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Abstract

We investigate the implementation of a new stochastic Kuramoto-Vicsek-type model for
global optimization of nonconvex functions on the sphere. This model belongs to the class
of Consensus-Based Optimization. In fact, particles move on the sphere driven by a drift
towards an instantaneous consensus point, which is computed as a convex combination of
particle locations, weighted by the cost function according to Laplace’s principle, and it
represents an approximation to a global minimizer. The dynamics is further perturbed by
a random vector field to favor exploration, whose variance is a function of the distance
of the particles to the consensus point. In particular, as soon as the consensus is reached
the stochastic component vanishes. The main results of this paper are about the proof
of convergence of the numerical scheme to global minimizers provided conditions of well-
preparation of the initial datum. The proof combines previous results of mean-field limit
with a novel asymptotic analysis, and classical convergence results of numerical methods for
SDE. We present several numerical experiments, which show that the algorithm proposed in
the present paper scales well with the dimension and is extremely versatile. To quantify the
performances of the new approach, we show that the algorithm is able to perform essentially
as good as ad hoc state of the art methods in challenging problems in signal processing and
machine learning, namely the phase retrieval problem and the robust subspace detection.
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1. Introduction

1.1 Derivative-free optimization and metaheuristics

Machine learning is about parametric nonlinear algorithms, whose parameters are optimized
towards several tasks such as feature selection, dimensionality reduction, clustering, classi-
fication, regression, and generation. In view of the nonlinearity of the algorithms and the
use of often nonconvex data misfits or penalizations/regularizations, the training phase is
most commonly a nonconvex optimization. Moreover, the efficacy of such methods is often
determined by considering a large amount of parameters, which makes the optimization
problem high dimensional and therefore quite hard. Often first order methods, such as
gradient descent methods, are preferred both because of speed and scalability and because
they are considered generically able to escape the trap of saddle points (Lee et al., 2019),
and in some cases they are able even to compute global minimizers (Chen et al., 2019; Liu
et al., 2020; Bah et al., 2019). Nevertheless, for some models, such as training of certain
feed-forward deep neural networks, the gradient tends to explode or vanish, (Bengio et al.,
1994). For many other problems the derivative of the objective function can be extremely
computational expensive to compute or the objective function may not be even differen-
tiable at all. Finally, gradient descent methods do not offer in general guarantees of global
convergence and, in view of high dimensionality and nonconvexity, a large amount of local
minimizers are expected to possibly trap the dynamics (see Section 2.4.2 for concrete ex-
amples).
Long before the current uses in machine learning, nonconvex optimizations have been con-
sidered in optimal design of any sort of processes and several solutions have been proposed
to tackle these problems. In this paper we are concerned with those which fall into the class
of metaheuristics (Aarts and Korst, 1989; Back et al., 1997; Blum and Roli, 2003; Glover
and Kochenberger, 2006), which provide empirically robust solutions to hard optimization
problems with fast algorithms. Metaheuristics are methods that orchestrate an interaction
between local improvement procedures and global/high level strategies, and combine ran-
dom and deterministic decisions, to create a process capable of escaping from local optima
and performing a robust search of a solution space. Starting with the groundbreaking work
of Rastrigin on Random Search in 1963 (Rastrigin, 1963), numerous mechanisms for multi-
agent global optimization have been considered, among the most prominent instances we
recall the Simplex Heuristics (Nelder and Mead, 1965), Evolutionary Programming (Fogel,
2006), the Metropolis-Hastings sampling algorithm (Hastings, 1970), Genetic Algorithms
(Holland, 1992), Particle Swarm Optimization (PSO) (Kennedy, 2010; Poli et al., 2007), Ant
Colony Optimization (ACO) (Dorigo and Blum, 2005), Simulated Annealing (SA), (Hol-
ley and Stroock, 1988; Kirkpatrick et al., 1983). Despite the tremendous empirical success
of these techniques, it is still quite difficult to provide guarantees of robust convergence to
global minimizers, because of the random component of metaheuristics, which would require
to discern the stochastic dependencies. Such analysis is often a very hard task, especially
for those methods that combine instantaneous decisions with memory mechanisms.
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1.2 Consensus-based optimization

Recent work by Pinnau, Carrillo et al. (Pinnau et al., 2017; Carrillo et al., 2018) on
Consensus-based Optimization (CBO) focuses on instantaneous stochastic and deterministic
decisions in order to establish a consensus among particles on the location of the global
minimizers within a domain. In view of the instantaneous nature of the dynamics, the
evolution can be interpreted as a system of first order stochastic differential equations
(SDEs), whose large particle limit is approximated by a deterministic partial differential
equation of mean-field type. The large time behavior of such a deterministic PDE can be
analyzed by classical techniques of large deviation bounds and the global convergence of
the mean-field model can be mathematically proven in a rigorous way for a large class of
optimization problems, see (Fornasier et al., 2021). Certainly CBO is a significantly simpler
mechanism with respect to more sophisticated metaheuristics, which can include different
features including memory of past exploration. Nevertheless, it is general enough to explain
other metaheuristics methods such as particle swarm optimization (Cipriani et al., 2021;
Grassi and Pareschi, 2021) and powerful and robust enough to tackle many interesting
nonconvex optimizations of practical relevance in machine learning. In particular CBO
and variants have been recently tested as optimization methods for the training of artificial
neural networks, showing competitive results over stochastic gradient descent, also in terms
of generalization error, see (Benfenati et al., 2021, Section 5.5 and Figure 6 and Figure 7)
and (Carrillo et al., 2021, Section 4.3 and Figure 6). From the theoretical side, one may
refer, for instance, to the recent paper (Cao and Gu, 2020) for theoretical estimates of the
generalization error in training deep neural networks. If one really inspects carefully the
results and the proofs, one realizes that (Cao and Gu, 2020, Theorem 3.2) is all about
the global optimization by gradient descent of the empirical risk. Since CBO methods
are precisely designed to achieve global optimization, they also allow for same guarantees
of generalization errors as gradient descent, as one could simply substitute (Cao and Gu,
2020, Theorem 3.2) with any global convergence result of CBO and obtain the same bounds.
We mention also that CBO with adaptive momentum has been recently proposed in (Chen
et al., 2020), providing better generalization results than the state-of-the-art method Adam
in solving a deep learning task for partial differential equations with low-regularity solutions.
Some theoretical gaps remain open in the analysis of CBO though, in particular the lack
of a rigorous derivation of the mean-field limit as in (Carrillo et al., 2018), which has been
very recently established just in a non-quantitative form in (Huang and Qiu, 2021).

1.3 Consensus-based optimization on the sphere

Motivated by lack of a quantitative mean-field limit and by the several potential applications
in machine learning, in the companion paper (Fornasier et al., 2020) we introduced for
the first time in the literature a new CBO approach to solve the following constrained
optimization problem

v∗ ∈ argmin
v∈Γ
E(v) , (1.1)

where E : Rd → R is a given continuous cost function, which we wish to minimize over a
compact hypersurface Γ. In this paper we consider the particular case of Γ = S

d−1 being the
hypersphere, for which we formulate a system of N interacting particles ((V i

t )t≥0)i=1,...,N
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satisfying the following stochastic Kuramoto-Vicsek-type dynamics expressed in Itô’s form

dV i
t = λP (V i

t )vα,E(ρ
N
t )dt+ σ|V i

t − vα,E(ρNt )|P (V i
t )dB

i
t −

σ2

2
(V i
t − vα,E(ρNt ))2

(d− 1)V i
t

|V i
t |2

dt ,

(1.2)

where λ > 0 is a suitable drift parameter, σ > 0 is a diffusion parameter,

ρNt =
1

N

N∑

i=1

δV i
t

(1.3)

is the empirical measure of the particles (δv is the Dirac measure at v ∈ R
d), and

vα,E(ρ
N
t ) =

N∑

j=1

V j
t ω

E
α(V

j
t )∑N

i=1 ω
E
α(V

i
t )

=

∫
Rd vω

E
α(v)dρ

N
t∫

Rd ωE
α(v)dρ

N
t

, ωE
α(v) := e−αE(v) . (1.4)

Here and below we denote with
∫
f(v)dµ(v) or equivalently

∫
f(v)µ(dv) the integration of

an arbitrary function with respect to a measure µ. This stochastic system is considered
complemented with independent and identically distributed (i.i.d.) initial data V i

0 ∈ S
d−1

with i = 1, · · · , N , and the common law is denoted by ρ0 ∈ P(Sd−1). The trajectories
((Bi

t)t≥0)i=1,...N denote N independent standard Brownian motions in R
d. In (1.2) the

projection operator P (·) is defined by

P (v) = I − vvT

|v|2 . (1.5)

It is easy to check that

P (v)v = 0 and v · P (v)y = 0 for all y ∈ R
d . (1.6)

The choice of the weight function ωE
α in (1.4) comes from the well-known Laplace princi-

ple (Miller, 2006; Dembo and Zeitouni, 2010; Pinnau et al., 2017), a classical asymptotic
method for integrals, which states that for any probability measure ρ ∈ Pac(Rd) (absolutely
continuous), it holds

lim
α→∞

(
− 1

α
log

(∫

Rd

e−αE(v)dρ(v)

))
= inf

v∈suppρ
E(v) . (1.7)

Let us discuss the mechanism of the dynamics. The right-hand-side of the equation (1.2)
is made of three terms. The first deterministic term λP (V i

t )vα,E(ρ
N
t )dt = −λP (V i

t )(V
i
t −

vα,E(ρ
N
t ))dt, because of (1.6) P (V i

t )V
i
t = 0 , imposes a drift to the dynamics towards vα,E ,

which is the current consensus point at time t as an approximation to the global minimizer,
and the term disappears when V i

t = vα,E . In fact, the consensus point vα,E is explicitly
computed as in (1.4) and it may lay in general outside S

d−1. This choice of an embedded
weighted barycenter is very simple, compatible with fast computations, and, for a compact
manifold as S

d−1, it is a good proxy for a minimizer v∗. One could alternatively consider
the computation of a weighted barycenter on the manifold

vS
d−1

α,E (ρNt ) = arg min
v∈Sd−1

∫

Sd−1

dSd−1(v, w)pe−αE(w)dρNt (w),
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where dSd−1 is the (Riemannian) distance on S
d−1, p > 0, and ρNt is again the particle

distribution. However, the computation of vS
d−1

α,E is in general not explicit and one may
have to solve at each time t a nontrivial optimization problem over the sphere in order to
compute vS

d−1

α,E , the so-called Weber problem. These are all good reasons for choosing the
simpler embedded alternative (1.4).

The second stochastic term σ|V i
t − vα,E(ρ

N
t )|P (V i

t )dB
i
t introduces a random decision

to favor the exploration, whose variance is a function of the distance of particles to the
consensus points. In particular, as soon as the consensus is reached, then the stochastic

component vanishes. The last term −σ2

2 (V i
t − vα,E(ρNt ))2

(d−1)V i
t

|V i
t |

2 dt, combined with P (·), it
is needed to ensure that the dynamics stays on the sphere despite the Brownian motion
component. Namely, this third term stems from Itô’s formula to ensure d|V i

t |2 = 0, see
(Fornasier et al., 2020, Theorem 2.1). We further notice that the dynamics does not make
use of any derivative of E , but only of its pointwise evaluations, which appear integrated in
(1.4). Hence, the equation can be in principle numerically implemented at discrete times
also for cost functions E which are just continuous and with no further smoothness and
the resulting numerical scheme is fully derivative-free. We require more regularity of E
exclusively to ensure formal well-posedness of the evolution and for the analysis of its large
time behavior, but it is not necessary for its numerical implementation. A possible discrete-
time approximation and resulting numerical scheme, which we consider in this paper is
given by the projected Euler-Maruyama method as follows: generate i.i.d. V i

0 , i = 1, . . . , N
sample vectors according to ρ0 ∈ P(Sd−1) and iterate for n = 0, 1, . . .

Ṽ i
n+1 ← V i

n +∆tλP (V i
n)V

α,E
n + σ|V i

n − V α,E
n |P (V i

n)∆B
i
n

−∆t
σ2

2
(V i
n − V α,E

n )2(d− 1)V i
n, (1.8)

V i
n+1 ← Ṽ i

n+1/|Ṽ i
n+1|, i = 1, . . . , N,

for

V α,E
n =

1

Nα

N∑

j=1

wE
α(V

j
n )V

j
n , Nα =

N∑

j=1

wE
α(V

j
n ), (1.9)

where wE
α(V

j
n ) = exp(−αE(V j

n )), and ∆Bi
n are independent normal random vectorsN(0,∆t).

Let us stress however that this is by no means the only possible discretization and we refer
to, e.g., (Platen, 1999), for picking a favorite alternative scheme.

1.4 Main result and sketch of its proof

The main result of the present paper establishes the convergence of the discrete- and
continuous-time dynamics to global minimizers of E under mild smoothness conditions and
local coercivity of the function around global minimizers. The analysis goes in two steps:
First of all, one needs to establish the large particle limit of the stochastic dynamics (1.2).
This first step was already obtained in (Fornasier et al., 2020), whose main results are about
the well-posedness of (1.2) and its rigorous mean-field limit - which is an open issue for un-
constrained CBO (Carrillo et al., 2018) - to the following nonlocal, nonlinear Fokker-Planck
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equation

∂tρt = λ∇Sd−1 ·((〈vα,E(ρt), v〉v−vα,E(ρt))ρt)+
σ2

2
∆Sd−1(|v−vα,E(ρt)|2ρt), t > 0, v ∈ S

d−1 ,

(1.10)
with the initial datum ρ0 ∈ P(Sd−1). Here ρt = ρ(t, v) ∈ P(Sd−1) is a Borel probabilty
measure on S

d−1 and

vα,E(ρt) =

∫
Sd−1 vω

E
α(v) dρt∫

Sd−1 ωE
α(v) dρt

.

The operators ∇Sd−1 · and ∆Sd−1 denote the divergence and Laplace-Beltrami operator on
the sphere Sd−1 respectively. The mean-field limit is achieved through the coupling method
(Sznitman, 1991; Fetecau et al., 2019; Huang and Liu, 2017) by introducing the mean-filed
dynamics satisfying

dV
i
t = λP (V

i
t)vα,E(ρt)dt+ σ|V i

t − vα,E(ρt)|P (V
i
t)dB

i
t −

σ2

2
(V

i
t − vα,E(ρt))2

(d− 1)V
i
t

|V i
t|2

dt ,

(1.11)

where ((V
i
t)t≥0)i=1,...,N are i.i.d. with common law (ρt)t≥0 satisfying (1.10). It yields the

following quantitative form of mean-field limit

sup
t∈[0,T ]

sup
i=1,...,N

E

[
|V i
t − V

i
t|2
]
≤ CN−1, N →∞, (1.12)

for any T > 0 time horizon, see (Fornasier et al., 2020, Theorem 3.1 and Remark 3.1). The
rate of convergence (1.12) is not affected by the curse of dimension and, for Γ = S

d−1 the
constant C depends at most linearly in d and, as a worst case analysis, exponentially in α
and in T , see (Fornasier et al., 2020, Remark 3.2 and Lemma 3.1) respectively. Besides the
well-posedness of (1.10) in the space of probability measures established in (Fornasier et al.,
2020, Section 2.3), for more regular datum ρ0, we prove additionally in the present paper
existence and uniqueness of distributional solutions ρ ∈ L2([0, T ], H1(Sd−1)) at any finite
time T > 0, see Theorem 13. This auxiliary regularity results is needed in our convergence
analysis.
The second step to establish global convergence, which is also carried out in the present
paper, is about proving the large time asymptotics of the PDE solution ρt(v) = ρ(t, v).
In Theorem 6 we show that, for any ǫ > 0 there exists suitable parameters α, λ, σ and
well-prepared initial densities ρ0 such that for T ∗ > 0 large enough the expected value of
the distribution E(ρT ∗) =

∫
vdρT ∗(v) is near a global minimizers v∗ of E , i.e.,

|E(ρT ∗)− v∗| ≤ Cǫ. (1.13)

The convergence to E(ρT ∗) is exponential in time and the rate depends on the parameters
ǫ, α, λ, σ. We summarize the main result as follows.

Theorem 1 Assume E ∈ C2(Sd−1) and that for any v ∈ S
d−1 there exists a minimizer

v∗ ∈ S
d−1 of E (which may depend on v) such that it holds

|v − v∗| ≤ C0|E(v)− E|β , (1.14)
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where β,C0 are some positive constants and E := infv∈Sd−1 E(v). We also denote E :=

supv∈Sd−1 E(v), Cα,E = eα(E−E), and Cσ,d = (d−1)σ2

2 . Additionally for any ǫ > 0 assume
that the initial datum ρ0 and parameters λ, σ are well-prepared in the sense of Definition 5
for a time horizon T ∗ > 0 and a parameter α∗ > 0 large enough, depending on C0 and β.
Then the iterations {V i

n := V i
∆t,n : n = 0, . . . , nT ∗ ; i = 1 . . . N} generated by a discrete-time

approximation of (1.2) fulfill the following error estimate

E



∣∣∣∣∣
1

N

N∑

i=1

V i
nT∗ − v∗

∣∣∣∣∣

2

 ≤ C1(∆t)

2m

︸ ︷︷ ︸
Discr. err.

+ C2N
−1

︸ ︷︷ ︸
Mean−field lim.

+ C3ǫ
2

︸︷︷︸
Laplace princ.

, (1.15)

where m is the order of approximation of the numerical scheme. (For the projected Euler-
Maruyama scheme the order is m = 1/2.) The constant C1 depends linearly on the dimen-
sion d and the number of particles N , and possibly exponentially on T ∗ and the parameters
λ and σ; the constant C2 depends linearly on the dimension d, polynomially in Cα∗,E , and
exponentially in T ∗; the constant C3 depends on C0 and β. The convergence is exponential
with rate

λθ − 4Cα∗,ECσ,d > 0, (1.16)

for a suitable 0 < θ < 1.

The detailed proof of this result is reported in Section 3.4. We provide here a sketch of it.
Proof (Sketch). We recall the definitions of expectation and variance of ρt as

E(ρt) :=

∫

Sd−1

vdρt(v) V (ρt) :=
1

2

∫

Sd−1

|v − E(ρt)|2dρt(v).

By combining the coercivity condition (1.14) and the Laplace principle (1.7) we show that

∣∣∣∣
E(ρt)

|E(ρt)|
− v∗

∣∣∣∣ ≤ C(C0, ‖∇E‖∞, β)
(
(Cα,E)

βV (ρt)
β
2 + εβ

)
.

Hence, in order to prove the large time convergence to a global minimizer (1.13), we may
want to show that the variance is monotonically decreasing to zero with an exponential
rate. An explicit computation leveraging the PDE (1.10) yields

d

dt
V (ρt) = −λV (ρt)〈E(ρt), vα,E〉 −

λ

2

v2α,E + 1

2
2V (ρt) +

λ

4

∫

Sd−1

(E(ρt)− v)2(v − vα,E)2dρt

+ Cσ,d

∫

Sd−1

(v − vα,E)2〈E(ρt), v〉dρt

≤ −λV (ρt)

(
〈E(ρt), vα,E〉+

v2α,E + 1

2

)

+
λ

4

∫

Sd−1

(E(ρt)− v)2(v − vα,E)2dρt + 4Cα,ECσ,dV (ρt) .

The idea is to balance all the terms on the right-hand side by using the parameters λ, σ in
such a way of obtaining a negative sign. Under assumptions of well-preparation, V (ρt) is
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actually small enough for ensuring |E(ρt)| ≈ 〈E, vα,E〉 ≈ |vα,E | ≈ 1, and, thanks to Theorem
13, for any δ > 0 arbitrarily small

λ

4

∫

Sd−1

(E(ρt)− v)2(v − vα,E)2dρt ≤ γλV (ρt) + δ,

for a suitable 0 < γ < 2, γ depending on δ. Hence,

V (ρt) ≤ V (ρ0)e
−(λθ−4Cα,ECσ,d)t + δ

for θ ≈ 2 − γ, and one concludes the convergence in finite time T ∗ as in (1.13), under the
given error threshold ǫ > 0. By combining now classical results of convergence of numer-
ical approximations1 (V i

∆t,n)i=1,...,N (Platen, 1999) with the the mean-field approximation
(1.12) (Fornasier et al., 2020) and the large time behavior (1.13), which is proven in detail
in Theorem 6 below, we obtain that the expected large time outcome of the numerical
approximation to (1.2) is about a global minimizer of E

E



∣∣∣∣∣
1

N

N∑

i=1

V i
∆t,nT∗ − v∗

∣∣∣∣∣

2



.E



∣∣∣∣∣
1

N

N∑

i=1

(V i
∆t,nT∗ − V i

T ∗)

∣∣∣∣∣

2

+ E



∣∣∣∣∣
1

N

N∑

i=1

(V i
T ∗ − V i

T ∗)

∣∣∣∣∣

2



+ E



∣∣∣∣∣
1

N

N∑

i=1

V
i
T ∗ − E(ρT ∗)

∣∣∣∣∣

2

+ |E(ρT ∗)− v∗|2

.(∆t)2m +N−1 + ǫ2, (1.17)

where m is the order of strong convergence of the numerical method.

1.5 Discussion

Some comments about the result and its proof are in order. First of all, we stress that
Theorem 1 is the first and so far the unique complete result of convergence of consensus-
based optimizations in the literature. In fact, the results in (Carrillo et al., 2018, 2021)
are exclusively addressing the large time behavior of the mean-field PDE, because, for
consensus-based optimization in the Euclidean space, a mean-field approximation of the
type (1.12) has not been established yet for unbounded E . Similarly, the convergence proof
of the purely numerical scheme in (Ha et al., 2020) establishes convergence in ess infω over all
possible realizations ω (significantly weaker than (1.15)). In particular it does not provide
a rate of convergence in terms of number N of particles. Moreover the result is established
under the simplified assumption that the noise is equal for all particles.
Our proof strategy described above made of a numerical approximation, mean-field limit,

1. In this paper we consider numerical approximations by Euler-Maruyama scheme, which converges
strongly with order m = 1/2 (Platen, 1999), see Algorithm 1 in Section 2.2.
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and asymptotic analysis parallels a similar approach by Montanari et al. (Mei et al., 2018;
Javanmard et al., 2020) for proving the convergence of stochastic gradient descent to global
minimizers in the training of two-layer neural networks.
The initial datum ρ0 has to be interpreted as the uncertainty on the location of a global
minimizer. The condition of Definition 5 of well-preparation of ρ0 may have a locality
flavour, i.e., they essentially require that ρ0 has small variance and simultaneously it not
centered too far from a global minimizers v∗ of E . However, in the case the function E
is symmetric, i.e., E(v) = E(−v) (as it happens in numerous applications, in particular
the ones we present in this paper) and C0 > 0 is relatively large for β ≥ 1, then the
condition is generically/practically satisfied at least for one of the two global minimizers
±v∗. The convergence result is based on proving the monotone decay of the variance
V (ρt) =

∫
|v − E(ρt)|2dρt(v), see Proposition 12, and this cannot be achieved unless the

initial condition is well-prepared. In fact, for a non-symmetric function E , a given unique
global minimizer v∗, and for a datum ρ0 fully concentrated around the opposite vector −v∗,
i.e., on the other side of the sphere, the variance may start small, but it must grow well
before getting small again. Hence, it is not possible for arbitrary E and initial datum to
have monotone decay of the variance, and we conjecture that the result can be further
improved to obtain even more generic initial conditions, but one needs to use a different
proving technique.
Let us now discuss the interplay between the different approximations and the constants
appearing in (1.15). While the constants C1, C2 in (1.15) depend explicitly only linearly on

the dimension d, the constants C2 may depend polynomially on Cα∗,E = eα
∗(E−E), hence,

exponentially in α∗. This exponential dependence stems from the worst case analysis due
to (Fornasier et al., 2020, Lemma 3.1). Moreover, at this level of generality it is difficult
to establish how α∗ depends on d as such dependence is strongly affected by the particular
objective function E and ρ0: to clarify the predicament, in the extreme case where ρ0 ≈ δv∗
it is (

− 1

α
log

(∫

Rd

e−αE(v)dρ0(v)

))
≈ E ,

independently of α (also for α very small!). Also one does not expect a strong dependence of
α∗ on d for the case where C0 > 0 is large for β ≥ 1 with a symmetric behavior of E around
v∗. Instead, in the worst case scenario we may need α∗ ≥ d and our estimates may simply
reflect the fact that the optimization problem at hand is NP-hard or intrinsically affected
by the curse of dimensionality. However, this is by no means the typical situation, as in
our numerical experiments in Section 2.4.2 we show that the method scales well with the
dimension also for problems with d ≈ 3000. Due to the worst case analysis and the use of
Gronwall’s inequalities in the literature, constants C1, C2 may depend also exponentially on
T ∗; however T ∗ is fixed at the beginning and the initial datum and parameters are assumed
to be well-prepared so that the algorithm reaches precisely at the time T ∗ the expected
accuracy. Hence, T ∗ does not need to be very large if we assume that our initial datum ρ0
offers already a reasonable confidence on the location of a global minimizer. In particular
the rate of convergence λθ− 4Cα,ECσ,d is completely determined by the choices of λ and σ.
The choice of λ > 0 large necessarily implies the discretization parameter ∆t small, as C1

depends by the worst case analysis and the use of Gronwall’s inequalities exponentially in
λ. Recent work (Carrillo et al., 2018) on unconstrained consensus-based optimization with
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Figure 1: The Ackley function for d = 2 on [−3, 3]2 and its representation for d = 3 in the
constrained case over the half sphere S2 (right). The global minimum corresponds
to the direction v∗ = (0, 0, 1)T .

anisotropic noise suggests the possibility of having parameters completely independent of
the dimension.

1.6 Organization of the paper

The rest of the paper is organized as follows: in Section 2 we present and explain right
away the numerical implementation, Algorithm 1, of the stochastic Kuramoto-Vicsek (sKV)
system (1.2). We further propose a few relevant speed-ups, which will be implemented in
Algorithm 2. As a warm up, we illustrate the behavior of the algorithms on the synthetic
example of the Ackley function over the sphere (see Figure 1) in dimension d = 3. In
the second part of this section, we present applications in signal processing and machine
learning, namely the phase retrieval problem and the robust subspace detection and we
provide comparisons with state of the art methods. For the robust subspace detection we
test the algorithm also in dimension d ≈ 3000 on the Adult Faces Database (Bainbridge
et al., 2013) for the computation of eigenfaces. These experiments show that the algorithm
scales well with the dimension and is extremely versatile (one just needs to modify the
definition of the function E and the rest goes with the same code!). The algorithm is able
to perform essentially as good as ad hoc state of the art methods and in some instances it
obtains quantitatively better results. For the sake of reproducible research, in the repository
https://github.com/PhilippeSu/KV-CBO we provide the Matlab code, which implements the
algorithms on the test cases of this paper. In Section 3 we provide the analysis of global
optimization guarantees, which yield the main error estimate (1.15). In Section 4 we collect
proofs of a few auxiliary results.
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2. Numerical Implementation and Tests

In this section we report several tests and examples of application of the consensus based
optimization (CBO) method based on the stochastic Kuramoto-Vicsek (sKV) system. First,
we discuss fast first order discretization methods for the stochastic system, which preserve
the dynamics on the multi-dimensional sphere. Implementation aspects and speed-ups
are also analyzed. In particular, we derive fast algorithms, which permit to obtain an
exponentially diminishing computational cost in time. Next, we test the method and its
sensitivity to the choice of the computational parameters with respect to some well-known
prototype test functions in high dimensions. Real-life applications are also provided to
sustain the versatility and scalability of the method.

2.1 Discretization of the sKV system

We discuss the discretization of the sKV system in Itô’s form

dV i
t = λP (V i

t )V
α,E
t dt+ σ|V i

t − V α,E
t |P (V i

t )dB
i
t −

σ2

2
(V i
t − V α,E

t )2
(d− 1)V i

t

|V i
t |2

dt , (2.1)

with V i
t ∈ S

d−1, i = 1, . . . , N , and

V α,E
t =

N∑

j=1

V j
t ω

E
α(V

j
t )∑N

i=1 ω
E
α(V

i
t )

= vα,E(ρ
N
t ).

First let us remark that for d = 2 the problem is considerably simpler since the passage to
spherical coordinates permits an easy integration of the system by preserving its geometrical
nature of motion on S

1. However, for arbitrary dimensions this is more complicated and we
must integrate the stochastic system in the vector form (2.1). We refer to (Platen, 1999) for
an introduction to numerical methods for SDEs and to (Hairer et al., 2006) for deterministic
time discretizations, which preserve some geometrical properties of the solution.

Let us denote |V | = ‖V ‖2 = 〈V, V 〉 12 the Euclidean norm. A simple geometrical argu-
ment allows to prove the following observation:

Lemma 2 Let us consider a one step time discretization of (2.1) in the general form

V i
n+1 = V i

n +Φ(∆t, V i
n, V

i
n+1, ξ

i
n) (2.2)

where the function Φ(∆t, ·, ·, ξin) : R2d → R
d defines the method, ∆t > 0 is the time step,

V i
n ≈ V i

t |t=tn, tn = n∆t and ξin are independent random variables.
Then

|V i
n+1|2 = |V i

n|2 (2.3)

if and only if

〈Φ(∆t, V i
n, V

i
n+1, ξ

i
n), V

i
n+1 + V i

n〉 = 0. (2.4)

This shows that Φ(∆t, V i
n, V

i
n+1, ξ

i
n) must be orthogonal to V i

n+1+V
i
n in order to preserve

the norm and, consequently, to obtain one step methods satisfying (2.3) we have to resort
to implicit methods.
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For example, it is immediate to verify that the Euler-Maruyama method

V i
n+1 = V i

n+∆tλP (V i
n)V

α,E
n dt+σ|V i

n−V α,E
n |P (V i

n)∆B
i
n−∆t

σ2

2
(V i
n−V α,E

n )2
(d− 1)V i

n

|V i
n|2

, (2.5)

where ∆Bi
n = Bi

tn+1 − Bi
tn are independent normal random variables N(0,∆t) with mean

zero and variance ∆t, is not invariant with respect to the norm of V i
n.

A method that preserves the norm is obtained by modifying the Euler-Maryuama
method as follows

V i
n+1 = V i

n+∆tλP (V i

n+ 1

2

)(V α,E
n −V i

n)dt+σ|V i
n−V α,E

n |P (V i

n+ 1

2

)∆Bi
n−∆t

σ2

2
(V i

n−V α,E
n )2

(d− 1)V i

n+ 1

2

|V i

n+ 1

2

|2 ,

where V i
n+ 1

2

= V i
n+1 + V i

n and, for consistency, we have the term −V i
n in the alignment

process since now P (V i
n+ 1

2

)V i
n 6= 0. By similar arguments, we can construct implicit methods

of weak order higher than one which preserve the norm of the solution. Implicit methods,
however, due to the nonlinearity of the projection operator P (·) require the inversion of a
large nonlinear system. This represents a serious drawback for our purposes, where efficiency
of the numerical solver is fundamental.

In order to promote efficiency, we consider instead explicit one-step methods that pre-
serve the geometric properties by adopting a projection method at each time step for the
iterations to stay on the sphere (Hairer et al., 2006). This corresponds to solve the stochas-
tic differential problem under the algebraic constraint to preserve the norm. Since we are
on the unit hypersphere, we simply divide the numerical approximation by its Euclidean
norm to get a vector of length one. This class of schemes has the general form





Ṽ i
n+1 = V i

n +Φ(∆t, V i
n, Ṽ

i
n+1, ξ

i
n),

V i
n+1 =

Ṽ i
n+1

|Ṽ i
n+1|

.
(2.6)

We keep the dependence from Ṽ n+1 on the right hand side to include semi-implicit methods
with better stability properties then the Euler-Maruyama scheme. One example is obtained
by the following integration scheme

Ṽ i
n+1 = V i

n +∆tλP (V i
n)V

α,E
n + σ|V i

n − V α,E
n |P (V i

n)∆B
i
n −∆t

σ2

2
(V i
n − V α,E

n )2(d− 1)Ṽ i
n+1

which can be written explicitly as

Ṽ i
n+1 =

1

1 +∆tσ
2

2 (V i
n − V α,E

n )2(d− 1)

(
V i
n +∆tλP (V i

n)V
α,E
n + σ|V i

n − V α,E
n |P (V i

n)∆B
i
n

)
.

(2.7)
In our experiments, since efficiency of the numerical solver is of paramount importance, we
rely on projection methods of the type (2.6) based on the simple Euler-Maruyama scheme
(2.5) or the semi-implicit scheme (2.7).
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Remark 3 Another popular approach is based on simulating the two fundamental processes
characterizing the dynamics by a splitting method on the time interval [n∆t, (n+ 1)∆t]





dṼ i
t = λP (Ṽ i

t )Ṽ
α,E
t dt , Ṽ i

0 = V i
t |t=n∆t,

dV i
t = σ|V i

t − V α,E
t |P (V i

t )dB
i
t −

σ2

2
(V i
t − V α,E

t )2
(d− 1)V i

t

|V i
t |2

dt , V i
0 = Ṽ i

t |t=(n+1)∆t,

(2.8)
where the first step is a standard alignment dynamics over the hypersphere and the second
step corresponds to solve a Brownian motion with variance σ2(V i

t − V α,E
t )2 on the unit

hypersphere. Typically, the approximated value of V α,E
t is kept constant in a splitting time

step to avoid computing it twice and increasing the computational cost. This approach
would allow to solve the first step using standard structure preserving ODEs approaches
(Hairer et al., 2006) and to use specific simulation methods for the Brownian motion over
the hypersphere in the second step (Großmann et al., 2015; c et al., 2020). We will leave
to further study the possibility to apply methods in the splitting form (2.8).

2.2 Implementation aspects and generalizations

First let us point out that the set of three computational parameters, ∆t, σ and λ, defining
the discretization scheme can be reduced since we can rescale the time by setting

τ = λ∆t, ν2 =
σ2

λ
,

to obtain a scheme which depends only on two parameters τ and ν. In practice, we can
simply assume λ = 1 and keep the original notations. Starting from a set of computational
parameters and a given objective function E(·) defined on S

d−1, the simplest KV-CBO
method is described in Algorithm 1.

Algorithm 1: KV-CBO

Input: ∆t, σ, α, d, N , nT and the function E(·)
1 Generate V i

0 , i = 1, . . . , N sample vectors uniformly on S
d−1;

2 for n = 0 to nT do
3 Generate ∆Bi

n independent normal random vectors N(0,∆t);

4 Compute V α,E
n ;

5 Ṽ i
n+1 ← V i

n+∆tP (V i
n)V

α,E
n +σ|V i

n−V α,E
n |P (V i

n)∆B
i
n−∆t

σ2

2
(V i
n−V α,E

n )2(d−1)V i
n,

V i
n+1 ← Ṽ i

n+1/|Ṽ i
n+1|, i = 1, . . . , N ;

6 end

The approximation order of the projected Euler-Maruyama method as in KV-CBO is
m = 1/2. In fact, the only difference with respect to the classical Euler-Maruyama method is
the post-projection onto the sphere V i

n+1 ← Ṽ i
n+1/|Ṽ i

n+1|. We show in the proof of Theorem
1 in Section 3.4 that this may introduce an error of at most order ∆t, preserving the order
of convergence.
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Let us now discuss briefly about the complexity of the scheme as optimization method in
order to place the discussion in the correct frame. It is of utmost importance to stress once
again that the method is of 0-order, i.e., it is derivative-free. Hence, for those problems for
which computing derivatives of the objective function is an unfeasible task, either because of
complexity or because of non-differentiability, the KV-CBO is necessarily superior in terms
of complexity than first order methods such as gradient descent or second order methods
such as Newton method. Note, in particular, that the computational cost for a single time
step of KV-CBO is O(N), the minimum cost to evolve a system of N particles since V α,E

n

is the same for all agents. Let us however mention that the KV-CBO is highly and very
easily parallelizable and therefore, on a multi-processor parallel machine, the method can be
easily reduced to complexity O(N/P), where P is the number of processors. The algorithm
may be complemented with a suitable stopping criterion, for example checking consensus
using the quantity

1

N

N∑

i=1

|V i
n − V α,E

n | ≤ ε, (2.9)

or checking, as in (Carrillo et al., 2021), for p ≥ 0 that

|V α,E
n+1 − V

α,E
n−p| ≤ ε, (2.10)

for a given tolerance ε. In point 5 of Algorithm 1 we used the Euler-Maruyama discretization
(2.5), similarly one could use the semi-implicit method (2.7). The computational parameters
∆t, σ and α can in practice be adaptively modified from step to step to improve the
performance of the method. In the sequel we analyze in more detail some computational
aspects and speed ups related to Algorithm 1.

Sampling over S
d−1

First let us discuss point 1 of algorithm 1, namely how to generate points uniformly over
the d-dimensional sphere. Despite the fact that our theoretical results would suggest to
use a more concentrated measure ρ0 to generate the initial points, see Definition 5, the
uniform distribution is likely the simplest to be realized and it does certainly not induce
initial bias towards any direction. Even though many methods have been designed for low
dimension d ≤ 3, very few of them can be extended to large dimensions. Therefore, the
one that is often used for a d-dimensional sphere is the method of normalized Gaussians
first proposed by Muller and later by Marsaglia (Muller, 1959; Marsaglia, 1972). The
method is extremely simple, and exploits the non-obvious relationship between a uniform
distribution on the sphere and the normal distribution. More precisely, to pick a random
point on a d-dimensional sphere one first generates d standard normal random variables
ξ1, ξ2, . . . , ξd ∼ N(0, 1), then the distribution of the vectors of components

vk =
ξk√

ξ21 + . . .+ ξ2d

, k = 1, . . . , d (2.11)

coincides with the uniform one over the hypersphere S
d−1.
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Evaluation of V α,E
n

Let us observe that the computation of V α,E
n , points 2 and 6 of Algorithm 1, is crucial and

that a straightforward evaluation using

V α,E
n =

1

Nα

N∑

j=1

wE
α(V

j
n )V

j
n , Nα =

N∑

j=1

wE
α(V

j
n ), (2.12)

where wE
α(V

j
n ) = exp(−αE(V j

n )), is generally numerically unstable since for large values of
α ≫ 1 the value of Nα is close to zero. On the other hand, the use of large values of α
is essential for the performance of the method. A practical way to overcome this issue is
based on the following numerical trick

wE
α(V

j
n )

Nα
=

exp(−αE(V j
n ))∑N

j=1 exp(−αE(V
j
n ))
· exp(αE(V

∗
n ))

exp(αE(V ∗
n ))

=
exp(−α(E(V j

n )− E(V ∗
n )))∑N

j=1 exp(−α(E(V
j
n )− E(V ∗

n )))

where
V ∗
n := arg min

V ∈{V i
n}

N
i=1

E(V ) (2.13)

is the location of the particle with the minimal function value in the current population. This
ensures that for at least one particle V j

n = V ∗
n , we have E(V j

n )− E(V ∗
n ) = 0 and therefore,

exp(−α(E(V j
n )−E(V ∗

n ))) = 1. For the sum this leads to
∑N

j=1 exp(−α(E(V
j
n )−E(V ∗

n ))) ≥ 1,
so that the division does not induce a numerical problem. In the numerical simulations
we will always compute the weights by the above strategy. Note that, the evaluation of
(2.13) has linear cost, and does not affect the overall cost. The computation of V α,E

n may
be accelerated by using the random approach presented in (Albi and Pareschi, 2013) (see
Algorithm 4.7). Namely, by considering a random subset JM of size M < N of the indexes
{1, . . . , N} and computing

V α,E,JM
n =

1

NJM
α

∑

j∈JM

wE
α(V

j
n )V

j
n , NJM

α =
∑

j∈JM

wE
α(V

j
n ). (2.14)

Similarly, we will stabilize the above computation by centering it to

V JM ,∗
n := arg min

V ∈{V j
n}j∈JM

E(V ). (2.15)

The random subset is typically chosen at each time step in the simulation.

Remark 4 As a further randomization variant, at each time step, we may partition parti-
cles into disjoint subsets JkM , k = 1, . . . , S of size M such that SM = N and compute the
evolution of each batch separately (see (Jin et al., 2020; Carrillo et al., 2021) for more de-
tails). Since the computational cost of the CBO method is linear, unlike (Albi and Pareschi,
2013; Jin et al., 2020; Lorenzo Pareschi and Visconti., 2020) these randomization techniques
can accelerate the simulation process (and eventually improve the particles exploration dy-
namic thanks to additional stochasticity), but do not reduce the overall asymptotic cost
O(N).
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Fast method

Using a constant number of particles is not the most efficient way to simulate the trend
towards equilibrium of a system, typically because we can use some (deterministic) in-
formation on the steady state to speed up the method. In the case of CBO methods,
asymptotically the variance of the system tends to vanish because of the consensus dynam-
ics, see Proposition 12. So, we may accelerate the simulation by discarding particles in time
accordingly to the variance of the system (Albi and Pareschi, 2013). This also influences
the computation of V α,E

n by increasing the randomness and reducing the possibilities to get
trapped in a local minimum. For a set of Nn particles we define the empirical variance at
time tn = n∆t as

Σn =
1

Nn

Nn∑

j=1

(V j
n − V̄n)2, V̄n =

1

Nn

Nn∑

j=1

V j
n .

When the trend to consensus is monotone, that is Σn+1 ≤ Σn, we can discard particles
uniformly in the next time step tn+1 = (n + 1)∆t accordingly to the ratio Σn+1/Σn ≤ 1,
without affecting their theoretical distribution. One way to realize this is to define the new
number of particles as

Nn+1 =

[[
Nn

(
1 + µ

(
Σ̂n+1 − Σn

Σn

))]]
(2.16)

where [[ · ]] denotes the integer part, µ ∈ [0, 1] and

Σ̂n+1 =
1

Nn

Nn∑

j=1

(V j
n+1 − V̂n+1)

2, V̂n+1 =
1

Nn

Nn∑

j=1

V j
n+1.

For µ = 0 we have the standard algorithm where no particles are discarded whereas for
µ = 1 we achieve the maximum speed up. We implement the details of the method, which
includes the speed-up techniques just discussed, in Algorithm 2. As before we fix λ = 1.

Typically, a minimum bound Nmin of the number of particles is adopted to guarantee
that Nn ≥ Nmin during the simulation and the variance reduction test is performed every
fixed amount of iterations to avoid fluctuations effects.

Adaptive Parameters

Our main theoretical result Theorem 6 and condition (3.6) establish that, once N is large,
for σ small enough and α large enough, Algorithm 1 will converge near to a global min-
imizer. One important aspect, as in many metaheuristic algorithms, concerns the choice
of the parameters in the method. The adaptation of hyperparameters in multi-particle
optimization is a well-known problem, which deserves a proper discussion, see, e.g., (Es-
calante et al., 2009). In our case, we observed that decreasing σ and increasing α during
the iterative process leads to improved results in term of convergence and accuracy. One
strategy, therefore, would be to start with a large σ and to reduce it progressively over time
as a function of a suitable indicator of convergence, for example the average variance of the
solution or the relative variation of Vα over time. This can be realized starting from σ0 and

16



Consensus-Based Optimization on the Sphere

Algorithm 2: Fast KV-CBO

Input: ∆t, σ, α, d, N , nT , µ, M and the function E(·)
1 Generate V i

0 , i = 1, . . . , N0 sample vectors uniformly on S
d−1;

2 Compute the variance Σ0 of V i
0 and set N0 = N ;

3 for n = 0 to nT do
4 Generate ∆Bi

n independent normal random vectors N(0,∆t);

5 Compute V α,E
n from (2.14) if M ≤ Nn otherwise use (2.12);

6 Ṽ i
n+1 ← V i

n+∆tP (V i
n)V

α,E
n +σ|V i

n−V α,E
n |P (V i

n)∆B
i
n−∆t

σ2

2
(V i
n−V α,E

n )2(d−1)V i
n

V i
n+1 ← Ṽ i

n+1/|Ṽ i
n+1|, i = 1, . . . , Nn;

7 Compute the quantity Σ̂n+1 from V i
n+1;

8 Set Nn+1 ← [[Nn

(
1 + µ

(
(Σ̂n+1 − Σn)/Σn

))
]] and discard uniformly Nn −Nn+1

samples;
9 Compute the variance Σn+1 of V i

n+1;

10 end

by decreasing it as

σn+1 =
σn
τ
, (2.17)

where τ > 1 is a constant. Other techniques, of course, can be used to decrease σ, for
example following a cooling strategy as in the Simulated Annealing approach (Holley and
Stroock, 1988). In (Carrillo et al., 2021) it has been proposed to reduce σ independently
of the solution behavior, as a function of the initial value σ0 and the number of iterations.
This corresponds to take σn+1 = σn/(σ0 log(n+1)) in (2.17). As a result of these strategies,
the noise level in the system will decrease in time. Note that, since we need λ≫ σ2(d− 1)
(see formula (3.6) below) to achieve consensus in the system, this approach allows to start
initially with a larger σ which permits to explore the surrounding area well before entering
the consensus regime.

Similarly, it might not be beneficial to start with a large α from the beginning. In
fact, in this case the Vα would right away equal the particle with the lowest energy and
all the other particles will be forced to move towards this particle, with a lower impact
on the initial exploration mechanism. Therefore, we can start with an initial value α0 and
gradually increase it to a maximum value αmax accordingly to an appropriate convergence
indicator, or independently as a function of the number of iterations. In particular, large
values of α at the end of the simulation process are essential to achieve high accuracy in
the computation of the minimum.
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2.3 Numerical experiments for the Ackley function

Minimizing the Ackley function in dimension d = 3

First we consider the behavior of the model and its mean field limit in the case d = 3 for
computing the minimum of the Ackley function2 constrained over the sphere

E(V ) = −A exp


−a

√√√√b2

d

d∑

k=1

(Vk − v∗k)2

−exp

(
1

d

d∑

k=1

cos(2πb(Vk − v∗k))
)
+e+B, (2.18)

with A = 20, a = 0.2, b = 3, B = 20 and V = (V1, . . . , Vd)
T with |V | = 1.

The global minimum is attained at V = v∗. In Figure 1 we report the Ackley function
for d = 3 over the half sphere V3 ≥ 0. Note that, this problem differs from the standard min-
imization of the Ackley function over the whole space R

d since KV-CBO operates through
unitary vectors over the hypersphere.

Figure 2: Particles trajectories along the simulation for the Ackley function in the case d =
3, N = 20 with minimum at v∗ = (0, 0, 1)T (left) and v∗ = (−1/

√
2,−1/2, 1/2)T

(right). On the top corresponding time evolution of the particle distribution
ρ(v, t) in angular coordinates at t = 1 and t = 2.5 for N = 106. The simulation
parameters are ∆t = 0.05, σ = 0.25 and α = 50.

In all our simulations we initialize the particles with a uniform distribution over the
half sphere characterized by V3 ≥ 0 and employ the simple Euler-Maruyama scheme with

2. https://en.wikipedia.org/wiki/Test functions for optimization
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projection. We report in Figure 2 the particle trajectories for t ∈ [0, 5] in the case of
N = 20, ∆t = 0.05, σ = 0.25 and α = 50. On the left we consider the case with minimum
at v∗ = (0, 0, 1)T , on the right the case with minimum at v∗ = (1/

√
2,−1/2, 1/2)T . The time

evolution of the particle distribution ρ(v, t) in the numerical mean field limit for N = 106

is also reported in the upper part of the same figure.

Next in Figure 3, we consider the convergence to consensus measured using various
indicators for N = 50, ∆t = 0.1, v∗ = (0, 0, 1)T and various values of σ and α. The results
have been averaged 1000 times with a success rate of 100% in all test cases considered.
Following (Carrillo et al., 2021; Pinnau et al., 2017), we consider a run successful if V α,E

n at
the final time is such that

‖V α,E
nT
− v∗‖∞ := sup

k=1,...,d
|(V α,E

nT
)k − (v∗)k| ≤ 1/4.

We also compute the expected error in the computation of the minimum by considering
time averages of ‖V α,E − v∗‖∞ and we report the quantity |V α,E − v∗|2/d used in (Carrillo
et al., 2021; Pinnau et al., 2017). As can be seen from Figure 3 (top) where σ = 0.7 the
influence of large values α in the accuracy of the computation of the minimum is clear when
passing from α = 5 to α = 500.

In Figure 3 (bottom) we show the same computations for a larger value σ = 2 of the
diffusion coefficients, which violate the consensus bound σ2(d − 1) ≪ λ, see (3.6). We
compare our results with the ones computed using the CBO method in (Pinnau et al.,
2017). Even if both methods yield a success rate of 100%, the methods clearly do not
reach consensus, in the sense that the consensus error (2.9) is not diminishing in time.
This behavior is common also to the CBO solvers in (Carrillo et al., 2021) where the above
quantity may even diverge since it is not bounded by the geometry of the sphere.

Minimizing the Ackley function in dimension d = 20

Next we consider the more difficult case of the Ackley function in dimension d = 20.

In Table 1 we report the results for σ = 0.3, ∆t = 0.05, α = 5 × 104, T = 100 and
various values of N andM . The rate of success and the expectation of the error |V α,E−v∗|2
have been measured over 100 runs and the minimum has been considered in two different
positions

v∗ = (0, . . . , 0, 1)T , v∗ = (d−1/2, . . . , d−1/2)T .

In the first case the minimum is at the center of our initial distribution (so V α,E initially is
not too far from v∗) whereas the second choice is more difficult for the CBO solver since the
minimum is shifted with respect to the center of the initial particle distribution, uniformly
in all coordinates.

In all test cases considered the success rate is close to 100%. In particular, let us
observe (see Table 2) that the fast method for µ = 0.3 and µ = 0.2 with Nmin = 10 permits
to achieve better performances for a given computational cost. We have selected a final
computation time lower than the optimal computation time that would have allowed us to
achieve maximum precision in the computation of the minimum, this to avoid unnecessary
iterations with a small number of particles that would have created a bias in the final
average particle number Navg.
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Figure 3: Behavior of various convergence indicators in time for the Ackley function in the
case d = 3 for N = 50, ∆t = 0.1. The two graphs on top show the accuracy of
KV-CBO for σ = 0.7, which satisfies σ2(d − 1) ≪ λ = 1 as dictated by (3.6).
We chose α = 5 (top, left) and α = 500 (top, right); the yellow line on the top
right plot is superimposed by the green line. It is seen that the accuracy is much
better for the choice α = 500. For the two graphs on the bottom we chose σ = 2,
which violates σ2(d− 1)≪ λ, and used KV-CBO with α = 30 (bottom, left) and
the CBO method from (Pinnau et al., 2017) with α = 30 (bottom, right). Again,
the green line is superimposing the yellow line. The results have been averaged
1000 times with a success rate of 100% in all cases.
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Table 1: Ackley function in d = 20: µ = 0, σ = 0.3, ∆t = 0.05 and T = 100
v∗ N = 50 N = 100 N = 200

M = 40 M = 70 M = 100

(0, . . . , 0, 1)T Rate 100% 100% 100%
Error 2.24118e− 08 1.3364e− 09 3.51083e− 09

(d−1/2, . . . , d−1/2)T Rate 98% 99% 100%
Error 1.15704e− 06 1.476e− 09 5.09216e− 09

Table 2: Ackley function in d = 20: σ = 0.3, ∆t = 0.05 and T = 100
v∗ N0 = 100 N0 = 200 N0 = 400

M = 70 M = 100 M = 150

(0, . . . , 0, 1)T Rate 100% 100% 100%
µ = 0.3 Error 1.20639e− 07 3.73419e− 08 2.24362e− 08

Navg 21.6 38.7 71.4

(d−1/2, . . . , d−1/2)T Rate 100% 100% 100%
µ = 0.2 Error 1.34745e− 06 2.02787e− 08 8.06536e− 09

Navg 27.3 53.1 103.0

2.4 Challenging applications in signal processing and machine learning

In this section we consider two applications of KV-CBO, namely, the phase retrieval problem
and the robust subspace detection problem. For the former we consider only synthetic data,
for the latter we consider synthetic as well as real-life data in dimension up to d = 2880. The
solution to these problems can be reformulated in terms of a high dimensional nonconvex
optimization over the sphere with unique symmetric solutions. Both these problems have
by now ad hoc state of the art methods for their solution. The aim of this section is to
demonstrate that Algorithms 1 or 2 can be used in a versatile and scalable way to solve
several and diverse problems and achieve state of the art performances by comparison with
the more specific methods.

2.4.1 Phase Retrieval

Recently there has been growing interest in recovering an input vector z∗ ∈ R
d from

quadratic measurements

yi = |〈z∗, ai〉|2 + wi, i = 1, ...,M (2.19)

where wi is adversarial noise, and ai are a set of known vectors. Since only the magnitude
of 〈z∗, ai〉 is measured, and not the phase (or the sign, in the case of real valued vectors),
this problem is referred to as phase retrieval. Phase retrieval problems arise in many
areas of optics, where the detector can only measure the magnitude of the received optical
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wave. Important applications of phase retrieval include X-ray crystallography, transmission
electron microscopy and coherent diffractive imaging (Quiney, 2010; Hurt; Harrison, 1993;
Walther, 1963). Several algorithms have been devised for robustly computing z∗ from
measured information y = (yi)i=1,...,M based on different principles, such as alternating
projections, lifting and convex relaxation, and simple gradient descent for empirical risk
minimization (Gerchberg, 1972; Fienup, 1982; Yang et al., 1994; Candés et al., 2013; Candes
et al., 2015; Chen et al., 2019). Despite the wide range of solutions, most of these algorithms
fail to tackle robustly the crystallographic problem which is both the leading application
and one of the hardest forms of phase retrieval (Elser et al., 2018). One of the reasons is that
the phase retrieval problem is intrinsically ill-posed for M small. Recent work (Mondelli
and Montanari, 2019) explains even by information theoretical arguments that no estimator
can do better than a random estimator forM ≤ d−o(d). Uniqueness results of the solution
z∗ of the real-valued phase retrieval problem in the case of no noise has been established in
(Balan et al., 2006) for sets of measurement vector {ai : i = 1, . . . ,M} forming a frame for
R
d, i.e., there are constants 0 < A ≤ B <∞ such that

A|z|2 ≤
M∑

i=1

|〈z, ai〉|2 ≤ B|z|2 (2.20)

holds for any z ∈ R
d. Specifically, (Balan et al., 2006, Theorem 2.2) ensures that for

generic frames unique identifiability occurs for M ≥ 2d − 1, as the map R
d\{±1} ∋ z →

y(z) := (|〈z, ai〉|2)i=1,...,M is in fact injective. In order to tackle the robust identifiability,
empirical risk minimization has been considered in (Eldar and Mendelson, 2014), i.e., the
minimization of the discrepancy

E(z) =
M∑

i=1

∣∣|〈z, ai〉|2 − yi
∣∣2 . (2.21)

Guarantees of stable reconstruction via empirical risk minimization are obtained under the
assumption that the measurements vectors {ai : i = 1, . . . ,M} fulfill the stability property

M∑

i=1

∣∣|〈z, ai〉|2 − |〈ẑ, ai〉|2
∣∣ ≥ κ|z − ẑ||z + ẑ|, (2.22)

for all z, ẑ ∈ R
d and some fixed κ > 0. In particular, (Eldar and Mendelson, 2014, Theorem

2.4) ensures that for measurement vectors {ai : i = 1, . . . ,M} generated at random, e.g., as
i.i.d. Gaussian vectors, for M ≥ γd , the stability estimate (2.22) holds for a suitable κ > 0
with high probability depending on the constant γ > 0. As a broad disquisition about the
phase retrieval problem is not the focus of this paper, we omit here details about stability
under adversarial noise and we refer to (Bandeira et al., 2014; Eldar and Mendelson, 2014)
for further insights. However, we should notice at this point that the empirical risk E in
(2.21) fulfills then all the requests of Assumptions 3.1 below, in particular the stability
estimate (2.22) naturally induces the inverse continuity property 4. of Assumptions 3.1.
Hence, the minimization of (2.21) is a challenging nonconvex optimization problem, which
falls precisely in the realm of problems for which Algorithm 1 or Algorithm 2 are expected
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Figure 4: Left: Success rate for different numbers of frame vectorsM in dimension d = 100.
We have used the following parameters: α = 2 ·1015, λ = 1,∆t = 0.1 and σ = 0.11
for N = 100 and σ = 0.08 for N = 2000. Right: Plot of the energy defined in
(2.21) in d = 2. It is evident that the energy may exhibit saddle points, but
no spurious minimizers appear. This is the reason for a vanilla gradient descent
method to work so well for such a problem (Candes et al., 2015; Chen et al., 2019;
Lee et al., 2019).

to work at best. Before presenting numerical experiments of the use of Algorithm 1 or
Algorithm 2 and comparisons with state of the art methods, we should perhaps clarify that
the empirical risk minimization can without loss of generality be restricted to vectors on
the sphere as soon as the lower frame constant A is known: for the sake of simplicity, let
us assume again that the noise w ≡ 0 and we observe that

M∑

i=1

yi =

M∑

i=1

|〈z∗, ai〉|2 ≥ A|z∗|2 and |z∗| ≤

√√√√ 1

A

M∑

i=1

yi =: R (2.23)

where we take A to be the optimal lower frame bound. We define the vectors ãi by one zero
padding, i.e.,

ãi = [ai, 0] ∈ R
d+1, (2.24)

and we further denote

z̃∗ = [z∗,
√
R2 − |z∗|2] ∈ R S

d, v∗ =
z̃∗

R
∈ S

d, and ỹi =
yi
R2

. (2.25)

With these notations, (2.19) can be equivalently recast in the form

ỹi = |〈v∗, ãi〉|2, v∗ ∈ S
d.

Hence, the unconstrained minimization of E can be equivalently solved by the constrained
minimization of

Ẽ(v) :=
M∑

i=1

∣∣|〈v, ãi〉|2 − ỹi
∣∣2 , (2.26)
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over the sphere Sd. In fact, the first d components of the minimizing vector v∗ must coincide
with z∗/R. So from now on we implicitly assume that the problem is transformed into one
of the type (1.1).

We tested KV-CBO for dimension d = 100 for the function defined in (2.26), where
the vectors ai are sampled from a uniform distribution over the sphere. We computed the
success rate for reconstructing the vector z∗ in terms of the number M of vectors ai. We
count a run as successfull if the computed z̄ by Algorithm 1 or Algorithm 2 fulfills

min{|z∗ − z̄|, |z∗ + z̄|} < 0.05 . (2.27)

The phase transitions of success recovery are shown in on the left-hand-side of Figure 4.
We can observe that the success rate improves with the number N of particles used by
Algorithm 1 or Algorithm 2 and best success is obtained by M ≥ γd as predicted by
theory. We notice that the optimization via KV-CBO is evidently not affected by the curse
of dimension. On the right-hand-side we depict the typical cost function landscape with
saddle-points and symmetric global minimizers.

In the following, we compare Algorithm 2 with three relevant state of the art methods
for phase retrieval:

• Wirtinger Flow (fast gradient descent method) (Candes et al., 2015; Chen et al., 2019);

• Hybrid Input Output/Gerchberg-Saxton’s Alternating Projections (alternating pro-
jection methods) (Gerchberg, 1972; Fienup, 1982; Yang et al., 1994);

• PhaseMax/PhaseLamp (convex relaxation and its multiple iteration version) (Candés
et al., 2013).

For the comparsion we used the Matlab toolbox PhasePack3 (Chandra et al., 2017) and our
own code4.

In Figure 5 we demonstrate on the left that KV-CBO is exactly as robust as Wirtinger
Flow with respect to adversarial noise and on the right we compare phase transition dia-
grams of success rate, which show that KV-CBO has a slight delay in perfect recovery with
respect to Wirtinger Flow and PhaseMax/PhaseLamp, but it is comparable with Hybrid
Input Output/Gerchberg-Saxton’s Alternating Projections. The delayed perfect recovery
indirectly confirms that the inverse continuity property 4. of Assumptions 3.1 needs to be
fulfilled for the method to work optimally. (We reiterate that ifM is large enough, then the
stability property (2.22) holds with high probability and as a consequence also the inverse
continuity property.)

2.4.2 Robust Subspace Detection

Let us consider a cloud of points Q = {x(i) ∈ R
d : i = 1, ...,M} in an Euclidean space

with d ≫ 1. We assume without loss of generality that the point cloud is centered, that
is, the mean of the point cloud is zero. Subspace detection is about finding a lower di-
mensional linear subspace V ⊂ R

d that fits the data at best, in the sense that the sum of

3. https://www.cs.umd.edu/∼tomg/projects/phasepack/
4. https://github.com/PhilippeSu/KV-CBO
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Figure 5: Left: Success rate in terms of the Signal-to-Noise Ratio in dimension d = 32
for M = 4d Gaussian vectors. The green dashed curve representing KV-CBO
is exactly superimposed with the light blue curve of the Wirtinger Flow. Right:
Phase transitions for different numbers of Gaussian vectorsM in dimension d = 32
(the yellow curve is superimposed by the purple curve). We used σ = 0.2,∆t =
0.1, N = 104 and chose the parameter α adaptively, with initial α0 = 2000 and
final αmax = 1e15. The results are averaged 25 times.

the squared norms of the orthogonal projection of the points x(i) to V ⊥ is minimal. In the
simplest case of a one-dimensional subspace, the cost function to be minimized is given by
E2(v) :=

∑M
i=1 |x(i) − 〈x(i), v〉v|2 where each summand is the squared norm of the orthogo-

nal projection of one point x(i) to the space span(v)⊥. It is well-know that the minimizer
v∗ = argminv∈Sd−1 E2(v) = argmaxv∈Sd−1 |Xv|2 represents the direction of maximal vari-
ance of the point cloud, see, e.g., Figure 6 (left), and coincides with the right singular vector

associated to the operator norm of the matrix X = (x(i)
T
)i=1,...M whose rows are the vectors

x(i)’s. Despite the nonconvexity of the cost, the computation of the best fitting subspace can
be conveniently done by singular value decomposition (SVD) also for subspaces of higher
dimension. In this case the cost would simply read E2(V ) :=

∑M
i=1 |PV ⊥x(i)|2. The draw-

back of the energy E2(v) is the fact that it is quadratic, thus the summand |x(i)−〈x(i), v〉v|2
will be particular large if x(i) is an outlier, far from the subspace where most of the other
points may cluster. The aim of robust subspace detection (Lerman et al., 2015; Lerman and
Maunu, 2018; Maunu et al., 2019) is finding the principal direction of a point cloud without
assigning too much weight to outliers. We therefore introduce the more general energy

Ep(V ) :=

M∑

i=1

|PV ⊥x(i)|p, V ⊂ R
d, dim(V ) = k ≪ d, (2.28)

where 0 < p ≤ 2. Even in the simplest one dimensional case, the minimization of the energy

Ep(v) :=
M∑

i=1

|x(i) − 〈x(i), v〉v|p =
M∑

i=1

(
|x(i)|2 − |〈x(i), v〉|2

)p/2
, v ∈ S

d−1,
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turns out for 0 < p ≪ 2 to be a rather nontrivial nonconvex optimization problem. On
the right of Figure 7, Figure 8, and Figure 9 we illustrate some cost function landscapes in
dimension d = 2. One can immediately notice how Ep becomes in fact rougher and exhibits
all of the sudden several spurious local minimizers (compare with the case of p = 2 in Figure
6). Hence, the success of a simple gradient descent method is far less obvious than for the
phase retrieval problem, where the energy may have saddle-points, but it has generically
no local minimizers, see Figure 4 and refer to (Candes et al., 2015; Chen et al., 2019; Lee
et al., 2019) for details.

In the following we test KV-CBO for clouds of synthetic data points and a cloud of real-life
photos from the 10K US Adult Faces Database (Bainbridge et al., 2013). We discuss the
performance of the method both for p = 2 and 0 < p < 2. In the former case, we can
compute the exact minimizer of the energy E2(v) by SVD. For 0 < p < 2 we compare
the result with the state of the art algorithm Fast Median Subspace (FMS) (Lerman and
Maunu, 2018) as benchmark. We mention that FMS is proven in general to converge to
stationary points of the cost function only, which are in special data models very close
to global minimizers with high probability. The synthetic point cloud models we use for
comparison below are in part fitting the existing guarantees of global optimization for FMS.
In these cases, we analyze different sets of parameters and dimensionality of the problem
and we discuss the success rate for different parameters such as numbers of particles and
σ > 0. In fact, the choice of the parameter σ > 0 is perhaps a bit tricky. From our
theoretical findings, it would be sufficient that λ/(d− 1)≫ σ2, see (3.6), thus σ > 0 needs
simply to decrease with growing dimension d. However, in the pure particle simulation σ
cannot be taken too small otherwise randomness won’t be enough to explore the space in
a reasonable computational time. In Figure 10 we report the success rate in terms of σ for
different dimensions. We further chose α = 2 · 1015 and ∆t = 0.25.

Figure 6: Left: Point cloud with Nsp = 2 one-dimensional subspaces in dimension d = 2
with Gaussian noise of 0.01. The red vector shows the principal direction. Right:
Energy E2(v(θ)) for the point cloud on the left for θ ∈ [0, 2π), where v(θ) is
expressed in polar coordinates. The particles are shown in red.
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Figure 7: Left: Point cloud in dimension d = 2 with Nsp = 2 subspaces with 100 points each
and Gaussian noise of 0.25. We further have added 500 outliers. The orange/ red
vector shows the principal component computed by SVD of the point cloud with/
without the outliers. The green vector is the principal component compoted by
KV-CBO. Right: Energy Ep(θ) for θ ∈ [0, 2π) for the point cloud on the left and

p = 1. The particles are shown in red, V α,E
0 is shown in green.

Figure 8: Left: Point cloud in dimension d = 2 with Gaussian noise of 0.25 on a one-
dimensional subspace with 100 points and 250 outliers. The orange/ red vector
shows the principal component computed by SVD of the point cloud with/ with-
out the 250 outliers. The green vector is the principal component computed by
KV-CBO. Right: Energy Ep(θ) for θ ∈ [0, 2π) for the point cloud on the left and

p = 0.5. The particles are shown in red, V α,E
0 is shown in green.
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Figure 9: Left: Point cloud with Nsp = 2 one-dimensional subspaces with 100 points on the
first subspace and 40 points on the second with Gaussian noise of 0.01. Further,
we have added 100 outliers. The red vector shows the principal direction for the
point cloud without the outliers. The green vectors shows the direction computed
by KV-CBO. It matches the one-dimensional cluster with 100 points. Right:
Energy Ep(θ) for θ ∈ [0, 2π) and p = 0.2 for the point cloud on the left. The

particles are shown in red. The initial V α,E
0 is shown in green, superimposing the

particle with the smallest energy.

Synthetic Data

In this section we discuss numerical tests for synthetic point clouds in dimensions up to
d = 200 for p = 2 and 0 < p < 2. In Figures 6 to 9 we report plots of energies in d = 2 for
different values of p.

We test the method for point clouds laying on Nsp = 25 nearly parallel one dimensional
subspaces and point clouds laying Nsp = 25 randomly chosen subspaces, each with Gaussian
noise of 0.01. The latter point clouds do not have an obvious principal direction, as opposed
to the case of nearly parallel subspaces (see Figure 10 on the right). In this case a larger
number of initial particles is needed to find the minimizer.

Case p = 2

For the case p = 2 we compare the minimizer V α,E
nT computed by KV-CBO with the

minimizer v∗ computed by SVD. In Figure 11 we plot the average error |V α,E
n − v∗| for

n = 0, ..., nT for 25 runs. In the plot on the right we show the success rate for different
numbers of particles for different dimensions. We count a run as successful if

min{|V α,E
nT
− v∗|, |V α,E

nT
+ v∗|} ≤ 0.01 (2.29)

where nT is the final time step. We observe that for point clouds with nearly parallel one-
dimensional subspaces, a very small number of particles already yields good results. For the
point clouds with randomly chosen one-dimensional subspaces, corresponding to a flatter
spectrum, the number of particles N has to be chosen larger in order to obtain good results.
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Figure 10: Left: Success rate for different values of σ and N in dimensions d = 10. Choosing
a larger number of particles clearly widens the window from which σ can be
chosen. Note that for σ = 0 (deterministic Kuramoto-Vicsek model) we have a
success rate of nearly 60% for N = 2500 particles. Right: Singular value decay
of the point cloud with Nsp = 25 nearly parallel (blue) and randomly chosen
one-dimensional subspaces (green).

Still, KV-CBO can certainly be considered an interesting, robust, and efficient alternative
method for computing SVD’s.

Dimension d = 10 d = 100 d = 200

N0 = 1000 N0 = 2500 N0 = 5000

Relative Error ≤ 10−2 Rate 100% 100% 100%

Rate 63% 13% 0%

Ep,0(V α,E
nT ) ≤ Ep,0(VFMS) Absolute Error 2.8413e− 12 2.0026e− 12 −

Relative Error 7.6774e− 15 5.8669e− 15 −
Rate 37% 87% 100%

Ep,0(V α,E
nT ) > Ep,0(VFMS) Absolute Error 2.9066e− 12 71218e− 12 1.3387e− 11

Relative Error 7.9272e− 15 2.0745e− 14 3.9490e− 14

Table 3: Numerical comparison of KV-CBO and the FMS method for a point cloud with
Nsp = 25 nearly parallel one-dimensional subspaces with Gaussian noise of 0.01.
The relative error is defined in (2.31). The results are averaged over 100 runs.
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Dimension d = 10 d = 100 d = 200

N0 = 1000 N0 = 2500 N0 = 5000

Relative Error ≤ 10−2 Rate 100% 100% 100%

Rate 79% 14% 15%

Ep,0(V α,E
nT ) ≤ Ep,0(VFMS) Absolute Error 0.0814 4.6205 5.9582

Relative Error 4.4532e− 5 0.0024 0.0031

Rate 21% 86% 85%

Ep,0(V α,E
nT ) > Ep,0(VFMS) Absolute Error 0.3312 0.5628 1.4965

Relative Error 1.8466e− 4 2.8669e− 4 7.6525e− 4

Table 4: Numerical comparison of KV-CBO and the FMS method for a point cloud with
Nsp = 25 randomly chosen one-dimensional subspaces with Gaussian noise of 0.01.
The relative error is defined in (2.31). The results are averaged over 100 runs.

Case p = 1

For 0 < p < 2 the energy Ep(v) is not smooth enough to fulfill the regularity conditions of
Assumptions 3.1 below. In order to fit the experiment to our theoretical findings, we may
consider the smoothed energy

Ep,δ(v) =
M∑

i=1

(|xi − 〈xi, v〉v|2 + δ2)p/2 (2.30)

where we chose δ = 10−7 (as δ > 0 is chosen so small, it is actually irrelevant from a
numerical precision point view). We again test KV-CBO on synthetic point clouds with
Nsp = 25 one-dimensional subspaces with 100 points each, thus M = 2500. We run the
experiment 100 times in dimension d ∈ {10, 100, 200} and count one run as successful if the
relative error of the function values is less than 1%, that is,

|Ep,0(V α,E
nT )− Ep,0(VFMS)|

min{Ep,0(V α,E
nT ), Ep,0(VFMS)}

≤ 10−2, (2.31)

where VFMS denotes the minimum of Ep,0(v) computed by the FMS method. We note that

V α,E
nT is the minimizer of the function Ep,δ(v) for δ 6= 0 computed by KV-CBO. We further

report the average absolute and relative errors of the function values for the runs for which
Ep,0(V α,E

nT ) ≤ Ep,0(VFMS) as well as Ep,0(V α,E
nT ) > Ep,0(VFMS). In the stopping creterium

for KV-CBO (2.9) we chose ε = 10−10, as maximal amount of iterations nT = 104, and
use Algorithm 2 to speed up the method. For the FMS method we chose ε = 10−10 and
nT = 102, as FMS method converges to a good minimizer after fewer iterations than KV-
CBO. In Tables 3 and 4 we show that (2.31) is fulfilled in 100% of the cases. In other words:
KV-CBO and state of the art FMS perform equally good on point clouds with nearly parallel
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one-dimensional subspaces as well as randomly chosen one-dimensional subspaces. For the
former the maximal relative error is in the order of 10−14 in dimension d = 200.

Figure 11: Average error for a point cloud with Nsp = 25 nearly parallel (top left) respec-
tively randomly chosen (bottom left) one-dimensional subspaces in dimension
d = 200 with Gaussian noise of 0.1 for different numbers of particles. We chose
α = 2 · 1015, σ = 0.08,∆t = 0.25. The curve for N = 5000 particles has been
calculated with Algorithm 2. Right: success rate for the same point clouds in
dimension d ∈ {10, 100, 200}. The results have been averaged 25 times and we
count one run as successful if |V α,E

nT − v∗| ≤ 0.01.

Robust computation of eigenfaces

In this section we discuss the numerical results of KV-CBO on real-life data. We chose a
subset ofM = 421 similar looking pictures of the 10K US Adult Faces Database (Bainbridge
et al., 2013). We converted this subset to gray scale images and reduced the size of each
picture by factor 4. We finally extract at a subset of M = 421 pictures of size 64 × 45,
which yields a point cloud X ∈ R

2880×421.

Figure 12: Samples from the 10K US Adult Faces Database (Bainbridge et al., 2013) and
one instance of outlier.
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The eigenfaces computed by SVD and KV-CBO are shown in Figure 13(a) and Fig-
ure 13(b). The computed eigenfaces are visually indistinguishable and the final error is in
the order of 10−3. We then added 6 outliers (pictures of different plants and animals on
a white background) to the point cloud and again computed the eigenface by SVD (see
Figure 14(c)) and by KV-CBO with p = 1 and N = 5000 particles (see Figure 13(d)). The
eigenface computed by SVD still retain some features, but the difference to the original
eigenface (without outliers) is clearly perceivable. Instead, the eigenface computed by the
KV-CBO still looks very similar to the eigenface of the point cloud without outliers. We
quantify the accuracy of the results by Peak Signal-to-Noise Ratio (see caption of Figure
13). We then added further 6 outliers (amounting to a total of 12 outliers) to the point
cloud and again computed the eigenface by SVD (see Figure 13(e)) and KV-CBO with
p = 0.5 and N = 50000 particles (see Figure 13(f)). The difference of both eigenfaces to
the original eigenface (without outliers) is clearly visible. The eigenface computed by SVD
lost most of the original features. On the other hand, the eigenface computed by KV-CBO
still retains the main features. We reiterate that the energy landscape Ep,δ(v) is much more
complex for 0 < p < 1 than for p ∈ [1, 2] (see Figures 6 to 9). An increase of the number of
particles N did not yield better results.

(a) (b) (c) (d) (e) (f)

Figure 13: Eigenface for the point cloud of faces without outliers computed by SVD (a),
and KV-CBO (b). Eigenface for point cloud with 6 outliers computed by SVD
(c), and KV-CBO with p = 1 (d). Eigenface for point cloud with 12 outliers
computed by SVD (e), and KV-CBO with p = 0.5 (f). We used the following
parameters: α = 2 · 1015, λ = 1, σ = 0.019,∆t = 0.25, T = 25000, N = 5000
and Nmin = 150 (see algorithm 2) for (b) and (d). For (f) we used p = 0.5,
N = 50000 and Nmin = 5000. For p < 2 we used δ = 10−7. For the case (b)
the error to the SVD eigenface was 0.00071. The Peak Signal-to-Noise Ratio is:
61.4214 for (a) and (b), 15.9764 for (a) and (c), 20.7344 for (a) and (d), 12.3109
for (a) and (e) and 14.2892 for (a) and (f).
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Figure 14: Average error (blue) and variance (red) for the computation of the eigenface (b)
in the figure above.

3. Global optimization guarantees

3.1 Main result

In this section, we address the convergence of the stochastic Kuramoto-Vicsek particle
system (1.2) to global minimizers of some cost function E . In view of the already established
mean-field limit result (1.12), it is actualy sufficient to analyze the large time behavior of
the solution ρ(t, v) to the corresponding mean-field PDE (1.10). Let us rewrite (1.10) as

∂tρt = ∆Sd−1(κtρt) +∇Sd−1 · (ηtρt) , (3.1)

where κt := σ2

2 |v − vα,E(ρt)|2 ∈ R and ηt := λ〈vα,E(ρt), v〉v − λvα,E(ρt) ∈ R
d. We also

introduce the auxiliary self-consistent nonlinear SDE

dV t = λP (V t)vα,E(ρt)dt+ σ|V t − vα,E(ρt)|P (V t)dBt −
(d− 1)σ2

2
(V t − vα,E(ρt))2

V t

|V t|2
dt ,

(3.2)

with the initial data V 0 distributed according to ρ0 ∈ P(Sd−1). Here ρt = law(V t) is also
the unique solution of the PDE (3.1), see (Fornasier et al., 2020, Section 2.3). The well-
posedness of (3.2) is shown in (Fornasier et al., 2020, Theorem 2.2). We now define the
expectation and variance of ρt as

E(ρt) :=

∫

Sd−1

vdρt(v) V (ρt) :=
1

2

∫

Sd−1

|v − E(ρt)|2dρt(v). (3.3)

In the following, we show that, under suitable smoothness requirements, see Assumptions
3.1 below, for any ǫ > 0 there exists suitable parameters α, λ, σ and well-prepared initial
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distributions ρ0 such that for T ∗ > 0 large enough the expected value of the distribution
E(ρT ∗) =

∫
vdρT ∗(v) is in an ǫ-neightborhood of a global minimizers v∗ of E . The con-

vergence rate is exponential in time and the rate depends on the parameters ǫ, α, λ, σ (see
Proposition 12). As mentioned in the introduction, this approximation together with (1.12)
and classical results of the convergence of numerical methods for SDE (Platen, 1999) yield
the convergence of Algorithm 1. In particular, we shall address the proof of the main result
Theorem 1 and of the quantitative estimate (1.15) at the end of this section.

In order to formalize the result we state our fundamental assumptions: Throughout this
section, the objective function E ∈ C2(Sd−1) satisfies the following properties

Assumption 3.1

1. E is bounded and 0 ≤ E := inf E ≤ E ≤ sup E =: E <∞;

2. ‖∇E‖∞ ≤ c1;

3. max
{
‖∇2E‖∞, ‖∆E‖∞

}
≤ c2;

4. For any v ∈ S
d−1 there exists a minimizer v∗ ∈ S

d−1 of E (which may depend on v)
such that it holds

|v − v∗| ≤ C0|E(v)− E|β ,
where β,C0 are some positive constants.

While the assumptions 1.-3. are all automatically fulfilled as soon as smoothness is provided,
requirement 4. - which we call inverse continuity assumption - is a bit more technical and
needs to be verified, depending on the specific application. In Section 2.4.1 we provided
the concrete example of the phase retrieval problem for which all the conditions are in fact
verifiable. The request of smoothness is exclusively functional to the proof of well-posedness
and mean-field limit (Fornasier et al., 2020) and the proof of asymptotic convergence. As
a matter of fact Algorithm 1 and Algorithm 2 are implementable even if E admits just
pointwise evaluations, e.g., E is just a continuous function with no further regularity. Below

we denote Cα,E = eα(E−E) and Cσ,d =
(d−1)σ2

2 .

Definition 5 For any given T > 0 and α > 0, we say that the initial datum and the
parameters are well-prepared if ρ0 ∈ Pac(Sd−1) ∩ L2(Sd−1), and parameters λ, d, β > 0,
0 < ε≪ 1, 0 < δ ≪ 1, 0 < θ < δ satisfy

C
2max{1,β}
α,E

(
V (ρ0) +

λCT
λθ − 4Cα,ECσ,d

δ
d−2
4

) 1
2
min{1,β}

+ εβ <
δ − θ
C∗

, (3.4)

V (ρ0) +
λCT

λθ − 4Cα,ECσ,d
δ

d−2
4 ≤ min

{
T−1‖ωαE ‖2L1(ρ0)

, T−1λ−2‖ωαE ‖4L1(ρ0)
,
3

8

}
(3.5)

and
λθ − 4Cα,ECσ,d > 0 , (3.6)

where CT is a constant depending only on λ, σ, T and ‖ρ0‖2, and C∗ > 0 is a constant
depending only on c1, β, C0 (c1, β, C0 are used in Assumption 3.1). Both CT and C∗ need
to be subsumed from the proof of Proposition 12 and they are both dimension independent.
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We shall prove first the following result.

Theorem 6 Let us fix ε1 > 0 small and assume that the initial datum ρ0 and parameters
{d, β, ε, δ, θ, λ, σ} are well-prepared for a time horizon T ∗ > 0 and parameter α∗ > 0 large
enough. Then E(ρT ∗) well approximates a minimizer v∗ of E, and the following quantitative
estimate holds

|E(ρT ∗)− v∗| ≤ ǫ, (3.7)

for

ǫ := C(C0, c1, β)

(
(1 + Cβα∗,E)

(
λCT ∗

λθ − 4Cα∗,ECσ,d
δ

d−2
4 + ε1

)min{1,β2}
+ εβ

)
. (3.8)

Remark 7 The conditions of well-preparation (3.4) require that the initial datum ρ0 is
both well-concentrated and at the same time vα∗,E(ρ0) already approximates well a global

minimizer. Technically this is enforced by requiring that the product C
2max{1,β}
α∗,E V (ρ0)

1/2 is
small for α∗ large. Of course, this condition is fulfilled for any initial density ρ0, which is
well-concentrated in the near of a global minimizer. Hence, the conditions (3.4) of well-
preparation of ρ0 may have a locality flavour. However, in the case the function E is
symmetric, i.e., E(v) = E(−v) (as it happens in numerous applications, in particular the
ones we present in this paper), then the condition is generically/practically satisfied at least
for one of the two global minimizers ±v∗, yielding essentially a global result.

The proof of Theorem 6 is based on showing the monotone decay of the variance V (ρt)
under the assumption of well-preparation (Definition 5) and simultaneously by using the
Laplace principle (1.7) and the inverse continuity property 4. of Assumptions 3.1 to derive
the quantitative estimate

∣∣∣∣
E(ρt)

|E(ρt)|
− v∗

∣∣∣∣ ≤ C(C0, c1, β)
(
(Cα,E)

βV (ρt)
β
2 + εβ

)
. (3.9)

The monotone decay of the variance is deduced by computing and estimating explicitly its
derivative:

d

dt
V (ρt) = −λV (ρt)〈E(ρt), vα,E〉 −

λ

2

v2α,E + 1

2
2V (ρt) +

λ

4

∫

Sd−1

(E(ρt)− v)2(v − vα,E)2dρt

+ Cσ,d

∫

Sd−1

(v − vα,E)2〈E(ρt), v〉dρt

≤ −λV (ρt)

(
〈E(ρt), vα,E〉+

v2α,E + 1

2

)

+
λ

4

∫

Sd−1

(E(ρt)− v)2(v − vα,E)2dρt + 4Cα,ECσ,dV (ρt) .

The idea is to balance all the terms on the right-hand side by using the parameters λ, σ in
such a way of obtaining a negative sign. This also requires to show that, as soon as V (ρt)
is small enough, |E(ρt)| ≈ 〈E, vα,E〉 ≈ |vα,E | ≈ 1 and these estimates are worked out in
Lemma 8. For ease of notation, for any vector v ∈ R

d we may write v2 to mean |v|2.
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3.2 Auxiliary lemmas

A simple computation yields 2V (ρt) = 1− E(ρt)
2. In particular, as soon as V (ρt) is small

E(ρt)
2 ≈ 1 and below we will silently apply the assignment E(E(ρt)) := E

(
E(ρt)
|E(ρt)|

)
by

normal extension. Since E(ρt) = E[V t], it follows from (3.2) that

d

dt
E(ρt) = −

∫

Sd−1

ηtdρt −
∫

Sd−1

(d− 1)σ2

2
(v − vα,E)2vdρt. (3.10)

In the following lemma, we summarize some useful estimates of vα,E(ρt), E(ρt) and
V (ρt). Here we recall the definition

vα,E(ρt) :=

∫
Sd−1 vω

E
α(v)dρt(v)

‖ωE
α‖L1(ρt)

=

∫
Sd−1 ve

−αE(v)dρt(v)

‖e−αE‖L1(ρt)
. (3.11)

Lemma 8 Let vα,E(ρt) be defined as above. It holds that

1.
∫
Sd−1 |v − vα,E(ρt)|2dρt ≤ 4Cα,EV (ρt) and

∫
Sd−1 |v − vα,E(ρt)|dρt ≤ 2Cα,EV (ρt)

1
2 ;

2. vα,E(ρt)
2 ≥ 1− 4C2

α,EV (ρt);

3. |vα,E(ρt)− E(ρt)|2 ≤ (4C2
α,E − 2)V (ρt);

where Cα,E = eα(E−E).

Before proving the key estimate (3.9), we need a lower bound on the norm of the weights
‖ωαE ‖L1(ρt), which is ensured by the following auxiliary result.

Lemma 9 Let c1, c2 be the constants from the assumptions on E. Then we have

d

dt
‖ωαE ‖2L1(ρt)

≥ −b1(σ, d, α, c1, c2, E)V (ρt)− b2(d, α, c1, E)λV (ρt)
1
2 (3.12)

with 0 ≤ b1, b2 ≤ 1 and b1, b2 → 0 as α→∞.

3.3 Proof of the large time asymptotic result

Proposition 10 For any fixed T > 0, assume that

VT := sup
0≤t≤T

V (ρt) ≤ min

{
T−1‖ωαE ‖2L1(ρ0)

, T−1λ−2‖ωαE ‖4L1(ρ0)
,
3

8

}
.

Then for any ε > 0, there exists a minimizer v∗ of E such that
∣∣∣∣
E(ρt)

|E(ρt)|
− v∗

∣∣∣∣ ≤ C(C0, c1, β)
(
(Cα,E)

βV (ρt)
β
2 + εβ

)
for all t ∈ [0, T ] (3.13)

holds for any α > α0 with some α0 ≫ 1, where Cα,E = eα(E−E), and C0, c1, β are used in
Assumption 3.1. Moreover, as soon as |E(ρt)| ≥ 1/2

∣∣∣∣vα,E(ρt)−
E(ρt)

|E(ρt)|

∣∣∣∣
2

≤
(
8C2

α,E −
4

3

)
V (ρt) . (3.14)
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As it is needed in the proof of this proposition, for readers’ convenience, we give a brief
introduction of the Wasserstein metric in the following definition, we refer, e.g., to (Ambrosio
et al., 2008) for more details.

Definition 11 (Wasserstein Metric) For any 1 ≤ p < ∞, let Pp(Rd) be the space of
Borel probability measures on R

d with finite p moment. We equip this space with the Wasser-
stein distance

W p
p (µ, ν) := inf

{∫

Rd×Rd

|z − ẑ|p dπ(µ, ν)
∣∣ π ∈ Π(µ, ν)

}
(3.15)

where Π(µ, ν) denotes the collection of all Borel probability measures on R
d × R

d with
marginals µ and ν in the first and second component respectively. If µ, ν ∈ P(Rd) have
bounded support, then the 1-Wasserstein distance can be equivalently expressed in terms of
the dual formulation

W1(µ, ν) := sup

{∫

Rd

f(v)d(µ− ν)(v)|f ∈ Lip(Rd),Lip(f) ≤ 1

}
(3.16)

Proof (Proposition 10) It follows from Lemma 9 that

‖ωαE ‖2L1(ρt)
≥ ‖ωαE ‖2L1(ρ0)

− b1(α)
∫ t

0
V (ρs)ds− b2(α)λ

∫ t

0
V (ρs)

1
2ds

≥ ‖ωαE ‖2L1(ρ0)
− b1(α)VTT − b2(α)λV

1
2
TT

≥ ‖ωαE ‖2L1(ρ0)
− b1(α)‖ωαE ‖2L1(ρ0)

− b2(α)‖ωαE ‖2L1(ρ0)
,

where we have used the assumption

VT := sup
0≤t≤T

V (ρt) ≤ min
{
T−1‖ωαE ‖2L1(ρ0)

, T−1λ−2‖ωαE ‖4L1(ρ0)

}
. (3.17)

The above inequality implies

− 1

α
log ‖ωαE ‖L1(ρt) ≤ −

1

α
log ‖ωαE ‖L1(ρ0) −

1

2α
log (1− b1(α)− b2(α)) .

The Laplace principle states

lim
α→∞

− 1

α
log ‖ωαE ‖L1(ρ0) = E , (3.18)

which implies the existence of an α1 ≫ 1 such that any α > α1 it holds

− 1

α
log ‖ωαE ‖L1(ρ0) − E <

ε

2
(3.19)

for any ε > 0. Together with the fact that b1(α), b2(α)→ 0 as α→∞, it yields that

− 1

α
log ‖ωαE ‖L1(ρt) − E ≤ −

1

α
log ‖ωαE ‖L1(ρ0) − E −

1

2α
log (1− b1(α)− b2(α)) ≤ ε ,
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for any α > α2 with some α2 ≫ 1. Let us assume that VT ≤ 3
8 , then

1

2
≤ |E(ρt)| ≤ 1 .

By the dual representation of 1-Wasserstein distance W1, we know that

∣∣∣∣‖ω
α
E ‖L1(ρt) − ωαE

(
E(ρt)

|E(ρt)|

)∣∣∣∣ =
∣∣∣∣
∫

Rd

e−αE(v)d(ρt(v)− δ E(ρt)
|E(ρt)|

(v))

∣∣∣∣

≤αe−αE‖∇E‖∞W1(ρt, δ E(ρt)
|E(ρt)|

) ≤ αc1e−αEW2(ρt, δ E(ρt)
|E(ρt)|

) ≤ 2

√
2

3
αc1e

−αEV (ρt)
1
2 . (3.20)

Here we have used the fact that

W2(ρt, δ E(ρt)
|E(ρt)|

)2 ≤
∫

Sd−1

∣∣∣∣v −
E(ρt)

|E(ρt)|

∣∣∣∣
2

dρt = 2− 2|E(ρt)| =
4V (ρt)

1 + |E(ρt)|
≤ 8

3
V (ρt) . (3.21)

Above (3.20) leads to

∣∣∣∣−
1

α
log ‖ωαE ‖L1(ρt) − E

(
E(ρt)

|E(ρt)|

)∣∣∣∣ =
∣∣∣∣−

1

α

(
log ‖ωαE ‖L1(ρt) − logωαE

(
E(ρt)

|E(ρt)|

))∣∣∣∣

≤e
αE

α

∣∣∣∣‖ω
α
E ‖L1(ρt) − ωαE

(
E(ρt)

|E(ρt)|

)∣∣∣∣ ≤ 2

√
2

3
c1Cα,EV (ρt)

1
2 .

Hence we have

0 ≤ E
(
E(ρt)

|E(ρt)|

)
− E ≤ E

(
E(ρt)

|E(ρt)|

)
− −1

α
log ‖ωαE ‖L1(ρt) +

−1
α

log ‖ωαE ‖L1(ρt) − E

≤ 2

√
2

3
c1Cα,EV (ρt)

1
2 + ε ,

which yields that

∣∣∣∣
E(ρt)

|E(ρt)|
− v∗

∣∣∣∣ ≤ C0

∣∣∣∣E
(
E(ρt)

|E(ρt)|

)
− E

∣∣∣∣
β

≤ C(C0, c1, β)
(
(Cα,E)

βV (ρt)
β
2 + εβ

)
.

by the inverse continuity 4. in Assumption 3.1, where v∗ is a minimizer of E . Next we
compute

∣∣∣∣vα,E(ρt)−
E(ρt)

|E(ρt)|

∣∣∣∣
2

=

∫

Sd−1

∣∣∣∣vα,E(ρt)− v + v − E(ρt)

|E(ρt)|

∣∣∣∣
2

dρt(v)

=

∫

Sd−1

|vα,E(ρt)− v|2dρt +
∫

Sd−1

∣∣∣∣v −
E(ρt)

|E(ρt)|

∣∣∣∣
2

dρt + 2

∫

Sd−1

〈
vα,E(ρt)− v, v −

E(ρt)

|E(ρt)|

〉
dρt

≤4C2
α,EV (ρt) +

8

3
V (ρt) + 2|E(ρt)| − 2 +

(
2− 2

|E(ρt)|

)
〈vα,E(ρt), E(ρt)〉

≤4C2
α,EV (ρt) +

8

3
V (ρt)− 2V (ρt) +

(
2− 2

|E(ρt)|

)
〈vα,E(ρt), E(ρt)〉
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=(4C2
α,E +

2

3
)V (ρt) +

(
2− 2

|E(ρt)|

)
〈vα,E(ρt), E(ρt)〉 ,

where we have used (3.21) and 1
2 ≤ |E(ρt)| ≤ 1. Notice that

(
2− 2

|E(ρt)|

)
〈vα,E(ρt), E(ρt)〉 = (2− 2

|E(ρt)|
)
vα,E(ρt)

2 + E(ρt)
2 − |vα,E(ρt)− E(ρt)|2
2

≤
(

2

|E(ρt)|
− 2

) |vα,E(ρt)− E(ρt)|2
2

≤ (4C2
α,E − 2)V (ρt) .

Thus we have ∣∣∣∣vα,E(ρt)−
E(ρt)

|E(ρt)|

∣∣∣∣
2

≤
(
8C2

α,E −
4

3

)
V (ρt) .

Hence we complete the proof.

The next ingredient is proving the monotone decay of the variance V (ρt) under assumptions
of well-preparation (see Definition 5).

Proposition 12 Let us fix any T > 0 and choose α large enough and assume that the
parameters and the initial datum are well-prepared in the sense of Definition 5. Then it
holds

V (ρt) ≤ V (ρ0)e
−(λθ−4Cα,ECσ,d)t +

λCT
λθ − 4Cα,ECσ,d

δ
d−2
4 for all t ∈ [0, T ] . (3.22)

Proof Let us compute the derivative of the variance (where Cσ,d =
(d−1)σ2

2 )

d

dt
V (ρt) =

1

2

d

dt

(∫

Sd−1

v2dρt − E(ρt)
2

)
=

1

2

d

dt

(
1− E(ρt)

2

)
= −E(ρt)

d

dt
E(ρt)

= E(ρt)

∫

Sd−1

ηtdρt + Cσ,d

∫

Sd−1

(v − vα,E)2〈E(ρt), v〉dρt

= λ

∫

Sd−1

〈vα,E , v〉〈E(ρt), v〉 − 〈E(ρt), vα,E〉dρt + Cσ,d

∫

Sd−1

(v − vα,E)2〈E(ρt), v〉dρt .

Notice that

〈E(ρt), v〉 =
1

2
(E(ρt)

2 + v2 − |E(ρt)− v|2) =
1

2
(E(ρt)

2 + 1− (E(ρt)− v)2) .

Then one has

d

dt
V (ρt) = λ

(
E(ρt)

2 + 1

2
− 1

)
〈E(ρt), vα,E(ρt)〉 −

λ

2

∫

Sd−1

〈vα,E , v〉(E(ρt)− v)2dρt

+ Cσ,d

∫

Sd−1

(v − vα,E)2〈E(ρt), v〉dρt

= −λV (ρt)〈E(ρt), vα,E(ρt)〉 −
λ

2

∫

Sd−1

〈vα,E , v〉(E(ρt)− v)2dρt

+ Cσ,d

∫

Sd−1

(v − vα,E)2〈E(ρt), v〉dρt ,
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where we have used the fact that 2V (ρt) = 1− E(ρt)
2. Moreover, since

〈vα,E , v〉 =
1

2
(v2α,E + v2 − |vα,E − v|2) =

1

2
(v2α,E + 1− (vα,E(ρt)− v)2)

and
∫
Sd−1(E(ρt)− v)2dρt = 2V (ρt), we have

d

dt
V (ρt) = −λV (ρt)〈E(ρt), vα,E(ρt)〉 −

λ

2

v2α,E + 1

2
2V (ρt)

+
λ

4

∫

Sd−1

(E(ρt)− v)2(v − vα,E)2dρt + Cσ,d

∫

Sd−1

(v − vα,E)2〈E(ρt), v〉dρt

≤ −λV (ρt)

(
〈E(ρt), vα,E(ρt)〉+

v2α,E + 1

2

)

+
λ

4

∫

Sd−1

(E(ρt)− v)2(v − vα,E)2dρt + 4Cα,ECσ,dV (ρt) ,

where we have used estimate (4.3) in the last inequality.
Next we observe that
∫

Sd−1

(v − vα,E)2dρt =
∫

Sd−1

(v − E(ρt) + E(ρt)− vα,E)2dρt

=

∫

Sd−1

(v − E(ρt))
2dρt + (E(ρt)− vα,E)2 = 2V (ρt) + E(ρt)

2 + v2α,E − 2〈E(ρt), vα,E〉 .

So it holds

〈E(ρt), vα,E〉 = V (ρt) +
E(ρt)

2 + v2α,E
2

− 1

2

∫

Sd−1

(v − vα,E)2dρt

≥ V (ρt) +
E(ρt)

2 + v2α,E
2

− 2Cα,EV (ρt) , (3.23)

where we have used (4.3) again. Thus we obtain that

d

dt
V (ρt) ≤ −λV (ρt)

(
V (ρt) +

2v2α,E + 1 + E(ρt)
2

2
− 2Cα,EV (ρt)

)
+ 4Cα,ECσ,dV (ρt)

+
λ

4

∫

Sd−1

(E(ρt)− v)2(v − vα,E)2dρt

= −λV (ρt)
(
v2α,E + 1− 2Cα,EV (ρt)

)

+
λ

4

∫

Sd−1

(E(ρt)− v)2(v − vα,E)2dρt + 4Cα,ECσ,dV (ρt)

≤ −λV (ρt)
(
2− 2Cα,EV (ρt)− 4C2

α,EV (ρt)
)

+
λ

4

∫

Sd−1

(E(ρt)− v)2(v − vα,E)2dρt + 4Cα,ECσ,dV (ρt) ,

where we have used 2V (ρt) = 1 − E(ρt)
2 in the second equality and 2) from Lemma 8 in

the last inequality.
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Let v∗ be the minimizer used in Proposition 10, and one has
∫

Sd−1

(E(ρt)− v)2(v − vα,E)2dρt

=

∫

Sd−1

(E(ρt)− v)2(v − v∗)2dρt +
∫

Sd−1

(E(ρt)− v)2(vα,E − v∗)2dρt

+ 2

∫

Sd−1

(E(ρt)− v)2〈v − v∗, v∗ − vα,E〉dρt

≤
∫

Sd−1

(E(ρt)− v)2(v − v∗)2dρt + 2

(
vα,E −

E(ρt)

|E(ρt)|

)2 ∫

Sd−1

(E(ρt)− v)2dρt

+ 2

(
E(ρt)

|E(ρt)|
− v∗

)2 ∫

Sd−1

(E(ρt)− v)2dρt

+ 4

∣∣∣∣vα,E −
E(ρt)

|E(ρt)|

∣∣∣∣
∫

Sd−1

(E(ρt)− v)2dρt + 4

∣∣∣∣
E(ρt)

|E(ρt)|
− v∗

∣∣∣∣
∫

Sd−1

(E(ρt)− v)2dρt

≤
∫

Sd−1

(E(ρt)− v)2(v − v∗)2dρt + 2(8C2
α,E −

4

3
)V (ρt)

2

+ 2C(C0, c1, β)
(
(Cα,E)

2βV (ρt)
β + ε2β

)
V (ρt)

+ 4(8C2
α,E −

4

3
)
1
2V (ρt)

1
2V (ρt) + 4C(C0, c1, β)

(
(Cα,E)

βV (ρt)
β
2 + εβ

)
V (ρt) ,

where we have used estimate (3.14) and Proposition 10 for α > α0. This implies that

d

dt
V (ρt) ≤ −λV (ρt)

(
2− 2Cα,EV (ρt)− 4C2

α,EV (ρt)−
1

2
(8C2

α,E −
4

3
)V (ρt)

− 1

2
C(C0, c1, β)

(
(Cα,E)

2βV (ρt)
β + ε2β

)
− (8C2

α,E −
4

3
)
1
2V (ρt)

1
2

− C(C0, c1, β)
(
(Cα,E)

βV (ρt)
β
2 + εβ

))

+
λ

4

∫

Sd−1

(E(ρt)− v)2(v − v∗)2dρt + 4Cα,ECσ,dV (ρt)

≤ −λV (ρt)
(
2− C∗

(
C

2max{1,β}
α,E Vmin 1/2{1,β}

T + εβ
))

+
λ

4

∫

Sd−1

(E(ρt)− v)2(v − v∗)2dρt + 4Cα,ECσ,dV (ρt) ,

where VT := sup
0≤t≤T

V (ρt) ≤ 1
2 , and C

∗ > 0 is a constant depending only on c1, β and C0.

Now we treat the term
∫
Sd−1(E(ρt)− v)2(v − v∗)2dρt, which can be split into two parts

∫

Sd−1

(E(ρt)− v)2(v − v∗)2dρt

=

∫

Dδ

(E(ρt)− v)2(v − v∗)2dρt +
∫

Sd−1/Dδ

(E(ρt)− v)2(v − v∗)2dρt ,

for some δ > 0, where

Dδ :=
{
v ∈ S

d−1
∣∣ − 1 ≤ 〈v, v∗〉 ≤ −1 + δ

}
.
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This means that

λ

4

∫

Sd−1/Dδ

(E(ρt)− v)2(v − v∗)2dρt ≤ λ(2− δ)V (ρt) . (3.24)

Hence one can conclude

d

dt
V (ρt) ≤ −λV (ρt)

(
δ − C∗

(
C

2max{1,β}
α,E Vmin 1/2{1,β}

T + εβ
))

+
λ

4

∫

Dδ

(E(ρt)− v)2(v − v∗)2dρt + 4Cα,ECσ,dV (ρt) , (3.25)

where we emphasize that δ > 0.

Notice that Dδ can be understood as a small cap on the sphere that is on the opposite
side of the minimizer v∗. By the assumption that ρ0 ∈ L2(Sd−1) (see Definition 5), we have
the solution ρt is not just a measure but it is a function, and for any given T > 0 it satisfies
ρ ∈ L∞([0, T ];L2(Sd−1)). This can be proved through a standard argument of PDE theory,
which we provide in Theorem 13. Thus we have

∫

Dδ

dρt =

∫

Dδ

ρt(v)dv ≤ ‖ρt‖2|Dδ|
1
2 ≤ C(T )(Aδ)

1
2 , (3.26)

where Aδ denotes the area of the hyperspherical cap Dδ, which satisfies the formula

Aδ =
1

2
adI2δ−δ2

(
d− 1

2
,
1

2

)
≤ C π

d
2

Γ(d2)

(d− 1)
1
2

d− 2
δ

d−2
2 , (3.27)

where ad represents the area of a unit ball and Ix(a, b) is the regularized incomplete beta
function. Note that

Aδ → 0 as δ → 0 . (3.28)

This means that for d sufficiently large it holds

∫

Dδ

(E(ρt)− v)2(v − v∗)2dρt ≤ 16

∫

Dδ

dρt(v) ≤ C(λ, σ, T, ‖ρ0‖2)(Aδ)
1
2 ≤ 4CT δ

d−2
4 .

Therefore we have

d

dt
V (ρt) ≤ −λV (ρt)

(
δ − C∗

(
C

2max{1,β}
α,E Vmin 1/2{1,β}

T + εβ
))

+ 4Cα,ECσ,dV (ρt) + λCT δ
d−2
4

(3.29)

for all t ∈ [0, T ]. Let us assume that

δ−C∗
(
C

2max{1,β}
α,E Vmin 1/2{1,β}

T + εβ
)
≥ θ > 0, i.e. 0 ≤ C2max{1,β}

α,E Vmin 1/2{1,β}
T +εβ ≤ δ − θ

C∗
.

(3.30)
Then we have

d

dt
V (ρt) ≤ −(λθ − 4Cα,ECσ,d)V (ρt) + λCT δ

d−2
4 ,
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which leads to

V (ρt) ≤ V (ρ0)e
−(λθ−4Cα,ECσ,d)t +

λCT
λθ − 4Cα,ECσ,d

δ
d−2
4 for all t ∈ [0, T ] ,

which is contractive as soon as λθ > 4Cα,ECσ,d. We are left to verify the assumptions that

VT ≤ min
{
T−1‖ωαE ‖2L1(ρ0)

, T−1λ−2‖ωαE ‖4L1(ρ0)
, 38

}
and (3.30), which hold if we assume that

C
2max{1,β}
α,E

(
V (ρ0) +

λCT
λθ − 4Cα,ECσ,d

δ
d−2
4

) 1
2
min{1,β}

+ εβ <
δ − θ
C∗

,

V (ρ0) +
λCT

λθ − 4Cα,ECσ,d
δ

d−2
4 ≤ min

{
T−1‖ωαE ‖2L1(ρ0)

, T−1λ−2‖ωαE ‖4L1(ρ0)
,
3

8

}
.

Hence we complete the proof.

Proof (Theorem 6) Proposition 12 implies that for any ε1 > 0, there exists some T ∗

large enough such that

V (ρT ∗) ≤ ε0 :=
λCT ∗

λθ − 4Cα,ECσ,d
δ

d−2
4 + ε1.

Moreover 1 ≥ |E(ρT ∗)| =
√

1− 2V (ρT ∗) ≥
√
1− 2ε0 and

∣∣∣∣E(ρT ∗)− E(ρT ∗)

|E(ρT ∗)|

∣∣∣∣ ≤
1− |E(ρT ∗)|
|E(ρT ∗)| ≤ 1−

√
1− 2ε0√

1− 2ε0
≤ 2ε0,

as soon as 0 ≤ ε0 ≤ 1
4(
√
5 − 1), which is fulfilled as soon as δ, ε1 are chosen small enough.

These estimates, triangle inequality and Proposition 10 lead to the quantitative estimate

|E(ρT ∗)− v∗| ≤ C(C0, c1, β)

(
(1 + Cβα∗,E)

(
λCT ∗

λθ − 4Cα∗,ECσ,d
δ

d−2
4 + ε1

)min{1,β2}
+ εβ

)
.

Note once again here that ε, δ, and ε1 can be all chosen to be sufficiently small.

3.4 Proof of the main result

Let us finally address the proof of the main theorem of this paper.

Proof (Theorem 1) In order to show a concrete instance of the result, we develop the
proof for the case where {V i

n := V i
∆t,n : n = 0, . . . , nT ∗ ; i = 1 . . . N} are generated by the

iterative algorithm (1.8). However, any other numerical scheme of orderm can be considered
(Platen, 1999). The SDE system (1.2) is well-posed by (Fornasier et al., 2020, Theorem 2.1)
and it admits a pathwise strong solution V i

t , i = 1, . . . , N . The iterative algorithm (1.8)
is the discrete-time (projected Euler-Maruyama) approximation of the SDE system (1.2)
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with order of approximation m = 1/2 by classical results, e.g., see (Higham et al., 2002,
Theorem 2.2)

E

[
sup

n=0,...,nT∗

|V∆t,n − Vtn |2
]
≤ C̄1(∆t)

2m, (3.31)

for C̄1 which depends linearly on d and N , and possibly exponentially on T ∗, λ, and σ (see
in particular the estimates before (2.11) in the proof of (Higham et al., 2002, Theorem 2.2)).
Let us stress that the introduction of the post-projection V i

n+1 ← Ṽ i
n+1/|Ṽ i

n+1| to enforce
the dynamics on the sphere may produce an additional error of at most order ∆t because

∣∣∣Ṽ i
n+1 − Ṽ i

n+1/|Ṽ i
n+1|

∣∣∣
2
= |Ṽ i

n+1|2 + 1− 2|Ṽ i
n+1| = (|Ṽ i

n+1| − 1)2

and, in view of

Ṽ i
n+1 = V i

n +∆tP (V i
n)V

α,E
n + σ|V i

n − V α,E
n |P (V i

n)∆B
i
n −∆t

σ2

2
(V i
n − V α,E

n )2(d− 1)V i
n,

we obtain

E

[
(|Ṽ i

n+1| − 1)2
]

= E

[
(|Ṽ i

n+1| − |V i
n|)2

]

≤ E
[
((1 + 2(d− 1)σ2)∆t+ 2σ|∆Bi

n|)2
]

≤ (1 + 2(d− 1)σ2)2∆t2 + 4σ2d∆t+ 2σ(1 + 2(d− 1)σ2)∆t
√
d∆t

≤ C̄ ′
1∆t. (3.32)

By (Fornasier et al., 2020, Theorem2.2) we have also well-posedness of (1.11) with pathwise

strong solution V t. For V
i
0 drawn i.i.d. according to ρ0, i = 1 . . . , N , an application of

(Fornasier et al., 2020, Theorem 3.1) yields

sup
t∈[0,T ]

sup
i=1,...,N

E

[
|V i
t − V

i
t|2
]
≤ C̄2N

−1, (3.33)

for any T > 0 time horizon. As clarified in (Fornasier et al., 2020, Remark 3.2 and Lemma
3.1), the constant C̄2 depends at most linearly on d, and, as a worst case analysis, polyno-
mially on Cα∗,E , and exponentially on T . By law of large numbers, for ρt = law(V̄t) it holds

E

∣∣∣∣∣
1

N

N∑

i=1

V
i
T ∗ − E(ρT ∗)

∣∣∣∣∣

2

≤ C̄ ′
2N

−1. (3.34)

Under the assumptions of well-preparation, Theorem 6 yields

|E(ρT ∗)− v∗|2 ≤ C̄3ǫ, (3.35)

for C̄3 that depends polynomially on Cα∗,E . By combining the strong convergence (3.31),
the mean-field limit (3.33), the law of large numbers (3.34), and the large time aymptotics
(3.35) we conclude by multiple applications of Jensen inequality the final error estimate

E



∣∣∣∣∣
1

N

N∑

i=1

V i
∆t,nT∗ − v∗

∣∣∣∣∣

2
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≤8


E



∣∣∣∣∣
1

N

N∑

i=1

(V i
∆t,nT∗ − V i

T ∗)

∣∣∣∣∣

2

+ E



∣∣∣∣∣
1

N

N∑

i=1

(V i
T ∗ − V i

T ∗)

∣∣∣∣∣

2



+ E



∣∣∣∣∣
1

N

N∑

i=1

V
i
T ∗ − E(ρT ∗)

∣∣∣∣∣

2

+ |E(ρT ∗)− v∗|2




≤8C̄1(∆t)
2m + 8(C̄2 + C̄ ′

2)N
−1 + 8C̄3ǫ

2. (3.36)

4. Auxiliary Results and Proofs

4.1 Proofs of auxiliary lemmas

Proof (Lemma 2)
From (2.2) we get

〈V i
n+1, V

i
n+1〉 = 〈V i

n, V
i
n〉+ 〈Φ(∆t, V i

n, V
i
n+1, ξ

i
n),Φ(∆t, V

i
n, V

i
n+1, ξ

i
n)〉

+2〈Φ(∆t, V i
n, V

i
n+1, ξ

i
n), V

i
n〉.

Assuming 〈V i
n+1, V

i
n+1〉 = 〈V i

n, V
i
n〉 implies

0 = 〈Φ(∆t, V i
n, V

i
n+1, ξ

i
n),Φ(∆t, V

i
n, V

i
n+1, ξ

i
n)〉+ 2〈Φ(∆t, V i

n, V
i
n+1, ξ

i
n), V

i
n〉

= 〈Φ(∆t, V i
n, V

i
n+1, ξ

i
n),Φ(∆t, V

i
n, V

i
n+1, ξ

i
n) + 2V i

n〉
= 〈Φ(∆t, V i

n, V
i
n+1, ξ

i
n), V

i
n+1 + V i

n〉

where we used the fact that Φ(∆t, V i
n, V

i
n+1, ξ

i
n) = V i

n+1 − V i
n.

Proof (Lemma 8) Using Jensen’s inequality, one concludes that
∫

Sd−1

|v − vα,E(ρt)|2dρt ≤
1

‖ωE
α‖L1(ρt)

∫

Sd−1

∫

Sd−1

|v − u|2e−αE(u)dρt(v)dρt(u) . (4.1)

The expression on the right can be further estimated as follows

∫

Sd−1

|v − vα,E(ρt)|2dρt ≤ 4
e−αE

‖ωE
α‖L1(ρt)

V (ρt) (4.2)

≤ 4Cα,EV (ρt) , (4.3)

whereCα,E = eα(E−E). Similarly one has

∫

Sd−1

|v − vα,E(ρt)|dρt ≤
1

‖ωE
α‖L1(ρt)

∫ ∫
|v − u|e−αE(u)dρt(v)dρt(u) ≤ 2

e−αE

‖ωαE ‖L1(ρt)
V (ρt)

1
2

(4.4)

≤ 2Cα,EV (ρt)
1
2 .
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Next we notice that

1− vα,E(ρt)2 =
∫
Sd−1(v − vα,E(ρt)2)ωE

α(u)dρt(u)

‖ωE
α‖L1(ρt)

≤ 4C2
α,EV (ρt) , (4.5)

where we have used (4.3) in the last inequality. This implies estimate 2).
To obtain 3), we compute

|vα,E(ρt)− E(ρt)|2 =
∫

Sd−1

|vα,E(ρt)− v + v − E|2dρt(v)

=

∫

Sd−1

|vα,E(ρt)− v|2dρt +
∫

Sd−1

|v − E|2dρt + 2

∫

Sd−1

〈vα,E(ρt)− v, v − E〉dρt

≤4C2
α,EV (ρt) + 2V (ρt) + 2E2 − 2 = (4C2

α,E − 2)V (ρt) ,

which completes the proof.

Proof (Lemma 9) The derivative of ‖ωαE ‖L1(ρt) is given by

d

dt

∫

Sd−1

ωαE (v)dρt =

∫

Sd−1

σ2

2
|v − vα,E(ρt)|2∆Sd−1ωαE

− λ(〈vα,E(ρt), v〉v − vα,E(ρt)) · ∇Sd−1ωαE dρt

=

∫

Sd−1

σ2

2
|v − vα,E(ρt)|2∆Sd−1ωαE + λP (v)vα,E(ρt) · ∇Sd−1ωαE dρt

=: I+ II . (4.6)

The gradient and the Laplacian of the weight function can be computed as

∇Sd−1ωαE (v) = ∇ωαE
(
v

|v|

) ∣∣∣∣
|v|=1

=
1

|v|

(
I − vvT

|v|2
)
∇ωαE

∣∣∣∣
|v|=1

= −αe−αE(I − vvT )∇E
∣∣∣∣
|v|=1

(4.7)

and

∆Sd−1ωαE (v) = ∆ωαE

(
v

|v|

) ∣∣∣∣
|v|=1

=
∆ωαE
|v| − (d− 1)

v

|v|3 · ∇ω
α
E −

vvT

|v|3 : ∇2ωαE

∣∣∣∣
|v|=1

. (4.8)

We further have

∇ωαE = −αe−αE∇E ∈ R
d ; (4.9)

∇2ωαE = −αe−αE(−α∇E ⊗∇E +∇2E) ∈ R
d×d ; (4.10)

∆ωαE = α2e−αE |∇E|2 − αe−αE∆E ∈ R . (4.11)

We estimate the term I as follows

I =
σ2

2

∫
|v − vα,E |2

(
∆ωαE − (d− 1)v · ∇ωαE − v ⊗ v : ∇2ωαE

)
dρt(v)
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=
σ2

2

∫
|v − vα,E |2

[
α2|∇E|2 − α∆E + α(d− 1)v · ∇E

+ α

(
v ⊗ v : (−α∇E ⊗∇E) + v ⊗ v : ∇2E

)]
e−αEdρt(v)

≥ σ2

2

∫
|v − vα,E |2

[
− α∆E + α(d− 1)∇E · v − α2|∇E|2 − α|∇2E|

]
e−αEdρt(v)

≥ σ2

2

∫
|v − vα,E |2e−αE

[
− αc2 − α(d− 1)c1 − α2c21 − αc2

]
dρt(v)

≥ −2σ2αe−2αE(2c2 + (d− 1)c1 + αc21)
V (ρt)

‖ωE
α‖L1(ρt)

, (4.12)

where we have used that |∇E| ≤ c1; |∆E|, |∇2E| ≤ c2, estimate (4.2) and the property

v ⊗ v : ∇E ⊗∇E =
∑

i,j

vivj∂iE∂jE ≤ (
∑

i

∂iE)2 ≤ |∇E|2 . (4.13)

For the term II we get

II = −αλ
∫

Sd−1

e−αEP (v)vα,E(ρt) · (∇E − vvT∇E)dρt = −αλ
∫

Sd−1

e−αEP (v)vα,E(ρt) · ∇Edρt

= αλ

∫

Sd−1

e−αE(〈vα,E(ρt), v〉v − vα,E(ρt)) · ∇Edρt

≥ −αλc1e−αE
∫

Sd−1

|〈vα,E(ρt), v〉v − vα,E(ρt)|dρt , (4.14)

where in the second equality we have used the fact that v · P (v)vα,E(ρt) = 0. We observe
that∫

Sd−1

|〈vα,E(ρt), v〉v − vα,E(ρt)|dρt =
∫

Sd−1

|〈vα,E(ρt)− v, v〉v + v − vα,E(ρt)|dρt

≤
∫

Sd−1

|〈vα,E(ρt)− v, v〉v|dρt +
∫

Sd−1

|v − vα,E(ρt)|dρt

≤ 2

∫

Sd−1

|v − vα,E(ρt)|dρt ≤ 4
e−αE

‖ωαE ‖L1(ρt)
V (ρt)

1
2 , (4.15)

where we have used (4.4) in the last inequality. Thus we have

II ≥ −2αλc1e−αE
∫

Sd−1

|v − vα,E(ρt)|dρt(v) ≥ −4αλc1e−2αE V (ρt)
1
2

‖ωE
α‖L1(ρt)

. (4.16)

Combining the inequalities (4.12) and (4.16) yields

1

2

d

dt
‖ωE

α‖2L1(ρt)
= ‖ωE

α‖L1(ρt)
d

dt
‖ωE

α‖L1(ρt)

≥ −2σ2αe−2αE(2c2 + (d− 1)c1 + αc21)V (ρt)− 4αλc1e
−2αEV (ρt)

1
2

=: −b1(d, σ, α, c1, c2, E)V (ρt)− b2(α, c1, E)λV (ρt)
1
2 , (4.17)

where b1, b2 → 0 as α→∞.
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4.2 Well-posedness and regularity result

Theorem 13 For any given T > 0, let ρ0 ∈ L2(Sd−1). Then there exists a unique weak
solution ρ to equation (1.10). Moreover it has the following regularity

ρ ∈ L∞([0, T ];L2(Sd−1)) ∩ L2([0, T ];H1(Sd−1)) and ∂tρ ∈ L2([0, T ];H(Sd−1)′) . (4.18)

Proof The proof is standard and based on Picard’s iteration. We sketch below the details.
Let ρ0(x, t) ≡ ρ0(x). For n ≥ 0, let ρn+1 be the unique weak solution to following linear
equation

∂tρ
n+1
t = λ∇Sd−1 · ((〈vα,E(ρnt ), v〉v−vα,E(ρnt ))ρn+1

t )+
σ2

2
∆Sd−1(|v−vα,E(ρnt )|2ρn+1

t ), t > 0 ,

(4.19)
with the initial data ρn+1(x, 0) = ρ0(x) for any given ρ

n ∈ L∞([0, T ];L2(Sd−1))∩L2([0, T ];H1(Sd−1)).
For any given T > 0 and t ∈ [0, T ], it is easy to compute that

1

2

d

dt
‖ρn+1

t ‖22 +
σ2

2

∫

Sd−1

∇Sd−1ρn+1
t · ∇Sd−1(|v − vα,E(ρnt )|2ρn+1

t )dv

=− λ
∫

Sd−1

∇Sd−1ρn+1
t · (〈vα,E(ρnt ), v〉v − vα,E(ρnt ))ρn+1

t dv ≤ λ
∫

Sd−1

|∇Sd−1ρn+1
t |ρn+1

t dv .

This lead to

1

2

d

dt
‖ρn+1

t ‖22 ≤ λ
∫

Sd−1

|∇Sd−1ρn+1
t |ρn+1

t dv − σ2

2

∫

Sd−1

|∇Sd−1ρn+1
t |2|v − vα,E(ρnt )|2dv

− σ2
∫

Sd−1

∇Sd−1ρn+1
t · (v − vα,E(ρnt ))ρn+1

t dv

≤ −σ
2

2
min
t∈[0,T ]

ess inf
v∈Sd−1

|v − vα,E(ρnt )|2‖∇Sd−1ρn+1
t ‖22

+ ε‖∇Sd−1ρn+1
t ‖22 + C(ε, σ, λ)‖ρn+1

t ‖22
≤ C(ε, σ, λ)‖ρn+1

t ‖22 ,

where we have used Hölder’s inequality in the second inequality. Applying Gronwall’s
inequality it yields that

‖ρn+1
t ‖22 +

∫ T

0
‖∇Sd−1ρn+1

t ‖22dt ≤ C(T, σ, λ, ‖ρ0‖2) . (4.20)

We also get that for all ψ ∈ H1(Sd−1)

‖∂tρn+1
t ‖H1(Sd−1)′ = sup

‖ψ‖
H1≤1

|〈∂tρn+1
t , ψ〉|

≤ sup
‖ψ‖

H1≤1

∣∣∣∣〈∇Sd−1ψ, λ(〈vα,E(ρnt ), v〉v − vα,E(ρnt ))ρn+1
t +

σ2

2
∇Sd−1(|v − vα,E(ρnt )|2ρn+1

t )〉
∣∣∣∣

≤C(λ, σ)‖ρn+1
t ‖H1 .
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Thus we obtain ∂tρ
n+1 ∈ L2([0, T ];H(Sd−1)′). Note that this also implies that ρn+1 ∈

C([0, T ];L2(Sd−1)) due to the fact that

max
0≤t≤T

‖ρn+1‖2 ≤ C(‖ρn+1‖L2([0,T ],H1) + ‖∂tρn+1‖L2([0,T ];H(Sd−1)′)) ,

where C depends only T . Then by Aubin-Lions lemma, there exists a subsequence ρnk and
a function ρ ∈ L2([0, T ]× S

d−1) such that

ρnk → ρ in L2([0, T ]× S
d−1) as k →∞ . (4.21)

To finish the proof of existence we are left to pass the limit and verify ρ is the solution,
we omit the details here of this very standard concluding step (see, e.g., (Albi et al., 2017,
Theorem 2.4) for similar arguments).

As for the uniqueness, it has been obtained in (Fornasier et al., 2020, Section 2.2 and
Section 2.3) by using the uniqueness of the corresponding nonlinear SDE (3.2).

5. Conclusions

We presented the numerical implementation of a new consensus-based model for global
optimization on the sphere, which is inspired by the kinetic Kolmogorov-Kuramoto-Vicsek
equation. The main result of this paper is about the first and currently unique proof of
the convergence of consensus-based optimization to global minimizers provided conditions
of well-preparation of the initial datum. We present several numerical experiments in low
dimension and synthetic examples in order to illustrate the behavior of the method and
we tested the algorithms in high dimension against state of the art methods in a couple of
challenging problems in signal processing and machine learning, namely the phase retrieval
problem and the robust subspace detection. These experiments show that the algorithm
proposed in the present paper scales well with the dimension and is very versatile (one just
needs to modify the definition of the function E and the rest goes with the same code5!).
The algorithm is able to perform essentially as good as ad hoc state of the art methods and
in some instances it obtains quantifiably better results. The theoretical rate of convergence
is of order N−1 in the particle number N and it does not depend on the dimension. Mul-
tiplicative constants may depend at most linearly on the dimension d and, as worst case
scenario, exponentially in the parameter α. The rate of convergence is exponential and
explicitly computable from the parameters of the method, i.e., λθ− 2(d− 1)eα(E−E)σ2. The
numerical experiments in high dimension (d ≈ 3000) confirm that the method is in general
not affected by curse of dimensionality. Moreover, the requirement of well-preparation of
the initial datum (Definition 5) is due to the proving technique we are using based on the
monotone decay of the variance. In the case of symmetric cost functions E(v) = E(−v), the
well-preparation is by no means a severe restriction. We conjecture that with other proving
techniques the conditions of well-preparation can be removed, since in the numerical exper-
iments the initialization by uniform distribution yields to global convergence consistently.
In our view, this work represents a fundamental theoretical contribution to CBO methods

5. https://github.com/PhilippeSu/KV-CBO
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on the sphere, on which to build variations of the algorithm with the aim of further improv-
ing its complexity and convergence towards the global minimum. A promising perspective
in this direction is to consider the introduction of anisotropic noise in order to reduce de-
pendence of the parameters from the dimension and to better explore the search space in
case of very high dimensional problems (Carrillo et al., 2021). This and other algorithmic
improvements are left to future research.
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