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Consensus Bayesian assessment 
of protein molecular mass from 
solution X-ray scattering data
Nelly R. Hajizadeh, Daniel Franke, Cy M. Jeffries   & Dmitri I. Svergun

Molecular mass (MM) is one of the key structural parameters obtained by small-angle X-ray scattering 

(SAXS) of proteins in solution and is used to assess the sample quality, oligomeric composition and 

to guide subsequent structural modelling. Concentration-dependent assessment of MM relies on a 

number of extra quantities (partial specific volume, calibrated intensity, accurate solute concentration) 
and often yields limited accuracy. Concentration-independent methods forgo these requirements 

being based on the relationship between structural parameters, scattering invariants and particle 

volume obtained directly from the data. Using a comparative analysis on 165,982 unique scattering 
profiles calculated from high-resolution protein structures, the performance of multiple concentration-
independent MM determination methods was assessed. A Bayesian inference approach was developed 

affording an accuracy above that of the individual methods, and reports MM estimates together with a 
credibility interval. This Bayesian approach can be used in combination with concentration-dependent 

MM methods to further validate the MM of proteins in solution, or as a reliable stand-alone tool in 

instances where an accurate concentration estimate is not available.

For a structural biologist, the appeal of small-angle x-ray scattering (SAXS) relates to its ability to characterize 
widely diverse macromolecular systems in solution. With minimal sample preparation, SAXS can be used to 
extract structural parameters from folded as well as �exible or intrinsically disordered proteins ranging in molec-
ular masses (MM) from a few kDa to MDa1–3. �e MM is among the �rst parameters to be determined as it is used 
to assess the solution state of the sample, such as oligomerization, aggregation or degradation4, making it integral 
to the data-analysis process5. For example, for a monodisperse protein sample, the MM estimate can be directly 
related to the expected MM from the protein sequence. �is feature makes the MM uniquely suited for assessing 
the quality of the sample, the data and for guiding the modelling procedures1,6.

�ere are multiple ways of estimating the MM of proteins from SAXS data and they can be distinguished 
based on whether or not the protein concentration is required for the calculation. Concentration dependent 
methods utilize the property that the extrapolated forward scattering I(0) is directly proportional to the product 
of the particle volume and contrast squared. Here, the I(0) is combined with the partial speci�c volume, scattering 
density and sample concentration7 to arrive at the MM estimate. Of these values, only the I(0) is directly obtained 
from the SAXS experiment, for instance from Guinier approximation8. In addition, the intensity must be avail-
able on an absolute scale9, which necessitates the use of secondary scattering standards such as pure water10 or 
glassy carbon11. It is also possible to use the ratio of the I(0) from the sample and of a protein with known MM 
to extract the sample MM1,6, thereby assuming that the partial speci�c volume and contrast of the two proteins 
are identical. However, this procedure still requires an accurate determination of the concentration, in this case 
of both the sample and the protein standard. �is fact, together with the need for a separate measurement of a 
standard complicates the MM determination from concentration dependent methods, and reduces the accuracy 
of the MM, i.e. the degree to which the estimate di�ers from the actual MM, in practice to no better than 10%4.

Concentration independent methods on the other hand are self-contained in that they determine the MM 
from a single background-subtracted scattering pattern, requiring only the I(0) and radius of gyration Rg without 
the need for additional measurements of the concentration or standard samples. Generally, these methods utilize 
the fact that the scattering pro�le provides information about the geometrical parameters of the solute, namely 
the size and volume. �e available methods include the estimation of protein volume from the Porod invariant12, 
Qp, as implemented in the SAXSMoW tool, MoW13 and the empirical Volume of Correlation, Vc
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implemented in the program ScÅtter (http://www.bioisis.net/tutorial/9/). �e apparent volume obtained from 
Qp, can also be used to give an estimate of the MM, MMQp, and is described here (see below). �e MMQp method 
is not to be confused with the ‘rule-of-thumb’ MM estimates obtained from DATPOROD as implemented in 
ATSAS program suite15 which applies additional corrections to approximate the Porod volume, Vp (wherein 
MM ~ Vp/1.6)16. More recently, a classi�cation-based approach, Size&Shape17 was also proposed. For proteins, a 
MM can also be determined from ab-initio reconstructed bead models18,19. Each of these aforementioned meth-
ods employ di�erent assumptions about the particle structure and utilize variable angular ranges to estimate the 
MM. As a result, their implementations may yield varying performance on di�erent types of particles depending 
on their size, shape and experimental conditions. While each method may be applied to any data set, inherent 
di�erences might make one of them more applicable to certain cases (Fig. 1).

�e concentration independent approaches require only a simple set of structural parameters obtained from 
the SAXS data, making them convenient and practical tools. However, there is no single, reliable and universally 
applicable estimator. Here, we shall �rst assess the performance of MoW, Size&Shape, Vc and MMQp, excluding 
the ab-initio model approach, with calculated, noise-free, scattering patterns as well as on data with simulated 
experimental uncertainties. In addition, the e�ects of particle shape and misaligned background subtraction are 
evaluated to highlight the relative strengths and weaknesses of this class of methods. Building on the results of the 
comparison, we introduce a method which combines these diverse concentration independent MM estimators 
into a probability-based Bayesian20 estimate that consistently outperforms the individual approaches, regardless 
of data uncertainty, background mismatch or particle shape. �e Bayesian MM estimate is accompanied with a 
probability score and a credibility interval that emphasizes the precision of this estimate.

Materials and Methods
MM determination methods. Four concentration-independent MM determination methods were con-
sidered in this study. All methods implicitly assume that the proteins are unmodi�ed, i.e. without accounting for 
bound cofactors, metals or other post translational modi�cations.

MMQp. �e Porod invariant12, Qp, is an important characteristic of the scattering intensity and is de�ned as

Q s I s ds( )
(1)p

s 0

2∫= =

∞

where I(s) is the intensity at the momentum transfer s = 4π sin (θ)/λ, with λ being the wavelength of the X-ray and 
2θ the scattering angle. Assuming that the particle has a uniform scattering length density its excluded volume, 
Vp can be obtained via

Figure 1. MM determination methods perform di�erently on di�erent proteins. Four CRYSOL simulated 
SAXS pro�les (Log of relative intensity against s) of proteins with di�erent shape, the pro�les are o�set for 
clarity. �ese cases illustrates the variation in MM estimates of the various methods. Here each of MMQp (P), 
Vc (V), MoW (M) and Size&Shape (S) at least once provide a MM estimate with the smallest (yellow) and the 
largest (dark blue) relative error, respectively. However, the estimate provided by the Bayesian inference is 
consistently the best.
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However, the intensities at both limits of the integral in eq. (1) have to be determined via extrapolation. During 
data analysis, the I(0) can be determined using the Guinier approximation21. �e higher limit is evaluated up to 
sRg = 8 with an additional extrapolation to in�nity22. Finally, the mass estimate is obtained by dividing the vol-
ume by 1.37. �is method, that we call MMQp is not the same as that implemented in DATPOROD of the ATSAS 
suite16, which applies additional correction factors and yields otherwise worse MM estimates (see Supplementary 
Material S1).

SAXSMoW volume correction. �e approach by Fischer et al.13 also uses the scattering invariant in eq. (1) but 
with a di�erent integration range (see below), and similarly determines the protein volume using the relation 
stated in eq. (2). Using the I(s)/I(0) normalised intensities, eq. (1) is integrated in a �xed range up to pre-de�ned 
values of smax and empirical correction factors applied to convert the apparent volume V′ at di�erent smax into 
V. �ese correction factors were obtained from simulated SAXS pro�les calculated from 1145 proteins from 
the PDB. �e MM is determined by multiplying V by the average mass density of a typical unmodi�ed protein 
(0.83 × 103 kDa Å−3).

Volume of correlation. Rambo and Tainer14 de�ned the volume of correlation, Vc in Å2, based on the integrated 
intensity of a di�erent scattering invariant (eq. (3)) that relates to the correlation length lc eq. (4)
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�e authors made calculations of 9446 simulated SAXS pro�les from structures in the PDB where the inte-
gral was calculated up to a maximum value of smax = 0.5 Å−1. �e authors observed that the ratio Vc

2/Rg exhibits 
proportionality to the MM on a log-log plot, and an empirical relation was derived to relate the MM to the Vc.

Size&Shape. Contrary to the other methods, Size&Shape17 utilizes information about size and shape of a large 
number of known atomic structures to infer the MM of an unknown sample, based on size and shape information 
derived from experimental data. Here, a shape estimate is obtained by integration of the experimental data to an 
apparent Volume13 on a normalized Kratky scale23 up to sRg = 3, sRg = 4 and sRg = 5, respectively:

∫
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Here, similar V′ triplets for datasets indicate similar shape, but, due to normalization, they are independent of the 
actual size. To account for the size, the experimental Rg is included as additional information. To determine the 
MM, a weighted average of the �ve nearest neighbours to the point in four-dimensional size-and-shape space is 
given. �is space is populated by 165,982 unique protein structures sourced from the PDB.

Bayesian calculation. Bayesian inference is a way to infer the probabilities of potential values of an 
unknown quantity (hypotheses, H), by combining known pieces of information (evidence, E), by application 
of Bayes theorem. Here, we consider the MM of the protein to be the unknown quantity, and the MM estimates 
of the four concentration independent methods, MoW, Vc, Size&Shape and MMQp as source of information or 
evidence. We infer the probabilities of potential values of the MM (… H = 10 kDa, H = 11 kDa, … H = 99 kDa, 
H = 100 kDa, …) using Bayes theorem:
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�erefore, the probability that the MM of the protein might be a certain value (for instance P(H = 10 kDa)), 
given the evidence of the estimates, is obtained by multiplying the respective probabilities of the observed evi-
dence EMMQp, …, ESize&Shape given the hypothesis and a prede�ned starting probability for the hypothesis, the prior 
P(H). Here we take all possible MMs to be equally likely, and therefore the prior P(H) has a uniform distribution. 
�e P(E) in eq. (6) is a normalizing term, the sum of the evidence distributions. �is leaves the probabilities of the 
observed evidence P(E|H), in other words, converting a single MM to a probability distribution. �is procedure is 
conceptualized in Fig. 2a. Here, the actual MMs (as calculated by the program CRYSOL)24 that correspond to an 
estimate of MMMMQp = 50 kDa are coloured in red. �ese values are subsequently binned (see below) to produce a 
probability distribution (inset Fig. 2a). �is procedure is repeated for all methods, yielding a total of four so called 
likelihood distributions (P(EMMQp|H) * P(EVc|H) * P(EMoW|H) * P(ESize&Shape|H)).

Of note, the outlined calculations have to be repeated for all hypotheses H individually. A plot of P(H|E) vs. H 
then yields the most likely MM, i.e. the Bayesian MM estimate, and a credible MM range i.e. the interval where 
the real value may, most likely, be found (Fig. 2b).
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PDB query. To obtain a su�ciently large dataset required for testing and training, a total of 223,045 atomic 
coordinate �les describing protein structures from protein-only biological assemblies were obtained from the pro-
tein databank (PDB). Coordinate �les from NMR, EM and X-ray crystallography were used. In instances where 
the coordinates of metals, waters, small organic or inorganic molecules and other non-protein post-translational 
modi�cations (e.g., glycosylation) occurred, these were removed from the �les to produce a cohort of protein 
models containing only amino acids. Asymmetric units as well as biological assemblies with only a single model 
were selected, if they contained at least 50 amino acids. In instances where alternate conformations of amino acid 
side chains were included in the PDB �les, only the conformation listed �rst in the coordinate �le was used in the 
calculation of the SAXS pro�le. Finally, duplicates were removed reducing the initial pool of 223,045 protein PDB 
�les down to 165,982 unique protein structures.

Calculation of expected MM. CRYSOL24 was used to calculate the scattering pro�les from the atomic 
coordinates of each protein structure in the training and test sets up to s = 0.6 Å−1, using 1001 data points and 
30 spherical harmonics. In addition, CRYSOL reports the atomic MM from the atoms listed in the input atomic 
coordinate �les that includes the MM contributions from hydrogens that, although not routinely reported in PDB 
�les, are added to the atomic groups by CRYSOL to obtain the MM of the high-resolution structure.

The estimated MMs from MMQp, MoW, Vc and Size&Shape were calculated using the corresponding 
DATTOOLs from the ATSAS package so�ware suite15 that implement and report the methods of Fischer et al.,  
Rambo and Tainer and Franke et al.13,14,17. For Vc and MoW, the estimate given at s = 0.3 Å was used. Taking 
the estimation of Vc at s = 0.3 Å introduces a 0.6% error as opposed to using the estimate at s = 0.5 Å14. MMQp 

Figure 2. Overview of the method of Bayesian inference. (a) Scatter plot of actual MM (from CRYSOL) vs. the 
estimated MM (in this case, MMQp). Given the evidence of a MM from MMQp equal to 50 kDa, a distribution 
is created by extracting the actual MMs (from CRYSOL) of when MMQp = 50 kDa, shown as the red points, 
and the corresponding distribution in the inlet �gure. (b) Example of the Bayesian inference method for a 
randomly chosen protein, here PDB ID: 214l. �e probability distributions of the molecular weights for each 
of the methods (MMQp: blue; Vc: red; MoW: yellow; Size&Shape: purple) are combined through the Bayesian 
calculation (green distribution). �e most probable MM coincides with the actual MM (black line).
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was calculated with a DATMW available in ATSAS 2.8.3. �e Rg and I(0) were determined using DATRG16 for 
noise-free data and AUTORG16 for scattering patterns with simulated noise (see below). Absent values, or NaNs, 
can result if the Rg and I(0) are incorrect that causes the MM calculation to fail.

Binning. To adequately describe and utilize the probability distributions in numerical calculations a binning 
procedure has been applied. Indeed, the binning procedure is a requirement for the application of a Bayesian 
model in order to represent the MMs as distributions (see previous section on Bayesian calculation). In principle, 
binning implies loss of information. However in the context of MM from SAXS, individual Dalton di�erences 
are not meaningful as such precision is simply not experimentally accessible. As such, it is possible to adapt a 
straightforward discrete binning procedure in favour of a continuous representation without compromising the 
usability of the method. We adapted a binning procedure re�ecting the distribution of MMs of the PDB, with very 
small bin widths around the MM peak (40kDA) and wider bins for very large and smaller proteins (Fig. 3). To 
limit the loss of precision at the tails, linear bins were applied in the 5% extremes. Prior to evaluating the Bayesian 
inference, all bins receive a Laplace pseudo-count of one25 to counteract the cases where a zero-probability bin 
would greatly a�ect the outcome. �e discrete binning as described here emphasizes a uniform structure count 
over all bins (Fig. 3).

�ese bins are applied in many steps throughout the Bayesian calculation. Firstly, they are used for creating 
the MM distributions from each of the individual methods, as seen in the inset red distribution of Fig. 2a. �e 
bins are also used as hypothesis in the Bayesian calculation to determine the most likely MM; here, the estimated 
MM is taken as the centre of the bin, and the bin-width as the inherent uncertainty. Finally, when comparing the 
performance across the methods, the MM estimates from the test-data set (see below) are also binned, and the 
relative error then becomes the di�erence between the bin values.

Simulation of experimental conditions. To simulate experimental noise, the approach described by 
Franke et al.26 was adopted. In essence, the error column of an experimental dataset was used as the source for 
random variations. Pseudo-random numbers were transformed to approximate Gaussian distribution with the 
same point-wise variations, the output of which was applied as approximations of counting errors on the simu-
lated data producing the characteristic increase in noise at higher angles. For each simulated SAXS pro�le, �ve 
levels of simulated noise were applied and the MM estimates were re-calculated, yielding a total of 6 datasets. 
�e signal to noise ratios (SNRs) were obtained by taking the median of the intensity column divided by the 
error column resulting in the following �ve SNRs: 32, 11, 4, 2 and 1. To note, this de�nition of SNR was adapted 
to quantify the di�erence between the datasets and should not be taken as rigid de�nition of SNR in general for 
SAXS data.

Simulation of mismatching buffer conditions. SAXS pro�les of SNR = 4 were used to mimic solvent 
mismatch, i.e., to emulate bu�er over- and under-subtraction which is one of the major sources of systematic 
error for protein solution SAXS1. As incorrect bu�er subtraction manifests most prominently at the higher angles, 
the intensity between 0.4–0.6 Å was averaged, yielding a value Iaverage. Five proportions of Iaverage were then cal-
culated and used to over or under-subtract the full SAXS pro�le to di�ering degrees by adding or subtracting, 
respectively, the appropriate n% value of Iaverage (where n = 0.1, 0.2, 0.4, 0.6, 0.9) at each s. �is procedure resulted 
in an additional ten datasets.

Figure 3. Binning procedure. (a) �e distribution of molecular weights of the whole PDB, with very few small 
and large proteins. (b) �e same dataset as to the le�, but now log-normalized, with a peak at a MM of 40 kDa. 
(c) A visualization of the bins used in this study, populated with ~220,000 PDB entries. �e bin-widths follow 
the distribution of atomic weights in the PDB (i.e. it follows the distribution in b), i.e. they vary normally on a 
log-scale. In the middle (around 40 kDA) the bin sizes are very small. �e upper-end and lower-end tails of the 
distribution (corresponding to the very large/small proteins) are linearly binned to achieve a better resolution. 
MM’s less than 700 Da and larger than 1.30 MDa are binned to the �rst and last bin respectively.
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Training and test data. To determine the predictive ability of the Bayesian method while limiting 
over�tting, the 165,982 atomic structures were split into a training (149,084) and test (16,583) datasets for 
cross-validation27 (see Supplementary Figure S2) using MATLAB® (www.mathworks.com) function cvpartition 
that randomly selected the 16,583 cross-validation datasets from the initial pool. �e training data constitute the 
dataset that the Bayesian method uses for extracting the underlying distributions, i.e. the probability calculations. 
�is training data consists of 149,084 unique protein scattering curves, plus the same data at four di�erent noise 
levels (the highest noise level was omitted). Of note, the Size&Shape method uses the same set of �ltered 165,982 
proteins for looking up the closest MM neighbours. In order not to bias the assessment of Size&Shape’s perfor-
mance a modi�ed version of DATCLASS was used, instead of using a weighted average of the �rst �ve neighbours 
a weighted average of the second to the sixth closest neighbours was taken. Excluding the nearest neighbour 
prevented the structure being queried to be used as its own neighbour.

As the performance of each MM method was tested in di�erent contexts, such as di�erent levels of random 
and systematic noise, a total of 16 test datasets were generated. �ese 16 datasets are comprised of the ideal data, 
�ve di�erent levels of modeled SNRs and ten di�erent levels of modeled solvent mismatch (see Supplementary 
Figure S2). For each protein in the test dataset, the four estimations of MM were used as inputs to the Bayesian 
estimator and the MM was calculated, all results have a sample size of 16,583.

To note, the reported performance of the Bayesian method will be slightly underestimated to the performance 
of the actual implementation, as the training data thereof is the union of the training and test datasets outlined 
here.

Data availability. �e training data generated and analysed in the current study are available from the 
ATSAS repository (https://www.embl-hamburg.de/biosaxs/so�ware.html). �e implementation of Bayesian 
method as described here, also called DatBayes, is part of the program DATMW. An explanation of training data-
set used and examples of how to execute DATMW both from the command line and in PRIMUSQT15 is given in 
Supplementary Section S7.

Results and Discussion
Comparative study of four concentration independent MM determination methods. Performance  
on ideal simulated data. �e four concentration-independent methods for evaluating the MM of proteins from 
solution SAXS data were compared in terms of accuracy. Fig. 4 summarizes the results by plotting actual MM 
against the estimated MM (top panel) as well as the normalized distribution of the magnitude of the error. All 
MM estimates obtained are binned as described in the methods section (Fig. 3).

In Fig. 4, the top-performing MM method, Size&Shape, can be easily identi�ed through its narrow and peaked 
distribution as compared to MMQp, MoW and Vc. However, Size&Shape possesses a wide base meaning, that 
once the accuracy decreases, it does so rapidly. �e height of the distribution of MoW is superior to that of MMQp 
and Vc, which is also re�ected in the median absolute deviation (mad) value, which suggests a greater number 
of accurate estimates. �e distributions of MoW, Vc and MMQp are all slightly shi�ed, i.e. not centered on zero 
(Fig. 4, bottom panel) as is indicated by their median value. In the supplementary material (Section S4), we o�er 
correction factors for Vc, MoW and MMQp and outline how these a�ect the results.

Performance on varying signal-to-noise data. While Fig. 4 presents a qualitative overview of the performance, 
the more quantitative insight is given by the Receiver Operating Characteristic (ROC)-like curves28. Here, the 
magnitude of the error is plotted against the number of occurrences, meaning a very accurate method will yield 
a curve positioned in the upper-le� corner28. �us, when comparing the performance of the MM methods, the 
relative positioning on the ROC curve will re�ect their accuracy. Fig. 5a–f shows the response of the methods to 
decreasing SNRs. Starting with ideal data in Fig. 5a, the ROC curve of Size&Shape assumes an upper-le� posi-
tion compared to the other three methods, MoW assumes a clear second place in terms of accuracy, followed by 
Vc leaving MMQp last. �is ranking is generally le� intact as the level of noise is increased; however the di�er-
ence between MoW and Size&Shape becomes less pronounced (Fig. 5c,d). Remarkably, Vc remains e�ectively 
unchanged by the noise and at the lowest SNR, it is joined by Size&Shape and performs better than MoW. It is 
worth noting the sensitivity of Size&Shape to increased noise (Fig. 5b–d), especially the marked di�erence in 
performance when only a little noise is applied (Fig. 5b). Finally, the accuracy of MMQp worsens as the SNR is 
lowered, as can be seen in the right shi� of the ROC-like curve (Fig. 5b–d).

Performance on incorrect background subtracted data. One of the most common sources of systematic error 
in experimental SAXS data is that of incorrect bu�er subtraction1. Hence, in addition to varying SNRs, the 
performance of each MM method was also characterized on a total of ten datasets with �ve di�erent levels of 
under- and over-subtraction respectively. �e results are summarized in the ROC-like curves, of Fig. 6a–f (see 
also Supplementary Section S5). Of the MM methods, MoW is the most a�ected by incorrectly subtracted data, 
in particular over-subtracted data and to a lesser extent under-subtracted data. A similar pattern is observed 
for MMQp, although the ROC curves indicates that MMQp is slightly more robust, as compared to MoW, against 
systematic errors, it is worse in terms of accuracy in most cases. �e accuracy of Size&Shape is also a�ected by 
subtraction, in contrast with the previous two methods the e�ect is much less pronounced. However, in line with 
MMQp and MoW, it is also slightly more a�ected by over-subtraction (Fig. 6c). In contrast Vc is least a�ected by 
the incorrect subtraction, which is likely the result of that factor s, and not s2, is used in the integral evaluation 
(eq. (3)). �is observation, taken together with Vc’s noise resistance, suggests it a good method to consult for poor 
quality data.

http://www.mathworks.com
https://www.embl-hamburg.de/biosaxs/software.html
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Performance on di�erent types of protein shape. Finally the performance of the four concentration-independent 
methods were also tested on the seven di�erent shape classes of proteins DATCLASS can distinguish17: i. compact; 
ii. extended; iii. �at; iv. ring; v. compact-hollow; vi. hollow sphere and; vii. Random chain. �e results are summa-
rized as a heatmap in Fig. 7. �e Size&Shape method ranks generally well across the shape classes, with the excep-
tion of random chains as to be expected as it refrains from giving an estimate in these cases. Interestingly, MoW 
seems especially apt at estimating the MM of extended proteins, while Vc has di�culties for these types of proteins. 
Vc ’s di�culty with extended proteins is consistent when considering that the method uses the correlation length 
(Methods, eq. (4)), i.e. the number average chord length of the electron density auto-correlation function14,22 which 
would be a�ected be extension in one dimension. All methods have di�culty with �at and ring-shaped proteins29,30.

Performance on experimental SAXS data. �e performance was also assessed on experimental SAXS data from 
SASBDB31 (Fig. 8), where the actual MM is taken to be the user reported experimental MM. �e results from 
SASBDB should not be interpreted too strictly, as the control (the MM from user-submitted sequence) does not 
assume a position in the upper-le� corner as would be expected, and therefore indicates that there is many dis-
crepancies (Fig. 8, light-blue dashed curve). Moreover, the fraction of absent or NaN values is much larger in the 
case of experimental SAXS data. A NaN result is o�en caused by the incorrect estimation of Rg or I(0), that produce 
an error in the calculations performed in for instance in Vc or MoW which require normalization (eqs 2 and 3).  
Furthermore, Size&Shape does not provide MM estimates for �exible proteins due to the understandably limited 
set of training data available as the PDB does not represent intrinsically disordered systems. Consequently, when 
applied to the MM assessment of SAXS data deposited in the SASBDB, and including the NaNs, size and shape 
performs the worst and Vc the best (Fig. 8a). �e performance of Vc could be due to the methods robustness with 
respect to obtaining the MM from poor quality data (see above). However, on discounting the NaNs most meth-
ods perform similarly, which perhaps MMQp being slightly worse (Fig. 8b).

Figure 4. Qualitative overview of accuracy for ideal data. Dataset for ideal data with no simulated noise, dataset 
size is 16,563. �e MM’s are expressed in terms of value of the bin (Fig. 3) which the MM falls into. Top: Scatter 
plot of the estimated MM vs Actual MM. Bottom: Same data as top-panel but plotted as distributions of the 
relative error between the actual and estimated MM. Finally the median and the median absolute deviation 
(mad) is shown above each distribution.
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A Bayesian approach to MM determination. It is now evident that each of the four concentration-independent  
MM determination methods possesses their own respective strengths, however there is no consistent 
top-performer among them. �at said, the predictive power of the individual methods may be combined using 
Bayesian inference, to produce a probability distribution across all possible MMs. From this distribution it is 
possible to determine a MM point estimate and its interval, corresponding to the highest probability and the 
credibility interval respectively. Here we outline the performance of the Bayesian method, or DatBayes as our 
implementation is called, and describe the use of credibility interval in SAXS MM analysis.

Accuracy of the Bayesian MM estimate. �e Bayesian method is a consistent top-performer in terms of accuracy 
(Figs 4, 5 and 7), irrespective of SNR or shape. For ideal data only Size&Shape has a slight advantage (Fig. 5a), 
with a higher number of more accurate estimates, thus indicating that the remaining three methods slightly 
divert the Bayesian assessment. However, when considering the remaining SNRs it can be concluded that for all 
practical purposes, the Bayesian combination of the individual estimates is at least as good, or better, than any 
estimate of a single method. �is statement also holds for over and under-subtracted data, with the exception at 
the highest degree of systematic error (Fig. 6c,f). �e latter represents an extreme case, in which re-processing or 
even re-measurement should be considered. Furthermore, these extreme cases also produce generally lower prob-
ability scores (see Supplementary Section S6), which indirectly re�ects larger credibility intervals (see below). 
As such, it can be said that if the sample has been prepared correctly within acceptable error, the DatBayes is the 
preferred method in terms of accuracy, and moreover, the probability of the MM together with the credibility 
interval could help to indicate, but alone cannot prove, cases with low sample/data quality. Indeed, when applied 
to estimating the MM from experimental SAXS data, the Bayesian approach either outperforms or is as accurate 
as any of the individual methods (Fig. 8).

�e Bayesian credibility interval can be used to assess the precision of the MM estimate. �e Bayesian method also 
provides a credibility interval which corresponds to the range of MMs that accumulate 90% of the probability 
mass. On a plot of the Bayesian MM estimate against actual MM, this credibility interval can be visualised as a bar 

Figure 5. ROC-like curves for simulated random noise with di�erent SNRs. ROC-like curves of relative error 
against normalized frequency. �e x-axis is log-scaled to better discern the performance. (a) Ideal data (b) 
SNR = 32 (c) SNR = 11 (d) SNR = 4 (e) SNR = 2 and (f) SNR = 1. Methods with higher accuracy are located 
top-le� most.



www.nature.com/scientificreports/

9SCIENTIFIC REPORTS |  (2018) 8:7204  | DOI:10.1038/s41598-018-25355-2

indicating the possible MMs (Fig. 9). We observe that the actual MM is contained in the 90% empirical credibility 
interval (red-line plot in Fig. 9) in 86% of the test cases. In other words, in the case of a truly monodisperse solu-
tions, the true MM of the sample is actually contained in the credibility interval 9 times out of 10. Fundamentally, 
the credibility interval re�ects the degree of agreement on the MM of the four di�erent methods, and its length 
can therefore be associated with the precision of the point MM estimate. For instance, very small and very large 
proteins have larger MM-ranges (Fig. 9), a result of the limited training data of such cases in the PDB and there-
fore an inherent error to the method. To note, a small credibility interval should not be taken as a con�rmation of 
a good quality sample but the merely that all the methods are in consistent agreement on the MM. For instance, 
in the case where the DatBayes MM estimate is higher than expected, but with a narrow credibility interval, this 
would indicate a high potential of the sample being a mixture. However, in order to begin to delineate the pres-
ence of higher order species, or possible aggregates, a more thorough investigation32,33 would be necessary.

Prior-forwarding. �e Bayesian method described so far has implemented a uniform prior, in other words 
assuming no prior knowledge of the sample. Alternatively, one might consider the accumulated evidence of the 
PDB, and use a prior following the mass distribution of the PDB (Normal distribution with a mean around 
40 kDa). �is prior was tested but did not yield signi�cantly improved results (data not shown). However, in the 
context of a series of statistically independent, and sequentially collected data frames, as is o�en encountered for 
Size-exclusion chromatography SAXS (SEC-SAXS)34 or when short data frames (ms to s) are collected in succes-
sion from standard batch measurements, the uniform prior of the n-th frame may be exchanged to the posterior 
distribution obtained from the n-1-th frame, and used to prime the calculation of the Bayesian MM.

Limitations. �e data used to produce the Bayesian distribution consists of simulated scattering pro�les cal-
culated from structures in the PDB. �e PDB has a non-uniform distribution across shapes, i.e. a skew towards 
globular proteins. However, this skew has a limited e�ect on the performance for estimating the MM of a majority 
of �exible/extended proteins, such as those from SASBDB17, as seen by the performance of DatBayes in Fig. 8. 
�e PDB is also used to construct the bin-sizes and their edges in the Bayesian model (Fig. 3). As the number 
of very small (<7 kDa) or very large (>300 kDa) structures is proportionately low, by extension the DatBayes 

Figure 6. ROC-like curves of di�erent levels of simulated systematic noise. ROC-like curves of relative error 
against normalized frequency for three di�erent levels of under and over subtraction. �e x-axis is log-scaled 
to better discern the performance Additional levels of over and under-subtraction were investigated (data not 
shown). Low, medium and high refers to factors of 0.1, 0.4 and 0.9 respectively (see Methods).
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MM estimate will be less-accurate and fall within a wide credibility interval for such samples (Fig. 9). Hence, it is 
always important to report both the MM credibility interval in combination with the MM estimate.

�e MMQp, Vc and MoW methods all use empirical correction factors to convert the apparent scattering vol-
ume into a mass for proteins consisting of amino acids. Although the solvation layer is, to a certain extent, taken 
into account by these empirical corrections, there are cases that undermine the assumption of constant volume to 

Figure 7. Performance of the methods for di�erent protein shapes. Heatmap assessing the performance of the 
method against the protein shape, as determined by the protein classi�er algorithm DATCLASS17. �e color 
represents the fraction of the cases at which each method yielded the most accurate MM as determined by 
the smallest relative error. �e �gure comprises the results from all noise levels, a total of 6 noise levels each 
containing 16,563 unique pro�les, amounting to 99,378 pro�les.

Figure 8. ROC-like curves for experimental data from SASBDB. ROC curves of relative error against 
normalized frequency for experimental data from all published SASBDB entries, 375 datasets in total. �e x-axis 
is log-scaled to better discern the performance. �e actual MM is taken to be the user submitted experimental 
MM. As a control, the actual MM is plotted against the MM from the user submitted sequence. Right: Counting 
NaNs as a bad estimate, and normalizing by the total number of cases. Le�: Ignoring NaNs, normalizing by the 
total number of cases minus the number of NaNs.
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mass conversion, for instance where proteins are bound to metals, lipids, glycans, polynucleotides, cofactors, etc, 
that otherwise a�ect the average scattering length (and mass) density and consequently I(0) and the magnitude of 
the scattering invariants. In the case of Size&Shape, its inherent limitation in accuracy is dictated by the density 
of the nearest structural neighbours in the size-and-shape space. �e Bayesian inference may, to a certain extent, 
by-pass the limitations of MMQp, Vc, MoW and Size&Shape because if any of these methods fails to produce a 
MM estimate then it does not contribute to the Bayesian calculation. In circumstances where a sample poses a 
challenge to all the individual methods, such as a heavily glycosylated �exible metalloprotein, then, by extension, 
such a sample will also be a challenge for DatBayes, although not in terms of deriving a MM, but rather in terms 
of interpreting the MM in context of the sample composition.

Conclusions
�rough a systematic analysis of over 150,000 unique SAXS patterns computed from known atomic structures, 
with and without simulated random noise with and without systematic experimental errors we have characterized 
the performance of four methods for MM determination not requiring calibration of the SAXS data. We found 
that these methods demonstrate variable performance depending on the size and shape of particles and the pres-
ence of random and systematic errors. Most importantly we found that these di�erently performing individual 
methods can be meaningfully combined using Bayesian inference. �e Bayesian combination was demonstrated 
to be consistent top-performer over each individual method yielding a MM estimate within 10% of the expected 
value in over 90% of all cases regardless of experimental noise or particle shape. �e Bayesian method also has 
the added bene�t of providing more detailed a credibility interval re�ecting the precision of the estimated MM.

Each MM determination method utilizes its own physical and mathematical assumptions, and therefore har-
bours its own particular advantages and limitations. �e Bayesian estimate e�ectively combine these methods 
utilizing their strengths and suppressing the shortcomings of the individual techniques, and is therefore superior 
to any single method. �e Bayesian model provides a �rst step, or proof of principle, that the four methods can be 
meaningfully combined without making assumptions about the nature of the distributions, such as their normal-
ity. Further, pertaining to the disproportionate size distribution in the PDB a possible avenue of improvement is 
the consideration of di�erent binning strategies, for instance optimizing the bin-edges. It will further be straight-
forward to test and include other MM determination methods in the Bayesian assessment when/if these will 
become available. It should be noted that the Bayesian inference method as shown here was deliberately trained 
on a set of ~149,000 scattering patterns, leaving the other available structures for testing. �e public distribution 
of the program will employ all the information available in the PDB, meaning the results should only improve.

�e concentration independent Bayesian method is robust and can be directly compared to a concentration 
dependent MM estimate if the latter is available. In circumstances where the protein concentration cannot be 
accurately determined, such as for in-line size-exclusion chromatography SAXS34,35, the proposed approach o�ers 
a reliable MM assessment. �e described method as outlined in this manuscript has been implemented in the 
program DATMW, and is currently available in the ATSAS 2.8.3 release, which is freely available for academic 
users (https://www.embl-hamburg.de/biosaxs/so�ware.html).
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