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Aytuğ Onan
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Class imbalance is an important problem, encountered in machine learning applications, where one class (named as, the minority
class) has extremely small number of instances and the other class (referred as, the majority class) has immense quantity of
instances. Imbalanced datasets can be of great importance in several real-world applications, including medical diagnosis,
malware detection, anomaly identification, bankruptcy prediction, and spam filtering. In this paper, we present a consensus
clustering based-undersampling approach to imbalanced learning. In this scheme, the number of instances in the majority class
was undersampled by utilizing a consensus clustering-based scheme. In the empirical analysis, 44 small-scale and 2 large-scale
imbalanced classification benchmarks have been utilized. In the consensus clustering schemes, five clustering algorithms (namely,
k-means, k-modes, k-means++, self-organizing maps, and DIANA algorithm) and their combinations were taken into con-
sideration. In the classification phase, five supervised learning methods (namely, näıve Bayes, logistic regression, support vector
machines, random forests, and k-nearest neighbor algorithm) and three ensemble learner methods (namely, AdaBoost, bagging,
and random subspace algorithm) were utilized. /e empirical results indicate that the proposed heterogeneous consensus
clustering-based undersampling scheme yields better predictive performance.

1. Introduction

Class imbalance is an important research problem in
machine learning, where the proportion of instances be-
longing to one class (referred as, the minority class) is
extremely small, whereas the proportion of instances of the
other class or classes (referred as, the majority class) is
extremely high. Imbalanced datasets pose several chal-
lenges to the conventional supervised learning methods.
Conventional supervised learning methods (such as sup-
port vector machines and decision trees) can build viable
classification models for balanced datasets. Since imbal-
anced datasets suffer from outnumbering the instances of
majority class and underrepresenting the instances of
minority class, skewed distributions may lead to degra-
dation of predictive performance [1, 2]. Supervised
learning process is based on the use of global evaluation
measures (such as classification accuracy). Hence, learning
from imbalanced datasets can have bias towards the

majority class, and classification models may tend to
misclassify the instances of minority class [3]. Supervised
learning algorithms may regard the instances of minority
class as noise or outlier, and noisy data and outlier may be
regarded as the instances of minority class [4]. In addition,
classification models for datasets with skewed sample
distributions may be challenging to learn due to the
overlapping nature of the instances of minority class with
the instances of other classes [5].

Imbalanced datasets can be encountered in several
real-world problems and applications, including software
fault identification [6], medical diagnosis [7], malware
detection [8], anomaly identification [9], bankruptcy
prediction [10], and spam filtering [11]. For data mining
problems mentioned in advance, the number of instances
for minority class is scarce. However, the identification of
the instances of minority class may be more critical. For
instance, the misclassification of cancerous (malignant)
tumors as noncancerous (benign) in medical diagnosis can
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have severe effects. Similarly, the number of instances for
fraudulent transactions can be scarce. However, it is
critical to build prediction models that can identify
fraudulent transactions in finance. Hence, handling im-
balanced datasets properly is an important research
problem in machine learning.

To deal efficiently with the datasets with imbalanced
distribution and to build robust and efficient classification
schemes, data preprocessing methods have been utilized in
conjunction with machine learning algorithms. /e
methods utilized to tackle with class imbalance problem
can be mainly divided into four categories as algorithm
level approaches, data-level approaches, cost-sensitive
approaches, and ensemble learning-based approaches
[12]. Algorithm level approaches seek to adapt supervised
learning algorithms to bias learning towards the instances
of minority class [13]. Data-level approaches seek to
rebalance the instances of the imbalanced dataset so that
the effects of skewed distributions can be eliminated in the
learning process [14]. In order to do so, data-level ap-
proaches utilize resampling on the training datasets. Cost-
sensitive approaches aim at minimizing total cost of errors
for minority and majority classes by defining mis-
classification costs [15]. In addition, ensemble learning-
based approaches have been also utilized for class imbal-
ance. Ensemble classifiers aim at enhancing the predictive
performance of a single learning algorithm by combining
the predictions of several learning algorithms. In ensemble
approaches to imbalanced learning, several strategies (such
as bagging and undersampling, undersampling and cost-
sensitive learning, boosting and resampling) have been
combined [12]. In data-level approaches, data pre-
processing and learning process of supervised learning
algorithm are handled independently. In addition, com-
pared to the cost-sensitive approaches, which involve to set
cost matrix for imbalanced datasets, data-level pre-
processing (resampling) is a viable tool to apply for re-
searchers who are not expert in the field [1]. Hence,
regarding different approaches to imbalanced learning,
data-level approaches, which are based on resampling the
imbalanced datasets, are frequently employed. /e two
main directions on data-level approaches are under-
sampling and oversampling. In order to obtain a dataset
with balanced class distribution, the original imbalanced
dataset can be resampled by oversampling the minority
class or undersampling the majority class [16, 17]. In ad-
dition, there are several hybrid approaches, which combine
undersampling and oversampling methods, such as
SMOTEBoost, OverBagging, and UnderBagging [18–20].
Compared to the oversampling, undersampling yields
better predictive performance [21]. However, under-
sampling may result in elimination of some useful repre-
sentative instances of majority class [22]. Hence, the
identification of useful representative instances in under-
sampling is of great performance to the predictive per-
formance of supervised learning algorithms on imbalanced
learning. In response, clustering methods can be utilized to
identify useful representative instances of majority class in
undersampling for imbalanced learning [23–25].

In this paper, we present a consensus clustering-based
undersampling approach to imbalanced learning. In this
scheme, the number of instances in the majority class was
undersampled by utilizing a consensus clustering-based
scheme. /ere are a large number of clustering algo-
rithms in the literature. However, there is no single clus-
tering algorithm that can yield the best clustering results
under all scenarios, as the no free lunch theorem claims
[26]. In this regard, the presented scheme aims at com-
bining the decisions of different clustering algorithms, to
overcome the limitations of individual clustering algo-
rithms to achieve more robust/efficient clustering results.
In this way, the presented scheme aims at identifying better
representative instances of majority class in undersampling
for imbalanced learning. In the empirical analysis, 44
small-scale and 2 large-scale imbalanced classification
(with imbalance ratios ranged between 1.8 and 163.19)
were utilized. In the empirical analysis, the predictive
performances of two clustering-based framework (namely,
homogeneous and heterogeneous consensus clustering
schemes) were compared with three data-level methods
(namely, SMOTEBoost algorithm [16], RUSBoost [27], and
underBagging algorithm [28, 29]). In the consensus clus-
tering schemes, five clustering algorithms (namely, k-
means, k-modes [30], k-means++ [31], self-organizing
maps [32], and DIANA algorithm [33] and their combi-
nations were taken into consideration. In the classification
phase, five supervised learning methods (namely, naı̈ve
Bayes, logistic regression, support vector machines, ran-
dom forests, and k-nearest neighbor algorithm) and three
ensemble learner methods (namely, AdaBoost, bagging,
and random subspace algorithm) were utilized. /e em-
pirical results indicate that the proposed heterogeneous
consensus clustering-based undersampling scheme yields
better predictive performance. To the best of our knowl-
edge, the presented scheme is the first to use the paradigm
of consensus clustering for imbalanced learning. /e re-
mainder of this paper is organized as follows. Section 2
briefly reviews the state of the art in imbalanced learning.
Section 3 presents the proposed consensus clustering
based-undersampling schemes. Section 4 presents the
empirical analysis results, and Section 5 presents the
concluding remarks.

2. Related Works

Imbalanced learning has attracted great research interest. As
mentioned in advance, the methods to deal with imbalanced
datasets can be broadly categorized as data-level methods,
algorithm level methods, cost-sensitive methods, and en-
semble learning-based methods. Compared to the other
approaches, data-level approaches have greater potential use
on imbalanced learning since they seek to improve the
distribution of datasets, rather than relying on supervised
learning-based enhancements [34]. /is section briefly re-
views the related work on imbalanced learning with em-
phasis on data-level approaches. Data-level approaches
(sampling methods) can be mainly divided into two cate-
gories as undersampling and oversampling. Oversampling
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and undersampling approaches can be employed effectively
for class imbalance.

Oversampling approaches aim at obtaining a balanced
dataset by generating synthetic instances for the minority
class. In contrast, undersampling approaches aim at
obtaining a balanced dataset by removing the instances of
the majority class from the training set. For instance,
Anand et al. [35] introduced a distance-based under-
sampling approach for class imbalance. Supervised learn-
ing methods can easily construct learning models for
instances that are far from the decision boundaries. In
response, the presented scheme aims at eliminating the
instances of majority class that are far from decision
boundaries, while preserving the instances near to the
decision boundaries in the training set. In this way, the
balanced training set was constructed and the balanced
dataset was utilized in conjunction with the weighted
support vector machines. Similarly, Li et al. [36] utilized
vector quantization algorithm to decrease the instances of
majority class. /e presented scheme employed support
vector machines for imbalanced learning. In another study,
Kumar et al. [37] empirically examined the effect of
undersampling on the performance of clustering algo-
rithms. In another study, Sun et al. [22] presented an
ensemble classification scheme based on undersampling for
imbalanced learning. In the presented scheme, the in-
stances of majority class were first divided into several
partitions with similar number of instances with the mi-
nority class. In this way, balanced datasets were generated.
/e balanced datasets were trained on binary classifiers to
build classification models. Finally, the predictions of bi-
nary classifiers were combined by an ensemble scheme to
identify the final outcome. In another study, D’Addabbo
and Maglietta [38] presented a selective sampling-based
approach for imbalanced learning. Based on the observa-
tion that the instances near to decision boundaries are
relevant/critical, the instances of majority class near to
decision boundaries are preserved. In another study, Ha
and Lee [39] presented an evolutionary undersampling
scheme for class imbalance. In this scheme, genetic algo-
rithm was utilized to select the informative instances of
majority class by minimizing the loss between the distri-
butions between original and balanced datasets. In another
study, Lin et al. [24] introduced two clustering-based
undersampling schemes for imbalanced learning. In this
scheme, the number of clusters was determined based on
the number of instances of minority class, and k-means
algorithm was employed to undersample the instances of
majority class. More recently, Shobana and Battula [40]
presented an undersampling scheme based on diversified
distribution and clustering for imbalanced learning. In this
scheme, k-means algorithm was employed to identify and
remove rare instances and outliers.

In a recent study, Guo and Wei [41] presented a hybrid
scheme based on clustering and logistic regression for im-
balanced learning. In the presented scheme, clustering was
utilized to partition instances of the majority class into
clusters. Similarly, Douzas et al. [42] integrated k-means
clustering algorithm and synthetic minority oversampling

technique to eliminate noisy data and to effectively obtain a
balanced dataset within classes. Recently, Han et al. [43]
presented a distribution-based approach for imbalanced
learning. In the presented scheme, the instances of minority
class were divided into groups as noisy instances, unstable
instances, boundary instances, and stable instances based on
the location information for the instances. /e presented
scheme has been utilized to improve the predictive per-
formance on medical diagnosis. In another study, Tsai et al.
[44] introduced an undersampling approach for imbalanced
learning, which integrates clustering analysis and instance
selection.

As mentioned in advance, undersampling is a simple
resampling strategy to deal with class imbalance problem.
However, undersampling may remove potentially useful/
informative instances of the majority class, which may lead
to the degradation of the predictive performance of classi-
fication schemes. In this paper, a consensus clustering-based
framework is presented to identify the informative instances
of majority class through the use of a cluster ensemble
method.

3. Proposed Consensus Clustering-Based
Undersampling Framework

Undersampling and oversampling methods can be suc-
cessfully employed for class imbalance. In order to obtain a
robust classification scheme with high predictive perfor-
mance, undersampling methods should retain useful and
informative representative instances of the majority class in
the training set. Clustering (cluster analysis) is an un-
supervised technique which assigns similar instances
(objects) into the same cluster in terms of their proximity
or similarity. Hence, clustering algorithms can be
employed to identify useful instances of majority class in
undersampling. With the use of clustering on under-
sampling, the majority class yields a distribution of in-
stances into clusters such that similar instances are grouped
together within the same cluster. One of the main problems
encountered in applying clustering algorithms is the se-
lection of an appropriate algorithm for a given problem.
Each clustering algorithm has strong and weak charac-
teristics, and the results obtained by clustering algorithms
are greatly influenced based on the characteristics of
dataset, parameters of algorithm, etc. /e clustering al-
gorithms suffer from instability, and the same clustering
algorithm can yield a particularly different partition for
different parameter settings. One possible solution to this
problem is to use multiple clustering algorithms on the
same dataset and to combine the outputs of individual
clustering algorithms. /e process is referred as consensus
clustering (or cluster ensembles). Consensus clustering
aims at combining the clustering results of different
clustering algorithms so that a final clustering with better
clustering quality can be obtained [45]. In this paper, two
ensemble generation schemes are presented to under-
sample the instances of majority class based on consensus
clustering, namely, homogeneous and heterogeneous en-
semble schemes are introduced.
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3.1. Consensus Function. Consensus clustering involves a
staged procedure: in Stage 1, cluster ensemble is gener-
ated, and in Stage 2, consensus function is utilized to
obtain the final partition from the individual clustering
algorithms. /ere are direct approaches (such as simple
voting, incremental voting, and label correspondence
search), feature -based approaches (such as iterative
voting consensus, mixture model, clustering aggregation,
and quadratic mutual information), pairwise similarity-
based approaches (such as agglomerative hierarchical
models), and graph-based approaches (such as cluster-
based similarity partitioning algorithm and shared nearest
neighbors-based combiner) [45]. Motivated by the success
of clustering algorithms on imbalanced learning [24] and
the enhanced clustering quality obtained by consensus
clustering schemes [46], we seek to find an efficient
consensus clustering-based scheme for imbalanced
learning. In this regard, we have conducted an experi-
mental analysis with several different consensus functions.
Since the highest predictive performance is obtained by
direct approaches, of the wide range of consensus func-
tions available, three consensus functions were chosen for
the study.

3.1.1. Simple Voting Function (SV). Let πr denote the ref-
erence partition and let πg denote to be relabelled partitions,
a contingency matrix Ω∈RK×K is obtained, in which K
corresponds to the number of clusters. /e contingency
matrix entries (Ω(l, l′)) are filled by co-occurrence statistics
computed based on the following equation [45,43]:

Ω l, l′( ) � ∑
∀xi∈X

w xi( ), (1)

where w(xi) � 1 if (Cr(xi) � l)∧ (Cg(xi) � l′) and w(xi) �
0 otherwise. Based on the label correspondence obtained
based on equation (1), the aim of the simple voting con-
sensus is to maximize the objective function, given by

∑
K

l�1

∑
K

l′�1
Ω l, l′( )Θ l, l′( ), (2)

where Θ(l, l′) ∈ RK×K is a label correspondence matrix
amongst the labels of partitions πr and πg. First, the ref-
erence partition (πr) is randomly selected among the par-
titions of the cluster ensemble. /en, the remaining
partitions are relabelled based on the reference partition by
following the procedure outlined above. Finally, a majority
voting scheme is employed to identify the consensus label of
each instance.

3.1.2. Incremental Voting Function (IV). In incremental
voting scheme (IV), data partitions are repeatedly added to
the cluster ensemble. Let Pg ∈RN×K denote gth partition
(πg ∈ Π). Pg(xi, C

g
t ) takes the value of 1 if a data point

xi ∈ X belongs to cluster C
g
t ∈ πg. Otherwise, it takes the

value of 0. Let Vg denote the matrix of intermediate g
partitions (π1, . . . , πg) and Vg(xi, Lj) denote the number of
partitions in which label Lj is corresponds to data point xi.

/e process of incremental voting-based consensus is ini-
tialized with the construction of contingency matrix
Ω∈RK×K. /e contingency matrix entries (Ω(l, l′)) are
filled by the following equation [48]:

Ω l, l′( ) � ∑
∀xi∈X

w xi( ), (3)

where w(xi) � 1 if (Vg(xi, Lj)≥ 1)∧ (Pg(xi, l′) � 1). Oth-
erwise, it takes the value of 0. After obtaining the contin-
gencymatrix, the entries of matrix for the (g + 1)th partition
(denoted by Vg + 1) are computed as given by

Vg+1 xi, l( ) � Vg xi, l( ) + Pg+1 xi, l′( ). (4)

Based on the incremental combinations of M data
partitions, the consensus label of each data point xi ∈ X is
determined based on following equation [45]:

C∗ xi( ) � argmaxlVM xi, l( ). (5)

3.1.3. Label Correspondence Search. In label correspondence
search (LCS), the problem of correspondence is modelled as
an optimization problem [49]. /e aim of the method is to
obtain a consensus partition such that overall agreement
among the different partitions is maximized. Let R{c,s} denote
the vector representation of cluster c of system s./e k− th
element of R{c,s} represents the posterior probabilities of
cluster c for the data points. /e agreement between clusters
{c, s} and {c′, s′} can be defined as given by the following
equation:

g c, s{ }, c′, s′{ } � RTc,s{ } · R c′ ,s′{ }. (6)

If a cluster c of system s is assigned to metaclusterm, λ m{ }
c,s{ }

takes the value of 1 and it takes the value of 0 otherwise. r m{ }
c,s{ }

denotes the reward of assigning cluster c to metacluster m,
and it can be defined as given by the following equation:

r m{ }
c,s{ } �

1

|I(m)|
∑

c′ ,s′{ }∈I(m)
g c, s{ }, c′, s′{ } ∈ I(m)↔ λ m{ }

c,s{ } ≠ 0.

(7)
Based on equations (6) and (7), the objective of label

correspondence is to maximize the argument defined in the
following equation [49]:

λ∗ � argmaxλ ∑
M

m�1

∑
S

s�1

∑
Cs

c�1

λ m{ }
c,s{ }r

m{ }
c,s{ }, (8)

subject to

∑
M

m�1

λ m{ }
c,s{ } � 1,∀c, s. (9)

3.2. Homogeneous Consensus Clustering-BasedUndersampling
Framework. Let D denote an imbalanced dataset with two
classes, where there is one class (referred as, the minority
class) containing the small number of instances and there is
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another class (referred as, the majority class) containing
extremely high quantity of instances. Let us denote the
number of instances corresponding to majority and mi-
nority classes as n and m, respectively. Initially, k-fold
cross-validation scheme is utilized for dividing the im-
balanced dataset into subsets as training and test sets. /en,
the number of instances in the majority class (n) is
undersampled so that it contains equal number of in-
stances to the minority class (m). In the undersampling,
homogeneous consensus clustering scheme is utilized
to undersample the majority class. Clustering algorithms
require the number of clusters as the input parameter. We
adopted the clustering framework presented in [24]. Hence,
the number of instances in the minority class (m) is taken as
the number of clusters (k). In homogeneous consensus
clustering scheme, the same clustering algorithm is utilized
as the base clustering algorithm, with different parameter
settings. In this scheme, five clustering algorithms (namely,
k-means, k-modes, k-means++, self-organizing maps,
and DIANA algorithm) are utilized as the base clustering
algorithms.

In this way, diversified partitions are obtained by the
base clustering algorithms. /e partitions obtained by the
base clustering algorithms are combined by consensus
function to obtain the final partition. For obtaining final
partition with consensus function, three consensus
functions (namely, simple voting function, incremental
voting function, and label correspondence search algo-
rithm) are utilized. /e center of each cluster of the final
partition is selected as the instance for the majority class.
In this way, a balanced training set is obtained. /e
balanced training set is utilized to train supervised
learning algorithms (namely, naı̈ve Bayes, logistic re-
gression, support vector machines, random forests, and k-
nearest neighbor algorithm) and ensemble learning
methods (namely, AdaBoost, bagging, and random sub-
space algorithm). /e general stages of this scheme is
depicted in Figure 1. In Figure 2, the general steps of
homogeneous consensus clustering-based undersampling
scheme (CONS1) are outlined.

3.3.HeterogeneousConsensusClustering-BasedUndersampling
Framework. In heterogeneous consensus clustering
scheme (CONS2), diversity among the clustering algo-
rithms is achieved with the use of different clustering
algorithms as the base clustering algorithms. As stated in
advance, each clustering algorithm has its own strengths
and weaknesses and can yield promising results on dif-
ferent datasets. /e partitions obtained by different
clustering algorithms may complement each other and can
yield higher clustering quality. /e heterogeneous con-
sensus clustering-based undersampling framework follows
the same stages as outlined in Figure 1. /e only difference
is that the heterogeneous consensus clustering framework
utilizes 5 different clustering algorithms, as the base
clustering algorithms, whereas the homogeneous con-
sensus clustering framework utilizes the same clustering
algorithm with different parameter settings, as the base

clustering algorithms. /e general structure of heteroge-
neous consensus clustering-based undersampling scheme
is summarized in Figure 3. In the heterogeneous consensus
clustering-based undersampling scheme, k-fold cross-
validation is employed for dividing the imbalanced
dataset into training set and test set. /en, the number of
instances in the majority class is undersampled with the
use of heterogeneous consensus clustering scheme. In this
scheme, different clustering algorithms are utilized as
the base clustering algorithms. /e presented scheme
can be configured with different clustering algorithms,
yet, we have combined the five base clustering algorithms
(namely, K-means, K-modes, K-means++, self-organizing
maps, and DIANA algorithm). /e partitions obtained by
different clustering algorithms are combined by the
consensus function. /e center of each cluster of the final
partition is selected as the instance for the majority class.
In this way, a balanced training set is obtained. /e pre-
dictive performance of undersampling scheme is examined
with the use of supervised learning methods and ensemble
learning methods.

4. Experimental Analysis and Results

/is section presents the empirical analysis of the proposed
consensus clustering-based undersampling schemes.

4.1. Datasets. To examine the effectiveness of the proposed
undersampling approaches, we have utilized 44 small-scale
and 2 large-scale imbalanced classification benchmarks.
/e imbalanced classification benchmarks were utilized in
Galar et al. [12]. /e imbalance ratios of small-scale
benchmarks range from 1.8 to 129, and the number of
instances ranges from 130 to 5500. /e imbalance ratios of
large-scale benchmarks range from 111.46 to 163.19, and
the number of instances ranges from 102294 to 145751.
For obtaining test and training sets for the supervised
learning methods, we utilized k-fold cross-validation
scheme, where we were partitioned the 80% and 20%
training and testing sets with 5-fold cross-validation
scheme. /e basic descriptive information regarding the
imbalanced classification benchmarks is presented in
Table 1.

4.2. Experimental Procedure. In the empirical analysis, the
presented consensus clustering-based undersampling schemes
have been compared by seven state-of-the-art methods. /e
utilized methods in the analysis include UnderBagging4
(UB4), UnderBagging24 (UB24), RusBoost1 (Rus1), SMO-
TEBagging4 (SBAG4), UnderBagging1 (UB1), clustering-
based undersampling based on cluster centers (Centers),
and clustering-based undersampling based on the nearest
neighbors of cluster centers (Centers_NN) [12, 24]. In order to
examine the predictive performance changes obtained by data
balancing strategies, the results obtained by C4.5 algorithm
without data balancing have also been presented as the
baseline results. In the consensus clustering schemes, five
clustering algorithms (namely, k-means, k-modes, k-means++,
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self-organizing maps, and DIANA algorithm) and their
combinations were taken into consideration. In the classifi-
cation phase, five supervised learning methods (namely, näıve
Bayes, logistic regression, support vector machines, random
forests, and k-nearest neighbor algorithm) and three ensemble
learner methods (namely, AdaBoost, bagging, and random
subspace algorithm) were utilized. In the empirical analysis,
area under roc curve was utilized as the evaluation metric. For
the supervised learning methods and state-of-the-art data
preprocessing methods, the default parameters were
employed. For the homogeneous consensus clustering-based

undersampling scheme, i parameter (the number of base
clustering algorithms) is taken as five.

4.3. Experimental Results and Discussions. In Table 2, av-
erage AUC values of the state-of-the-art methods and
conventional clustering algorithms (namely, K-means, K-
means++, K-modes, self-organizing maps, and DIANA al-
gorithm) are presented. As it can be observed from the
results presented in Table 2, the application of data balancing
strategies enhance the predictive performance in terms of

Imbalanced 
dataset

K-fold cross-validation

Testing set Training set

Minority class Majority class Consensus clustering-
based undersampling

Base clustering 
algorithm 1

Base clustering 
algorithm 2

Base clustering 
algorithm N

...

Partition 1 Partition 2 ... Partition N

Consensus function

Final aggregated partition

Select instances of majority class

Balanced 
dataset

Supervised 
learner 1

Supervised 
learner 2

Supervised 
learner M

Ensemble classification scheme

...

Prediction

Figure 1: Homogeneous consensus clustering-based undersampling scheme (CONS1).
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AUC values. �e lowest average AUC values obtained by
C4.5 algorithm without data balancing have been applied.
�e highest average AUC values are generally obtained by

UnderBagging4 algorithm, and the second highest average
AUC values are generally obtained by UnderBagging24
algorithm. In the empirical analysis, five base clustering

Input: An imbalanced dataset D

Output: A classi�cation model obtained from a balanced dataset D′

Undersampling Phase

1. Let n denote the number instances of the majority class in the training set and let 
m denote the number of instances of the minority class in the training set.

2. Utilize k-fold cross validation scheme to divide D into training and test sets.

3. Set the number of clusters equal to m.

4. Apply �ve di�erent clustering algorithm (K-means, K-modes, K-means++, self-
organizing maps and DIANA algorithm) on the instances of majority class of 
training set to undersample the majority class.

5. Obtain the partitions of base clustering algorithms on the majority class.

6. Obtain the �nal partition from the individual clustering algorithms by employing 
consensus function (simple voting function, incremental voting function or label 
correspondence search algorithm).

7. Compute the center of each cluster of the �nal partition.

8. Take cluster centers of the �nal partition as the instances of the majority class.

9. Combine the instances of majority class and the instances of minority class to 
obtain the balanced training set D′.

Classi�cation Phase

1. Employ supervised learning algorithms (Naïve Bayes, logistic regression, support 
vector machines, random forests and k-nearest neighbor algorithm) and 
ensemble learners (AdaBoost, Bagging and Random Subspace method) on the 
balanced training set D′.

2. Use test set to evaluate the predictive performance of supervised learning 
methods in terms of area under roc curve and classi�cation accuracy.

Figure 3: �e general structure of the heterogeneous consensus clustering-based undersampling scheme (CONS2).

Input: An imbalanced dataset D

Output: A classi�cation model obtained from a balanced dataset D′

Undersampling Phase

Let n denote the number instances of the majority class in the training set and let m 
denote the number of instances of the minority class in the training set.
Let i denote user-de�ned parameter for the number of base clustering algorithms in 
homogeneous clustering scheme.
Utilize k-fold cross validation scheme to divide D into training and test sets.

Set the number of clusters equal to m.

Apply i times the same clustering algorithm (K-means, K-modes, K-means++, self-
organizing maps or DIANA algorithm) on the instances of majority class of training set 
to undersample the majority class.
Obtain the partitions of base clustering algorithms on the majority class.

Obtain the �nal partition from the individual clustering algorithms by employing 
consensus function (simple voting function, incremental voting function or label 
correspondence search algorithm).
Compute the center of each cluster of the �nal partition.

Take cluster centers of the �nal partition as the instances of the majority class.

Combine the instances of majority class and the instances of minority class to obtain 
the balanced training set D′.

Classi�cation Phase

Employ supervised learning algorithms (Naïve Bayes, logistic regression, support 
vector machines, random forests and k-nearest neighbor algorithm) and ensemble 
learners (AdaBoost, Bagging and Random Subspace method) on the balanced 
training set D′.

Use test set to evaluate the predictive performance of supervised learning methods in 
terms of area under roc curve and classi�cation accuracy.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

Figure 2: �e general structure of the homogeneous consensus clustering-based undersampling scheme (CONS1).
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algorithms have been taken into consideration. Among the
base clustering algorithms, the highest average AUC values
are obtained by DIANA clustering algorithm.

/e homogeneous consensus clustering scheme utilizes
a single clustering algorithm (of the same type) as the base
clustering method. In the empirical analysis, five clustering
algorithms (namely, k-means, k-modes, k-means++, self-
organizing maps, and DIANA algorithm) are considered as

the base clustering methods. For aggregating the clustering
results of individual clustering results, we considered three
consensus functions (namely, simple voting function, in-
cremental voting function, and label correspondence
search algorithm). In this way, 15 different homogeneous
consensus clustering-based schemes are evaluated for
imbalanced learning. In Table 3, average AUC values ob-
tained by homogeneous consensus clustering schemes are
presented. Compared to the results presented in Table 2 for
conventional data-level methods and conventional
clustering-based schemes, homogeneous consensus clus-
tering schemes yield better predictive performance in terms
of AUC values. Among the compared homogeneous
consensus clustering schemes, the highest predictive per-
formance is obtained by utilizing self-organizing map al-
gorithm as the base clustering algorithm. In this scheme,
simple voting function is employed as the consensus
function.

For the heterogeneous consensus clustering scheme, k-
means, k-modes, k-means++, self-organizing maps, and DI-
ANA algorithm methods were utilized to identify individual
partitions. Similar to the homogeneous scheme, we considered
three consensus functions (namely, simple voting function,
incremental voting function, or label correspondence search
algorithm). In this way, 3 different heterogeneous consensus
clustering-based schemes are taken into consideration. In
Table 4, average AUC values obtained by heterogeneous
consensus clustering schemes are presented. As it can be
observed from the results listed in Table 4, heterogeneous
consensus clustering schemes outperform homogeneous
consensus clustering schemes, conventional data-level
methods, and conventional clustering-based schemes. Re-
garding the average AUC values analyzed in the empirical
analysis, the highest predictive performance is obtained by
heterogeneous clustering scheme with label correspondence
search-based consensus function. /e second highest pre-
dictive performance is obtained by heterogeneous clustering
scheme with simple voting-based consensus function.

In the classification phase, five supervised learning
methods (namely, naı̈ve Bayes, logistic regression, support
vector machines, random forests, and k-nearest neighbor
algorithm) and three ensemble learner methods (namely,
AdaBoost, bagging, and random subspace algorithm) were
utilized. In order to summarize the main findings of the
empirical analysis, boxplots for undersampling methods and
supervised learning methods are presented in Figures 4 and
5, respectively.

As it can be observed from Figure 4, average AUC values
obtained from the presented heterogeneous clustering
scheme is higher compared to the conventional data-level
methods (p< 0.05). In Figure 5, the predictive performance
analysis of conventional supervised learning methods and
their ensembles are taken into consideration. As it can be
observed, ensemble learning methods yield higher predictive
performance in terms of AUC values compared to the
conventional supervised learning methods. /e highest
predictive performance for supervised learning methods is
achieved by random subspace ensemble of random forest,
and the second highest predictive performance is obtained

Table 1: Descriptive information for the datasets [12, 24].

Dataset
Number of data

samples
Number of
features

Imbalance
ratio

Small-scale datasets
Abalone9-18 731 8 16.68
Abalone19 4174 8 128.87
Ecoli-0_vs_1 220 7 1.86
Ecoli-0-1-3-
7_vs_2-6

281 7 39.15

Ecoli1 336 7 3.36
Ecoli2 336 7 5.46
Ecoli3 336 7 8.19
Ecoli4 336 7 13.84
Glass0 214 9 3.19
Glass0123vs456 192 9 10.29
Glass016vs2 184 9 19.44
Glass016vs5 214 9 1.82
Glass1 214 9 10.39
Glass2 214 9 15.47
Glass4 214 9 22.81
Glass5 214 9 22.81
Glass6 214 9 6.38
Haberman 306 3 2.68
Iris0 150 4 2
New-thyroid1 215 5 5.14
New-thyroid2 215 5 4.92
Page-blocks0 5472 10 8.77
Page-blocks13vs2 472 10 15.85
Pima 768 8 1.9
Segment 2308 19 6.01
Shuttle0vs4 1829 9 13.87
Shuttle2vs4 129 9 20.5
Vehicle0 846 18 3.23
Vehicle1 846 18 2.52
Vehicle2 846 18 2.52
Vehicle3 846 18 2.52
Vowel0 988 13 10.1
Wisconsin 683 9 1.86
Yeast05679vs4 528 8 9.35
Yeast1 1484 8 2.46
Yeast1vs7 459 8 13.87
Yeast1289vs7 947 8 30.56
Yeast1458vs7 693 8 22.1
Yeast2vs4 514 8 9.08
Yeast2vs8 482 8 23.1
Yeast3 1484 8 8.11
Yeast4 1484 8 28.41
Yeast5 1484 8 32.78
Yeast6 1484 8 39.15

Large-scale datasets
Breast cancer 102294 117 163.19
Protein homology
prediction

145751 74 111.46
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by random subspace ensemble of support vector machines
(p< 0.05). Regarding the predictive performance of con-
ventional clustering algorithms, näıve Bayes demonstrated
the lowest predictive performance, whereas random forest
algorithm demonstrated the best (the highest) predictive
performance (p< 0.05).

In Figure 6, the confidence intervals for the mean
values of average AUC values obtained by the compared
algorithms for a confidence level of 95% are presented.
Based on the statistical significances between the

compared results, Figure 6 is divided into two regions
denoted by red dashed line. As it can be observed from
Figure 6, the predictive performance differences obtained
by the proposed consensus clustering-based schemes are
statistically significant.

5. Conclusion

Class imbalance is an important problem of machine
learning. Imbalanced datasets can be seen in a wide variety of

Table 2: Average AUC values of state-of-the-art methods with C4.5 classifier.

C4.5 UB4 UB24 Rus1 SBAG4 UB1 Centers Centers_NN KM KM++ KMOD SOM DIANA

Abalone19 0.500 0.721 0.680 0.631 0.572 0.695 0.639 0.648 0.743 0.744 0.744 0.745 0.745
Abalone9-18 0.598 0.719 0.710 0.693 0.745 0.710 0.699 0.704 0.769 0.769 0.769 0.769 0.770
Breast cancer 0.867 0.927 0.929 0.929 0.925 0.922 0.889 0.914 0.839 0.847 0.854 0.845 0.857
Ecoli-0_vs_1 0.983 0.980 0.980 0.969 0.983 0.969 0.983 0.983 0.920 0.910 0.950 0.880 0.920
Ecoli-0-1-3-7_vs_2-6 0.748 0.745 0.781 0.794 0.828 0.726 0.715 0.726 0.774 0.774 0.775 0.775 0.775
Ecoli1 0.859 0.900 0.902 0.883 0.900 0.898 0.895 0.923 0.810 0.820 0.820 0.830 0.0.840
Ecoli2 0.864 0.884 0.881 0.899 0.888 0.870 0.864 0.878 0.800 0.810 0.820 0.820 0.830
Ecoli3 0.728 0.908 0.894 0.856 0.885 0.882 0.847 0.900 0.800 0.810 0.820 0.820 0.830
Ecoli4 0.844 0.888 0.899 0.942 0.933 0.891 0.905 0.862 0.800 0.810 0.810 0.820 0.820
Glass0 0.817 0.814 0.824 0.813 0.839 0.818 0.772 0.744 0.780 0.780 0.780 0.780 0.780
Glass0123vs456 0.916 0.904 0.917 0.930 0.946 0.894 0.914 0.902 0.810 0.810 0.820 0.830 0.840
Glass016vs2 0.594 0.754 0.625 0.617 0.559 0.636 0.645 0.708 0.773 0.773 0.773 0.773 0.774
Glass016vs5 0.894 0.943 0.943 0.989 0.866 0.943 0.943 0.943 0.810 0.820 0.830 0.840 0.850
Glass1 0.740 0.737 0.752 0.763 0.728 0.748 0.713 0.647 0.734 0.737 0.739 0.739 0.739
Glass2 0.719 0.769 0.706 0.780 0.779 0.758 0.658 0.756 0.783 0.783 0.783 0.783 0.783
Glass4 0.754 0.846 0.871 0.915 0.874 0.853 0.651 0.803 0.800 0.800 0.800 0.800 0.810
Glass5 0.898 0.949 0.949 0.943 0.878 0.949 0.888 0.949 0.820 0.830 0.840 0.840 0.850
Glass6 0.813 0.904 0.926 0.918 0.931 0.885 0.858 0.847 0.800 0.800 0.810 0.810 0.820
Haberman 0.576 0.664 0.668 0.655 0.656 0.658 0.620 0.595 0.715 0.715 0.716 0.717 0.718
Iris0 0.990 0.990 0.980 0.990 0.980 0.990 0.990 0.990 0.940 0.950 0.960 0.890 0.940
New-thyroid1 0.914 0.964 0.969 0.958 0.975 0.955 0.938 0.947 0.820 0.830 0.830 0.840 0.850
New-thyroid2 0.937 0.958 0.938 0.938 0.961 0.947 0.938 0.924 0.810 0.820 0.820 0.830 0.840
Page-blocks0 0.922 0.958 0.959 0.948 0.953 0.952 0.934 0.958 0.820 0.850 0.850 0.850 0.860
Page-blocks13vs2 0.998 0.978 0.975 0.987 0.988 0.975 0.911 0.992 0.980 0.980 0.980 0.930 0.950
Pima 0.701 0.760 0.753 0.726 0.751 0.758 0.753 0.727 0.776 0.776 0.776 0.776 0.777
Segmemt0 0.983 0.988 0.986 0.993 0.994 0.985 0.981 0.980 0.890 0.890 0.910 0.870 0.900
Shuttle0vs4 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.980 0.950
Shuttle2vs4 0.950 1.000 1.000 1.000 1.000 0.988 1.000 0.988 0.920 0.940 0.950 0.880 0.930
Vehicle0 0.930 0.952 0.954 0.958 0.965 0.945 0.942 0.948 0.820 0.830 0.840 0.840 0.850
Vehicle1 0.672 0.787 0.761 0.747 0.769 0.765 0.722 0.703 0.767 0.768 0.768 0.768 0.768
Vehicle2 0.956 0.964 0.964 0.970 0.966 0.957 0.942 0.956 0.820 0.840 0.840 0.850 0.860
Vehicle3 0.664 0.802 0.784 0.765 0.763 0.764 0.757 0.731 0.778 0.778 0.778 0.778 0.778
Vowel0 0.971 0.947 0.947 0.943 0.988 0.944 0.941 0.910 0.810 0.820 0.820 0.830 0.840
Wisconsin 0.945 0.960 0.971 0.964 0.960 0.957 0.945 0.945 0.820 0.820 0.830 0.840 0.850
Yeast05679vs4 0.680 0.794 0.814 0.803 0.818 0.782 0.756 0.769 0.826 0.826 0.826 0.826 0.826
Yeast1 0.664 0.722 0.721 0.719 0.734 0.716 0.741 0.738 0.779 0.779 0.779 0.779 0.779
Yeast1289vs7 0.616 0.734 0.689 0.721 0.658 0.675 0.632 0.700 0.754 0.755 0.755 0.755 0.755
Yeast1458vs7 0.500 0.606 0.617 0.567 0.623 0.563 0.559 0.603 0.727 0.727 0.728 0.728 0.730
Yeast1vs7 0.628 0.786 0.773 0.715 0.697 0.747 0.660 0.704 0.770 0.770 0.770 0.771 0.771
Yeast2vs4 0.831 0.936 0.929 0.933 0.897 0.940 0.914 0.882 0.800 0.810 0.820 0.820 0.830
Yeast2vs8 0.525 0.783 0.747 0.789 0.784 0.761 0.629 0.778 0.826 0.826 0.827 0.827 0.827
Yeast3 0.860 0.934 0.944 0.925 0.944 0.940 0.901 0.926 0.810 0.820 0.830 0.840 0.840
Yeast4 0.614 0.855 0.854 0.812 0.773 0.860 0.722 0.857 0.800 0.810 0.810 0.810 0.820
Yeast5 0.883 0.952 0.956 0.959 0.962 0.964 0.954 0.960 0.840 0.870 0.910 0.860 0.870
Yeast6 0.712 0.869 0.878 0.823 0.836 0.864 0.691 0.818 0.800 0.800 0.810 0.810 0.820
Protein homology
prediction

0.922 0.956 0.961 0.956 0.945 0.952 0.928 0.947 0.820 0.828 0.835 0.840 0.850

Twitter-sentiment 0.962 0.979 0.978 0.980 0.981 0.976 0.966 0.979 0.903 0.914 0.927 0.888 0.909
Average 0.801 0.870 0.865 0.862 0.859 0.858 0.826 0.847 0.815 0.821 0.826 0.820 0.828
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applications, including medical diagnosis, malware de-
tection, anomaly identification, bankruptcy prediction, and
spam filtering. In order to build efficient and robust clas-
sification schemes, data preprocessing methods can be
utilized in conjunction with supervised learning methods.
Undersampling- and oversampling-based methods can be
successfully utilized for class imbalance. However, the
identification of informative instances to be included in the
training set is a critical issue for undersampling. In this

Table 4: Average AUC values of heterogeneous clustering schemes
with C4.5 classifier.

Consensus function IV SV LCS

Method CONS2 CONS2 CONS2
Abalone19 0.766 0.767 0.782
Abalone9-18 0.812 0.812 0.812
Breast cancer 0.945 0.946 0.954
Ecoli-0_vs_1 0.990 0.990 1.000
Ecoli-0-1-3-7_vs_2-6 0.789 0.789 0.797
Ecoli1 0.970 0.980 0.980
Ecoli2 0.920 0.920 0.940
Ecoli3 0.960 0.960 0.980
Ecoli4 0.900 0.880 0.890
Glass0 0.824 0.824 0.826
Glass0123vs456 0.960 0.960 0.980
Glass016vs2 0.790 0.791 0.791
Glass016vs5 0.970 0.980 0.990
Glass1 0.765 0.765 0.782
Glass2 0.842 0.842 0.842
Glass4 0.820 0.800 0.800
Glass5 0.970 0.980 1.000
Glass6 0.870 0.860 0.850
Haberman 0.760 0.762 0.772
Iris0 0.990 1.000 1.000
New-thyroid1 0.970 0.980 0.990
New-thyroid2 0.970 0.980 0.990
Page-blocks0 0.980 0.990 1.000
Page-blocks13vs2 0.990 1.000 1.000
Pima 0.793 0.793 0.793
Segmemt0 0.990 0.990 1.000
Shuttle0vs4 1.000 1.000 1.000
Shuttle2vs4 0.990 1.000 1.000
Vehicle0 0.970 0.980 0.990
Vehicle1 0.767 0.767 0.768
Vehicle2 0.980 0.990 1.000
Vehicle3 0.803 0.804 0.806
Vowel0 0.970 0.980 0.980
Wisconsin 0.970 0.980 0.990
Yeast05679vs4 0.843 0.843 0.843
Yeast1 0.813 0.813 0.815
Yeast1289vs7 0.770 0.770 0.782
Yeast1458vs7 0.762 0.763 0.781
Yeast1vs7 0.787 0.788 0.812
Yeast2vs4 0.950 0.940 0.940
Yeast2vs8 0.851 0.851 0.851
Yeast3 0.970 0.980 0.990
Yeast4 0.880 0.860 0.890
Yeast5 0.980 0.990 1.000
Yeast6 0.820 0.800 0.810
Protein homology prediction 0.970 0.980 0.993
Twitter-sentiment 0.988 0.994 1.000
Average 0.897 0.898 0.906
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Figure 4: Boxplot distributions of AUC values for conventional
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regard, this paper empirically examines the predictive
performance of two consensus clustering-based under-
sampling schemes for imbalanced learning. In the empirical
analysis, 44 small-scale and 2 large-scale imbalanced clas-
sification benchmarks (with imbalance ratios ranged be-
tween 1.8 and 163.19) were utilized. /e experimental
analysis indicates that clustering-based undersampling
schemes can outperform conventional data-level pre-
processing methods for class imbalance. In addition, con-
sensus clustering, which aggregates the partitions of
individual clustering algorithms, can further enhance the
predictive performance of clustering-based undersampling
schemes.

/ere are a number of issues that should be beneficial to
extend in the future. /e presented consensus clustering
based undersampling scheme utilizes five clustering algo-
rithms (namely, k-means, k-modes, k-means++, self-
organizing maps, and DIANA algorithm). /e clustering
algorithms have been integrated with the use of three
consensus functions, namely, simple voting-based consen-
sus function, incremental voting function, and label cor-
respondence search. Hence, the predictive performance of
other conventional and swarm-based clustering algorithms
(such as ant clustering, particle swarm-based clustering,
firefly clustering) can be examined for imbalanced learning.
In addition, recent proposals on the field indicate that
imbalancing schemes which integrate instance selection and
clustering may yield higher predictive performance. Hence,
the performance of consensus clustering-based under-
sampling scheme should be taken into consideration in
conjunction with conventional instance selection methods.
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