
Consensus-Based Decentralized
Auctions for Robust Task Allocation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Han-Lim Choi, L. Brunet, and J.P. How. “Consensus-Based
Decentralized Auctions for Robust Task Allocation.” Robotics, IEEE
Transactions on 25.4 (2009): 912-926. © 2009 Institute of Electrical
and Electronics Engineers

As Published http://dx.doi.org/10.1109/tro.2009.2022423

Publisher Institute of Electrical and Electronics Engineers

Version Final published version

Citable link http://hdl.handle.net/1721.1/52330

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/52330

912 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009

Consensus-Based Decentralized Auctions for Robust
Task Allocation

Han-Lim Choi, Member, IEEE, Luc Brunet, and Jonathan P. How, Senior Member, IEEE

Abstract—This paper addresses task allocation to coordinate
a fleet of autonomous vehicles by presenting two decentral-
ized algorithms: the consensus-based auction algorithm (CBAA)
and its generalization to the multi-assignment problem, i.e., the
consensus-based bundle algorithm (CBBA). These algorithms uti-
lize a market-based decision strategy as the mechanism for decen-
tralized task selection and use a consensus routine based on local
communication as the conflict resolution mechanism to achieve
agreement on the winning bid values. Under reasonable assump-
tions on the scoring scheme, both of the proposed algorithms are
proven to guarantee convergence to a conflict-free assignment, and
it is shown that the converged solutions exhibit provable worst-case
performance. It is also demonstrated that CBAA and CBBA pro-
duce conflict-free feasible solutions that are robust to both inconsis-
tencies in the situational awareness across the fleet and variations
in the communication network topology. Numerical experiments
confirm superior convergence properties and performance when
compared with existing auction-based task-allocation algorithms.

Index Terms—Distributed robot systems, networked robots, task
allocation for multiple mobile robots.

I. INTRODUCTION

COOPERATION among a fleet of robotic agents is neces-
sary in order to improve the overall performance of any

mission. Many different methods exist that enable a group of
such agents the ability to distribute tasks among themselves
from a known task list. Centralized planners [2]–[8] communi-
cate their situational awareness (SA) to a centralized server that
generates a plan for the entire fleet. These types of systems are
useful since they place much of the heavy processing require-
ments safely on the ground, thus making the robots smaller and
cheaper to build. On the other hand, agents must consistently
communicate with a fixed location, thus reducing the possible
mission ranges that the fleet can handle, as well as creating a
single point of failure in the mission.

Manuscript received December 7, 2008; revised April 14, 2009. First
published June 12, 2009; current version published July 31, 2009. This paper
was recommended for publication by Associate Editor T. Murphey and Editor
W. K. Chung upon evaluation of the reviewers’ comments. This work was sup-
ported in part by the Air Force Office of Scientific Research (AFOSR) Small
Business Technology Transfer under Contract FA9550-06-C-0088 and in part
by the AFOSR under Grant FA9550-08-1-0086. This paper was presented in
part at the American Institute of Aeronautics and Astronautics Guidance, Nav-
igation, and Control Conference, Honolulu, HI, 2008, while refined theoretical
proofs and extensive numerical results have been included in this paper.

H.-L. Choi and J. P. How are with the Department of Aeronautics and As-
tronautics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: hanlimc@mit.edu; jhow@mit.edu).

L. Brunet is with Frontline Robotics, Ottawa, ON K4P 1A2, Canada (e-mail:
lbrunet@frontline-robotics.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2009.2022423

Some types of decentralized methods have thus been de-
veloped by instantiating the centralized planner on each agent
in order to increase the mission range, as well as remove the
single point of failure [9]–[12]. These methods often assume
perfect communication links with infinite bandwidth since each
agent must have the same SA. If this is not the case, it has
been shown that realistic networks with limited communication
can significantly affect the fleet’s ability to coordinate their ac-
tions [13]. In this case, inconsistencies in the SA might cause
conflicting assignments, since each agent will be performing the
centralized optimization with a different information set. Thus,
decentralized algorithms generally make use of consensus al-
gorithms [14]–[19] to converge on a consistent SA before per-
forming the assignment [20]. These consensus algorithms can
guarantee convergence of the SA over many different dynamic
network topologies [21]–[23], thus allowing the fleet to perform
the assignment in highly dynamic and uncertain environments.

Although consensus algorithms allow a fleet of vehicles to
converge on the SA and perform an assignment over many
generic network topologies, convergence to a consistent SA may
take a significant amount of time and can often require transmit-
ting large amounts of data to do so [24]. This can cause severe
latency in low-bandwidth environments and can substantially
increase the time it takes to find an assignment for the fleet. To
resolve this, approaches that do not aim for perfect consensus on
the SA have been suggested: In [24], robustness to inconsistent
SA was enhanced by allowing agents to communicate plans
as well as SA, while in [25], communication occurrence was
restricted only to the cases where there is mismatch between
plans based on the local knowledge and the estimated global
knowledge. However, these algorithms might still take a signif-
icant amount of time to produce a final solution, because the
first requires each agent to receive plans from all other agents,
and the second might still need perfect consensus to guarantee
conflict-free solutions.

Auction algorithms [26]–[29] are another method for task
assignment that have been shown to efficiently produce sub-
optimal solutions [30]. Generally, agents place bids on tasks,
and the highest bid wins the assignment. The traditional way of
computing the winner is to have a central system acting as the
auctioneer to receive and evaluate each bid in the fleet [31]–[33].
Once all of the bids have been collected, a winner is selected
based on a predefined scoring metric. In other formulations, the
central system is removed, and one of the bidders acts as the
auctioneer [34]–[38]. In these types of algorithms, agents bid
on tasks with values based solely on their own SA. It is known
that each task will only be assigned to a single agent since only
one agent is selected by the auctioneer as the winner. Because

1552-3098/$26.00 © 2009 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 913

of this, most auction algorithms can naturally converge to a
conflict-free solution even with inconsistencies in their SA. The
downside of these approaches is that the bids from each agent
must somehow be transmitted to the auctioneer. This limits the
network topologies that can be used since a connected network
is required between the agents in order to route all of the bid
information. A common method to avoid this is to sacrifice mis-
sion performance by running the auction solely within the set
of direct neighbors of the auctioneer [39], [40].

Thus, algorithms that use consensus before planning are gen-
erally more robust to network topologies, while traditional auc-
tion approaches are computationally efficient and robust to in-
consistencies in the SA. This work aims at combining both
approaches in order to take advantage of properties from both
allocation strategies. This paper employs the auction approach
for decentralized task selection and the consensus procedure
for decentralized conflict resolution. The key difference from
previous consensus-based methods is that the consensus rou-
tine is used to achieve agreement on the winning bid values
instead of SA. For single-assignment problem in which at most
one task can be assigned to a single agent, the consensus-based
auction algorithm (CBAA) is presented; then, this algorithm is
extended to the multi-assignment problem in which a sequence
of multiple tasks is assigned to each agent by developing the
consensus-based bundle algorithm (CBBA).

Various efforts have been made in the literature to extend
the auction class of algorithms to the multi-assignment case.
In many cases, this is done by running sequential auctions and
awarding a single task at a time until there are no remaining tasks
left to assign [34], [40], [41]. Bundle approaches [42]–[45] have
been developed that group common tasks into bundles and al-
lowing agents to bid on groups rather than the individual tasks.
By grouping similar tasks, these types of algorithms will con-
verge faster than their sequential counterparts and may have im-
proved value in the assignment since they can logically group
tasks that have commonalities. However, difficulties can arise in
the computational cost for enumerating all possible bundle com-
binations and determining the winner among these bundles. The
winner determination has been shown to be NP-complete [46],
and only heuristic methods [47]–[49] are available. CBBA, how-
ever, builds a single bundle and bids on the included tasks based
on the improvement they provide to the bundle. Computation is
reduced by considering only a single bundle while convergence
times are improved over sequential auctions since multiple tasks
can be assigned in parallel. In this paper, it is analytically shown
that CBBA produces the same solution as some centralized se-
quential greedy procedures, and this solution guarantees 50%
optimality. Also, numerical simulations verify that the proposed
algorithm outperforms existing sequential auction methods in
terms of quick convergence and small optimality gap.

II. BACKGROUND

A. Task-Allocation Problems

The goal of task allocation is, given a list of Nt tasks and Nu

agents, to find a conflict-free matching of tasks to agents that
maximizes some global reward. An assignment is said to be free

of conflicts if each task is assigned to no more than one agent.
Each agent can be assigned a maximum of Lt tasks, and the as-

signment is said to be completed once Nmin
�
= min{Nt,NuLt}

tasks have been assigned. The global objective function is as-
sumed to be a sum of local reward values, while each local
reward is determined as a function of the tasks assigned to each
agent. The task-assignment problem described before can be
written as the following integer (possibly nonlinear) program
with binary decision variables xij that indicate whether or not
task j is assigned to agent i

max
Nu∑
i=1

 Nt∑

j=1

cij (xi ,pi)xij

subject to

Nt∑
j=1

xij ≤ Lt ∀i ∈ I

Nu∑
i=1

xij ≤ 1 ∀j ∈ J

Nu∑
i=1

Nt∑
j=1

xij = Nmin
�
= min{Nt,NuLt}

xij ∈ {0, 1} ∀(i, j) ∈ I × J (1)

where xij = 1 if agent i is assigned to task j and 0 otherwise,
and xi ∈ {0, 1}Nt is a vector whose jth element is xij . The

index sets are defined as I �
= {1, . . . , Nu} andJ �

= {1, . . . , Nt}.
The vector pi ∈ (J ∪ {∅})Lt represents an ordered sequence of
tasks for agent i; its kth element is j ∈ J if agent i conducts j at
the kth point along the path, and becomes ∅ (denoting an empty
task) if agent i conducts less than k tasks. The summation term
inside the parenthesis represents the local reward for agent i.
The score function is assumed to satisfy cij (xi ,pi) ≥ 0 and can
be any nonnegative function of either assignment xi or path pi

(usually not a function of both). In the context of task allocation
for autonomous vehicles with mobility, the score function often
represents a path-dependent reward, such as the path length,
the mission completion time, and the time-discounted value of
target.

One special case of interest of the aforementioned formula-
tion is when Lt = 1 and cij (xi ,pi) ≡ cij without dependency
on xi and pi ; in this paper, this special case will be called single-
assignment in contrast to the general multi-assignment formu-
lation in (1). The single-assignment problem is important as it
can represent a higher level abstraction of a multi-assignment
problem with a mathematically simpler form.

This paper will first present an algorithm for the single-
assignment case in Section III to provide conceptual insights
on the consensus-based auction idea and then extend it to the
multi-assignment case in Section IV with a more detailed algo-
rithmic description.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

914 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009

B. Auction Algorithms

One of the key concepts this paper is based on is the auction
method for assignment problems. The auction algorithm was
first proposed in [26] as a polynomial-time algorithm for the
single-assignment problem, and many modifications and exten-
sions have been made to address multi-assignment problems
since then. In centralized auction systems [26], the value of a
task is given by cij = aij − pj , where aij is the reward of as-
signing task j to agent i, and pj is the global price of task j.
As the assignment progresses, the value of pj is continuously
updated to reflect the current bid for the task. Auctions are done
in rounds and continue until all agents are assigned to the task
giving it the maximum value (maxj cij). Each round selects
some agent i that has not been assigned a task and finds out

j∗
�
= argmaxj (aij − pj). If task j∗ has already been assigned

to another agent, the two agents swap tasks. Once this is done,
the price of task j∗ is increased such that the value cij ∗ is the
same as the second highest valued task in agent i’s list. Repeat-
ing this leads to every agent being assigned to the task giving it
the maximum value.

In decentralized methods, the task scores are calculated using
cij = aij − pij , where pij is the local price for task j. The bids
are generally submitted to an auctioneer [31], [34], [37] to de-
termine the winner based on the highest bids i∗ = argmaxi cij .
Other decentralized auction algorithms have been developed that
remove the auctioneer in place of different conflict resolution ap-
proaches and allow tasks to be bid on asynchronously [50], [51].
The decentralized auction approach developed herein uses a
consensus algorithm for conflict resolution without the need for
an auctioneer.

C. Consensus Algorithms

For decentralized systems, cooperating agents often require
a globally consistent SA [19]. In a dynamic environment with
sensor noise and varying network topologies, maintaining con-
sistent SA throughout the fleet can be very difficult. Consensus
algorithms are used in these cases to enable the fleet to converge
on some specific information set before generating a plan [20].
Examples of typical information sets could be detected target
positions, target classifications, and agent positions. These con-
sensus approaches have been shown to guarantee convergence
over many different dynamic network topologies [21]–[23].

In this paper, the consensus idea is used to converge on the as-
signment value rather than the SA. Thus, a maximum consensus
strategy is implemented such that the current assignment will be
overwritten if a higher value is received. By doing this, the net-
work convergence properties found in the consensus algorithm
literature can be exploited to converge on the assignment.

III. CONSENSUS-BASED AUCTION ALGORITHM

The CBAA is a single-assignment strategy that makes use of
both auction and consensus. The algorithm consists of iterations
between two phases. The first phase of the algorithm is the auc-
tion process, while the second is a consensus algorithm that is
used to converge on a winning bids list. By iterating between

the two, the CBAA can exploit convergence properties of de-
centralized consensus algorithms as well as the robustness and
computational efficiency of the auction algorithms.

A. Phase 1: Auction Process

The first phase of the algorithm is the auction process. Here,
each agent places a bid on a task asynchronously with the rest
of the fleet. Let cij ≥ 0 be the bid that agent i places for task
j. Two vectors of length Nt that each agent stores and updates
throughout the assignment process are also defined. The first
vector is xi , which is agent i’s task list, where xij = 1 if agent i
has been assigned to task j, and 0 otherwise. The second vector
is the winning bids list yi . This list will be further developed
in Section III-B, but it can be assumed for now that yij is an as
up-to-date as possible estimate of the highest bid made for each
task thus far. These two vectors are initialized as zero vectors.
Using the winning bids list, the list of valid tasks hi can be
generated using

hij = I(cij > yij) ∀j ∈ J (2)

where I(·) is the indicator function that is unity if the argument
is true and zero otherwise.

Algorithm 1 shows the procedure of agent i’s phase 1 at
iteration t, where one iteration consists of a single run of phase
1 and phase 2. Note that each agent’s iteration count can be
different, which allows for the possibility that each agent has
different iteration periods. An unassigned agent i (equivalently,
an agent with

∑
j xij (t) = 0) first computes the valid task list

hi . If there are valid tasks, it then selects a task Ji giving it the
maximum score based on the current list of winning bids (line 7
of Algorithm 1), and updates its task xi and the winning bids list
yi accordingly. Also, in the case that the agent has already been
assigned a task (

∑
j xij
= 0), this selection process is skipped,

and the agent moves to phase 2.

B. Phase 2: Consensus Process

The second phase of the CBAA is the consensus section of
the algorithm. Here, agents make use of a consensus strategy to
converge on the list of winning bids and use that list to determine

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 915

the winner. This allows conflict resolution over all tasks while
not limiting the network to a specific structure.

Let G(τ) be the undirected communication network at time τ
with symmetric adjacency matrix G(τ). The adjacency matrix
is defined such that gik (τ) = 1 if a link exists between agents i
and k at time τ and 0 otherwise. Agents i and k are said to be
neighbors if such a link exists. By convention, every node has a
self-connected edge; in other words, gii(τ) = 1 ∀i.

At each iteration of phase 2 of the algorithm, agent i receives
the list of winning bids yi from each of its neighbors. The
procedure of phase 2 is shown in Algorithm 2 when agent i’s
tth iteration corresponds to τ in real time. The consensus is
performed on the winning bids list yi based on the winning bids
lists received from each neighbor yk for all k such that gik = 1
in a way that agent i replaces yij values with the largest value
between itself and its neighbors (line 4). Also, an agent loses its
assignment if it finds that it is outbid by others for the task it had
selected, i.e., zi,Ji

= i (line 6). Also, this paper assumes that ties
occurring in determining Ji in phase 1 or zi,Ji

in phase 2 are
resolved in a systematic way. For example, a lexicographical tie-
breaking heuristic based on the agent and the task identification
numbers can be used.

Important properties related to convergence and performance
of CBAA will be discussed in Sections V and VI, along
with those for a generalized CBAA presented in the following
section.

IV. GENERALIZED CBAA: CBBA

As expressed in (1), the scoring function for the multi-
assignment problem can depend on the assignment xi or the
path pi . To address this dependency, previous combinatorial
auction methods [42]–[45] treated each assignment combina-
tion (bundle) as a single item for bidding that led to complicated
winner selection methods. In this section, CBAA is extended
to the multi-assignment problem by presenting the CBBA. In
CBBA, each agent has a list of tasks potentially assigned to
itself, but the auction process is done at the task level rather
than at the bundle level. Similar to CBAA, CBBA consists of it-
erations between two phases—bundle construction and conflict
resolution.

A. Phase 1: Bundle Construction

The first phase of the CBBA algorithm is the bundle-
construction process. In contrast to the bundle algorithms in

[42]–[45], which enumerate all possible bundles for bidding,
in CBBA, each agent creates just a single bundle and updates
it as the assignment process progresses. During phase 1 of the
algorithm, each agent continuously adds tasks to its bundle until
it is incapable of adding any other task. The tasks are added into
the bundle in the following way.

Each agent carries two types of lists of tasks: the bundle
bi and the path pi . Tasks in the bundle are ordered based on
which ones were added first in time, while in the path, they are
ordered based on their location in the assignment. Note that the
cardinality of bi and pi cannot be greater than the maximum
assignment size Lt . Let Sp i

i be defined as the total reward value
for agent i performing the tasks along the path pi . In CBBA, if
a task j is added to the bundle bi , it incurs the marginal score
improvement of

cij [bi] =

{
0, if j ∈ bi

maxn≤|p i |S
p i ⊕n {j}
i − Sp i

i , otherwise
(3)

where | · | denotes the cardinality of the list, and ⊕n denotes the
operation that inserts the second list right after the nth element
of the first list. In the later part of this paper, the notion of ⊕end
will also be used to denote the operation to add the second list
at the end of the first one. In other words, the CBBA scoring
scheme inserts a new task to the location that incurs the largest
score improvement, and this value becomes the marginal score
associated with this task given the current path. Thus, if the task
is already included in the path, then it provides no additional
improvement in score. Also, it is assumed that the addition of
any new task provides nontrivial reward, namely, cij [bi] ≥ 0,
and the equality holds only when j ∈ bi .

The score function is initialized as S
{∅}
i = 0, while the path

and bundle are recursively updated as

bi = bi ⊕end {Ji}, pi = pi ⊕ni , J i
{Ji} (4)

where Ji = argmaxj (cij [bi] × hij), ni,Ji
= argmaxn

S
p i ⊕n {Ji }
i , and hij = I(cij > yij). The aforementioned recur-

sion continues until either |bi | = Lt or until hi = 0. Note that
with (4), a path is uniquely defined for a given bundle, while
multiple bundles might result in the same path.

The first phase of the CBBA is summarized in Algorithm 3.
Each agent carries four vectors: a winning bid list yi ∈ R

Nt
+ , a

winning agent list zi ∈ INt , a bundle bi ∈ (J ∪ {∅})Lt , and
the corresponding path pi ∈ (J ∪ {∅})Lt . Note the difference
betweenxi used in CBAA andzi in CBBA. In CBBA, each agent
needs information about not only whether or not it is outbid on
the task it selects but who is assigned to each task as well; this
enables better assignments based on more sophisticated conflict-
resolution rules. These conflict resolution rules are discussed in
detail in the following section.

B. Phase 2: Conflict Resolution

In CBAA, agents bid on a single task and release it upon
receiving a higher value in the winning bids list. On the con-
trary, in CBBA, agents add tasks to their bundle based on their
currently assigned task set. Suppose that an agent is outbid for

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

916 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009

a task and, thus, releases it; then, the marginal score values for
the tasks added to the bundle after this task are no longer valid.
Therefore, the agent also needs to release all the tasks added
after the outbid task. Otherwise, the agent will make further
decisions based on wrong score values, which may lead to poor
performance.

Releasing the tasks in this manner can, however, cause fur-
ther complexity in the algorithm. If an agent is able to re-
lease tasks without another member selecting it, a simple ap-
plication of the maximum consensus update on the winning
bids list yi will no longer converge to the appropriate val-
ues since then, the maximum bid observed might no longer
be valid. Therefore, the consensus phase of the algorithm
needs to be modified in order to ensure that these updates are
appropriate.

In the multi-assignment consensus stage, three vectors are
communicated for consensus. Two vectors were described in
the bundle construction phase: the winning bids list yi ∈ R

Nt
+

and the winning agent list zi ∈ INt . The third vector si ∈ R
Nu

represents the time stamp of the last information update from
each of the other agents. Each time a message is passed, the
time vector is populated with

sik =
{

τr , if gik = 1

maxm :gi m =1smk , otherwise
(5)

where τr is the message reception time.
When agent i receives a message from another agent k, zi

and si are used to determine which agent’s information is the
most up-to-date for each task. There are three possible actions
agent i can take on task j:

1) update: yij = ykj , zij = zkj ;
2) reset: yij = 0, zij = ∅;
3) leave: yij = yij , zij = zij .
Table I outlines the decision rules. The first two columns

of the table indicate the agent that each of the sender k and
receiver i believes to be the current winner for a given task; the

third column indicates the action the receiver should take, where
the default action is leave.

If a bid is changed by the decision rules in Table I, each agent
checks if any of the updated or reset tasks were in their bundle,
and if so, these tasks, along with all of the tasks that were added
to the bundle after them, are released

yi,bi n
= 0, zi,bi n

= ∅ ∀n > n̄i

bin = ∅, n ≥ n̄i (6)

where bin denotes the nth entry of bundle bi and n̄i = min{n :
zi,bi n

= i}. It should be noted that the wining bid and the win-
ning agent for the tasks added after bi,n̄ i

are reset, because
removal of bi,n̄ i

can change scores for all the ensuing tasks.
From here, the algorithm returns to the first phase, and new
tasks are added.

Finally, note that CBBA can produce the same solution as
CBAA for the problem with Lt = 1. The update of the xi vector
can be equivalently realized by updating bi , and the conflict-
resolution step of the CBAA is equivalent to performing the
receiver action rules neglecting sk vectors, for only the task that
the receiver has selected. Since in CBAA a task is released only
when the agent is outbid on that particular task, every incoming
yk information is valid if it is larger than the local information
regardless of the agent belief on when it is sent.

C. Scoring Scheme

1) Diminishing Marginal Gain: One important assumption
on the scoring function is that the value of a task does not
increase as other elements are added to the set before it. In other
words

cij [bi] ≥ cij [bi ⊕end b] (7)

for all bi ,b, j such that ((bi ⊕end b) ⊕end {j}) ∈ (J ∪
{∅})Lt , where ∅ denotes an empty task. This relation is similar
to the notion of submodularity [52] for a set function, except
that the bundle is an ordered list rather than an unordered set;
this paper will refer to this condition as diminishing marginal
gain (DMG) and satisfaction of this condition as “being DMG”
in the later part. Since the marginal score of task j is defined as
(3), the condition (7) can also be expressed in terms of the total
score as

maxn≤|p i |S
p i ⊕n {j}
i − Sp i

i

≥ maxn≤|p i |+1maxm≤|p i |S
(p i ⊕m {k})⊕n {j}
i

− maxm≤|p i |S
p i ⊕m {k}
i (8)

for all pi , j, k such that ((pi ⊕m {k}) ⊕ {j}) ∈ (J ∪ {∅})Lt .
It is true that not all of the scoring functions of interest in

multi-task allocation satisfy (7). For instance, a scoring scheme
with DMG cannot model some synergism by multiple selec-
tions. However, in the search and exploration problems for au-
tonomous robots, many reward functions are DMG. For exam-
ple, in an exploration mission for robotic vehicles, discovery
of one feature may provide knowledge about the other tar-
gets’ locations; thus, the marginal reward of finding other target

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 917

TABLE 1
ACTION RULE FOR AGENT i BASED ON COMMUNICATION WITH AGENT k REGARDING TASK j

decreases. In a time-sensitive target assignment problem, the
time-discounted reward for a target decreases as the combat
vehicle visits another target first.

In case the scoring scheme is DMG, the following relation is
always satisfied:

yi,bi n
≥ yi,bi m

, if n ≤ m (9)

where bik is the kth entry of agent i’s bundle bi , because

yi,bi n
= max

j
cij [b1:n−1

i] ≥ max
j

cij [b1:n−1
i ⊕end bn :m−1

i]

(10)

with bk :l
i

�
= {bik , . . . , bil}. In other words, the value of y for a

task near the start of the bundle is never smaller than that for a
task near the end.

2) Time-Discounted Reward: In this paper, the following
scoring function representing the time-discounted reward will
be considered with specific emphasis [2], [8], [24]:

Sp i

i =
∑

λ
τ j

i
(p i)

j c̄j (11)

where λj < 1 is the discounting factor for task j, τ j
i (pi) is the

estimated time agent i will take to arrive at task location j along
the path pi , and c̄j is the static score associated with performing
task j. The time-discounted reward can model the track scenario
in which uncertainty growth with time causes degradation of
the expected reward for visiting a certain location or planning
of service routes in which satisfaction of client diminishes with

time. Since the triangular inequality holds for the actual distance
between task locations

τ j
i (pi ⊕n {k}) ≥ τ j

i (pi) ∀n ∀k. (12)

In other words, if an agent moves along a longer path, then it
arrives at each of the task locations at later time than if it moves
along a shorter path, thus resulting in further discounted score
value. Thus, for all nonnegative constants c̄j ’s, Sp i

i in (11) is
DMG.

V. CONVERGENCE

This section analyzes the convergence properties of CBBA,
where convergence means producing an assignment in finite
time with all of the constraints in (1) being satisfied.

A. Sequential Greedy Algorithm

This section starts by presenting a centralized algorithm that
will be shown to give the same solution as CBBA gives, in
Section V-B. Consider the sequential greedy algorithm (SGA)
in Algorithm 4 that sequentially finds a sequence of agent–task
pairs that render the largest score values given prior selections.
This algorithm is a centralized procedure in the sense that a
single central agent can access every agent’s scoring scheme;
every agent’s scoring scheme is assumed to be DMG. Note that
if ηi < Lt , the score update in lines 16 and 17 of Algorithm 4

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

918 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009

results in

c
(n+1)
ij =

c
(n)
ij , if i
= i�n , j
= j�

n

0, if j = j�
n

α
(n)
ij c

(n)
ij , if i = i�n , j
= j�

n

(13)

with some α
(n)
ij ∈ [0, 1], because b(n)

i remains the same for
i
= i�n , and the marginal gains that i�n can achieve diminish as
one task is added in its bundle. In case ηi = Lt for some agent
i, all of the agent’s scores for the next selection step become
zero (line 12). Thus, for ηi ≤ Lt , the score c

(n)
ij is monotonically

decreasing with respect to n, namely

c
(n)
ij ≥ c

(m)
ij , if n ≤ m. (14)

Also, by definition of DMG

c
(n)
ij = cij [b

(n−1)
i] ≥ cij [b

(n−1)
i ⊕end b] ∀b (15)

which means that c
(n)
ij is the largest score agent i can obtain for

task j given prior selection of b(n−1)
i . Since the selected pair

at the nth step, (i�n , j�
n) in line 5, gives the largest score given

selections up to the (n − 1)th step, the following is satisfied:

c
(n)
i�
n ,j �

n
≥ c

(n)
ij ∀(i, j) ∈ I × J . (16)

Therefore, note that from (14) and (16)

c
(n)
i�
n ,j �

n
≥ c

(n)
i�
m ,j �

m
≥ c

(m)
i�
m ,j �

m
≥ c

(m)
ij ∀(i, j) ∈ I × J

if n ≤ m. (17)

Namely, the best score at the nth step is greater than, or equal
to, any score value showing up in the later steps. It is also noted
that the recursion in (13) leads to

c
(n+1)
ij = 0 ∀(i, j) /∈ In+1 × Jn+1 (18)

because the marginal score of a task that is already in a bundle
is zero.

B. Static Network

The communication network of a fleet of unmanned vehicles
can be modeled as an undirected graph with every edge length
being unity. Suppose that this communication network is static
and connected; then, there exists a (undirected) shortest path
length dik < ∞ for every pair of agents i and k. The network
diameter D is defined as the longest of all shortest path lengths

D
�
= max

(i,k)∈I2
dik . (19)

If the conflict resolution is assumed to be synchronized, i.e.,
every agent’s second phase in the tth iteration takes place si-
multaneously, then the actual time τ can be equivalently rep-
resented by the iteration count t. In this case, the convergence
time TC ∈ Z+ can be defined as the smallest iteration number
at which a feasible assignment is found that will not change
afterwards

TC
�
= min t ∈ T (20)

where the set T is defined as

T =

{
t ∈ Z+

∣∣∀s ≥ t : xij (s) = xij (t),
Nu∑
i=1

xij (s) = 1

Nt∑
j=1

xij (s) ≤ Lt,

Nt∑
j=1

Nu∑
i=1

xij (s) = Nmin

}
(21)

with xij being the same binary variable defined in (1).
Lemma 1: Consider the CBBA process with synchronous

conflict resolution over a static network with diameter D for the
case that every agent’s scoring scheme is DMG. Suppose that
after completing phase 2 of some iteration t

zi,j �
k
(t) = i�k , yi,j �

k
(t) = c

(k)
i�
k
,j �

k
∀i ∈ I ∀k ≤ n (22)

where (i�k , j�
k)’s are assignment pairs from the SGA procedure

and c
(k)
i�
k
,j �

k
’s are the corresponding score values. Then, the fol-

lowing holds.

1) The first L
(n)
i

�
= |b(n)

i | entries of agent i’s current bundle

coincide with those of the bundle at the nth SGA step b(n)
i

b1:L (n)
i

i = b(n)
i . (23)

2) The bid that agent i�n+1 places on task j�
n+1 is

yi�
n + 1 ,j �

n + 1
(t) = c

(n+1)
i�
n + 1 ,j �

n + 1
(24)

and this value satisfies

yi�
n + 1 ,j �

n + 1
(t) ≥ yij (t) ∀(i, j) ∈ In+1 × Jn+1 .

(25)
3) Entries in (22) do not change over time, or

zi,j �
k
(s) = zi,j �

k
(t), yi,j �

k
(s) = yi,j �

k
(t) (26)

for all s ≥ t and for all k ≤ n.
4) The value of the bid that agent i�n+1 places on task j�

n+1
will remain the same throughout the later iterations, and

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 919

no agents will bid higher than this value on task j�
n+1 in

the later iterations:

yi�
n + 1 ,j �

n + 1
(s) = yi�

n + 1 ,j �
n + 1

(t) ≥ yi,j �
n + 1

(s) (27)

for all s ≥ t and for all i ∈ I.
5) After D iterations, every agent will have agreed on the

assignment (i�n+1 , j
�
n+1); in other words

yi,j �
n + 1

(t + D) = yi�
n + 1 ,j �

n + 1
(t) zi,j �

n + 1
(t + D) = i�n+1

(28)
for all i ∈ I.

Proof: See Appendix A. �
Lemma 2: Consider a CBBA process with synchronized con-

flict resolution over a static network of diameter D, where every
agent’s scoring scheme is DMG. Then, every agent agrees on
the first n SGA assignments by iteration nD. In other words,

zi,j �
k
(nD) = i�k ∀i ∈ I ∀k ≤ n (29)

yi,j �
k
(nD) = c

(k)
i�
k
,j �

k
∀i ∈ I ∀k ≤ n. (30)

Proof: The proof is by induction. Since
argmaxj∈J ci�

1 ,j [{∅}] = j�
1 , agent i�1 places task j�

1 in
the first position of its bundle in phase 1 of iteration 1. Because
ci�

1 ,j �
1
[{∅}] ≥ cij [b] for all (i, j) ∈ I × J for any b, no agent

can place a higher bid in later iterations. Thus, k iterations of
CBBA conflict resolution procedures lead k-hop neighbors of
agent i�1 to agree that i�1 is the winning agent for task j�

1 . Thus,
after D iterations of phase 2, every agent will have agreed on
the assignment (i�1 , j

�
1). Due to statements 3) and 5) in Lemma

1, if zi,j �
k
(mD) = i�k and yi,j �

k
(mD) = c

(k)
i�
k
,j �

k
for all k ≤ m,

then zi,j �
k
(mD + D) = i�k and yi,j �

k
(mD + D) = c

(k)
i�
k
,j �

k
for

all k ≤ m + 1. Thus, together with (i�1 , j
�
1) being agreed to at

D, after nD iterations, every agent will have agreed on the
assignments (i�k , j�

k) for all k ≤ n. �
Theorem 1 (Convergence of CBBA): Provided that the scor-

ing function is DMG, the CBBA process with a synchronized
conflict resolution phase over a static communication network
with diameter D satisfies the following.

1) CBBA produces the same solution as SGA with the cor-
responding winning bid values and winning agent infor-
mation being shared across the fleet, i.e.,

zi,j �
k

= i�k ∀k ≤ Nmin ∀i ∈ I

yi,j �
k

= c
(k)
i�
k
,j �

k
∀k ≤ Nmin ∀i ∈ I. (31)

2) The convergence time TC is bounded above by NminD.
Proof: Combining the statement 5) in Lemma 1 and

Lemma 2, after phase 2 of iteration nD, the first n SGA as-
signments are agreed over the fleet for any n. This must be
true in case n = Nmin , which is the number of assignments
needed for convergence. In addition, from statement 3), these
assignments will not change in the later iterations. Thus, by iter-
ation NminD, the CBBA process converges, and the converged
solutions are equivalent to the SGA solution. �

Note that in many cases, CBBA converges much earlier than
NminD iterations, because the maximum distance from some i�k
to another agent is likely to be less than D, and multiple SGA

assignment sequences can be fixed simultaneously. Quick con-
vergence of CBBA will be empirically verified in Section VII-A.

Lemma 3: Suppose that the score values of the agents satisfy

cij (t) ≥ cij (s) ∀(i, j) ∈ I × J ∀t ≤ s (32)

cij (t) ≥ ckj (t) ⇔ cij (s) ≥ ckj (s) ∀i, k ∈ I ∀j ∈ J
∀t, s ∈ N (33)

in the process of CBBA, where cij (t) is agent i’s score for task
j at iteration t. Then, CBBA converges to a conflict-free as-
signment in NminD iterations in a static network with diameter
D.

Proof: The key idea of the proof is to consider a sequential
procedure that is similar to SGA but replaces line 5 in Algorithm
4 by

(i†n , j†n) = argmax
(i,j)∈I×J

cij (t†n)

where t†n
�
= (n − 1)D + 1. Then, to show that yi†n ,j †

n
is not out-

bid in the later iterations completes the proof of this lemma. See
Appendix B for details. �

The conditions in Lemma 3 can be restrictive. For example,
the time-discounted reward in (11), which is DMG, does not
satisfy them in general. However, Lemma 3 facilitates modifi-
cation of CBBA to render a conflict-free assignment, even when
the scoring schemes are not DMG.

Lemma 4: Consider a CBBA process with synchronized con-
flict resolution over a static network of diameter D, where
agents’ scoring schemes are not necessarily DMG. Let co

ij (t)
be the score of task j for agent i computed by this underly-
ing scoring scheme. Then, CBBA converges to a conflict-free
assignment within NminD by utilizing the following modified
score instead of co

ij (t):

cij (t) = min
{
co
ij (t), cij (t − 1)

}
. (34)

Proof: The proof is straightforward, since (34) ensures (32)
and (33). �

To summarize, in a static network with diameter D, CBBA
(with a slight modification) creates a conflict-free assignment
within NminD iterations independent of scoring schemes. More-
over, if the score function is DMG, it generates the identical
solution to SGA.

C. Dynamic Network and Asynchronous Conflict Resolution

For dynamic networks in which G(τ) varies with time, con-
vergence of CBBA with a synchronous conflict resolution phase
can still be guaranteed if there exists some value ρ < ∞ such
that

W(τ(t)) = G(τ(t)) ∪ G(τ(t + 1)) ∪ · · · ∪ G(τ(t + ρ − 1))

is fully connected ∀t [53], where τ(t) denotes the actual time at
which every agent’s tth CBBA iteration takes place. In this case,
the convergence time will then be upper bounded by ρNmin ,
since any information about conflicts is transmitted within ρ.

Asynchronous conflict resolution can be modeled as a dy-
namic network with synchronized conflict resolution, as the

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

920 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009

situation where an agent is waiting for neighbors’ information
can be treated as the network being disconnected for that period.
Thus, if it is ensured that an agent eventually communicates
with its neighbor, then the CBBA process converges in finite
time, even in the case when asynchronous conflict resolution is
allowed.

D. Inconsistent Information

It is typical that each agent’s scoring scheme is based on
its own understanding of the environment (which is commonly
known as the SA). For instance, the time-discounted reward in
(11) depends on the target and agent locations; therefore, with
different estimates of either, the resulting scores used by the
agents in CBBA may differ. Since these scores may also differ
from the (typically not knowable) actual scores, the CBBA so-
lution based on inconsistent information over fleet can degrade
the performance of the decision-making process.

However, this inconsistency in SA does not affect the con-
vergence of CBBA to a feasible assignment, because whatever
knowledge each agent scoring scheme is based on, the only
needed information for resolving conflicts among agents are
the winning bid list, winning agent list, and the time stamp. If
these three pieces of information are communicated error-free,
the conflict resolution process of CBBA is insensitive to the
details of each agent’s scoring scheme. Thus, CBBA does not
require any level of agreement on SA for convergence, although
inconsistent information might still cause actual performance
degradation. This is a distinguishing feature of CBBA compared
with previous decentralized algorithms such as implicit coordi-
nation [8], [14] and the ETSP ASSIGMT algorithm [50], [51], in
which each agent must have the same information to guarantee
convergence.

VI. MINIMUM PERFORMANCE GUARANTEE

This section shows that the CBBA and CBAA solutions guar-
antee some performance level without considering the actual
scoring scheme. First, define the following quantities:

1) SOPT : the optimal objective value of the single-
assignment problem for a given nonnegative scoring
scheme;

2) CBAA: the objective value provided by CBAA for the
single-assignment problem for a given nonnegative scor-
ing scheme;

3) MOPT : the optimal objective value of the multi-
assignment problem for a given nonnegative DMG scoring
scheme;

4) CBBA: the objective value provided by CBBA for the
multi-assignment problem for a given nonnegative DMG
scoring scheme.

The worst-case performance analysis addresses the relation-
ship between MOPT and CBBA (or between SOPT and
CBAA). This section starts with the single-assignment case.

Lemma 5 (CBAA performance bound): Assuming the agents
have accurate knowledge of the SA, CBBA guarantees 50%

optimality. In other words

SOPT ≤ 2CBAA. (35)

Proof: Since the CBBA solution provides the same perfor-
mance as SGA, it is sufficient to prove that the SGA solution
guarantees 50% optimality. First, for notational convenience,
reorder the agent and target indices so that

i�k = k, j�
k = k ∀k ≤ Nmin . (36)

In other words, for now, refer to agent i�k as agent k and task
j�
k as task k, while other indices are adjusted accordingly to

avoid overlap. Then, from the property in (17), for SGA

cii ≥ cjj , if i < j (37)

and the objective value of CBAA solution (or equivalently SGA
solution) becomes

CBAA =
Nm in∑
i=1

cii . (38)

Because each agent selects its task in a greedy way given the
selections of its precedents, the following inequalities hold for
the greedy solution:

cii ≥ cij ∀i ∀j > i

cii ≥ cji ∀i ∀j > i. (39)

Consider the case the greedy selection is the farthest from
the optimal solution; in other words, consider of the case where
variations of assignment could cause the largest improvement in
the objective value while still satisfying the conditions in (39).
Also, since each agent cannot take multiple tasks, a change in
the assignment should be based on swapping of the tasks (or
possibly cyclic exchange of tasks). Consider a task swapping
between two agents i and j > i; then, the overall score becomes
cij + cji , while it was originally cii + cjj . Since (39) holds, the
new overall score cij + cji is upper bounded by

cij + cji ≤ cii + cii = 2cii (40)

where the upper bound is attained if

cij = cji = cii . (41)

Thus, if (41) holds, agents i and j can increase their overall
score the most by swapping their tasks. Now, supposing that the
condition similar to (41) holds for all pairs of agents

cij = cii ∀i ∀j > i

cji = cii ∀i ∀j > i (42)

then an appropriate sequence of task swapping processes will
lead to the largest possible improvement of the overall score
among the fleet.

One way to achieve the greatest performance enhancement is
to use the following policy:

J∗
i =

{
Nmin − i + 1, if i ∈ {1, . . . , Nmin}
∅, otherwise

(43)

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 921

where J∗
i is the new task assigned to agent i, in which agent

i ∈ {1, . . . , Nmin} swaps its task with agent Nmin − i + 1. In
this way, the first �Nmin/2� agents (who were assigned tasks
by CBAA) are assigned tasks that provide the same scores as
the CBAA solution, while the next �Nmin/2� agents (who were
assigned tasks by CBAA) gain as much as possible score im-
provement. Since the policy in (43) ensures that one agent is
assigned at most one task, it creates a conflict-free assignment;
moreover, as the overall score is improved as much as it can be,
the resulting solution is the optimal solution. Hence, the optimal
objective value SOPT should satisfy

SOPT =
�Nm in /2�∑

i=1

cii +
Nm in∑

i=�Nm in /2�+1

c(Nm in −i+1),(Nm in −i+1)

= 2 ×
�Nm in /2�∑

i=1

cii +
�Nm in /2�∑

i=�Nm in /2�+1

cii ≤ 2 ×
Nm in∑
i=1

cii

= 2CBAA.

Thus, 50% optimality is guaranteed for the CBAA. �
Based on the aforementioned proof for the CBAA solution for

single-assignment problems, the worst-case performance bound
for the CBBA solution for multi-assignment problems can also
be derived.

Theorem 2 (CBBA performance bound): Assuming the agents
have accurate knowledge of the SA, CBBA guarantees 50%
optimality for the multi-assignment problem with DMG scoring
schemes

MOPT ≤ 2CBBA. (44)

Proof: The key idea of the proof is that a multi-assignment
problem can be treated as a single-assignment problem with ad-
ditional combinatorial number of virtual agents. See Appendix
C for the detailed proof. �

Note that in many cases, CBBA creates a numerical solution
providing much greater than 50% optimality. This observation
is consistent with the very good average performance of CBBA
that is analytically demonstrated for several special cases in [1].

VII. NUMERICAL RESULTS

A. Convergence and Performance With Inconsistent
Information

As discussed in Section V-D, the presented CBBA method
guarantees convergence of the algorithm to a conflict-free as-
signment, regardless of inconsistency in SA. Monte-Carlo sim-
ulations are performed to verify this robustness property. The
agents and tasks are randomly placed on a W × W 2-D space
(W = 2 km). The time-discounted reward in (11) is used to
define the scoring function. c̄j ≡ 1 and λ = 0.95 s−1 are used,
and every agent moves at a speed of 40 m/s.

The source of inconsistent information considered is discrep-
ancy in the understanding of task locations, while it is assumed
that each agent knows its own position correctly. Agents esti-
mate the coordinates of task locations subject to additive Gaus-
sian noises (with sensing noise standard deviation from 0.01W

Fig. 1. Convergence of CBBA in the presence of inconsistency in SA.

to 0.2W) and compute the score values based on these esti-
mates. As a metric of level of inconsistency across the fleet, the
following average SA error is calculated:

ĒSA =
1√

2WNt

√√√√ Nu∑
i,k :i
=k

Nt∑
j=1

‖lij − lkj‖2 (45)

where lij and lkj are the estimated position vectors of task j
by agent i and k, respectively, and ‖ · ‖ denotes the Euclidian
norm. Each agent computes the scores for the tasks based on
its own estimate of target positions. Communication networks
are created by generating a random spanning tree [54] and then
adding varying amounts of random links to the network. Also,
the optimal solution with perfect information is obtained by the
implicit coordination algorithm [8] for comparison.

Figs. 1 and 2 show the average convergence time and the
optimality gap as a function of Nt , which is set to be same as
Nu in this simulation, and the SA error. Note in Fig. 1 that
SA error does not affect the convergence time of CBBA, as
the algorithm converges within a few time steps for all cases.
The optimality gap in Fig. 2 demonstrates that (a) with perfect
information, the optimality gap is very small (less than 3%),
(b) performance of CBBA degrades as SA error grows, and (c)
but, even with a large amount of SA error, the CBBA solution
exhibits reasonable good average performance (optimality gap
being less than 30%). To summarize, the results verify that
CBBA produces a reasonably good suboptimal solution, even
with a significant amount of discrepancy in the SA.

B. Comparison With Prim Allocation for Multi-Assignment

For further validation of the convergence and performance
aspects of CBBA, this paper compares CBBA with an existing
centralized sequential auction algorithm, i.e., Prim Allocation
(PA) [33]. The PA algorithm is a well-known auction algorithm
for multi-assignment and has a similar insertion heuristic to
the score definition in (3), thus providing a good baseline for
comparison.

In the PA algorithm, each agent creates a minimum spanning
tree (MST) with the tasks as nodes and the edges indicating the

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

922 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009

Fig. 2. Optimality gap of CBBA in the presence of inconsistency in SA.

task ordering. Each agent bids on the task that is closest to any
of the nodes in the assignment, and the winner inserts it into that
location in the tree. This process continues until all of the tasks
have been assigned. Tasks are then ordered through the tree
by performing a depth-first search (DFS) [55]. The algorithm
is designed to minimize the total distance traveled by the fleet
to accomplish the tasks; however, other heuristics have been
developed in [56] and [57] that can be used as well.

The iterative CBAA (ICBAA) that sequentially runs CBAA
single-assignment routine until all the tasks are assigned is also
considered for comparison. A key difference between ICBAA
and CBBA solutions is that the same number of tasks are as-
signed per agent in ICBAA, while CBBA allows an agent to
take up to Lt tasks.

The total distances traveled by the vehicles for the PA algo-
rithm and CBBA are compared with each other. CBBA tries to
maximize the time-discounted reward in (11) instead of min-
imizing the total distance traveled. This is a good example of
how the use of generic scores when developing algorithms can
provide more flexibility in terms of objective functions. Fig. 3
compares the performance of the three algorithms for different
Nt values, where Nu = 5 and Lt = Nt are used. It can be seen
that CBBA provides a solution with the smallest total distance
traveled, although it does not explicitly minimize it. This is be-
cause the CBBA algorithm is able to outbid earlier allocated
tasks in the conflict resolution stage to provide better assign-
ments. For the PA, once a task has a winner, it is locked into that
assignment. The convergence times for the three algorithms are
compared in Fig. 4; to account for centralized aspect of the PA
algorithm, a fully connected network (i.e., D = 1) is assumed
for ICBAA and CBBA. Since the PA algorithm assigns each
task one at a time, the convergence time steps for PA is same
as the number of tasks in a fully connected network. It can be
found that ICBAA converges within about a half of the num-
ber of tasks, and CBBA converges within much smaller steps.
Since ICBAA consists of �Nt/Nu� individual CBAA routines,
the total convergence time step is approximately �Nt/Nu� mul-
tiplied by convergence time of a single CBAA. A single CBAA

Fig. 3. Total distance traveled to accomplish assignment (Nu = 5).

Fig. 4. Convergence time steps (Nu = 5).

can take up to min{Nu,Nt}D iterations by Theorem 1, but
usually takes much shorter because multiple conflicts can be
resolved per time step. As a result, ICBAA converges faster
than PA by the factor of the number of conflicts resolved in
parallel in CBAA. For CBBA, multiple tasks are assigned to
an agent, and multiple conflicts are resolved in parallel, be-
cause each agent carries a bundle of tasks that can be very long
if Lt is large. These two capabilities of CBBA enable further
acceleration.

VIII. CONCLUSION

This paper presented two decentralized task-allocation algo-
rithms addressing single- and multi-assignment problems, re-
spectively, that are shown to produce conflict-free solutions in-
dependent of inconsistencies in SA. These algorithms feature a
task-selection process based on auctioning with greedy heuris-
tics and a conflict-resolution protocol based on consensus on
the winning bid values over the team. It was also shown that the

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 923

solutions for the proposed algorithms guarantee 50% of opti-
mality under the assumptions of consistent SA and DMG from
tasks. Numerical experiments validated good performance and
quick convergence of the proposed methods compared with an
existing sequential auction algorithm.

APPENDIX

A. Proof of Lemma 1

Statement 1): The proof is by induction. Suppose that
b(n)

i = {j�
k1

, . . . , j�
k

L
(n)
i

} with some k1 < · · · < k
L

(n)
i

, where

L
(n)
i

�
= |b(n)

i |. Then, the first entry j�
k1

is determined from

c
(k1)
i,j �

k 1
= ci,j �

k 1
[{∅}] = max

j∈Jk 1

ci,j [{∅}] (46)

where {∅} denotes the null bundle, and Jk1 is the reduced task
set defined from the recursion in line 7 in Algorithm 4 with
n + 1 = k1 (or by line 1 for k1 = 1), because no task has been
selected in advance of j�

k1
. On the other hand, the phase 1 of the

CBBA process for agent i finds the first entry in the bundle by

Ji = argmax
j∈J

ci,j [{∅}] × I (cij [{∅}] > yij) (47)

where I(·) is the indicator function that is unity if the argument
is satisfied and zero otherwise. Note that cij [{∅}] ≤ yij for j /∈
Jk1 , because all these j’s are assigned to the other agents. Thus,
the maximization in (47) is equivalent to the maximization in
(46) that searches over a more restricted set Jk1 . Hence, Ji in
(47) equals to j�

k1
; the corresponding score values are identical:

ci,Ji
= c

(k1)
i,j �

k 1
. Thus, the first entry of the CBBA bundle is j�

k1
,

which is also the first entry of the SGA bundle.
Now suppose that the SGA bundle and the CBBA bundle

coincide up to the lth entry. Then, the (l + 1)th entry of the
SGA bundle j�

kl + 1
is determined from

c
(kl + 1)
i,j �

k l + 1
= ci,j �

k l + 1
[b(1:l)

i] = max
j∈Jk l + 1

ci,j [b
(1:l)
i] (48)

where b(1:l)
i represents the list of the first l entries of agent

i’s SGA bundle. Consider a task j /∈ Jkl + 1 ; then, either of the

following is the case: j ∈ b(1:l)
i or j ∈ (J \ Jkl + 1) \ b(1:l)

i . If

j ∈ b(1:l)
i , then cij [b

(1:l)
i] = 0 from (3). Otherwise, cij [b

(1:l)
i] ≤

yij , because task j must then be in another agent’s bundle. Thus,
the following holds:

ci,j [b
(1:l)
i] × I

(
cij [b

(1:l)
i] > yij

)
= 0, j /∈ Jkl + 1 (49)

either because the first term is zero (for j ∈ b(1:l)
i) or the sec-

ond term is zero (for j ∈ (J \ Jkl + 1) \ b(1:l)
i). On the other

hand, the corresponding entry of the CBBA bundle of agent i is
determined from

max
j∈J

ci,j [b
(1:l)
i] × I

(
cij [b

(1:l)
i] > yij

)
. (50)

Using the result in (49)

max
j∈J

ci,j [b
(1:l)
i] × I

(
cij [b

(1:l)
i] > yij

)

= max
j∈Jk l + 1

ci,j [b
(1:l)
i] × I

(
cij [b

(1:l)
i] > yij

)

= max
j∈Jk l + 1

ci,j [b
(1:l)
i] (51)

since every score value is nonnegative. Note that (51) is iden-
tical to the maximization in (48). Thus, if the first l entries of
the SGA and the CBBA bundles coincide, the (l + 1)th entries
also coincide because they are computed from two equivalent
procedures. Together with the coincidence of the first entry, this

completes the proof showing that b1:L (n)
i

i = b(n)
i .

Statement 2): The proof is in two parts. First, it is proved
that at iteration t, agent i�n+1 places a bid of c

(n+1)
i�
n + 1 ,j �

n + 1
on task

j�
n+1 , where (i�n+1 , j

�
n+1) is the (n + 1)th SGA agent–task pair.

Second, it is proved that this bid is greater than any bid for agent
i ∈ In+1 on task j ∈ Jn+1 .

In the (n + 1)th step of SGA procedure, agent i�n+1 deter-
mines the corresponding task from the following maximization:

max
j∈Jn + 1

c
(n+1)
i�
n + 1 ,j . (52)

Since statement 1) in this lemma holds for agent i�n+1 , the

(L(n)
i�
n + 1

+ 1)th entry of its CBBA bundle is selected from

max
j∈J

ci�
n + 1 ,j [b

(n)
i�
n + 1

] × I

(
ci�

n + 1 ,j [b
(n)
i�
n + 1

] > yi�
n + 1 ,j

)
. (53)

Note that for j /∈ Jn+1 , either of the following holds: 1)
ci�

n + 1 ,j [b
(n)
i�
n + 1

] = 0 for j ∈ b(n)
i�
n + 1

, or 2) ci�
n + 1 ,j [b

(n)
i�
n + 1

] ≤ yi�
n + 1 ,j

for j /∈ b(n)
i�
n + 1

. Thus, the maximization in (53) is equivalent

to the maximization in (52) because c
(n+1)
i�
n + 1 ,j = ci�

n + 1 ,j [b
(n)
i�
n + 1

].

Hence, i�n+1 places a bid of c
(n+1)
i�
n + 1 ,j �

n + 1
on task j�

n+1 and locates

it at the (L(n)
i + 1)th position of its CBBA bundle; also, the

corresponding entry of its winning bid list is set as

yi�
n + 1 ,j �

n + 1
(t) = c

(n+1)
i�
n + 1 ,j �

n + 1
. (54)

The second part is to prove that

c
(n+1)
i�
n + 1 ,j �

n + 1
≥ yij (t) ∀(i, j) ∈ In+1 × Jn+1 . (55)

Consider the maximization to determine the (n + 1)th SGA
selection; then, the following relation holds:

c
(n+1)
i�
n + 1 ,j �

n + 1

�
= max

(i,j)∈I×J
c
(n+1)
ij = max

(i,j)∈In + 1 ×Jn + 1

cij [b
(n)
i]

(56)
since c

(n+1)
ij = 0 for (i, j) /∈ In+1 × Jn+1 by (18). Because

statement 1) specifically holds for i ∈ In+1

cij [b
1:L (n)

i
i (t)] = cij [b

(n)
i]

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

924 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009

where bi(t) is agent i’s CBBA bundle at iteration t. Note that
for (i, j) ∈ In+1 × Jn+1 , the winning bid value yij (t)

yij (t) = ck,j [b
1:L (n)

k

k (t) ⊕end b] (57)

with some k ∈ In+1 and b such that b
1:L (n)

k

k (t) ⊕end b ∈ (J ∪
{∅})Lt . Since the scoring scheme is assumed to be DMG, this
leads to

yij (t) ≤ ck,j [b
1:L (n)

k

k] = ck,j [b
(n)
k] (58)

for the same k as in (57). From (56) and (58), it follows that

c
(n+1)
i�
n + 1 ,j �

n + 1
≥ yij (t) ∀(i, j) ∈ In+1 × Jn+1 .

Statement 3): The proof is by induction. First, for the score
value of the first SGA assignment determined by

c
(1)
i�
1 ,j �

1
= ci�

1 ,j �
1
[{∅}] = max

(i,j)∈I×J
cij [{∅}]

the following holds:

c
(1)
i�
1 ,j �

1
= ci�

1 ,j �
1
[{∅}] ≥ ci,j �

1
[b] ∀i ∈ I ∀b ∈ (J ∪ {∅})Lt .

(59)
Note that

∀yij (r), (i, j) ∈ I × J , r ≥ 1

∃k ∈ I, b ∈ (J ∪ {∅})Lt , such that yij (r) = ckj [b].

(60)

Specifically, at r = t for any i and for j = j�
1 , k = i�1 and

b = {∅} satisfy (60)

yi,j �
1
(t) = ci�

1 ,j �
1
[{∅}]

where yi,j �
1
(t) can be changed in the later iteration only when

some agent places a bid larger than it, but (59) prevents the
occurrence of such situations. Therefore

yi,j �
1
(s) = yi,j �

1
(t) = c

(1)
i�
1 ,j �

1
∀i ∈ I ∀s ≥ t (61)

which also means zi,j �
1
(s) = i�1 ∀i ∈ I ∀s ≥ t.

Now, suppose that yi,j �
k
(s) = yi,j �

k
(t) = c

(k)
i�
k
,j �

k
∀s ≥ t for all

k ≤ m for some m < n. Then, since statement 1) with n being

replaced by m holds at iteration s, b1:|b(m)
i

|
i (s) = b(m)

i . Con-

sider the (|b(m)
i�
m + 1

| + 1)th entry of agent i�m+1’s CBBA bundle.

From statement 2) in this lemma, the entry is {j�
m+1}, and the

corresponding bid is c
(m+1)
i�
m + 1 ,j �

m + 1
, which satisfies

c
(m+1)
i�
m + 1 ,j �

m + 1
≥ cij [b

1:|b(m)
i

|
i ⊕end b] (62)

for all (i, j) ∈ I × J for any b ∈ (J ∪ {∅})Lt −|b(m)
i

|.
Since it is assumed in (22) that yi,j �

m + 1
(t) = c

(m+1)
i�
m + 1 ,j �

m + 1
, the

following identity holds:

yi�
m + 1 ,j �

m + 1
(s) = c

(m+1)
i�
m + 1 ,j �

m + 1
= yi,j �

m + 1
(t) ∀i. (63)

The CBBA conflict resolution does not replace a winning bid
unless a higher bid shows up; for yi,j �

m + 1
(t), no agent can place

a higher bid between iteration t and s because of (62). Thus, if
yi,j �

k
(s) = yi,j �

k
(t) = c

(k)
i�
k
,j �

k
∀s ≥ t for all k ≤ m for some m <

n, then yi,j �
m + 1

(s) = yi,j �
m + 1

(t) = c
(m+1)
i�
m + 1 ,j �

m + 1
. Together with

(61), this completes the proof using induction.
Statement 4): From statement 3) in this lemma, at

any iteration s ≥ t, (22) is satisfied. From statement 2)
in this lemma, this means yi�

n + 1 ,j �
n + 1

(s) = c
(n+1)
i�
n + 1 ,j �

n + 1
≥

yij (s) ∀(i, j) ∈ In+1 × Jn+1 for any s ≥ t. Moreover, with
statement 3) being satisfied, agent i�n+1 will not change its bid
on j�

n+1 after iteration t; thus, yi�
n + 1 ,j �

n + 1
(s) = yi�

n + 1 ,j �
n + 1

(t).

Statement 5): Because c
(n+1)
i�
n + 1 ,j �

n + 1
is the highest bid on task

j�
n+1 for all s ≥ t, the conflict resolution phase of CBBA leads

to i
= i�n+1 updating yi,j �
n + 1

with c
(n+1)
i�
n + 1 ,j �

n + 1
. Since the agents in

agent i�n+1’s k-hop neighbors perform this update in k iterations
from t, and the farthest agent from i�n+1 is at most D hops apart,
every agent will have agreed on the winning bid on task j�

n+1
by iteration t + D.

B. Proof of Lemma 3

Consider a procedure that samples the score values at every

t†n th iteration of the CBBA process, where t†n
�
= (n − 1)D +

1, n ∈ N, and solves the following maximization:

(i†n , j†n) = argmax
(i,j)∈I×J

cij (t†n). (64)

Then, the following holds:

yi†n ,j †
n
(t†n) ≥ yi,j †n

(t) ∀i ∈ I ∀t ≥ t†n (65)

which is proved as follows. By definition, ci†n ,j †
n
(t†n) ≥

ci,j †n
(t†n) ∀i ∈ I†

n ; the condition (33) ensures that ci†n ,j †
n
(t) ≥

ci,j †n
(t) ∀t ∈ N. Since at every iteration agent i†n achieves the

largest score on task j†n , its respective bid is the largest at every
iteration: yi†n ,j †

n
(t) ≥ yi,j †n

(t) ∀i ∈ I ∀t ∈ N; this specifically
means that (65) is satisfied.

Since no agent can bid higher than yi†n ,j †
n
(t†n) on task j‡n

at any iteration later than t†n , this winning bid information
is propagated through the entire network within D iterations:
yi,j †n

(t†n+1) = yi†n ,j †
n
(t†n). Therefore, it is straightforward to

show that at NminD

yi,j †n
(NminD) = yi†n ,j †

n
(t†n) and

zi,j †n
(NminD) = i†n ∀i ∈ I.

C. Proof of Theorem 2

The multi-assignment problem can be treated as a single
assignment with additional combinatorial number of agents.
Let agent ib ,b ∈ (J ∪ {∅})Lt be a virtual agent that can be

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

CHOI et al.: CONSENSUS-BASED DECENTRALIZED AUCTIONS FOR ROBUST TASK ALLOCATION 925

assigned at most one task and whose score is defined in such a
way that

cib ,j = cij [b].

Then, there will be a total of NM
u

�
=Nu

∑Nt

n=1 Nt !/n! agents
(because the bundle is an ordered list not unordered set), each
of which can only select up to one task. Consider a single-
assignment problem for these artificial agents, and call it ex-
panded single-assignment.

Since a task already in a bundle incurs zero reward and the
scoring schemes are assumed to be DMG, the scores for the
expanded single assignment should satisfy

cib ,j = 0, if j ∈ b

cib 1 ,j ≥ cib 1 ⊕e n d b 2 ,j ∀j ∈ J ∀b1 ,b2 . (66)

Similar to (35) in Lemma 5, the agent and task indices can be
reordered such that

i�k
b(k −1)

i �
k = k, j�

k = k ∀k ≤ Nmin
�
= min{NuLt,Nt}.

(67)
For these reordered virtual agents and tasks, the objective

value for the CBBA solution becomes

CBBA =
Nm in∑
i=1

cii (68)

with the following conditions being satisfied:

cii ≥ ckk , for k > i

cij ≤ cii , cji ≤ cii , for j > i. (69)

Now, consider a task swapping procedure for optimality. Sim-
ilar to Lemma 5, the high-ranked agent tries to choose a task with
smallest loss, while the low-ranked agent tries to pick a task with
the highest gain. However, for this expanded single-assignment
case, the task swapping process is more restricted than the case
in Lemma 5, because agent i{∅} and agent ib (both in terms
of indices before reordering) cannot independently select their
tasks. For instance, supposing that agent i{∅}, who has been
assigned task j, picks another task j′, then agent i{j} must re-
lease its assignment. Thus, the reselection process is not simply
based on pairwise (or cyclic) task swappings. However, it should
be noted that the optimal solution obtained by considering all
these restrictions is bounded above by the unconstrained swap-
ping solution that allows inadmissible task swapping as if the
expanded single-assignment is identical to a single-assignment
problem.

There is still another restriction in performing this uncon-
strained task swapping: It should be ensured that c

i� , b ′
k

,j �
k

= 0 for

b′ = b(k−1)
i�
k

⊕end b with b
= {∅}, while the swapping policy

in (43) leads to c
i� , b ′
k

,j �
k

= c
(k)
i�
k
,j �

k
. However, note that the maxi-

mum achievable score increases if this restriction is relaxed, and
a swapping policy similar to (43) renders the maximum achiev-
able score for this relaxation. Thus, MOPT is upper bounded by
the score generated by the policy in (43) applied to the expanded

single assignment

MOPT ≤
�Nm in /2�∑

i=1

cii +
Nm in∑

i=�Nm in /2�+1

c(Nm in −i+1),(Nm in −i+1)

= 2 ×
�Nm in /2�∑

i=1

cii +
�Nm in /2�∑

i=�Nm in /2�+1

cii

≤ 2 ×
Nm in∑
i=1

cii = 2CBBA. (70)

Therefore, CBBA guarantees 50% optimality.

ACKNOWLEDGMENT

The authors thank Dr. M. Alighanbari for his invaluable con-
tribution in the development of the precursors to the CBAA.

REFERENCES

[1] L. Brunet, H.-L. Choi, and J. P. How, “Consensus-based auction ap-
proaches for decentralized task assignment,” presented at the AIAA Guid.,
Navigat., Control Conf., Honolulu, HI, 2008, vol. AIAA-2008-6839.

[2] J. Bellingham, M. Tillerson, A. Richards, and J. P. How, “Multi-task allo-
cation and path planning for cooperative UAVs,” in Cooperative Control:
Models, Applications, and Algorithms, S. Butenko, R. Murphey, and P. M.
Pardalos, Eds. Boston, MA: Kluwer, 2003, pp. 23–41.

[3] C. Schumacher, P. Chandler, and S. Rasmussen, “Task allocation for wide
area search munitions,” in Proc. Amer. Control Conf., 2002, pp. 1917–
1922.

[4] C. Cassandras and W. Li, “A receding horizon approach for solving some
cooperative control problems,” in Proc. IEEE Conf. Decis. Control, 2002,
pp. 3760–3765.

[5] Y. Jin, A. Minai, and M. Polycarpou, “Cooperative real-time search and
task allocation in UAV teams,” in Proc. IEEE Conf. Decis. Control, 2003,
pp. 7–12.

[6] L. Xu and U. Ozguner, “Battle management for unmanned aerial vehicles,”
in Proc. IEEE Conf. Decis. Control, 2003, pp. 3585–3590.

[7] D. Turra, L. Pollini, and M. Innocenti, “Fast unmanned vehicles task
allocation with moving targets,” in Proc. IEEE Conf. Decis. Control, Dec.
2004, pp. 4280–4285.

[8] M. Alighanbari, “Task assignment algorithms for teams of UAVs in dy-
namic environments,” Master’s thesis, Mass. Inst. Technol., Cambridge,
MA, 2004.

[9] T. W. McLain and R. W. Beard, “Coordination variables, coordination
functions, and cooperative-timing missions,” J. Guid., Control, Dyn.,
vol. 28, no. 1, pp. 150–161, 2005.

[10] D. Castanon and C. Wu, “Distributed algorithms for dynamic reassign-
ment,” in Proc. IEEE Conf. Decis. Control, 2003, pp. 13–18.

[11] J. Curtis and R. Murphey, “Simultaneous area search and task assignment
for a team of cooperative agents,” presented at the AIAA Guid., Navigat.,
Control Conf. Exhib., Austin, TX, 2003.

[12] T. Shima, S. J. Rasmussen, and P. Chandler, “UAV team decision and
control using efficient collaborative estimation,” in Proc. Amer. Control
Conf., 2005, pp. 4107–4112.

[13] J. A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9,
pp. 1465–1476, Sep. 2004.

[14] W. Ren, R. Beard, and D. Kingston, “Multi-agent Kalman consensus with
relative uncertainty,” in Proc. Amer. Control Conf., 2005, pp. 1865–1870.

[15] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Autom.
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[16] M. Alighanbari and J. P. How, “An unbiased Kalman consensus algo-
rithm,” in Proc. Amer. Control Conf., 2006, pp. 3519–3524.

[17] C. C. Moallemi and B. V. Roy, “Consensus propagation,” IEEE Trans.
Inf. Theory, vol. 52, no. 11, pp. 4753–4766, Nov. 2006.

[18] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed con-
sensus and averaging,” in Proc. 45th IEEE Conf. Decis. Control, 2006,
pp. 3387–3392.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

926 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009

[19] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multi-
vehicle control,” IEEE Control Syst. Mag., vol. 27, no. 2, pp. 71–82, Apr.
2007.

[20] R. Beard and V. Stepanyan, “Synchronization of information in distributed
multiple vehicle coordinated control,” in Proc. IEEE Conf. Decis. Control,
2003, pp. 2029–2034.

[21] Y. Hatano and M. Mesbahi, “Agreement over random networks,” in Proc.
43rd IEEE Conf. Decis. Control, 2004, pp. 2010–2015.

[22] C. W. Wu, “Synchronization and convergence of linear dynamics in ran-
dom directed networks,” IEEE Trans. Autom. Control, vol. 51, no. 7,
pp. 1207–1210, Jul. 2006.

[23] A. Tahbaz-Salehi and A. Jadbabaie, “On consensus over random net-
works,” in Proc. 44th Annu. Allerton Conf., 2006, pp. 1315–1321.

[24] M. Alighanbari and J. P. How, “Decentralized task assignment for un-
manned aerial vehicles,” in Proc. 44th IEEE Conf. Decis. Control, Eur.
Control Conf., 2005, pp. 5668–5673.

[25] D. Dionne and C. A. Rabbath, “Multi-UAV decentralized task allocation
with intermittent communications: The DTC algorithm,” in Proc. Amer.
Control Conf., 2007, pp. 5406–5411.

[26] D. P. Bertsekas, “The auction algorithm for assignment and other network
flow problems,” Mass. Inst. Technol., Cambridge, MA, Tech. Rep., 1989.

[27] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proc. IEEE, vol. 94, no. 7, pp. 1257–
1270, Jul. 2006.

[28] B. Gerkey and M. Mataric, “Sold!: Auction methods for multirobot coor-
dination,” IEEE Trans. Robot. Autom., vol. 18, no. 5, pp. 758–768, Oct.
2002.

[29] D. P. Bertsekas, “Auction algorithms” in Encyclopedia of Optimization.
Norwell, MA: Kluwer, 2001.

[30] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of task
allocation in multi-robot systems,” Int. J. Robot. Res., vol. 23, no. 9,
pp. 939–954, 2004.

[31] A. M. Kwasnica, J. O. Ledyard, D. Porter, and C. DeMartini, “A new
and improved design for multiobject iterative auctions,” Manage. Sci.,
vol. 51, no. 3, pp. 419–434, 2005.

[32] P. Milgrom, “Putting auction theory to work: The simultaneous ascending
auction,” J. Political Econ., vol. 108, no. 2, pp. 245–272, 2000.

[33] M. G. Lagoudakis, M. Berhaultt, S. Koenigt, P. Keskinocak, and A.
J. Kleywegt, “Simple auctions with performance guarantees for multi-
robot task allocation,” in Proc. IEEE/RSI Int. Conf. Intell. Robots Syst.,
2004, pp. 698–705.

[34] S. Sariel and T. Balch, “Real time auction based allocation of tasks for
multi-robot exploration problem in dynamic environments,” in Proc. AAAI
Workshop: Integrating Planning Into Scheduling, 2005, pp. 27–33.

[35] A. Ahmed, A. Patel, T. Brown, M. Ham, M. Jang, and G. Agha, “Task
assignment for a physical agent team via a dynamic forward/reverse auc-
tion mechanism,” in Proc. Int. Conf. Integr. Knowl. Intensive Multi-Agent
Syst., 2005, pp. 311–317.

[36] M. L. Atkinson, “Results analysis of using free market auctions to dis-
tribute control of UAVs,” presented at the AIAA 3rd “Unmanned Unlim-
ited” Tech. Conf., Workshop Exhib., Chicago, IL, 2004.

[37] T. Lemaire, R. Alami, and S. Lacroix, “A distributed task allocation
scheme in multi-UAV context,” in Proc. IEEE Int. Conf. Robot. Autom.,
2004, pp. 3622–3627.

[38] W. Walsh and M. Wellman, “A market protocol for decentralized task
allocation,” in Proc. Int. Conf. Multi Agent Syst., 1998, pp. 325–332.

[39] M. Hoeing, P. Dasgupta, P. Petrov, and S. O’Hara, “Auction-based multi-
robot task allocation in COMSTAR,” in Proc. 6th Int. Joint Conf. Auton.
Agents Multiagent Syst., 2007, pp. 1–8.

[40] P. B. Sujit and R. Beard, “Distributed sequential auctions for multiple UAV
task allocation,” in Proc. Amer. Control Conf., 2007, pp. 3955–3960.

[41] X. Zheng, S. Koenig, and C. Tovey, “Improving sequential single-
item auctions,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2006,
pp. 2238–2244.

[42] D. C. Parkes and L. H. Ungar, “Iterative combinatorial auctions: Theory
and practice,” in Proc. 17th Nat. Conf. Artif. Intell., 2000, pp. 74–81.

[43] M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby, P. Grif-
fin, and A. Kleywegt, “Robot exploration with combinatorial auctions,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2003, pp. 1957–1962.

[44] A. Andersson, M. Tenhunen, and F. Ygge, “Integer programming for
combinatorial auction winner determination,” presented at the Fourth Int.
Conf. MultiAgent Syst., Boston, MA, 2000.

[45] S. de Vries and R. Vohra, “Combinatorial auctions: A survey,” INFORMS
J. Comput., vol. 15, no. 3, pp. 284–309, 2003.

[46] M. H. Rothkopf, A. Pekec, and R. M. Harstad, “Computationally manage-
able combinatorial auctions,” Rutgers Univ., New Brunswick, NJ, Tech.
Rep., 1998.

[47] T. Sandholm, “Algorithm for optimal winner determination in combina-
torial auctions,” Artif. Intell., vol. 135, no. 1/2, pp. 1–54, 2002.

[48] M. Nandy and A. Mahanti, “An improved search technique for optimal
winner determination in combinatorial auctions,” in Proc. 37th Hawaii
Int. Conf. Syst. Sci., 2004, p. 10.

[49] M. Mito and S. Fujita, “On heuristics for solving winner determination
problem in combinatorial auctions,” J. Heuristics, vol. 10, no. 5, pp. 507–
523, 2004.

[50] S. L. Smith and F. Bullo, “Target assignment for robotic networks: Asymp-
totic performance under limited communication,” in Proc. Amer. Control
Conf., 2007, pp. 1155–1160.

[51] S. L. Smith and F. Bullo, “Monotonic target assignment for robotic net-
works,” IEEE Trans. Autom. Control, vol. 54, no. 10, 2009.

[52] S. Fujishige, “Submodular functions optimization,” in Annals of Discrete
Mathematics. Amsterdam, The Netherlands: Elsevier, 1991.

[53] V. D. Blondel, J. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, “Conver-
gence in multiagent coordination, consensus, and flocking,” in Proc. 44th
IEEE Conf. Decis. Control, Eur. Control Conf., 2005, pp. 2996–3000.

[54] D. B. Wilson, “Generating random spanning trees more quickly than the
cover time,” in Proc. 28th Annu. ACM Symp. Theory Comput., 1996,
pp. 296–303.

[55] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms, T. M. Press, Ed., Cambridge, MA: MIT Press, 1990.

[56] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. Kleywegt,
S. Koenig, C. Tovey, A. Meyerson, and S. Jain, “Auction-based multi-
robot routing,” in Proc. Robot.: Sci. Syst., 2005, pp. 343–350.

[57] C. Tovey, M. G. Lagoudakis, S. Jain, and S. Koenig, “The generation
of bidding rules for auction-based robot coordination,” in Proc. 3rd Int.
Multi-Robot Syst. Workshop, 2005, pp. 3–14.

Han-Lim Choi (S’07–M’08) received the B.S. and
M.S. degrees in aerospace engineering from the Ko-
rea Advanced Institute of Science and Technology,
Daejeon, Korea, in 2000 and 2002, respectively, and
the Ph.D. degree in aeronautics and astronautics from
Massachusetts Institute of Technology (MIT), Cam-
bridge, in 2008.

He is currently a Postdoctoral Associate with the
Department of Aeronautics and Astronautics, MIT.
His current research interests include estimation and
control for sensor networks and decision making for

multiagent systems.
Dr. Choi is a member of the American Institute of Aeronautics and

Astronautics.

Luc Brunet received the B.Eng. degree (with high
distinction) in aerospace engineering from Carleton
University, Ottawa, ON, Canada, in 2006 and the
M.Sc. degree in aeronautics and astronautics from
Massachusetts Institute of Technology, Cambridge,
in 2008.

He is currently a Collaborative Robotics Specialist
at Frontline Robotics, Ottawa.

Jonathan P. How (S’90–M’92–SM’05) received
the B.A.Sc. degree from the University of Toronto,
Toronto, ON, Canada, in 1987 and the S.M.
and Ph.D. degrees in aeronautics and astronautics
from Massachusetts Institute of Technology (MIT),
Cambridge, in 1990 and 1993, respectively.

He joined MIT in 2000, where he was a Post-
doctoral Associate for two years for the Middeck
Active Control Experiment (MACE) and is currently
a Professor with the Department of Aeronautics and
Astronautics. He was an Assistant Professor with the

Department of Aeronautics and Astronautics, Stanford University, Stanford,
CA. His current research interests include robust coordination and control of
autonomous vehicles in dynamic uncertain environments.

Prof. How was the recipient of the 2002 Institute of Navigation Burka
Award. He is an Associate Fellow of the American Institute of Aeronautics and
Astronautics.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:05 from IEEE Xplore. Restrictions apply.

