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Abstract

In this paper we study the problem of estimating the channel parameters for a generic wireless sensor
network (WSN) in a completely distributed manner, using consensus algorithms. Specifically, we first
propose a distributed strategy to minimize the effects of unknown constant offsets in the reading of
the Radio Strength Signal Indicator (RSSI) due to uncalibrated sensors. Then we show how the com-
putation of the optimal wireless channels parameters, which are the solution of a global least-square
optimization problem, can be obtained with a consensus-based algorithm. The proposed algorithms
are general algorithms for sensor calibration and distributed least-square parameter identification,
and do not require any knowledge on the global topology of the network nor the total number of
nodes. Finally, we apply these algorithms to experimental data collected from an indoor wireless
sensor network.

Keywords: distributed computing, sensor calibration, least-square estimation, parameter identifica-
tion, consensus, wireless sensor networks.

1 Introduction

1Wireless sensor networks (WSNs), i.e. networks of smart devices that can sense, compute and exchange
information with their neighbors, are becoming very popular because of their promise to revolutionize
many engineering areas involving monitoring and control [22]. The strength of WSNs resides in their
flexibility and scalability, since the same hardware and software can be rapidly reconfigured and adapted
to manage rather different applications, from ambient monitoring to people tracking, from industrial
control to energy management in buildings. However, many challenges ranging from HW design, to real-
time middleware prototyping, from data routing protocols to distributed signal processing still remain to
be solved before WSNs can become really ubiquitous and successful.

In this paper we address some of the modeling and algorithmic issues which are at the base of
localization and target tracking applications using WSNs [16, 18]. In fact, the wireless radio in each node
of the WSN can be used not only to communicate but also to measure the radio signal strength associated
with the received packet. Since the signal strength is a function of the locations of the transmitter and
the receiver, it can be used to estimate their relative position. There are two main approaches to target
tracking: map-based and range-based. In the map-based approach the position of the moving target
is obtained by finding the most likely location which matches the recorded signal strength based on
previously learned maps [18, 27]. This strategy can be a good solution but it requires extensive work to
learn the maps. Differently, the range-based algorithms first try to estimate relative distance based on
simple models of the wireless channel and then they estimate the position by triangulation, similarly to
the GPS system where the static nodes of the WSN play the role of the satellites in the GPS [16]. This
approach requires a higher node density than the map-based one, but it does not require an extensive
learning phase. We focus on this last approach.

1This work was supported by the CaRiPaRo foundation under the WiseWai founded project and by EU STREP project
named “FeedNetBack”.
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Most of the previous work on range-based tracking proposed in the literature focuses on triangulation
algorithms where the wireless channel model parameters are assumed to be known or are identified off-
line by collecting all data in some centralized location [21]. Unfortunately, these parameters are strongly
dependent on the environment [14], in particular indoor, therefore it is desirable to identify them in-situ,
possibly using distributed algorithms suitable for the limited computational resources of the WSN nodes.
Moreover, the radio signal strength provided by the radio chips of the sensor nodes are not very precise
mainly due to uncalibrated offsets in the receiving nodes. As a consequence, the estimated distance can
be constantly biased in some nodes, thus degrading tracking performance. Therefore, it is necessary to
devise some strategies to compensate these offsets [30].

The main contribution of this work is to propose the use of consensus algorithms for automatically
calibrating the sensors without the use of a reference node, and for least–square–estimating the optimal
channel parameters with a distributed algorithm. Consensus algorithms are a very popular class of dis-
tributed algorithms which have been successfully applied to coordinated robotics [17], time synchroniza-
tion [26, 24], and distributed estimation [28]. These algorithms share some similarities with distributed
asynchronous iterative algorithms for solving, or at least approximately solving in least-square sense,
linear equations Ax = b, where x ∈ R

n is the vector of unknown parameters, and the matrix A ∈ R
m×n

and the vector b ∈ R
m are known [2, 29, 13]. These latter algorithms are particularly suitable for solving

sparse equations where the number of equations is equal to the number of unknowns parameters, i.e.
when A is square and has many zero-entries. Although, in principle these algorithms can be applied also
to a non-square matrix A, since the least square solution of Ax = b is equivalent to AT Ax = AT b, it might
happen that AT A ∈ R

n×n, which is now square, is dense even if A is sparse, thus loosing many of their
advantages. Moreover, these algorithms naturally lead to parallel implementation since each element of
vector x can be computed by a distinct agent. However, in many applications, such as in sensor networks,
the number of physical agents, i.e. the sensor nodes, coincides with the size m of the vector b rather
than the size n of the vector x, thus making the distributed implementation not feasible. Differently,
consensus algorithms can be effective also in these contexts as we will show in the proposed least-square
parameter identification. Nonetheless, a more thorough comparison between consensus algorithms and
asynchronous iterative algorithms is ought, however this is beyond the scope of this work and we refer the
interested reader to the aforementioned references and to [23] for more details. Although the two proposed
consensus algorithms used for implementing distributed sensor calibration and distributed least-square
parameter identification, are applied to localization and tracking for WSNs, they are very general. In
fact, we will show how any problem concerned with the compensation of measurement offsets affecting a
network of sensors, where the offsets cannot be directly measured but only pairwise differences of offsets
are available, can be solved with the proposed approach. Moreover, we will also show how any least-square
parameter identification problem based on distributed measurements does not need to collect all data in
single location to compute the optimal (centralized) solution, but can be solved in a distributed fashion
via a consensus algorithm. Another important contribution of this work is to mathematically model the
wireless channel and the communications protocols of typical WSN based on experimental data, which
is an aspect that it is often overlooked, leading to models which are unrealistic. For example, due to
packet loss or time synchronization, it is rather problematic in consensus algorithms running over WSNs
to enforce convergence to the mean of initial condition, i.e. to enforce average consensus. Therefore, in
our work we will pose particular care in exploring the tradeoffs between perfect average consensus and
randomized consensus.

The paper is organized as follows. In Section 2, we introduce some preliminary mathematical termi-
nology and classical results of consensus algorithms which will be necessary to prove convergence of the
proposed consensus algorithms. In the same section we also provide a general mathematical model for the
typical communication schemes and the wireless channel model in WSNs. In Section 3 we describe the
experimental testbed used to collect data and, based on these data, we find the numerical values for the
model parameters given in the previous Section. In Section 5 we propose a consensus-based strategy for
calibrating sensors with unknown measurement offset readings and we applied it to experimental data.
In Section 6 we introduce a consensus-based least square algorithm for identifying the wireless channel
parameters under different communication strategies and we highlight trade-offs between performance,
speed of convergence and computation complexity, based on experimental data. Finally, in Section 7 we
summarize the results and propose future research directions.
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2 WSNs Modeling

2.1 Connectivity and Communications Models

We model a WSN as a set of N nodes numbered w.l.o.g. from 1 to N , i.e. N = {1, . . . , N}. Since nodes
communicate using a wireless channel, the transmission in not reliable, i.e. there is a non–zero packet loss
probability. We model this communication unreliability with the connectivity matrix C ∈ R

N×N , where
[C]ij = cij ∈ [0, 1] is the probability that node j can successfully transmit a message to node i. Since the
wireless channel is approximately symmetric, we further assume that C = CT and cii = 1,∀i. We define
the c-connectivity graph Gc = (N , Ec) associated to the connectivity matrix C as the graph s.t. (i, j)
belongs to the set of the edges Ec if and only if cij ≥ c. This graph is undirected (i.e. ∀i, j ∈ N , (i, j) ∈
E ⇔ (j, i) ∈ E) since the matrix C is symmetric. We also denote with V(i) = {j | (i, j) ∈ E , i 6= j} the set
of neighbors of node i and with the degree d(i) = |V(i)| its cardinality.

The matrix C can be experimentally estimated by letting each node broadcast M packets at random
instants (with retransmission intervals sufficiently large in order to avoid collisions), making each node i
record the number mij of messages received by each node j and setting ĉij =

mij

M . Subsequently, each

node communicate its ĉij to its neighbors and sets cij =
ĉij+ĉji

2 since ĉij and ĉji are different being
empirical means.

In terms of communication there are three common strategies adopted in WSNs: the broadcast com-
munication where one node i transmits a message to all its neighbors V(i), the asymmetric gossip where
a node i transmits a message to a specific node j ∈ V(i), and the symmetric gossip where a node i
transmits a message to a specific node j ∈ V(i) and then waits to receive a reply message from the same
node. Moreover, associated to these two communications strategies, there are two possible modalities:
sequential and randomized.

In the sequential broadcast each node in the network transmits sequentially according to a determin-
istic sequence, and the time interval τ between two transmission is constant. Similarly, in the sequential
gossip each edge in the network is sequentially selected for communication and the intercommunication
interval τ is constant. In the randomized broadcast one node i turns on with a uniform random proba-
bility 1

N and the intercommunication interval is an exponential random variable with mean τ . Similarly,
in the randomized gossip one node i turns on with a uniform random probability 1

N and selects one edge
at random among all its neighbors with uniform probability 1

d(i) .

2.2 Wireless Channel Model

Here we model the behavior of the wireless channel between two nodes in terms of received power Prx

(in dBm). We start by considering the most general model and then we highlight which are the most
relevant elements based on experimental data. The Radio Signal Strength Indicator (RSSI) measured by
a generic node i after having successfully received a packet sent by the generic node j can be modeled in
the most general form as:

P ij
rx = f

(
P j

tx,xi,xj , i, j, t
)

where P j
tx (in dBm) is the nominal transmitted power, i and j are the IDs representing the receiver and

the transmitter nodes, respectively, xi,xj ∈ R
3 are their spatial positions and t is the time when the

communication occurs. The previous equation can be decomposed into simpler elements which takes into
accounts different effects. Combining the models of each element, described in [15] and [14], and adding
parts due to offsets in the RSSI measurements and in the power transmission, we obtain the following
model:

P ij
rx = P j

tx + rj + fpl(‖xi − xj‖) + fsf (xi,xj) + fa(xi,xj) + vff (t) + oi (1)

where:

• P j
tx is the nominal transmitted power and rj is the transmission offset between the nominal and

the effectively transmitted power. This factor is due to fabrication mismatches and it is assumed
to be constant in time;

• fpl(·) represents the Path Loss effect, modeled as (see [14]):

fpl(d) = β − 10γ log10 (d) (2)
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where d = ‖xi − xj‖ is the euclidean distance between the nodes i and j, β represents the radio
receiver gain at a nominal distance of d = 1m, and γ is the loss factor (in an ideal outdoor
setting γ ≈ 2). The parameters β and γ are in general unknown since they depend on the specific
environment where the WSN is placed;

• fsf (·) takes into account the Shadow Fading and other slow fading components. It is assumed
(see [15]) to be symmetric (i.e. fsf (xi,xj) = fsf (xj ,xi)) and Gaussian with a spatial correla-
tion dependent on the difference between the distances of the various points. More precisely,
Ex[fsf (xi,xj)] = 0 and Ex[(fsf (xi,xj))

2] = σ2
sf are the spatial mean and variance where the ex-

pectation is performed w.r.t. to the random node positions. Moreover, let xi,x
a
j and xi,x

b
j two

different configurations s.t. δ = ‖xa
j − x

b
j‖, then the spatial correlation is:

Ex

[(
fsf (xi,x

a
j )
) (

fsf (xi,x
b
j)
)]

= σ2
sfρ

δ/D
D

where ρD is a parameter and D is the typical correlation distance. Note that the expected value of
fsf is assumed to be zero;

• fa(·) represents the channel asymmetry factor. It is due to non symmetric reflections, and we model
it as a Gaussian r.v. with zero-mean and covariance Ex[f2

a (xi,xj)] = σ2
a;

• vff (·) represents the fast fading component that can be modeled (see [14]) as a white temporal
noise with zero-mean and covariance Et[v

2
ff (t)] = σ2

ff ;

• oi(·) represents the offset that affects the measured received strength of the receiving node due
to fabrication mismatches in the radio chip. For example, in the case of the nodes used in our
experimental testbed the RSSI sensor has a tolerance of ±6 dB (see [5]).

Eqn. (1) is a general model for the wireless channel, in which parameters depend on the physical
environment where the WSN is placed and on the sensors under consideration. It is important to remark
that these parameters are not known in advance but they need to be estimated on-site. This is the
objective of the rest of the paper. In the next section we describe the experimental testbed used to
collect experimental data, we determine some of the numerical values for the terms in Eqn. (1) and we
show that some of them are negligible. Then, in Section 5 we estimate the offsets oi, and in Section 6 we
identify β and γ.

3 Experimental Testbed and Model Validation

The experimental data used in the simulations consist in a series of measurements relative to packet
transmissions and receptions performed by a net of 25 Tmote-Sky [20] nodes equipped with the Chipcon
CC2420 RF Transceiver [5] and powered by alkaline batteries. These nodes were randomly placed inside
a single conference room of 15m × 10m at about 50cm from the ground. The relative position of the
nodes is shown in Figure 2.

Figure 1: Picture of the experimental testbed room: Aula Magna “A. Lepschy”, Dept. of Information
Engineering, University of Padova.
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Each node implemented the randomized broadcast communication using the same transmission power
Ptx and intercommunication interval τ = 15s so that the event of a packet collision is negligible. Each
node sent a fixed number of packets M = 500, each one including the sender node ID, and also stored
a table with the total number of messages received from their neighbors and the corresponding RSSI
measures P ij

rx.
These tables were then collected for off-line data processing. In particular, from these data we con-

structed the connectivity matrix C. Given the short distance among nodes, each node received at least
one packet from any other node, however the empirical packet reception probability was different. In
fact, the c-connectivity graph Gc obtained for c = 0.75 (i.e. removing poor links with showed an empirical
packet loss probability greater than 25%) is not the complete graph, even if it is still connected, as shown
in Figure 2.
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Figure 2: Network topology and node displacement of experimental testbed. Only edges with empirical
packet loss smaller than 25% are displayed.

In the following we explain how it is possible to estimate the various parameters of the wireless channel
model (1) using the various P ij

rx(t) collected from the nodes.
The transmission power offsets rj of Eqn. (1) can be directly measured substituting the antenna of

the nodes with a probe connected to a power measurer. Measurements made on the set of the nodes used
for the experimental data showed that these offsets are negligible (see [32]), so in the following we will
ignore them, i.e. we set ri = 0, ∀i.

Then for every link (i, j) ∈ E in the connectivity graph, we compute the empirical mean of the received
power P̄ ij

rx = 1
Mij

∑
t P ij

rx(t), and the empirical variance (σ̂ij
ff )2 = 1

Mij

∑
t(P

ij
rx(t) − P̄ ij

rx)2, where Mij is

the total number of messages received. The empirical variance around each link is due to fast fading,
therefore, the estimate for the fast fading variance is:

σ2
ff =

1

|E|

∑

(i,j)∈E

(σij
ff )2.

The measurements P̄ ij
rx include the effects of path loss, shadow-fading, channel asymmetry and recep-

tion offsets. We can try to identify first the contribution of the channel asymmetry and reception offset by
noting that the path loss and the shadow fading are symmetric, i.e. ∆P̄ ij

rx = P̄ ij
rx−P̄ ji

rx = f ij
a −f ji

a +oi−oj ,
where for ease of notation f ij

a = fa(xi,xj). We can also remove the effects of the offsets by noting that
∆P̄ ijk

rx = ∆P̄ ij
rx + ∆P̄ jk

rx + ∆P̄ ki
rx = f ij

a − f ji
a + f jk

a − fkj
a + fki

a − f ik
a . We experimentally observed that

∆P̄ ijk
rx has approximately zero-mean over the set of all the independent feasible cycles (i, j, k), set that we

denote with C. Since the nodes are sufficiently far from each other and we have experimentally observed
that the shadow fading correlation distance D ≈ 10cm, all f ij

a can be considered uncorrelated, therefore
we can compute the covariance of the channel asymmetry as:
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σ2
a =

1

6 |C|

∑

(i,j,k)∈C

(
∆P̄ ijk

rx

)2
.

If we also assume independence between channel asymmetry components f ij
a and the offsets oi, we can

estimate the offset variance σ2
o from the following formula:

2σ2
o + 2σ2

a =
1

|E|

∑

(i,j)∈E

(
∆P̄ ij

rx

)2
.

Finally, we can estimate the parameters θ = [β γ]T of the path loss channel. As it will be shown in the
next section, it is possible to calibrate sensors by adding a compensating offset ôi such that oi + ôi = α
for all nodes. Averaging all sensor readings received from the same node removes the effect of fast-fading,
therefore the calibrated average received power P̂ ij

rx = P̄ ij
rx + ôi is given by:

P̂ ij
rx = Ptx + β − 10γ log (dij) + f ij

sf + f ij
a + α

where f ij
sf = fsf (xi,xj). Since β needs to be estimated and α is constant, we can assume w.l.o.g.

that α = 0, since its contribution will be included in the estimated β. Shadow fading f ij
sf and channel

asymmetry f ij
a are unknown but they can be assumed to be independent zero-mean disturbances, therefore

it is possible to find the best mean square estimate of the unknown parameter as θ̂LS = (AT A)−1AT b,
where A = [a1 . . . aM ]T , b = [b1 . . . bM ], and M = |E|. The generic elements of matrix A and vector b
are am = [1 − 10log(dij)]

T and bm = (P̂ ij
rx − Ptx), where dij = ‖xi − xj‖ and P̂ ij

rx are known. Figure 3

shows the identified path-loss model and all collected pairs (P̂ ij
rx, dij). The residues obtained from the

path-loss model correspond to the variance due to the shadow fading and channel asymmetry, i.e.:

σ2
a + σ2

sf =
1

|E|

∥∥∥Aθ̂LS − b
∥∥∥

2

.

Table 1 summarizes the estimated parameters of the model (1) based on the experimental data collected.
Note that the terms due to the asymmetry in the channel, f ij

a , can be safely neglected when compared
to the slow fading terms, f ij

sf , i.e. the wireless channel is indeed symmetric.

β [dBm] γ [dBm] σsf [dBm] σa [dBm] σff [dBm] σo [dBm] ri [dBm]

-45.7 1.76 3.78 0.16 1.31 1.01 ≈0

Table 1: Results of the estimation of the channels parameters of the model (1) via the centralized
estimation strategies presented in Section 3.
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Figure 3: Estimated path-loss model for the wireless channel of the experimental environment using the
standard centralized mean square estimate. The continuous line represents the path-loss function, while
the dots are the measures experimentally collected.
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4 Distributed Algorithms on WSNs

In this section we recall some useful results about consensus algorithms which we will use in the following
sections to develop a distributed algorithm suitable for wireless sensor networks. In particular they will
be used to estimate the sensor offsets oi (Section 5) and to estimate the channel parameters β and γ
(Section 6).

Let us consider the following linear update equations:

x(t + 1) = Q(t)x(t) (3)

where x ∈ R
N and Q ∈ R

N×N is a stochastic matrix, i.e. [Q]ij = qij ≥ 0 and
∑N

j=1 qij = 1, ∀j, i.e. each

row sums to unity. A stochastic matrix Q is said doubly stochastic if also
∑N

i=1 qij = 1, i.e. each column
sums to unity. Clearly if a stochastic matrix is symmetric then it is also doubly stochastic. We also define
the graph associated with the matrix Q to be GQ = (N , EQ), where the nodes N = {1, 2, . . . , N} and
EQ = {(i, j) | qij > 0}. We also say that a matrix Q is compatible with the graph G = (N , E), denoted
with Q ∼ G, if its associated graph GQ = (N , EQ) is such that EQ ⊆ E . We denote with Gsa the set of
graphs which include all self-arcs, i.e. G ∈ Gsa iff (i, i) ∈ E ,∀i ∈ N .

A graph is rooted in k if there exists a tree embedded in the graph and rooted at node k ∈ N
which spans all nodes, and strongly rooted in k if node k is directly connected to all other nodes, i.e.
(j, k) ∈ E ,∀j ∈ N . A graph is strongly connected if there is a path from any node to any other node in
the graph. Clearly a strongly connected graph implies that it is also a rooted graph for any node. A
graph is complete if (i, j) ∈ E ,∀i, j ∈ N . The concatenation of two graphs G1 = (N , E1) and G2 = (N , E2)
is a graph G = (N , E) = G2 ◦ G1 such that (i, j) ∈ E if there exists k ∈ N such that (k, j) ∈ E1, (i, k) ∈ E2.
Similarly, the union of two graphs is a graph G = G1∪G2 for which E = E1∪E1. Clearly G1∪G2 = G2∪G1

and G2 ◦ G1 6= G1 ◦ G2.
Let us consider the following definitions:

Definition 1. Let us consider Eqn. (3). We say that Q(t) solves the consensus problem if limt→∞ xi(t) =
α, ∀i = 1, . . . , N , where xi(t) is the i-th component of the vector x(t). We say that Q(t) solves the av-

erage consensus problem if in addition to the previous condition we have α = 1
N

∑N
i=1 xi(0). If Q(t)

is a random variable, then we say that Q solves the probabilistic (average) consensus problem if
the limit above exists almost surely.

This definitions includes a wide class of consensus strategies: strategies with a time–invariant matrix
Q(t) = Q, deterministic time-varying strategies Q(t), and randomized strategies where Q(t) is drawn
from some distributions on a set of stochastic matrices Q. The next theorems describes some sufficient
conditions which guarantee deterministic and probabilistic (average) consensus.

Theorem 1. Let us consider the sequence of constant matrices Q(t) = Q. If the graph GQ ∈ Gsa and
is rooted, then Q solves the consensus problem. If in addition Q is doubly stochastic, then GQ is strongly
connected and Q solves the average consensus problem. Moreover, the convergence rate in both cases is
exponential and it is given by second largest eigenvalue in absolute value of the matrix Q.

Theorem 2. Let us consider a deterministic sequence of stochastic matrices {Q(t)}+∞
t=0 and the cor-

responding associated graphs G(t) = GQ(t). Suppose G(t) ∈ Gsa,∀t. Suppose also there exists a finite

positive integer number T such that the graphs G
′

(·) obtained from the composition of the graphs G(·) in
the following way: G

′

(τ) = G (τ · T ) ◦G (τ · T + 1) ◦ . . . ◦G (τ · T + T − 1) with τ = 0, 1, . . . are all rooted.
Then the sequence Q(t) solves the consensus problem. If the matrices Q(t) are all doubly stochastic, then
they solve the average consensus problem.

Theorem 3. Let us consider a random i.i.d. sequence of stochastic matrices {Q(t)}+∞
t=0 drawn according

to some distribution from the set Q, and the stochastic matrix Q = E[Q(t)]. If the graphs G(t) = GQ(t) ∈
Gsa,∀t and if GQ is rooted, then the sequence Q(t) solves the probabilistic consensus problem. If in
addition Q(t) are all doubly stochastic, then they solve the probabilistic average consensus problem.

The first theorem is concerned with constant consensus matrix and shows how convergence conditions
can be reframed as a graph problem which is easy to verify [7]. There are also algorithms based on convex
optimizations that, given a symmetric graph, find a doubly stochastic matrix Q compatible with the graph
which maximize the rate of convergence [31]. The second theorem focuses on deterministic time-varying
consensus algorithms and shows that it is not necessary for the communication graph to be connected at
any iteration but over a fixed time window [4, 19]. The last theorem addresses the consensus problem in
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a probabilistic context that arises from randomized communication strategies [3, 11] or networks subject
to random external disturbances, such as link or node failure [12].

We now provide some details of the consenus algorithm in the framework of WSN and wireless com-
munication. In particular, the update matrix Q takes the following forms for the different wireless
communication strategies that have been presented in Section 2.1.

In the broadcast strategy the consensus matrix QB
i (the superscript “B ” stands for broadcast) when

a node i transmits is given by (note that i /∈ V(i)):

[QB
i ]mn =






1 if m = n /∈ V(i)
1 − w if m = n ∈ V(i)
w if m ∈ V(i), n = i
0 otherwise

where w ∈ (0, 1) is a tuning parameter and often w = 1
2 . In the symmetric gossip, when the edge (i, j) is

selected, the consensus matrix QG
ij (the superscript “G ” stands for gossip) is given by:

[QG
ij ]mn =






1 if m = n 6= j and m = n 6= i
1 − w if m = n = j or m = n = i
w if (m, n) = (i, j) or (m, n) = (j, i)
0 otherwise

The consensus matrices defined above are based on the assumption that there is no link failure during
the communication. In the following we assume that the communication graph G coincides with the
c-connectivity graph Gc defined in Section 2.1. When a link (i, j) fails in broadcast communication, the
matrix QB

i needs to be modified with [QB
i ]jj = 1, [QB

i ]ji = 0. Instead, when it happens in symmetric
gossip, there is no communication at all and then no update is performed, i.e. QG

ij = I is the identity

matrix. Note that in broadcast we have QB
ij = I if all links fail.

Based on the randomized communication modeling with link failure probability, it is possible to show
that the expected consensus matrix QB = E[QB(t)] generated for the broadcast strategy is given by:

[Q
B

]mn =






1 − c·w·d(n)
N if m = n

c·w
N if m ∈ V(n)

0 otherwise

Note that Q
B

= (Q
B

)T is symmetric and hence doubly stochastic, although the matrices QB
i are never

symmetric. Moreover G
Q

B = Gc, i.e. the graph associated with the expected consensus matrix Q
B

coincides with the underlying communication graph Gc. Therefore, if Gc is strongly connected, then this
implies that the randomized broadcast guarantees probabilistic consensus although it does not guarantee
average consensus for all possible realizations of QB(t). Even if the gossip matrices are not doubly

stochastic, the expected consensus matrix Q
B

is doubly stochastic, therefore the elements converge to the

average of the initial conditions in mean sense. One might also wonder if Q
B

provides some information
about convergence rate for the randomized strategy. In [11] there is an extensive analysis of rates of
convergence and mean square analysis for the dispersion of final consensus value w.r.t. the average of

initial conditions. The main message being that the second largest eigenvalue of Q
B

provides only an
optimistic rate of convergence, and that the dispersion of the final consensus value from the average of the
initial conditions decreases as the number of nodes increases. As we will see in Section 6.1, the parameter
w can be tuned to obtain a final consensus value closer to the average of the initial conditions, at the
price of slower convergence rate. This trade–off has been observed and studied also in [10].

Similarly, the expected consensus matrix Q
G

for the symmetric gossip is given by:

[Q
G

]mn =






1 −
∑

i∈V(n)
2c·w

N(d(n)+d(i)) if m = n
2c·w

N(d(m)+d(n)) if (m, n) ∈ Ec, m 6= n

0 otherwise

Obviously Q
G

= (Q
G

)T since all the gossip matrices QG
ij from which the distribution is drawn are

symmetric by construction. Similarly to the broadcast, we have G
Q

G = Gc. Therefore, if Gc is strongly

connected, then the randomized symmetric gossip guarantees probabilistic average consensus. Compared
to the randomized broadcast, the randomized symmetric gossip guarantees average consensus for all
realizations, but it is more expensive from a communication point of view. Indeed, at least two packets
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with reception acknowledge need to be exchanged at every step of the consensus iteration, while for the
broadcast only one packet is transmitted and no reception acknowledge is needed. Moreover, the rate
of converge is much slower, as can be guessed by the observation that the off-diagonal elements of the

matrix Q
G

are smaller than their counterparts in Q
B
, i.e. there is slower information propagation. We

will discuss these differences in more details in Section 6.1.

5 Consensus-Based Sensors Calibration

Experimental evidence indicates that sensor offsets oi in the nodes are not negligible and can be substan-
tially large for some node (up to 6dB). The effect of this offset is to bias the estimate of the distance
between two nodes, which is particularly harmful in tracking application. In fact, if one node has a high
offset oi, then its estimated distance from a moving node is smaller than the true distance. Since unknown
location of a moving target is obtained, similarly to the GPS, by triangulating its position from three or
more static nodes whose position is known, the estimated position will be closer to the node with high
offset oi than it should be. This is particularly clear in Figure 4, which reports a tracking experiment
where the moving node to be tracked is following a straight line (the basketball court centerline) between
two rows of nodes of a WSN. However, its estimated trajectory is not straight but it is bent to the left
(left panel). When the two central nodes on one side are swapped with the other side, the estimated
trajectory is now bent to the right, thus clearly showing a problem due to uncalibrated offsets. Here we
present a fully distributed and simple strategy which aims at estimating and removing the offsets oi from
each node, and we show its benefits on experimental data.

Figure 4: Experiment inside a basketball court showing the effects of reception offsets in WSN track-
ing when nodes are swapped. True trajectory in both panels is the court cenerline. Courtesy of ST
Microelectronics [25].

5.1 Offset calibration algorithm

Ideally, we would like to add to the reading of received power a compensation offset ôi such that oi+ôi = 0,
and then use the compensated received power P̂ ij

rx = P ij
rx + ôi to estimate the relative distance. However,

we do not have the possibility to directly measure oi of each node, nonetheless we would like to at least
partially compensate it. More precisely, we would like to have

oi + ôi = α, α ≈ 0

for all nodes. If α 6= 0 such strategy does not compensate the offset, but at least all nodes either
underestimate or overestimate the relative distance similarly, therefore after a GPS-like triangulation
stage these errors should partially cancel out. We now show how this strategy can be casted as a
consensus problem. Let us consider a static WSN where the nodes are at fixed positions and transmit at
the same power Ptx. Let yij be the average received signal strength by node i from node j:

P̄ ij
rx =

1

T

T∑

t=1

P ij
rx (Ptx,xi,xj , i, j, t) = fij + oi + fa

ij + rj +
1

T

T∑

t=1

vff (t) ≈ fij + oi (4)

where P ij
rx is modeled as in Eqn. (1), fij = Ptx + fpl(‖xj − xi‖) + fsf (xj ,xi), and fa

ij = fa(xi,xj). The

approximation is based on parameters in Table 1 which imply that |fa
ij + rj + 1

T

∑T
t=1 vff (t)| ≪ |oi| for T

9



sufficiently large, vff (t) being white noise. Note that fij is symmetric, i.e. fij = fji. The next theorem
shows how the problem of compensating the offset oi can be casted as a consensus problem:

Theorem 4. Let us consider the c-connectivity graph Gc = (N , Ec) of a WSN, and let Q(t) ∼ Gc a
sequence of stochastic matrices that solves the (probabilistic) consensus problem. Assume that yij = fij+oi

where fij = fji. Consider the following algorithm:

ôi(0) = 0, i ∈ N = {1, . . . , N} (5)

ôi(t + 1) = ôi(t) +
∑

j∈V(i)

qij(t)
(
yji − yij + ôj(t) − ôi(t)

)
(6)

where qij(t) = [Q(t)]ij. Then limt→∞ oi + ôi(t) = α where α ∈ [mini(oi),maxi(oi)]. If in addition Q(t)
is doubly stochastic ∀t, then α = 1

N

∑
i∈N oi.

Proof. Let us define the new variables xi(t) = oi + ôi(t). From this definition it follows that
xi(0) = oi + ôi(0) = oi. Moreover, Eqn. (6) can be rewritten as follows:

ôi(t + 1) + oi = ôi(t) + oi +
∑

j∈V(i)

qij(t)
(
fji + oj − fij − oi + ôj(t) − ôi(t)

)

xi(t + 1) = xi(t) +
∑

j∈V(i)

qij(t)
(
xj(t) − xi(t)

)

=
(
1 −

∑

j∈V(i)

qij(t)
)
xi(t) +

∑

j∈V(i)

qij(t)xj(t)

= qii(t)xi(t) +
∑

j∈V(i)

qij(t)xj(t)

The last equation can be written in compact form as x(t + 1) = Q(t)x(t). Since Q(t) solves the (proba-
bilistic) consensus problem, then limt→∞ xi(t) = α. The claim that α ∈ [mini(oi),maxi(oi)] follows from
the property that if Q is a stochastic matrix, then max(Qx) ≤ maxi(x) and min(Qx) ≥ min(x) [9]. �

The previous theorem indicates how we can compensate the offsets oi without knowing their values.
Also, it is not necessary to know the exact value of fij since it is symmetric. In practice the assumption
P̄ ij

rx = yij = fij + oi is not exact, therefore, as we will show shortly, this leads to an oscillating steady
state behavior in the consensus algorithm.

We might wonder whether there is an appropriate choice of Q(t) to have α ≈ 0, which is the ideal
solution. We can argue that the offsets oi of the radio chips are on average null, have some dispersion due
to imperfect fabrication and are independent, i.e. E[oi] = µo = 0, E[o2

i ] = σ2
o , and E[oioj ] = E[oi]E[oj ] = 0.

It is well known that the best estimate of the mean µo given a set of offsets is E[µo | o1, . . . , oN ] =
1
N

∑
i∈N oi = α∗ which has the property that E[α∗] = µo = 0 and E[(α∗)2] =

σ2
o

N , i.e. the average
consensus is the strategy for which α is closer to zero in mean square sense and its error becomes smaller
and smaller as the number of nodes N increases.

Although the best choice for the compensation of offsets oi is to choose doubly stochastic Q(t)’s,
this can be difficult to be enforced in a WSN, since it requires synchronization among the nodes and
compensation for packet loss. However it is not necessary to enforce the average consensus since the
nonzero offset α reached after the calibration phase is completely absorbed during the identification of
the path loss model parameter β.

5.2 Simulations based on experimental data

The proposed algorithm for distributed offset calibration has been tested off–line on the same set of data
collected during the experimental setup described in Section 3. Here we considered the c-connectivity
graph Gc with c = 0.1, i.e. we considered all links which received at least 10% of the packets. Differently
from the graph with c = 0.75 shown in Figure 2, the resulting graph with c = 0.1 reported in Figure 5 is
complete, i.e. all edges exist. The set of all the edges has been divided into two subsets: the first subset of
edges (60% of the total edges, in black in Figure 5) has been used for the estimation of the node offsets.
Therefore the proposed distributed sensor calibration algorithm has been executed on the data collected
on these edges. In particular, the calibration algorithm was set with yij = P̄ ij

rx corresponding to these
edges. The second subset (40% of the total edges, in grey in Figure 5) has been used in a second stage for
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validation purposes: we evaluated the asymmetric difference (P̄ ij + ôi)− (P̄ ji + ôj) on the data collected
on this subset. This approach allows us to both evaluate the effect of the offset removal in a rigorous
way, and to validate at the same time the model we proposed.
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Figure 5: Network topology and node displacement for c-connectivity graph for c = 0.1. Nodes’ grey
intensity represents the estimated offset ôi after calibration. Black and grey edges represent the edges
used for training and validation data sets, respectively.

We simulated the randomized broadcast consensus described in Section 4 on the graph Gc using the
experimental data and including i.i.d. packet loss failure set by the connectivity matrix C. Figure 6 shows
the behavior of the consensus algorithm for a specific realization with two different values of the weight
parameter in matrices Q(t). The steady state compensation offsets ôi(∞) are displayed in Figure 5 where
the gray intensity of the nodes is proportional to ôi(∞). Since the true node offsets oi are unknown it
is not possible to plot the behavior of xi(t) = oi + ôi(t) which are the variables that should converge
to a common value, however the fact that all ôi converge to a steady state is an indication of correct
functioning. It is also interesting to note the effect of unmodeled measurement noise arising from having
neglected channel asymmetry and fast fading. In fact for larger w, i.e. for larger weight on the off-diagonal
terms in the consensus matrix, the oscillation at steady state is not negligible, i.e. a large w tends to
amplify noise. On the other hand, a small w leads to slower rate of convergence, thus indicating a tradeoff
between convergence rate and noise sensitivity. Note also that the magnitude of steady state values of ôi

is consistent with the a-priori dispersion indicated by the standard deviation σo reported in Table 1.
In order to evaluate the effectiveness of the offset calibration, we tested the channel asymmetry after

calibration on a validation set different from the set used for computing the offsets ôi. The results of this
second stage has been plotted in Figure 7. The white bars represent the distribution of |P̄ ij − P̄ ji| on the
validation edges, before the distributed sensor calibration algorithm is executed. The black bars, instead,
show the distribution of |(P̄ ij + ôi)− (P̄ ji + ôj)| after the algorithm has run. The offset reduction clearly
appears. After the calibration, 56% of the validation edges have an asymmetric difference smaller than
0.5dBm (it was 24% before calibration), while 88% of them have an absolute error smaller than 1dBm
(it was 50% before calibration). After the offset removal algorithm, almost all the measurements (99.4%
of them) are affected by an asymmetric error smaller than 2dBm.

The importance of offset removal in the received power measurements is evident when these measure-
ments are used for wireless–based localization. In fact, relative distance is estimated by inverting the

path-loss function based on the calibrated measured power P̂ ij
rx, i.e. d̂ij = 10

P
j
tx

−P̂
ij
rx+β

10γ = 10
P

j
tx

−P
ij
rx+ôi+β

10γ .
If the calibration offset ôi is not included in the previous formula, there can be measurements errors up to
6dBm due to uncalibrated offsets, as Figure 7 suggests. In fact, a systematic calibration error of 6dBm
corresponds to an uncertainty range from 0.9m to 4.4m when estimating the relative position of a node
at 2m, and to a practically useless estimation when the node is farther. An error of 1dBm, on the other
hand, corresponds to a error in the distance of only 28cm for a 2m long link, and to a 1.4m error when
the node is at 10m distance.
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Figure 6: Offset estimation ôi for each node of the considered WSN using randomized broadcast consensus
for different values of the consensus weight w.
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distributed sensor calibration.

6 Consensus-Based Least Square Parameters Identification

A Least Square Parameter Identification (LSPI) problem arises when we have a data set D = {(am, bm), m =
1, . . . ,M} where am ∈ R

ℓ and bm ∈ R. The data set is generated according to the model aT
mθ = bm +vm,

where θ ∈ R
ℓ is a parameter vector to be estimated and vm ∈ R is an unknown error. Let us define the

matrix A ∈ R
M×ℓ, A = [a1 . . . aM ]T and the vectors b, v ∈ R

M , b = [b1 . . . bM ]T , v = [v1 . . . vM ]T . The
least square identification of the parameter θ is defined as follows:

θ̂LS = arg min
θ

‖v‖ = arg min
θ

‖Aθ − b‖ =
(
AT A

)−1
AT b

where we implicitly assumed that the matrix AT A is non singular. We now present a theorem showing
how the centralized least square parameter identification can be performed over graphs.

Theorem 5. Let Gc = (N , Ec) be the c-connectivity graph associated to a communication network with
N nodes, i.e. N = |N |, and let D(i) = {(am, bm)} the partition of the whole data set D available to
i-th node, satisfying D(i) ∩ D(j) = ∅, i 6= j, ∪i∈ND(i) = D, |D(i)| = Mi and |D| = M =

∑
i∈N Mi.
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Suppose that Q(t) are stochastic matrices consistent with the graph, i.e. Q(t) ∼ Gc,∀t, which solve the
(probabilistic) average consensus problem. Let xA

i ∈ R
ℓ×ℓ and xb

i ∈ R
ℓ for i = 1, . . . , N and consider the

following algorithm:

xA
i (0) =

∑

m∈D(i)

amaT
m, ∀i ∈ N (7)

xb
i (0) =

∑

m∈D(i)

ambm (8)

xk
i (t + 1) = qii(t)x

k
i (t) +

∑

j∈V(i)

qij(t)x
k
j (t), k = A, b (9)

ηi(t) =
(
xA

i (t)
)−1

xb
i (t) (10)

where qij(t) = [Q(t)]ij. Then we have:

lim
t→∞

ηi(t) = θ̂LS , ∀i ∈ N

Proof. Let us define the matrix S = AT A =
∑M

i=1 aia
T
i and the vector d = AT b =

∑M
i=1 aibi, there-

fore θ̂LS = S−1d. By construction we have that limt→∞ xA
i (t) = 1

N

∑N
i=1 xA

i (0) = 1
N

∑M
i=1 aia

T
i = 1

N S

and similarly limt→∞ xb
i (t) = 1

N

∑N
i=1 xb

i (0) = 1
N

∑M
i=1 aibi = 1

N c. By continuity limt→∞ ηi(t) =
(

1
N S
)−1 1

N d = S−1d = θ̂LS . Note that the sums are defined from 1 to M due to the structure of
Equations (7) and (8). �

This theorem shows that LSPI can be computed as the solution of a distributed algorithm which
does not require the knowledge of the total number of nodes N or the total number of data M available.
Moreover, the data can be arbitrarily partitioned among nodes. Since the matrix S = AT A is symmetric it
is not necessary to compute all its ℓ2 entries, therefore the xA

i can be reduced to a vector of size (ℓ2+ℓ)/2.
Nonetheless the complexity in terms of communication, i.e. the dimension of the vector of parameters to
be averaged, is O(ℓ2) which can be impractical if the dimension ℓ of the unknown parameter θ is large.
We will show in the next section that there are strategies that trade-off accuracy in the identification of
θ̂LS for a decrease in communication complexity to O(ℓ).

The problem addressed in the previous theorem belong to a more general class of problems that can
be solved with consensus algorithms. In fact any optimization problem can be written as:

ξ = f

(
1

N

∑

i∈N

gi (zi)

)

for some appropriate choice of functions f and gi, where zi represents the data available to node i. Some
examples of the previous class of problem includes generalized means [1], χ–consensus [6] and distributed
Kalman filter [28].

6.1 Simulations based on experimental data

In this section we apply the results presented in the previous section and identify in a distributed manner
the unknown path-loss channel parameters (β, γ) given in equation (2) using different communication
strategies. As mentioned above these two parameters are used in localization and target tracking al-
gorithms in order to estimate relative distances between the moving node and the nodes of the static
WSN. Therefore, it is critical to be able to identify the path-loss parameters in a distributed way, in a
manner that is robust to node failure, with minimal exchange of data and low computational power, and
without a central unit. It has to be noted that an accurate a-priori model for power loss in different
indoor environments is almost unavailable (for example γ can vary from 1 to 6 according to the room
sizes, the amount of furniture and people and the number of walls that the signal has to cross in average).
Furthermore, the same environment can present a hourly or daily variation of these parameters due to
the periodic presence of people populating the indoor spaces [8]. Fortunately, distributed algorithms with
these features can be used to periodically or adaptively identify the channel parameters in a changing
environment.
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Based on these considerations, the focus of this section is to compare the performances of three
different communication strategies which have different characteristics in terms of rate of convergence,
communication complexity and parameter identification accuracy. The first and the second strategies
are based on the implementation of the distributed least square identification described in Theorem 5
using the randomized broadcast and the randomized symmetric gossip, respectively. The third strategy
performs the randomized symmetric gossip consensus on local estimates θ̂i of the channel parameters
vector θ, rather than on the local least-square sufficient statistics

(
xA, xb

)
relative to

(
AT A, AT b

)
of

Theorem 5. Each strategy has its own advantages. In fact, the randomized symmetric gossip guarantees
average consensus, therefore it is guaranteed to provide the best identification accuracy since it satisfies the
hypotheses of Theorem 5. Randomized broadcast does not guarantee average consensus, and consequently
the best performance, however it is very easy to implement since it needs no coordination between nodes.
Moreover it is faster than the symmetric gossip since, on average, there are d(i) updates per iteration
compared with only 2 updates for the symmetric gossip. Finally, the strategy based on the average
consensus of the local least-square estimates does not guarantee optimal performance nor best speed of
convergence, however the number of parameters to be exchanged among nodes is equal to the size ℓ of
the parameter vector θ, while for the first two strategies it is proportional to ℓ2.

We now describe in detail how the simulations are obtained. We considered the c-connectivity graph
Gc = (N , Ec) for c = 0.75 shown in Figure 2. The data set D(i) available to each node i is given by
D(i) = {(P̄ ij

rx, dij) | j ∈ V(i)}, i.e. all the averaged received power measurements from each neighbor
coupled with the corresponding relative distance (note that the distances are assumed to be known by
the nodes). The data set of all measurements is indicated with D = ∪i∈ND(i). We also assume that the
offset calibration procedure of Section 5 has been performed in order to obtain the compensating offsets
ôi, and that the effect of fast-fading can be neglected since the measurements have been averaged over a
large number of packets. Therefore, as shown at the end of Section 3, the channel parameters θ = [β γ]T

can be identified using a least square minimization by setting am = [1 −10 log(dij)], bm = P̄ ij
rx−Ptx + ôi,

where m = 1, . . . ,M indicates a generic data element, and M = |D| = |Ec|. Using the same terminology of

Theorem 5 we indicate with θ̂LS the centralized least-square estimate using the complete data set D. We
also indicate with θ̂i

LS the least-square estimate performed by the i-th node using only its data set D(i),
which is the best estimate a node can have without communicating with the others. The performance
(in terms of identification accuracy) is based on the residues of the estimate θ̂ given by:

J(θ̂) =
∥∥∥Aθ̂ − b

∥∥∥ .

Note that A and b are constructed using the whole data set, and therefore J(θ̂) represents the global

residual. Since θ̂LS = arg minθ J(θ̂), it is obvious that J(θ̂LS) ≤ J(θ̂i
LS),∀i from which it follows J(θ̂LS) ≤

1
N

∑
i∈N J(θ̂i

LS). Being ηi(0) = θ̂i
LS , if all Q(t)’s are doubly stochastic then from Theorem 5 it follows

that limt→∞ J(ηi(t)) = J(θ̂LS),∀i, and so limt→∞
1
N

∑
i∈N J(ηi(t)) = J(θ̂LS).

In the first simulation, we tested the randomized broadcast least-square strategy using the connectivity
matrix C defined in Section 2.1 for the link failure probabilities. Figure 8 shows the identified channel
parameters of all nodes ηi(t) = [β̂i(t) γ̂i(t)]

T as a function of the number of iterations for a typical
realization of the system (thought as the stochastic process of information exchange). It can be seen that
the identified parameters of all nodes converge to a common value, however, since broadcast does not
guarantee average consensus, identified parameters do not necessarily coincide with the optimal estimate
θ̂LS . It is also interesting to note that most of the nodes have already good estimates of the parameters
without communicating with the others, since most of them have lots of links and there are only two
parameters to estimate. However, there are some nodes which have poor initial estimates, especially the
ones on the perimeter of the graph which have few links. Nonetheless, thanks to the consensus algorithm,
they rapidly converge to a good value.

In the second set of simulations, shown in Figure 9, we compared the rate of convergence and the
steady state identification error for the three different strategies described above. More precisely, we
compared the average estimation residual J̄(k) = 1

N

∑
i∈N J(θ̂i(k)) of all nodes as a function of iteration

error. To reduce the randomness due to the choice of a particular realization of {P (t)}t∈N we actually
depicted E[J̄(k)], approximately computed as the average of 50 independent extractions of the sequence
{P (t)}t∈N. In Table 2 it is reported also the steady state dispersion of J̄(k) around its mean value,
obtained by recording the maximum and the minimum value of J̄(k) over the 50 extractions. In the
bottom line the residual of the centralized optimal estimate is also reported for comparison.

Initially we tested the randomized broadcast least square algorithm for two different weights w. As
already mentioned, larger w leads to faster convergence rates, however it also leads, in mean, to a larger
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Figure 8: Convergence of parameter estimates βi, γi using randomized broadcast least-square consensus
and consensus weight w = 0.5. The dashed lines are the centralized least squares estimates β̂LS , γ̂LS .

Consensus Algorithm E[J̄(∞)] max J̄(∞) min J̄(∞)

Broadcast w = 0.5 3.9816 4.1477 3.9320
Broadcast w = 0.25 3.9615 4.0919 3.9318
Symmetric Gossip 3.9307 3.9307 3.9307
Ave. of local estim. 3.9635 3.9635 3.9635

JCent.L.S.

Centralized LS 3.9307

Table 2: Comparison of the mean estimation residual.

steady state identification error (see [10]). We also have that the steady state value is strongly realization
dependent, as it can be noticed from to the large dispersion interval. This is due to the fact the first
communications tend to bias the final value toward the initial condition of that node. Differently, if w is
reduced, then this bias is smoothed out and E[J̄(k)] end up closer to exact average consensus. Also the
dispersion of the single realization with respect to E[J̄(k)] reduces. Moreover it has been proved in [11]
that the distance of E[J̄(k)] form the average consensus decreases by increasing the number of nodes in
the network, thus suggesting fast convergence rate with negligible performance degradation as compared,
for example, to random symmetric gossip.

The same Figure 9 also shows the performance of the randomized symmetric gossip least square
algorithm. As expected, the rate of convergence is slower, but the final value converges to the minimum
identification error given by the centralized least-square estimate J(θ̂LS). We remark that all the single
realizations tend to the exact optimal value, as shown by the fact that there is no dispersion around the
mean value (Table 2), not only that E[J̄(k)] tends to optimal value.

Finally, we tested also a randomized gossip algorithm that directly averages the local least-square
estimates. As shown in Figure 9, this strategy has the same rate of convergence of the randomized
symmetric gossip (which computes the exact centralized least-square solution), but a slightly worse per-
formance. However, in terms of communication complexity this algorithm only requires the exchange
of 2 parameters while the exact distributed least square one requires in this example the exchange of
4 parameters. It has to be noticed, though, that if the initial estimates were less reliable (for instance
because the graph topology were much less connected) then the distributed least square would behave
far better that the simple solution of an average of the local least squares estimations.

7 Conclusions

In this work we proposed consensus-based algorithms for wireless sensor networks and we successfully
applied them to experimental data collected from a real WSN. In particular we applied these algorithms
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Figure 9: Comparison of the mean estimation residual E[J̄(k)] for different randomized consensus
algorithms.E[J̄(k)] is approximately computed as the average of 50 independent extractions of the se-
quence {P (t)}t∈N.

to remove unknown offsets from the sensor measurements and to identify the parameters of the wireless
channel for localization and tracking purposes.

However, these algorithms are rather general and can be applied in other fields and research areas.
Indeed, we showed how it is possible to cast a wide class of problems into the consensus framework, such
as problems in which the agents have to actually agree on a common estimate of few parameters (like in
the least-square fitting), and problems in which every agent has to estimate its own parameter (like in
the offset-removal algorithm). This duality deserves further investigation, possibly leading to a tighter
relation between consensus algorithms [23] and asynchronous parallel iterative methods for the solution
of system of linear equations [2].

The field of application of the proposed solution are definitely wider than the few applications pre-
sented in this work. For example, the offset removal algorithm could also be used to detect malfunctioning
sensors by observing the magnitude of the compensation offset ôi, while the least square square parameter
identification algorithm can be used to identify any model parameter which is linear in the data.

Many issues remain to be explored, in particular in terms of correctly modeling real WSNs. For
example we shown that although the optimal solution to some problems depends on the average of the
initial conditions, there are algorithms which do not guarantee convergence to the average, nonetheless
providing good performances. Therefore, there is a definite need to better understand the trade-offs
between performance, rate of convergence, communication complexity and noise sensitivity for different
consensus strategies on real WSNs. Another important research avenue is the formulation of possibly
nonlinear or non-standard problems into standard consensus problems, which is by no mean trivial.
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