx-
imate solutions with better approximation fators than two in polynomial time
for several restritions of HRC and HDC, as summarized below. Arrows show
when a more general algorithm an be used on a restrited ase (for example,
HDC with p = 2 and k = O(log n) an be solved exatly in polynomial time
either aording to Theorem 7.11 or Theorem 7.12).

HRC with r = O(1) r = O(log(k + n)) r unrestrited
p = O(1)

n = O(log k) Exat solution Exat solution Exat solution
(↓ or →) (→) (Theorem 7.9)

n unrestrited Exat solution PTAS Randomized
PTAS

(Theorem 7.10) (Corollary 7.17) (Theorem 7.21)

HDC p = 2 p = O(1) p unrestrited

k = O(log n) Exat solution Exat solution 2-approximation
(↓ or →) (Theorem 7.11) (↓)

k unrestrited Exat solution 2-approximation 2-approximation
(Theorem 7.12) (→) (Theorem 7.14)

In addition to the above, HRC with k = O(1) and unrestrited p is solvable
exatly in polynomial time (Theorem 7.8).

Furthermore, we have proved that HRC with r = O(log(k + n)) and unre-
strited p an be approximated within a fator of (1+ε) for any onstant ε > 0 in
polynomial time if the number of output strings is allowed to inrease by a fator
of at most (1 + ln k) (Theorem 7.22). Relaxing the number of allowed lusters
in an approximate solution to HDC seems less likely to help, though, sine it is
NP-hard for any onstant ε > 0 to split the input strings into ≤ pk1/7−ε disjoint
lusters whose 1-diameters do not exeed the p-diameter of the given instane
(Theorem 7.6).

The redution we employed to prove Theorem 7.6 and Corollary 7.7 is gen-
eral enough to be of use for proving hardness results for other types of Hamming
lustering problems as well. For example, onsider the Hamming p-sum of diam-
eters lustering problem (HSC) whih is de�ned on the same set of instanes as
HRC and HDC and where the objetive is to partition S into p disjoint subsets

7.7 Conluding Remarks 139

S1, ..., Sp so that the value of
p
∑

q=1
max

αi,αj∈Sq

dH(αi, αj) is minimized. We an prove

that HSC is NP-hard by reduing from the lique problem (given an undireed
graph G and a positive integer C, does G have a lique of size C?) as follows4:
Given G = (V, E) and C, onstrut G′ and a set S of |V | binary strings of
length O(|V |2) as in the proof of Theorem 7.6. Set p = |V | − C + 1. Reall
that for any pair of verties v1, v2 in G, the Hamming distane between their
enoding strings s(v1) and s(v2) is 2|V | − 2 if v1 and v2 are adjaent, otherwise
it is 2|V |. Therefore, if G has a lique of size C then S an be partitioned into
p subsets whose sum of diameters is 2|V | − 2 (1 subset with diameter 2|V | − 2
and |V | − C subsets with diameter 0), and if G has no lique of size C then for
any partition of S into p subsets, the sum of diameters must be stritly greater
than 2|V | − 2.

We remark that HSC an be approximated within a onstant fator in poly-
nomial time with the algorithm of Charikar and Panigrahy [24℄ and that HSC
restrited to p = 2 an be solved exatly in polynomial time with the algorithm
of Hansen and Jaumard [59℄. The omputational omplexity status of HSC re-
strited to p = O(1) is still open; we onjeture that HSC is NP-hard for every
�xed p ≥ 3.

We now disuss some other open questions.

The PTAS of Li, Ma, and Wang [91℄ for HRC restrited to p = 1 does not
seem readily adaptable to p = O(1). By Theorem 7.21, there exists a randomized
PTAS for this ase, but it is an open question whether a deterministi PTAS
an be onstruted. If not, is there any (deterministi) polynomial-time approx-
imation algorithm for HRC restrited to p = O(1) with a better approximation
fator than two at all? Also, sine the smallest value of p whih makes HDC
NP-hard is 3 (Corollary 7.7 and Theorem 7.12), we would like to know if there
exists any polynomial-time approximation algorithm for HDC restrited to p = 3
with a better approximation fator than two.

Is it possible to design more e�ient approximation algorithms for HRC and
HDC by taking into aount the spei� distribution of the input? Suh algo-
rithms might be useful in pratial appliations related to omputing unbiased
representatives, e.g., for protein data (see Setions 6.1.1 and 7.1.1).

Another problem worthy of loser examination is the following simultane-
ous generalization of HRC and the losest substring problem de�ned in Se-
tion 6.1.2: Given a set S = {α1, ..., αk} of binary strings of length n and a
positive integer L with L ≤ n, output a set of strings {β1, ..., βp} ⊆ {0, 1}L

4Compare this redution to the redution used in [35℄ to prove that the p-sum of diameters
lustering problem on a omplete, undireted graph whose edge weights satisfy the triangle
inequality is NP-hard to approximate within 2 − ε for any ε > 0.

140 Chapter 7. Hamming p-Radius and p-Diameter Clustering

minimizing r suh that for every αi ∈ S, there exists a length L substring γi

of αi with min
1≤q≤p

dH(γi, βq) ≤ r. All we urrently know is that this problem has

to be at least as hard as both HRC and the losest substring problem.

Bibliography

[1℄ P. K. Agarwal and C. M. Proopiu. Exat and approximation algorithms
for lustering. In Proeedings of the 9 thAnnual ACM-SIAM Symposium on
Disrete Algorithms (SODA'98), pages 658�667, 1998. (Cited on pp. 119,
120.)

[2℄ P. K. Agarwal and M. Sharir. E�ient algorithms for geometri optimiza-
tion. ACM Computing Surveys, 30(4):412�458, 1998. (Cited on pp. 106,
119, 120.)

[3℄ A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree
from lowest ommon anestors with an appliation to the optimization of
relational expressions. SIAM Journal on Computing, 10(3):405�421, 1981.
(Cited on pp. 10, 11, 13, 15, 16, 28, 47.)

[4℄ T. Akutsu and M. M. Halldórsson. On the approximation of largest om-
mon subtrees and largest ommon point sets. Theoretial Computer Si-
ene, 233(1�2):33�50, 2000. (Cited on pp. 56, 57.)

[5℄ J. Alber, J. Gramm, and R. Niedermeier. Faster exat algorithms for hard
problems: A parameterized point of view. Disrete Mathematis, 229:3�27,
2001. (Cited on p. 55.)

[6℄ A. Amir and D. Keselman. Maximum agreement subtree in a set of evo-
lutionary trees: Metris and e�ient algorithms. SIAM Journal on Com-
puting, 26(6):1656�1669, 1997. A preliminary version appeared in Proeed-
ings of the 35 thAnnual Symposium on Foundations of Computer Siene
(FOCS'94), pages 758�769, 1994. (Cited on pp. 54, 55, 69, 70.)

[7℄ P. Arabie, L. J. Hubert, and G. De Soete, editors. Clustering and Classi�-
ation. World Sienti� Publishing Co. Pte. Ltd., 1996. (Cited on p. 119.)

[8℄ S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof ver-
i�ation and hardness of approximation problems. In Proeedings of the
33 rdAnnual Symposium on Foundations of Computer Siene (FOCS'92),
pages 14�23, 1992. (Cited on p. 29.)

141

142 Bibliography

[9℄ U. Asklund. Con�guration Management for Distributed Development in an
Integrated Environment. PhD thesis, Lund University, 2002. ISSN 1404-
1219, Dissertation 14, LU-CS-DISS:2002-1. (Cited on p. 76.)

[10℄ G. Ausiello, P. Cresenzi, G. Gambosi, V. Kann, A. Marhetti-Spaamela,
and M. Protasi. Complexity and Approximation. Springer-Verlag, Berlin,
1999. (Cited on pp. 2, 3, 74, 103, 119, 120.)

[11℄ I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier. Clone dete-
tion using abstrat syntax trees. In Proeedings of the IEEE International
Conferene on Software Maintenane (ICSM 1998), pages 368�377, 1998.
(Cited on p. 77.)

[12℄ M. Bellare, O. Goldreih, and M. Sudan. Free bits, PCPs, and nonapprox-
imability � towards tight results. SIAM Journal on Computing, 27(3):804�
915, 1998. (Cited on p. 126.)

[13℄ A. Ben-Dor, G. Lania, J. Perone, and R. Ravi. Banishing bias from
onsensus sequenes. In Proeedings of the 8 th Annual Symposium on
Combinatorial Pattern Mathing (CPM'97), volume 1264 of Leture Notes
in Computer Siene, pages 247�261. Springer-Verlag Berlin Heidelberg,
1997. (Cited on pp. 103, 105.)

[14℄ K. Benhemsi. Delgrafsisomor� i en DAG med namngivna noder (in Swed-
ish). Master's thesis, Lund University, 2000. CODEN: LUNDFD6/NFCS-
5176/1�29/2000. (Cited on pp. 76, 77.)

[15℄ C. Bennett, M. Li, and B. Ma. Linking hain letters. Sienti� Amerian,
to appear. (Cited on p. 12.)

[16℄ T. Berger. Rate Distortion Theory. Prentie-Hall, New Jersey, 1971. (Cited
on p. 103.)

[17℄ P. Berman. A d/2 approximation for maximum weight independent set
in d-law free graphs. Nordi Journal of Computing, 7(3):178�184, 2000.
(Cited on p. 68.)

[18℄ M. Bonet, C. Phillips, T. Warnow, and S. Yooseph. Construting evolu-
tionary trees in the presene of polymorphi haraters. In Proeedings of
the 28 thAnnual ACM Symposium on the Theory of Computing (STOC'96),
pages 220�229, 1996. (Cited on p. 12.)

[19℄ P. Bonizzoni, G. Della Vedova, and G. Mauri. Approximating the maxi-
mum isomorphi agreement subtree is hard. International Journal of Foun-
dations of Computer Siene, 11(4):579�590, 2000. (Cited on p. 56.)

[20℄ A. Bookstein and S. T. Klein. Compression of orrelated bit-vetors. In-
formation Systems, 16(4):387�400, 1991. (Cited on p. 119.)

Bibliography 143

[21℄ D. Bryant. Building Trees, Hunting for Trees, and Comparing Trees: The-
ory and Methods in Phylogeneti Analysis. PhD thesis, University of Can-
terbury, Christhurh, New Zealand, 1997. (Cited on pp. 4, 13, 14, 19, 47,
55.)

[22℄ P. Cameron. Combinatoris: Topis, Tehniques, Algorithms. Cambridge
University Press, 1994. (Cited on p. 102.)

[23℄ The Canterbury Tales Projet. De Montfort University, University
of Oxford, Harvard University, University of Leeds, University of
She�eld, Brigham Young University, Virginia Polytehni Institute &
State University (Virginia Teh), and University of Münster. Website:
http://www.shef.a.uk/uni/projets/tp/ (Cited on p. 12.)

[24℄ M. Charikar and R. Panigrahy. Clustering to minimize the sum of luster
diameters. In Proeedings of the 33 rd Annual ACM Symposium on the
Theory of Computing (STOC'01), pages 1�10, 2001. (Cited on pp. 119,
139.)

[25℄ S. S. Chawathe, A. Rajaraman, H. Garia-Molina, and J. Widom. Change
detetion in hierarhially strutured information. In Proeedings of the
ACM SIGMOD International Conferene on Management of Data (SIG-
MOD 1996), pages 493�504, 1996. (Cited on p. 76.)

[26℄ S.-W. Cheng and R. Janardan. E�ient maintenane of the union of
intervals on a line, with appliations. Journal of Algorithms, 12(1):57�74,
1991. (Cited on p. 33.)

[27℄ G. Cohen, M. Karpovsky, H. F. Mattson, Jr., and J. Shatz. Covering
radius � survey and reent results. IEEE Transations on Information
Theory, IT-31(3):328�343, 1985. (Cited on pp. 102, 103.)

[28℄ R. Cole, M. Farah-Colton, R. Hariharan, T. Przytyka, and M. Thorup.
An O(n log n) algorithm for the maximum agreement subtree problem for
binary trees. SIAM Journal on Computing, 30(5):1385�1404, 2000. (Cited
on pp. 54, 55.)

[29℄ L. J. Collins, V. Moulton, and D. Penny. Use of RNA seondary stru-
ture for studying the evolution of RNase P and RNase MRP. Journal of
Moleular Evolution, 51(3):194�204, 2000. (Cited on p. 75.)

[30℄ J. H. Conway and N. J. A. Sloane. Fast quantizing and deoding and algo-
rithms for lattie quantizers and odes. IEEE Transations on Information
Theory, IT-28(2):227�231, 1982. (Cited on p. 103.)

[31℄ J. H. Conway and N. J. A. Sloane. Voronoi regions of latties, seond mo-
ments of polytopes, and quantization. IEEE Transations on Information
Theory, IT-28(2):211�226, 1982. (Cited on p. 103.)

144 Bibliography

[32℄ T. Cormen, C. Leiserson, and R. Rivest. Introdution to Algorithms. The
MIT Press, Massahusetts, 1990. (Cited on pp. 2, 3, 43.)

[33℄ M. de Berg, M. van Kreveld, M. Overmars, and O. Shwarzkopf. Com-
putational Geometry � Algorithms and Appliations (Seond Edition).
Springer-Verlag, Berlin, 2000. (Cited on pp. 35, 89.)

[34℄ X. Deng, G. Li, Z. Li, B. Ma, and L. Wang. A PTAS for distinguishing
(sub)string seletion. In Proeedings of the 29 thInternational Colloquium
on Automata, Languages and Programming (ICALP 2002), volume 2380 of
Leture Notes in Computer Siene, pages 740�751. Springer-Verlag Berlin
Heidelberg, 2002. (Cited on p. 105.)

[35℄ S. Doddi, M. V. Marathe, S. S. Ravi, D. S. Taylor, and P. Widmayer.
Approximation algorithms for sum lustering to minimize the sum of di-
ameters. Nordi Journal of Computing, 7(3):185�203, 2000. (Cited on
pp. 119, 120, 139.)

[36℄ L. Engebretsen and J. Holmerin. Clique is hard to approximate within
n1−o(1). In Proeedings of the 27 thInternational Colloquium on Automata,
Languages and Programming (ICALP 2000), volume 1853 of Leture Notes
in Computer Siene, pages 2�12. Springer-Verlag Berlin Heidelberg, 2000.
(Cited on p. 61.)

[37℄ D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsi�ation
� a tehnique for speeding up dynami graph algorithms. Journal of the
ACM, 44(5):669�696, 1997. (Cited on p. 18.)

[38℄ M. D. Ermolaeva, H. G. Khalak, O.White, H. O. Smith, and S. L. Salzberg.
Predition of transription terminators in baterial genomes. Journal of
Moleular Biology, 301(1):27�33, 2000. (Cited on p. 76.)

[39℄ S. Even and Y. Shiloah. An on-line edge-deletion problem. Journal of the
ACM, 28(1):1�4, 1981. (Cited on p. 18.)

[40℄ M. Farah, T. Przytyka, and M. Thorup. On the agreement of many
trees. Information Proessing Letters, 55:297�301, 1995. A preliminary
version appeared in Proeedings of the 3 rdAnnual European Symposium on
Algorithms (ESA'95), volume 979 of Leture Notes in Computer Siene,
pages 381�393. Springer-Verlag Berlin Heidelberg, 1995. (Cited on pp. 52,
54, 55.)

[41℄ M. Farah and M. Thorup. Fast omparison of evolutionary trees. In Pro-
eedings of the 5 thAnnual ACM-SIAM Symposium on Disrete Algorithms
(SODA'94), pages 481�488, 1994. (Cited on pp. 55, 62, 149.)

[42℄ M. Farah and M. Thorup. Sparse dynami programming for evolutionary-
tree omparison. SIAM Journal on Computing, 26(1):210�230, 1997.
(Cited on pp. 54, 55.)

Bibliography 145

[43℄ T. Feder and D. H. Greene. Optimal algorithms for approximate luster-
ing. In Proeedings of the 20 thAnnual ACM Symposium on the Theory of
Computing (STOC'88), pages 434�444, 1988. (Cited on pp. 119, 120, 123,
124.)

[44℄ J. Felsenstein. PHYLIP � Phylogeny Inferene Pak-
age (version 3.2). Cladistis, 5:164�166, 1989. See also
http://evolution.genetis.washington.edu/phylip.html (Cited on
p. 13.)

[45℄ C. R. Finden and A. D. Gordon. Obtaining ommon pruned trees. Journal
of Classi�ation, 2:255�276, 1985. (Cited on pp. 54, 55.)

[46℄ M. Franes and A. Litman. On overing problems of odes. Theory of
Computing Systems, 30(2):113�119, 1997. (Cited on pp. 101, 102, 103,
104, 120, 121, 127, 135.)

[47℄ G. N. Frederikson. Data strutures for on-line updating of minimum
spanning trees. SIAM Journal on Computing, 14(4):781�798, 1985. (Cited
on p. 18.)

[48℄ Z. Galil and N. Megiddo. Cyli ordering is NP-omplete. Theoretial
Computer Siene, 5(2):179�182, 1977. (Cited on p. 20.)

[49℄ M. Garey and D. Johnson. Computers and Intratability � A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York,
1979. (Cited on pp. 2, 20, 64, 70, 127.)

[50℄ L. G�asienie, J. Jansson, and A. Lingas. E�ient approximation algo-
rithms for the Hamming enter problem. Tehnial Report LU-CS-TR:99-
211, Lund University, 1999. A short form version of this artile was pub-
lished in Proeedings of the 10 thAnnual ACM-SIAM Symposium on Dis-
rete Algorithms (SODA'99), pages S905�S906, 1999. (Cited on pp. 5, 105,
106.)

[51℄ L. G�asienie, J. Jansson, and A. Lingas. Approximation algorithms for
Hamming lustering problems. Journal of Disrete Algorithms, to appear.
A preliminary version appeared in Proeedings of the 11 thAnnual Sym-
posium on Combinatorial Pattern Mathing (CPM 2000), volume 1848 of
Leture Notes in Computer Siene, pages 108�118. Springer-Verlag Berlin
Heidelberg, 2000. (Cited on pp. 5, 6.)

[52℄ L. G�asienie, J. Jansson, A. Lingas, and A. Östlin. Inferring ordered
trees from loal onstraints. In Proeedings of Computing: the 4 th Aus-
tralasian Theory Symposium (CATS'98), volume 20(3) of Australian Com-
puter Siene Communiations, pages 67�76. Springer-Verlag Singapore,
1998. (Cited on p. 4.)

146 Bibliography

[53℄ L. G�asienie, J. Jansson, A. Lingas, and A. Östlin. On the omplexity of
onstruting evolutionary trees. Journal of Combinatorial Optimization,
3(2�3):183�197, 1999. A preliminary version appeared in Proeedings of
the 3 rd Annual International Computing and Combinatoris Conferene
(COCOON'97), volume 1276 of Leture Notes in Computer Siene, pages
134�145. Springer-Verlag Berlin Heidelberg, 1997. (Cited on pp. 4, 5, 19.)

[54℄ W. Goddard, E. Kubika, G. Kubiki, and F. R. MMorris. The agreement
metri for labeled binary trees. Mathematial Biosienes, 123:215�226,
1994. (Cited on pp. 54, 55, 149.)

[55℄ W. Goddard and G. Kubiki. The minimum size of agreement subtrees of
two binary trees. Congressus Numerantium, 97:131�136, 1993. (Cited on
p. 56.)

[56℄ T. F. Gonzalez. Clustering to minimize the maximum interluster distane.
Theoretial Computer Siene, 38:293�306, 1985. (Cited on pp. 105, 107,
119, 120, 121, 130.)

[57℄ J. Gramm, R. Niedermeier, and P. Rossmanith. Exat solutions for Clos-
est String and related problems. In Proeedings of the 12 thAnnual Inter-
national Symposium on Algorithms and Computation (ISAAC 2001), vol-
ume 2223 of Leture Notes in Computer Siene, pages 441�453. Springer-
Verlag Berlin Heidelberg, 2001. (Cited on pp. 102, 105.)

[58℄ D. Gus�eld. Algorithms on Strings, Trees, and Sequenes : Computer
Siene and Computational Biology. Cambridge University Press, 1997.
(Cited on pp. 74, 78, 79, 80, 96, 97, 103.)

[59℄ P. Hansen and B. Jaumard. Minimum sum of diameters lustering. Journal
of Classi�ation, 4:215�226, 1987. (Cited on pp. 119, 139.)

[60℄ J. Hein, T. Jiang, L. Wang, and K. Zhang. On the omplexity of ompar-
ing evolutionary trees. Disrete Applied Mathematis, 71:153�169, 1996.
(Cited on pp. 55, 56, 57, 61, 69, 78.)

[61℄ M. R. Henzinger and V. King. Randomized fully dynami graph algorithms
with polylogarithmi time per operation. Journal of the ACM, 46(4):502�
516, 1999. (Cited on p. 18.)

[62℄ M. R. Henzinger, V. King, and T. Warnow. Construting a tree from
homeomorphi subtrees, with appliations to omputational evolutionary
biology. Algorithmia, 24(1):1�13, 1999. (Cited on pp. 14, 15, 16, 19, 28,
34, 40, 47.)

[63℄ D. S. Hohbaum, editor. Approximation Algorithms for NP-Hard Prob-
lems. PWS Publishing Company, Boston, 1997. (Cited on pp. 3, 109, 118,
119, 120, 124, 130, 137.)

Bibliography 147

[64℄ J. Hohberg, L. Kerns, P. Kelly, and T. Thomas. Automati sript iden-
ti�ation from images using luster-based templates. In Proeedings of
the 3 rd International Conferene on Doument Analysis and Reognition
(ICDAR'95), pages 378�381, 1995. (Cited on p. 119.)

[65℄ J. Holm, K. de Lihtenberg, and M. Thorup. Poly-logarithmi determin-
isti fully-dynami algorithms for onnetivity, minimum spanning tree,
2-edge, and bionnetivity. Journal of the ACM, 48(4):723�760, 2001.
(Cited on pp. 19, 28, 47.)

[66℄ J. Håstad. Clique is hard to approximate within n1−ǫ. Ata Mathematia,
182:105�142, 1999. (Cited on pp. 61, 70.)

[67℄ J. Jansson. On the omplexity of inferring rooted evolutionary trees. In
Proeedings of the Brazilian Symposium on Graphs, Algorithms, and Com-
binatoris (GRACO 2001), volume 7 of Eletroni Notes in Disrete Math-
ematis, pages 121�125. Elsevier, 2001. (Cited on pp. 4, 19.)

[68℄ J. Jansson and A. Lingas. A fast algorithm for optimal alignment between
similar ordered trees. Fundamenta Informatiae, to appear. A preliminary
version appeared in Proeedings of the 12 thAnnual Symposium on Com-
binatorial Pattern Mathing (CPM 2001), volume 2089 of Leture Notes
in Computer Siene, pages 232�240. Springer-Verlag Berlin Heidelberg,
2001. (Cited on p. 5.)

[69℄ T. Jiang, P. Kearney, and M. Li. A polynomial time approximation sheme
for inferring evolutionary trees from quartet topologies and its appliation.
SIAM Journal on Computing, 30(6):1942�1961, 2001. (Cited on p. 29.)

[70℄ T. Jiang, L. Wang, and K. Zhang. Alignment of trees � an alternative
to tree edit. Theoretial Computer Siene, 143(1):137�148, 1995. A pre-
liminary version appeared in Proeedings of the 5 th Annual Symposium
on Combinatorial Pattern Mathing (CPM'94), volume 807 of Leture
Notes in Computer Siene, pages 75�86. Springer-Verlag Berlin Heidel-
berg, 1994. (Cited on pp. 5, 73, 74, 77, 78, 79, 80, 81, 82, 95, 96.)

[71℄ S. Kannan, E. Lawler, and T. Warnow. Determining the evolutionary tree
using experiments. Journal of Algorithms, 21(1):26�50, 1996. (Cited on
p. 13.)

[72℄ S. Kannan, T. Warnow, and S. Yooseph. Computing the loal onsensus
of trees. SIAM Journal on Computing, 27(6):1695�1724, 1998. (Cited on
p. 13.)

[73℄ M.-Y. Kao. Tree ontrations and evolutionary trees. SIAM Journal on
Computing, 27(6):1592�1616, 1998. (Cited on p. 55.)

148 Bibliography

[74℄ M.-Y. Kao, T.-W. Lam, T. Przytyka, W.-K. Sung, and H.-F. Ting. Gen-
eral tehniques for omparing unrooted evolutionary trees. In Proeed-
ings of the 29 th Annual ACM Symposium on the Theory of Computing
(STOC'97), pages 54�65, 1997. (Cited on p. 55.)

[75℄ M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting. A deomposition
theorem for maximum weight bipartite mathings with appliations to evo-
lutionary trees. In Proeedings of the 7 thAnnual European Symposium on
Algorithms (ESA'99), volume 1643 of Leture Notes in Computer Siene,
pages 438�449. Springer-Verlag Berlin Heidelberg, 1999. (Cited on p. 55.)

[76℄ M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting. A faster and unify-
ing algorithm for omparing trees. In Proeedings of the 11 thAnnual Sym-
posium on Combinatorial Pattern Mathing (CPM 2000), volume 1848 of
Leture Notes in Computer Siene, pages 129�142. Springer-Verlag Berlin
Heidelberg, 2000. (Cited on p. 55.)

[77℄ M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting. Unbalaned and
hierarhial bipartite mathings with appliations to labeled tree ompar-
ison. In Proeedings of the 11 thAnnual International Symposium on Al-
gorithms and Computation (ISAAC 2000), volume 1969 of Leture Notes
in Computer Siene, pages 479�490. Springer-Verlag Berlin Heidelberg,
2000. (Cited on p. 55.)

[78℄ M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting. An even faster
and more unifying algorithm for omparing trees via unbalaned bipartite
mathings. Journal of Algorithms, 40(2):212�233, 2001. (Cited on pp. 54,
55.)

[79℄ D. R. Karger. Minimum uts in near-linear time. In Proeedings of the
28 thAnnual ACM Symposium on the Theory of Computing (STOC'96),
pages 56�63, 1996. (Cited on pp. 26, 27, 28.)

[80℄ M. Karpovsky. Weight distribution of translates, overing radius, and
perfet odes orreting errors of given weights. IEEE Transations on
Information Theory, IT-27(4):462�472, 1981. (Cited on p. 103.)

[81℄ P. Kearney. Phylogenetis and the quartet method. In T. Jiang, Y. Xu,
and M. Q. Zhang, editors, Current Topis in Computational Moleular
Biology, pages 111�133. The MIT Press, Massahusetts, 2002. (Cited on
pp. 13, 14.)

[82℄ S. Khanna, R. Motwani, and F. F. Yao. Approximation algorithms for
the largest ommon subtree problem. Tehnial Report CS-TR-95-1545,
Stanford University, 1995. (Cited on p. 56.)

[83℄ P. Kilpeläinen and H. Mannila. Ordered and unordered tree inlusion.
SIAM Journal on Computing, 24(2):340�356, 1995. (Cited on p. 78.)

Bibliography 149

[84℄ J. Kleinberg, C. Papadimitriou, and P. Raghavan. Segmentation prob-
lems. In Proeedings of the 30 thAnnual ACM Symposium on the Theory
of Computing (STOC'98), pages 473�482, 1998. (Cited on p. 121.)

[85℄ E. Kubika, G. Kubiki, and F. R. MMorris. On agreement subtrees of
two binary trees. Congressus Numerantium, 88:217�224, 1992. (Cited on
p. 56.)

[86℄ E. Kubika, G. Kubiki, and F. R. MMorris. An algorithm to �nd agree-
ment subtrees. Journal of Classi�ation, 12:91�99, 1995. Note: This artile
was aepted for journal publiation in 1992 but not published until 1995,
i.e., after the publiation of [41℄, [54℄, and [117℄. (Cited on p. 55.)

[87℄ T.-W. Lam, W.-K. Sung, and H.-F. Ting. Computing the unrooted max-
imum agreement subtree in sub-quadrati time. In Proeedings of the 5 th

Sandinavian Workshop on Algorithm Theory (SWAT'96), volume 1097 of
Leture Notes in Computer Siene, pages 124�135. Springer-Verlag Berlin
Heidelberg, 1996. (Cited on p. 55.)

[88℄ J. K. Lantot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string
seletion problems. Information and Computation, to appear. A prelimi-
nary version appeared in Proeedings of the 10 thAnnual ACM-SIAM Sym-
posium on Disrete Algorithms (SODA'99), pages 633�642, 1999. (Cited
on pp. 102, 105, 116.)

[89℄ S.-Y. Le, J. Owens, R. Nussinov, J.-H. Chen, B. A. Shapiro, and J. V.
Maizel. RNA seondary strutures: omparison and determination of fre-
quently reurring substrutures by onsensus. Computer Appliations in
the Biosienes, 5(3):205�210, 1989. (Cited on p. 76.)

[90℄ H. Lewis and C. Papadimitriou. Elements of the Theory of Computation
(Seond Edition). Prentie-Hall, New Jersey, 1998. (Cited on pp. 2, 43.)

[91℄ M. Li, B. Ma, and L. Wang. On the losest string and substring problems.
Journal of the ACM, 49(2):157�171, 2002. (Cited on pp. 6, 102, 105, 106,
116, 120, 122, 131, 132, 133, 135, 139.)

[92℄ W.-H. Li. Moleular Evolution. Sinauer Assoiates, In., Sunderland, 1997.
(Cited on pp. 12, 13.)

[93℄ N. Megiddo. Linear-time algorithms for linear programming in R
3 and

related problems. SIAM Journal on Computing, 12(4):759�776, 1983. A
preliminary version appeared in Proeedings of the 23 rdAnnual Symposium
on Foundations of Computer Siene (FOCS'82), pages 329�338, 1982.
(Cited on p. 106.)

150 Bibliography

[94℄ K. Mehlhorn. Data Strutures and Algorithms 3: Multi-dimensional
Searhing and Computational Geometry. EATCS Monographs on Theo-
retial Computer Siene. Springer-Verlag, Berlin, 1984. (Cited on pp. 34,
35, 36.)

[95℄ A. Meyers, R. Yangarber, and R. Grishman. Alignment of shared forests
for bilingual orpora. In Proeedings of the 16 th International Conferene
on Computational Linguistis (COLING-96), pages 460�465, 1996. (Cited
on pp. 54, 77.)

[96℄ R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995. (Cited on p. 109.)

[97℄ M. Muselli and D. Liberati. Training digital iruits with Hamming lus-
tering. IEEE Transations on Ciruits and Systems � I: Fundamental
Theory and Appliations, 47(4):513�527, 2000. (Cited on p. 119.)

[98℄ H. Nagamohi and T. Ibaraki. Computing edge-onnetivity in multi-
graphs and apaitated graphs. SIAM Journal on Disrete Mathematis,
5(1):54�66, 1992. (Cited on pp. 26, 27.)

[99℄ N. Nishimura, P. Ragde, and D. M. Thilikos. Finding smallest supertrees
under minor ontainment. International Journal of Foundations of Com-
puter Siene, 11(3):445�465, 2000. (Cited on p. 78.)

[100℄ C. Notredame, E. A. O'Brien, and D. G. Higgins. RAGA: RNA sequene
alignment by geneti algorithm. Nulei Aids Researh, 25(22):4570�4580,
1997. (Cited on p. 76.)

[101℄ R. Ostrovsky and Y. Rabani. Polynomial-time approximation shemes for
geometri min-sum median lustering. Journal of the ACM, 49(2):139�156,
2002. (Cited on pp. 6, 119, 120, 121, 122, 132, 133.)

[102℄ M. Overmars. Computational geometry on a grid: an overview. In
R. A. Earnshaw, editor, Theoretial Foundations of Computer Graphis
and CAD, volume F 40 of NATO ASI Series, pages 167�184. Springer-
Verlag, 1988. (Cited on pp. 34, 36.)

[103℄ R. Panigrahy and S. Vishwanathan. An O(log∗ n) approximation algorithm
for the asymmetri p-enter problem. Journal of Algorithms, 27(2):259�
268, 1998. (Cited on pp. 118, 119, 120.)

[104℄ C. Papadimitriou. On the omplexity of integer programming. Journal of
the ACM, 28(4):765�768, 1981. (Cited on p. 108.)

[105℄ C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
(Cited on pp. 2, 3, 64, 70.)

Bibliography 151

[106℄ P. A. Pevzner. Computational Moleular Biology : An Algorithmi Ap-
proah. The MIT Press, Massahusetts, 2000. (Cited on pp. 78, 79, 80,
96, 97, 103.)

[107℄ F. Preparata and M. I. Shamos. Computational Geometry. Springer-
Verlag, New York, 1985. (Cited on pp. 35, 89, 104.)

[108℄ T. Przytyka. Sparse dynami programming for maximum agreement sub-
tree problem. In B. Mirkin, F. R. MMorris, F. Roberts, and A. Rzhetsky,
editors, Mathematial Hierarhies and Biology, volume 37 of DIMACS Se-
ries in Disrete Mathematis and Theoretial Computer Siene, pages
249�264. AMS, 1997. (Cited on p. 55.)

[109℄ A. Shrijver. Theory of Linear and Integer Programming. Wiley, New
York, 1986. (Cited on p. 109.)

[110℄ C. Semple and M. Steel. A supertree method for rooted trees. Disrete
Applied Mathematis, 105(1�3):147�158, 2000. (Cited on p. 29.)

[111℄ J. C. Setubal and J. Meidanis. Introdution to Computational Moleular
Biology. PWS Publishing Company, Boston, 1997. (Cited on pp. 12, 13,
74, 78, 79, 80, 92, 93, 96, 97, 103.)

[112℄ B. A. Shapiro and K. Zhang. Comparing multiple RNA seondary stru-
tures using tree omparisons. Computer Appliations in the Biosienes,
6(4):309�318, 1990. (Cited on p. 75.)

[113℄ D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmis and appli-
ations of tree and graph searhing. In Proeedings of the 21st ACM
SIGACT-SIGMOD-SIGART Symposium on Priniples of Database Sys-
tems (PODS 2002), pages 39�52, 2002. (Cited on p. 77.)

[114℄ I. Shmulevih and W. Zhang. Binary analysis and optimization-based nor-
malization of gene expression data. Bioinformatis, 18(4):555�565, 2002.
(Cited on p. 119.)

[115℄ I. Simon. Sequene omparison: some theory and some pratie. In Ele-
troni Ditionaries and Automata in Computational Linguistis, LITP
Spring Shool on Theoretial Computer Siene, 1987, volume 377 of Le-
ture Notes in Computer Siene, pages 79�93. Springer-Verlag Berlin Hei-
delberg, 1989. (Cited on p. 78.)

[116℄ M. Steel. The omplexity of reonstruting trees from qualitative hara-
ters and subtrees. Journal of Classi�ation, 9(1):91�116, 1992. (Cited on
pp. 14, 29.)

[117℄ M. Steel and T. Warnow. Kaikoura tree theorems: Computing the maxi-
mum agreement subtree. Information Proessing Letters, 48:77�82, 1993.
(Cited on pp. 55, 62, 149.)

152 Bibliography

[118℄ M. Stoer and F. Wagner. A simple min-ut algorithm. Journal of the
ACM, 44(4):585�591, 1997. (Cited on pp. 26, 27.)

[119℄ W.-K. Sung. Fast Labeled Tree Comparison via Better Mathing Algo-
rithms. PhD thesis, University of Hong Kong, 1998. (Cited on pp. 55,
71.)

[120℄ W.-K. Sung. Personal ommuniation, June 2002. (Cited on p. 55.)

[121℄ D. L. Swo�ord. PAUP∗: Phylogeneti Analysis Using Parsimony (and
Other Methods) 4.0 Beta for UNIX or OpenVMS. Sinauer Assoiates,
In., Sunderland, 2002. See also http://paup.sit.fsu.edu/about.html
(Cited on p. 13.)

[122℄ D. L. Swo�ord, G. J. Olsen, P. J. Waddell, and D. M. Hillis. Phylogeneti
inferene. In D. M. Hillis, C. Moritz, and B. K. Mable, editors, Moleu-
lar Systematis (Seond Edition), pages 407�514. Sinauer Assoiates, In.,
Sunderland, 1996. (Cited on p. 13.)

[123℄ J. J. Sylvester. A question in the geometry of situation. The Quarterly
Journal of Pure and Applied Mathematis, volume I, page 79, 1857. (Cited
on p. 106.)

[124℄ K.-C. Tai. The tree-to-tree orretion problem. Journal of the ACM,
26(3):422�433, 1979. (Cited on pp. 77, 78.)

[125℄ R. E. Tarjan and U. Vishkin. An e�ient parallel bionnetivity algorithm.
SIAM Journal on Computing, 14(4):862�874, 1985. (Cited on p. 87.)

[126℄ M. Thorup. Deremental dynami onnetivity. Journal of Algorithms,
33(2):229�243, 1999. (Cited on p. 19.)

[127℄ M. Thorup. Near-optimal fully-dynami graph onnetivity. In Proeed-
ings of the 32nd Annual ACM Symposium on the Theory of Computing
(STOC 2000), pages 343�350, 2000. (Cited on p. 19.)

[128℄ V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2001.
(Cited on pp. 3, 70, 119, 120, 137.)

[129℄ J. T. L. Wang, D. Shasha, G. J. S. Chang, L. Relihan, K. Zhang, and
G. Patel. Strutural mathing and disovery in doument databases. In
Proeedings of the ACM SIGMOD International Conferene on Manage-
ment of Data (SIGMOD 1997), pages 560�563, 1997. (Cited on p. 76.)

[130℄ M. Waterman. Introdution to Computational Biology : Maps, Sequenes,
and Genomes. Chapman & Hall, London, 1995. (Cited on pp. 13, 78, 79,
80, 96, 97, 103.)

Bibliography 153

[131℄ C. Wenk. Applying an edit distane to the mathing of tree ring sequenes
in dendrohronology. In Proeedings of the 10 th Annual Symposium on
Combinatorial Pattern Mathing (CPM'99), volume 1645 of Leture Notes
in Computer Siene, pages 223�242. Springer-Verlag Berlin Heidelberg,
1999. (Cited on p. 78.)

[132℄ W. Yang. Identifying syntati di�erenes between two programs. Soft-
ware: Pratie & Experiene, 21(7):739�755, 1991. (Cited on p. 76.)

[133℄ K. Zhang and T. Jiang. Some MAX SNP-hard results onerning un-
ordered labeled trees. Information Proessing Letters, 49(5):249�254, 1994.
(Cited on pp. 77, 79.)

[134℄ K. Zhang and D. Shasha. Simple fast algorithms for the editing dis-
tane between trees and related problems. SIAM Journal on Computing,
18(6):1245�1262, 1989. (Cited on p. 77.)

