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Abstract— In this paper, we present a novel algorithm for
estimating eigenvalues of the Laplacian matrix associated with
the graph describing the network topology of a multi-agent
system or a wireless sensor network. As recently shown, the
average consensus matrix can be written as a product of
Laplacian based consensus matrices whose stepsizes are given
by the inverse of the nonzero Laplacian eigenvalues. Therefore,
by solving the factorization of the average consensus matrix,
we can infer the Laplacian eigenvalues. We show how solving
such a matrix factorization problem in a distributed way. In
particular, we formulate the problem as a constrained consen-
sus problem. The proposed algorithm does not require great
resources in both computation and storage. This algorithm
can also be viewed as a way for decentralizing the design
of finite-time average consensus protocol recently proposed in
the literature. Eventually, the performance of the proposed
algorithm is evaluated by means of simulation results.

I. INTRODUCTION

In order to model and analyze networks of agents or
sensors, it is now well established to resort to algebraic
graph theory that provides powerful tools and abstractions.
In particular, the network topology is generally represented
by means of graphs where vertices represent agents whereas
edges represent the existence of an interaction between them.
Several features of a given network are captured by the graph
Laplacian matrix. A comprehensive survey on properties of
Laplacian of undirected graphs can be found in [1]. For ex-
ample, the second smallest eigenvalue of a Laplacian matrix,
i.e., the graph algebraic connectivity of the graph, which can
be retrieved from the spectrum of the graph, is known to have
the main role in the convergence time of various distributed
algorithms. It is also a critical parameter that influences the
performance and robustness properties of dynamical systems
operating over an information network. From the spectrum
of the graph Laplacian matrix we can also infer bounds on
the graph diameter and state the connectedness of the graph.

In the recent literature devoted to multi-agent dynamic
systems and wireless sensor networks, several issues are
formulated as consensus problems, which consist in de-
signing a network protocol based on the local information
obtained by each agent, such that all agents finally reach
an agreement on certain quantities of interest. The network
protocol is an interaction rule, which ensures that the whole
group can achieve a consensus on the shared data in a
distributed manner, i.e. without the coordination of a central
authority. In the study of consensus problems, the speed of
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convergence is an important index for assessing the proposed
protocols. When using Laplacian based consensus matrices,
it has been shown that, for speeding up the convergence in
an average consensus problem, the optimal consensus matrix
is associated with both the largest and the smallest nonzero
Laplacian eigenvalues [2]. More recently, it has been shown
that all the spectrum of the Laplacian matrix can also be
used for designing consensus matrices in order to achieve
average consensus in a finite number of steps [3], [4].

Therefore, computing the eigenvalues of the Laplacian ma-
trix is an important issue. Unfortunately, this information, up
to now, can be obtained only by centralized algorithms where
a global knowledge about the network topology is available.
However, during the current decade, various studies have
been carried out on decentralized algorithms for estimating
the Laplacian eigenvalues.

For instance in [5], the second smallest Laplacian eigen-
value was estimated by resorting to a decentralized power
iteration method. In [6] and [7], Fast Fourrier Transform
(FFT) based methods were suggested. In these works, the
idea is to make the state of each agent oscillates only at
frequencies corresponding to the eigenvalues of the network
topology. The problem is then mapped into a signal process-
ing one that can be efficiently and independently solved by
each agent in applying the FFT algorithm. The approach in
[6] involved twice communication burden compared to that
in [7]. However, both methods inherit on the limitations of
the FFT algorithm. In particular, the resolution of the esti-
mated eigenvalues is strongly dependent on that of the FFT
method and the accuracy depends on the amount of stored
data. In contrast, in [8], the authors resort to an algebraic
method using observability properties of the network. With
this method, the eigenvalues of the network matrix can be
recovered by solving a local eigenvalue decomposition on an
appropriately constructed matrix of observed data. However,
this method is only applicable to networks having nodes with
sufficient storage and computation capabilities.

In this paper, motivated by the results in [3], we propose
a novel algorithm for estimating the Laplacian eigenvalues.
By distributively solving the factorization of the average
consensus matrix, we show that the Laplacian eigenvalues
can be computed as the inverse of the stepsizes in each
estimated factor, where these factors are constrained to
be structured as Laplacian based consensus matrices. We
formulate a constrained optimization problem that can be
solved in a distributed way by means of a gradient descent
algorithm. The problem, as formulated herein, can be viewed
as a consensus problem with equality constraints.
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The remainder of this paper is organized as follows: in
Section II, we first formulate the problem under study. Then,
a gradient descent algorithm is derived in Section III for solv-
ing a constrained optimization problem. The performance of
the proposed algorithm is evaluated in Section IV by means
of simulation results before concluding the paper.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we first recall some graph and matrix
properties that will be useful in the derivations carried out
in the sequel. Then, we formulate the problem to be studied.

A. Matrix Khatri-Rao Product

Given two matrices A ∈ RI×F , B ∈ RJ×F with the same
number of columns, the Khatri-Rao product A�B ∈ RIJ×F

is defined as:

A�B := [a1⊗b1 · · ·aF ⊗bF ] = B

 diag1(A)
...

diagI(A)

 (1)

where a f is the f th column of A, similarly for b f , and
⊗ denotes the Kronecker product of two column vectors,
whereas diagi(A) stands for the diagonal matrix built with
the ith row of A. The Khatri-Rao product can be viewed as
a column-wise Kronecker product. Its main property, which
will be used herein, is related to the vectorization operation
of a given matrix:

vec(Adiag(d)BT ) = (B�A)d. (2)

where the vec(.) operator stacks the columns of its matrix
argument in a vector and d∈RF×1. Therefore we can deduce
the following identity:

Adiag(d)b = (bT �A)d. (3)

B. Average consensus Problems

Through out this paper, we consider a connected undi-
rected graph G = (V,E), where V = {1,2, . . .N} is the set
of vertices of graph G, and E ⊂ V ×V is the set of edges.
Vertices V are nodes in a network connected according to E.
The neighbors of node i are denoted by Ni = { j ∈V : (i, j)∈
E}. We denote by A the adjacency matrix of the graph. Its
entries ai, j being equal to one if (i, j)∈E and zero elsewhere.
The graph Laplacian L is defined as the matrix with entries

li, j given by: li, j =

{
∑

n
k=1,k 6=i ai,k, if j = i,
−ai, j, elsewhere.

For an undirected graph G, the graph Laplacian L is
symmetric and positive semidefinite. Its eigenvalues, λ1 6
λ2 6 . . .6 λN , contain very significant information about the
topology of the graph G. In particular, we have λ1 = 0 that
admits 1, an N-length all ones column-vector, as eigenvector.
Additionally, the graph G is said to be connected if the
eigenvalue λ1 = 0 is simple.

For each node i ∈ V , let xi(t) denotes the value of node
i at time-step t. Define x(t) = [x1(t),x2(t), ...,xN(t)]T , where
N is the number of nodes in the network. Average consensus
algorithms can be seen as the distributed solution of an

optimization algorithm whose goal is the minimization of
the disagreement between the nodes in the network [9]. In
other words, average consensus resort to minimizing the cost
function

ΦG(x) = xT Lx =
1
2 ∑
(i, j)∈E

(x j− xi)
2. (4)

Using a steepest descent method, the following linear itera-
tion scheme is obtained:

xi(t) = xi(t−1)+α ∑
j∈Ni

(x j(t−1)− xi(t−1)) (5)

that can be written in matrix form as:

x(t) = (IN−αL)x(t−1). (6)

By appropriately selecting the stepsize α , all nodes converge
asymptotically to the same value that is the average of the
initial ones:

lim
t→∞

x(t) =
1
N

11T x(0).

It has been shown in [3] and [4] that the average consensus
matrix can be factored as

1

∏
t=D

Wt =
1
N

11T , (7)

where Wt = ϑtIN + αtL, ϑt and αt being parameters to
be designed. In [3], the solution was given by ϑt = 1 and
αt =− 1

λt+1
, λt being a nonzero Laplacian eigenvalue. Owing

to the above factorization, average consensus can then be
reached in D steps, D being the number of distinct nonzero
Laplacian eigenvalues:

x(D) =
1

∏
t=D

Wtx(0) =
1
N

11T x(0) for all x(0) ∈ RN . (8)

C. Problem statement

From the results above, we can note that by factorizing
the average consensus matrix, while constraining the factor
matrices to be in the form IN − αtL, we can deduce the
eigenvalues of the Laplacian matrix as the inverse of αt .
Now, we first state the uniqueness of such a factorization in
the following lemma:

Lemma 1: Let λ2, · · · ,λD+1 6= 0 be the D distinct nonzero
eigenvalues of the graph Laplacian matrix L, then, up to
permutation, the sequence {αi}i=1,··· ,D, with αi =

1
λi+1

, i =
1,2, · · · ,D, is the unique sequence allows getting the minimal
factorization of the average consensus matrix as 1

N 11T =

∏
D
i=1(IN−αiL).

Proof: Let us consider the following factorization of

the average consensus matrix: 1
N 11T =

θ

∏
i=1

(IN −αiL). The

Laplacian matrix L being symmetric, then:

L = U∆∆∆UT ,UT U = IN ,UUT = IN

where ∆∆∆ = diag(λ1,λ2, · · · ,λN) and U = ( 1√
N

1 Ũ) with

ŨT Ũ= IN−1 and ŨT 1= 0. Therefore, the above factorization
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can be rewritten as:

U(
θ

∏
i=1

(IN−αi∆∆∆))UT =
1
N

11T

or equivalently:

U(
θ

∏
i=1

(IN−αi∆∆∆))UT = Udiag(1 0 · · ·0)UT . (9)

From equation (9), we can see that
θ

∏
i=1

(1−αiλ1) = 1, that is

always fulfilled since λ1 = 0. In addition, we have:

θ

∏
i=1

(1−αiλ j) = 0, j = 2, · · · ,N. (10)

Taking into account the multiplicities of the eigenvalues,
we only have D distinct equations. It is obvious that the
D equalities above are fulfilled only if 1/αi belong to the
Laplacian spectrum and if there are at least D distinct
αi. Therefore, the Laplacian spectrum implies the minimal
factorization of the average consensus matrix.
Our goal is to design a protocol for estimating the Laplacian
eigenvalues of a given undirected graph in a distributed
manner. More precisely, a novel algorithm is derived by
making use of the Lagrange method to solve a distributed
constrained optimization problem.

III. DISTRIBUTED ESTIMATION OF LAPLACIAN
EIGENVALUES THROUGH DISTRIBUTED FACTORIZATION

OF THE AVERAGE CONSENSUS MATRIX

Given an initial input-output pair {x(0), x̄}, with x̄ =
1
N 11T x(0) and an initial guess of the minimal number of
factors D, the matrix factorization problem (8) is equivalent
to minimize the cost function:

E(W) = ‖x(D)− x̄‖2

that can also be rewritten as

E(W) =

∥∥∥∥∥ 1

∏
t=D

Wtx(0)− x̄

∥∥∥∥∥
2

, (11)

where D is the number of steps before reaching average
consensus and Wt = IN−αtL.

Note that there is no need for a central node for setting the
initial input-output pair. Indeed, such a pair can be obtained
after running a standard average consensus algorithm. Each
node has to keep in memory its own initial value xi(0) and
the final consensus value x̄.

Solving the factorization problem (11) consists in finding
the sequence of stepsizes {αt}t=1,··· ,D. It is obvious that αt
are global parameters. To relax these constraints, we define
the factor matrices as Wt = IN−ΛΛΛtL, where ΛΛΛt = diag(ααα t),
ααα t = [αt,1,αt,2, . . . ,αt,N ], t = 1,2, . . . ,D. We reformulate the
problem above as a constrained consensus problem, that is to
compute the sequence of stepsizes {ααα t} so that αt,1 = αt,2 =
. . .= αt,N .

For distributively carrying out the factorization of the
average consensus matrix as factors of Laplacian based

consensus matrices, the idea is to minimize the disagreement
between neighbors on the stepsizes αt while ensuring that the
factorization of the average consensus matrix is achieved.
Such a factorization is assessed by constraining the values
of the nodes after D iterations of the consensus algorithm to
be equal to the average of the initial values:

min
αααt∈RN×1,t=1,2,...,D

1
2

D

∑
t=1

∑
i∈V

∑
j∈Ni

(αt, j−αt,i)
2, (12)

subject to x(D) = x̄.

Similarly to (4), we can rewrite the problem (12) as
follows:

min
αααt∈RN×1,t=1,2,...,D

1
2

D

∑
t=1

ααα
T
t Lααα t , (13)

subject to x(D) = x̄.

The constrained optimization problem (13) can then be per-
formed as an unconstrained optimization problem by means
of a Lagrange method with a Lagrange function defined as
follows:

H(ααα1:D,y) =
1
2

D

∑
t=1

ααα
T
t Lααα t +yT (x(D)− x̄), (14)

where y ∈ RN×1 stands for the Lagrange multipliers.
The problem (14) can be viewed as D consensus problems

to be solved simultaneously with a constraint that provides
a kind of external reference to be tracked.

The solution of this unconstrained optimization problem
can be obtained iteratively by using a gradient descent
method:

ααα t [k+1] =ααα t [k]−β
∂H(ααα1:D,y)

∂ααα t [k]
,

y[k+1] = y[k]+µ(xD[k]− x̄),

where β and µ stand for the stepsizes of the gradient descent
method. Note that to avoid misunderstanding between time-
step D and iteration k, we denote x(D) as xD.

In order to derive the corresponding distributed algorithm,
we now state the following technical lemma:

Lemma 2: The derivatives of the cost function H(ααα1:D,y)
defined in (13) can be computed as follows:

∂H(ααα1:D,y)
∂ααα t

= Lααα t −diag−1(ααα t)diag(xt−1−xt)δδδ t , (15)

where

δδδ D = y and δδδ t−1 = Wtδδδ t , t = 1, . . . ,D. (16)
Proof: The consensus network being a linear system

we know that x(t) = Wtx(t−1), therefore we can explicitly
write the output according to the weighting matrix of interest,
i.e. x(D) = WDx(D− 1) and x(D) = ∏

t+1
j=D W jWtx(t − 1),
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t = 1, · · · ,D−1. The cost function can be written as:

H(ααα1:D,y)

=
1
2

D

∑
t=1

ααα
T
t Lααα t +yT (

t+1

∏
i=D

WiWtxt−1− x̄)

=
1
2

D

∑
t=1

ααα
T
t Lααα t +yT (

t+1

∏
i=D

Wi(IN−diag(ααα t)Lxt−1− x̄)

=
1
2

D

∑
t=1

ααα
T
t Lααα t +yT (

t+1

∏
i=D

Wixt−1− x̄)

−yT
t+1

∏
i=D

Widiag(ααα t)Lxt−1).

Now, using the property (3) of the Khatri-Rao product, we
get:

H(ααα1:D,y)

=
1
2

D

∑
t=1

ααα
T
t Lααα t +yT (

t+1

∏
i=D

Wixt−1− (xT
t−1LT �

t+1

∏
i=D

Wi)ααα t − x̄).

Therefore, we can easily deduce that

∂H(ααα1:D,y)
∂ααα t

= Lααα t − (xT
t−1LT �

t+1

∏
i=D

Wi)
T y.

Taking the symmetry of the consensus matrices into account,
we get:

∂H(ααα1:D,y)
∂ααα t

= Lααα t −diag(xT
t−1LT )T

D

∏
i=t+1

Wiy

= Lααα t −diag(Lxt−1)
D−2

∏
i=t+1

WiWD−1 WDy︸ ︷︷ ︸
δδδ D−1

= Lααα t −diag(Lxt−1)
D−2

∏
i=t+1

Wi WD−1δδδ D−1︸ ︷︷ ︸
δδδ D−2

= Lααα t −diag(Lxt−1)δδδ t .

Since xt = (IN − diag(ααα t)L)xt−1, we can deduce that
Lxt−1 = diag−1(ααα t)(xt−1 − xt). Hence, diag(Lxt−1) =
diag−1(ααα t)diag(xt−1−xt). As a consequence,

∂H(ααα1:D,y)
∂ααα t

= Lααα t −diag−1(ααα t)diag(xt−1−xt)δδδ t .

Applying the results of Lemma 2, the updating scheme of
the optimization algorithm is as follows:

ααα t [k+1] =ααα t [k]−β
∂H(ααα1:D,y)

∂ααα t [k]
= (IN−βL)ααα t [k]+βdiag−1(ααα t)diag(xt−1−xt)δδδ t ,

(17)
y[k+1] = y[k]+µ(xD[k]− x̄). (18)

The proposed distributed algorithm can then be described as
follows:

Algorithm 1: Distributed estimation of Laplacian eigen-
values

1) Initialization:
• Number of steps D,
• Initial input-output values {xi(0), x̄i}, i = 1, · · · ,N,

with x̄ = 1
N

N
∑

i=1
xi(0) obtained from a standard av-

erage consensus algorithm.
• Random initial stepsizes ααα t(0), t = 1, . . . ,D and

initial Lagrange multipliers yi(0), i = 1, · · · ,N
• Learning rate: 0 < β ,µ < 1;

2) Set k = 0;
a) Set k := k+1,
b) Lagrange multiplier:

δD,i[k] = yi[k].

c) Propagate the Lagrange multipliers for
t = D, · · · ,2:

δt−1,i[k] = δt,i[k]+ ∑
j∈Ni

(δt, j[k]−δt,i)[k].

d) Finite-time average consensus steps:
i) x0,i[k] = xi(0).

ii) For t = 1,2, · · · ,D, each node sends a message
mi,t [k] containing its current local value xt,i[k],
and the local stepsize αt,i[k].

iii) After receiving the messages m j,t [k] from its
neighbors j ∈ Ni, each node i carries out the
following updates:

xt,i = xt−1,i +αt,i[k] ∑
j∈Ni

(xt−1, j− xt−1,i),

αt,i[k+1] = αt,i[k]−β ( ∑
j∈Ni

(αt, j[k]−αt,i[k]))

−βδt,i[k] ∑
j∈Ni

(xt−1, j[k]− xt−1,i[k]).

e) Update the Lagrange multiplier

yi[k+1] = yi[k]+µ(xD,i[k]− x̄i).

f) Return to 2a or stop the iterations if a stopping
criterion is reached.

3) Each node deduce the Laplacian eigenvalues as λt,i =
1

αt,i[k+1] .
This algorithm can also be viewed as a way for decentral-

izing the design of the finite-time average consensus protocol
proposed in [3]. The convergence of this Lagrange method
has been well studied in the literature [10]. Convergence to a
local minimum is guaranteed if we pick appropriate constants
β , µ in the interval of (0,1).

IV. SIMULATION RESULTS

In this section, we evaluate the efficiency of the proposed
distributed algorithm by considering two different examples.
The performance is evaluated by means of the mean square
error between actual and desired values of nonzero Laplacian
eigenvalues:

MSE =
1

DN

D

∑
t=1

N

∑
i=1

(λt,i− λ̂t,i)
2.
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In addition, we also check the results of the distributed
factorization of the average consensus matrix. Then, based
on Lemma 1, we can conclude on the correctness of the
estimation of the Laplacian eigenvalues.

Fig. 1. Network graphs

A. Example 1

The network considered in this first example con-
tains 5 nodes whose interactions are modeled with
the graph depicted in Figure 1 (left). The corre-
sponding Laplacian matrix L admits the following
spectrum:{0,1.382,2.382,3.618,4.618} . Therefore the num-
ber of nonzero distinct eigenvalues, that is also the number of
steps in the finite-time average consensus protocol, is D = 4.

According to the specifications of Algorithm 1, each node
randomly initialized its stepsize parameters α1,i, α2,i, α3,i and
α4,i. These initial values are drawn from a uniform distribu-
tion on the unit interval. The algorithm is stopped when the
local disagreement Figure 2 depicts the MSE according to the
number of iterations of the proposed distributed algorithm.
We can note a globally monotonic behavior.

0 2 4 6 8 10 12 14

x 10
5

10
−10

10
−5

10
0

10
5

Iterations

M
S

E

Fig. 2. Mean square error (MSE) between the actual and desired values
of Laplacian eigenvalues of the 5-nodes graph

After convergence, the obtained values of the stepsizes
are: {0.7236,0.4198,0.2764,0.2165}. With these values, we
can check that perfect factorization of average consensus
matrix is obtained. The respective inverses of these values
correspond to the Laplacian eigenvalues since α1 = 1

1.382 ,
α2 =

1
2.382 , α3 =

1
3.618 , α4 =

1
4.618 .

Figure 3 depicts the trajectories of each node for each
values of λt , t = 1,2,3,4. We can note that the nodes achieve
consensus and the consensus values are exactly equal to
Laplacian eigenvalues. Therefore,
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Fig. 3. Nodes trajectories converging to the nonzero distinct eigenvalues
of the graph Laplacian matrix

B. Example 2

Now, let us consider the graph depicted in Figure 1 (right).
The associated graph Laplacian matrix L admits the

following spectrum: {0,1,2,3,3,5}. As for the previous
example the number of factors of the average consensus
matrix is (D = 4). The MSE and the nodes trajectories for
each value of αt are depicted in Figures 4 and 5 respectively.
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Fig. 4. Mean square error (MSE) between the actual and desired values
of Laplacian eigenvalues of the 6-nodes graph

We can note that the nodes reach consensus on the
inverse of Laplacian eigenvalues leading to the following
factorization of the average consensus matrix:

(IN−0.2L)(IN−0.5L)(IN−L)(IN−0.3333L) =
1
6

11T .

Let us analyze the nodes trajectories during few first iter-
ations by considering Figure 6 that depicts these trajecto-
ries αt , t = 1,2,3,4 (instead of the Laplacian eigenvalues
illustrated in Figure 3). We can note that after starting the
estimation process with random initial values the nodes
attempt to reach an agreement on common values before
tracking the actual inverse Laplacian eigenvalues. Such an
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Fig. 5. Nodes trajectories for the 6-nodes graph
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Fig. 6. First iterations of estimation of the inverses of Laplacian eigenval-
ues.

observation implies that the stopping criterion should not
be focused on the local disagreement but also on the error
between the desired output x̄ and the current one.

C. Discussion

In the simulation results presented herein we have im-
plicitly assumed that D is known. We can make such an
assumption if the graph is assumed to be distance regular or
if it is a path. Indeed, for distance regular graphs D is equal to
the diameter of the graph [11] while for a path with N nodes
D is equal to N−1 (all the eigenvalues are simple). However,
in general only bounds exist. More precisely, we know that
diameter(G) ≤ D ≤ N − 1. Both N and diameter(G) can
be computed in a distributed way [12]. The knowledge of
the bounds on D can then be carried out without a central
node. However, according to Lemma 1, we know that the
factorization problem cannot be solved if D is lower than
the actual number of distinct nonzero Laplacian eigenvalues.
Therefore, the estimated parameters should contain the actual

values else the algorithm does not converge. Then, the
question is: how retrieving the actual inverse of Laplacian
eigenvalues from a larger set of estimated parameters? This
question is still under investigation.

Slowness of the estimation process is also to be pointed
out. However, this behavior is also observed in FFT based
methods using the wave equation [7].

V. CONCLUSION

In this paper, we have proposed a way for distributively
estimating Laplacian eigenvalues of an undirected graph.
Based on a recent result showing that the average consensus
matrix can be factored in D Laplacian based consensus
matrices, where D stands for the number of nonzero distinct
Laplacian eigenvalues, we have shown how carrying out
such a factorization in a fully distributed way. The proposed
solution results on a distributed solution of a constrained
consensus problem. The efficiency of the proposed method
has been evaluated by means of simulations. However several
issues should be considered in future works. First, the conver-
gence proof of the proposed method is to be stated. Second,
without strict a priori knowledge of D, as in distance regular
graphs, methods for retrieving the Laplacian eigenvalues in a
set of estimated parameters are to be designed. Third, speed
of convergence should be improved by adding memory for
instance.
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