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Consensus Control for a System of
Underwater Swarm Robots

Matthew A. Joordens, Member, IEEE, and Mo Jamshidi, Fellow, IEEE

Abstract—The control of a swarm of underwater robots requires
both a control algorithm and a communication system. Unfortu-
nately, underwater communications is difficult at the best of times
and so large time delays and minimal information is a concern. The
control system must be able to handle a large number of robots
without a master control, i.e., a decentralized control approach.
This paper describes Consensus control as a way to decentralize.
Consensus control allows each robot to know the final goal and then
to decide, based on the position of the other robots, its best move
to help achieve the goal.

Index Terms—Robots, underwater vehicles.

I. INTRODUCTION

T
HE control of a multivehicle system stems from the work
being done at the Autonomous Control Engineering (ACE)

Laboratory at the University of Texas, San Antonio (UTSA).
This work is in systems of systems (SoS). The idea is that dif-
ferent systems can be made to cooperate. These systems could
be robotic, automation or even human. The ACE lab is currently
looking at taking systems of different types of robots (land, air,
and sea). This paper concentrates on the underwater realm.

Further, this paper looks at the control of a swarm of un-
derwater robots using consensus control. There are a variety
of methods that can be used to control a swarm, such as con-
sensus, receding horizon and spatio-temporal. [1]–[7] The bulk
of these methods used the principles of consensus control as
main control method. Consensus provides a broad framework
and the guide to the control system allowing other methods to
be used within it. Most control methods used predictive control
[1]–[5] which is required here as well. These methods, how-
ever, are mainly focused on maintaining a formation of agents,
whereas the focus of this paper is the cooperative control to com-
plete a task. Consensus control gave the flexibility required by
allowing other methods within it.

II. BACKGROUND

The oceans of the world are, even today, a great unknown.
Recreational divers can only dive to depths of up to 40 m and
then only for a few minutes. Commercial/technical divers do
not venture much below 300 m.[8] This is largely because of
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Fig. 1. Military SoS (courtesy of the Bureau of Industry and Security, U.S.
Department of Commerce).

the pressure of the water at depth. To go below this depth sub-
mersibles are used. They may be manned or unmanned.

As an example, both types of vehicles were used to explore
the Titanic, which is in 3840 m of water [9]. At this depth, the
pressure of the water is 385 bar [8] ! There are not many vessels
built to withstand that pressure.

Even in the shallower waters most sea based human en-
deavour is limited to harbors, oyster farms, oil rigs, and
research. Most of the work done by underwater vehicles/robots
is limited to visual inspection. But what if we can do more?

Autonomous underwater vehicles (AUVs) are unmanned,
untethered, self-propelled platforms.[10] AUVs have the po-
tential to revolutionize our access to the oceans to address
the critical problems faced by the marine community such as
underwater search/rescue [11] and mapping, climate change
assessment, underwater inspection, marine habitat monitoring,
shallow water mine counter measures [12], and scientific
studies in deep ocean areas. Recent trends in AUV technology
are moving towards reducing the vehicle size and improving its
deployability to reduce the operational costs. This will make
it possible to create swarms of robots to operate and perform
tasks that would be difficult for a single robot.

III. SYSTEMS OF SYSTEMS

SoS may be a new area of research but the idea is quite old.
The defence force has been interested ever since fighting began.
An army is comprised of many different systems, be they the old
cavalry, foot soldiers and pikemen to the modern infantry, tanks,
planes and ships, (Figs. 1 and 2). The army that was often vic-
torious was the one that could control these separate systems as
one coordinated system of systems [13]. Today, modern tech-
nology has allowed this type of SoS to work very effectively.

Modern communications allow each system to know what the
other systems know and then the different systems can make
informed decisions towards the goal of the whole system.

1932-8184/$26.00 © 2010 IEEE
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Fig. 2. SoS with water, infantry, and air units.

IV. CONSENSUS CONTROL

This is what consensus control is based on. In an ideal world,
each system knows exactly what every other system knows at the
same time [14], [15]. This is normally impossible but consensus
control attempts to get close to this [16]–[18]. It is a strategy of
disseminating knowledge to multiple units which, in this case are
robots. By giving or sharing information, all units have the same
knowledge and each robot can form an opinion of the action to
take. Thus there is no central command robot or master control.
It tries to work much like a football team. The team has a goal,
which is to get the ball to one end of the field. There is no central
control; all the players have a single overall goal, but to make
that goal a reality each player will decide upon its own sub goal.

Consensus control shares to required knowledge and then lets
the individual units formulate their own plan

V. POSSIBILITIES FOR CONSENSUS CONTROL

A. Ship Inspection

In today’s world of terrorism many new security measures
must be taken. One such terrorist threat is limpet mines on the
hulls of large ships, such as oil tankers. The mines are very easy
to place but, because of the size of the vessel, are hard to detect.
If a mined ship got into a harbor and then was destroyed, the
damage would be catastrophic. One needs to inspect the ship
before it gets into the harbor.

There is one opportunity to do this and that is when the pilot is
transferred to the ship just outside of the harbor. Using a single
inspection robot to inspect the hull would take too long. This is
a very dangerous job for divers and would still take too long.
But what about a swarm of consensus controlled robots? They
could be thrown over the side of the pilot boat, each inspect a
small portion of the ship, knowing where each other robot is in-
specting. This would very quickly put a total picture together of
the ship’s hull and any abnormalities could be detected quickly.

B. Undersea Harvesting

There are many resources at the bottom of the oceans that
are too hard and expensive to mine of harvest. One case is man-
ganese nodules. These nodules can be found strewn over the sea
bed either too deep or too widely distributed for divers to col-
lect. However, a swarm of robots, each knowing where the other
robots are, may well be able to harvest this resource [13].

VI. ROBOT TYPES

So what sort of robots should be used? The main difference
between the robots is if they are tethered or not.

A. Tethered

A tethered robot allows for easy and fast communications.
This is desirable when a large amount of information, such as
video data, is to be shared.

They almost have unlimited power, as the power is supplied
through the tether. This means that the robots can be strong and
fast units.

They have off board intelligence, normally on a computer on
land or the mother ship. This allows large and powerful com-
puters to be used which will be able to easily handle the large
amounts of information.

On the other hand, the robots range is limited by the length of
the tether and there is a constant concern about entangling the
tether. A tangle means that a diver must retrieve the robot, other
robots must be used to retrieve it or it must be cast off and lost.

B. No Tether

This type of robot can have a longer range.
It also does not have to worry about any tether drag reducing

it efficiency.
Entanglements are also not a concern giving this robot greater

freedom of movement.
On the other hand, this robot must be self contained. Thus, it

must carry its own power supply. To conserve this power it must
move slowly and cannot be very powerful.

It also has its computer on board, necessitating a smaller, less
powerful control unit.

But the biggest difficulty is communications. As radio is very
poor in water, either low wave length or sonar must be used.
This makes the communications very slow and error prone. Only
small amounts of data can be transmitted.

C. So Which Robot?

Both types of robots have their advantages and disadvantages.
With consensus control however, one does not have to choose
between the two. The robots without tethers can be used as
scouts. They can range far away from the mother ship and guide
that ship to any points of interest where their tethered cousins
can do the heavy work. Consensus control gives the goal, but the
individual robots can decide what to do based on their knowl-
edge from the other robots and their own special abilities.

Shown in Fig. 3 are the two robots that the author is working
with. The tethered VideoRay and the author’s own home built
tetherless robot [19].

VII. COMMUNICATIONS

Underwater communications can be implemented in nu-

merous ways including acoustic propagation, fiber-optic com-

munications, and radio modems. Fibre-optic or any cable based

systems can be ruled out immediately. Anything that requires a

tethermeans thatonly a fewrobotscanbeused.Aswarmof robots

with a swarm of tethers will get tangled up very quickly [20].
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Fig. 3. A possible pairing, the author’s tetherless robot working in cooperation
with a tethered VideoRay.

As detailed in [21], acoustic propagation faces lots of prob-

lems compared to radio modems. These problems are mainly

due to very limited bandwidth, large signal propagation time and

overload on the receiving antenna by local transmit power levels

(Near and Far problem). The limited bandwidth implies that the

use of multi-channels techniques is very limited. The near and

far problem occurs when an acoustic unit may not transmit and

receive at same time because of local transmit power levels.

Large propagation delays involved in acoustic propagation are

in the range of seconds. All of these factors lead to a decision

to choose some alternative technology to communicate effec-

tively between the AUVs. Thus it was decided to try using radio

modems for communication.

The radio modem chosen was the Zigbee module. Zigbee

is a low-power wireless communication technology and inter-

national standard protocol for the next- generation wireless

networking. It reduces the data size and allows for lower-cost

network construction with simplified protocol and limited

functionality. Zigbee uses the [22] MAC layers and PHY layers

defined by IEEE® 802.15.4, which is the shortest distance

wireless communication standard for 2.4 GHz. The benefits of

Zigbee are robustness, simplicity, low-power consumption, and

mesh networking [23] 802.15.4 provides a robust foundation

for Zigbee, ensuring a reliable solution in noisy environments.

Features such as channel assessment and channel selection help

the device to pick the best possible channel, avoiding other

wireless networks such as Wi-Fi. Message acknowledgment

helps to ensure that the data is delivered to its destination.

The ability to cover large areas using routers is one of key

features of the Zigbee network and helps to differentiate it

from other technologies [24]. Mesh networking can extend the

range through routing and it also has self healing capability that

increases reliability of the network by re-routing a message in

case of node failure. Finally, multiple levels of security ensure

that the network and data remain intact and secure.

Fig. 4. Experimental setup [25].

All this is very good with one flaw. The module’s frequency

of 2.4 GHz is best absorbed by water. (Microwave ovens use

a frequency of 2.45 GHz for just this reason.) Therefore the

range of such a system is probably too small for this application.

There has not been any previous work on the use of Zigbee

modules in an underwater environment as far as the author can

determine. The small size of these modules which would allow

easy placement inside a robot and a small antenna requirement

where too tempting to ignore.

A rough experiment was set up to test the possibility of using

Zigbee modules. Two modules were set up in pipes with a closed

end. The pipes were dipped into the water and RS232 cables ran

up out of the pipes to a computer. This experiment indicated that

the system could communicate up to 3 m. The open pipes were

a concern but still this warranted a more controlled experiment.

The experiment with the Zigbee modules was carried out in a

3-m-deep swimming pool to verify the signal strength and to see

range of attenuation affected by the signal based on distance be-

tween transmitter (base) and receiver (remote) and depth of base

and remote. Each time 15 packets of information is sent from

base to the remote. Base, remote and the experimental setup is

shown in Fig. 4, with the antennas immersed in the water con-

nected to the shielded modules with shielded cable.

This experiment gave a range of over 8 m. This indicated that

something was wrong. The shielding was insufficient. After a

few more experiments it was determined that the correct setup

was to shield all equipment, to impedance match the antenna

cable and to physically ground the shielding to an earth stake.

Using this setup it was found that the modules can only com-

municate underwater to a range of 0.15 m.

Whilst this meant that 2.4 GHz modules could not be used,

there was not much hope for them anyway, it set the experi-

mental method to be used to investigate other, lower, frequen-

cies. The ACE lab at UTSA is currently working on a multiband,

low-frequency system to overcome these problems.

Until the right frequency is determined the authors will use

300-Bd acoustic modems. This is a worst case scenario and

means that only about 30 bytes can be transmitted per second.

If significant control can be achieved with this communications

system, then faster system will be that much easier.

VIII. POSE

The next problem in consensus control is knowledge of the

robot’s pose, or position and orientation. Information about the

robots position, the direction it is facing, and other factors such

as its velocity are all important for the other robots to be aware

of.
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A. Dead Reckoning

So, how is this information determined? GPS, that wonderful

navigation system used by most systems in the world today does

not work underwater. The main method of navigation under-

water is dead reckoning. This system determines the vessels ori-

entation, its velocity and time taken to estimate its new position.

Large vessels like submarines can use large accurate gyroscopes

to determine this information. In the small units, inertial mea-

surement units (IMUs) are used. The problem with this system is

that any errors that occur (and they will occur) will accumulate.

B. TriTech Navigation

One possible system that is being used by the author is the

Tritech MicroNav system. This system uses a transponder on

each robot to be tracked. It has one buoy in the water and, it

can give a bearing and range to each transponder using a sonar

ranging system. It can convert the bearing and range into , ,

and coordinates with itself being at coordinates (0,0,0). By

placing a GPS unit on the Buoy, it can even give GPS locations

for the transponders.

The MicroNav can track up to 16 different transponders at a

rate of 4 per second. Unfortunately, the author has so far only

managed a rate of 1 per second and these are prone to positional

errors. This information then needs to be shared with the robots

so that they know where they are. The slow rate of positional

information is not that much of a concern as the communications

system used cannot work any faster anyway.

It was decided to use the MicroNav system to give the robots

a known position to work from where the MicroNav is at the

origin (0,0,0).

IX. SETUP

Due to the communications problems, the author choose to

use the commercial VideoRay robots for this part of the re-

search. The VideoRay is a small tethered robot controlled from

an on shore computer. The MicroNav tracking was then to be

used to allow the robots to get a fix on their position whenever

the MicroNav had that information available. At other times, the

VideoRay only has a compass and a depth sensor to guide it.

The author was performing the experiments in a pool to have

a controlled environment. Unfortunately, the MicroNav could

not perform well in the confined space of a pool. There were

too many reflections off the pool walls for the MicroNav to deal

with. Therefore, the author had to start with simulation and then

move to a lake or ocean at a later date.

X. VIDEORAY SDK

The robots may know where they are now but they still need

to be controlled autonomously. The author first looked at the

current software for the VideoRay which is a good product built

in LabVIEW. The author, however, needed to handle more than

one VideoRay and possibly other robot types and needed au-

tonomous control. It also needed to interface to the navigation

system, sonar units, inertial measurement units (IMUs), and

other possible sensors. The author decided then to write his own

software. As the author would need various different control

packages, it was decided to write a software development kit

(SDK) for the VideoRay to make the control code easier to

write. This gives one the ability to quickly generate code that

can control the VideoRay.

XI. MULTIPLE VEHICLE CONTROL

For research purposes, it was easier to control several vehicles

on one computer. This made the simulation of communications

between the vehicles easy to perform.

For the purposes of looking at consensus control a swarm of

robots was needed. The author had a “swarm” of two Video-

Rays. Thus more VideoRays were needed. It was decided then

to simulate more VideoRays.

To do this, a VideoRay was filmed moving next to a scale and

the film was then analysed to determine its accelerations and

velocities at different thruster powers. The allowed the Video-

Rays simulation software to be tested against the real robot and

thus the author could create as many VideoRays in the software

as required. By driving the VideoRay at various power levels,

the acceleration and maximum speeds at those levels was de-

termined. This information was enough to develop a simulator

accurate enough to combine virtual VideoRays with real ones.

The simulator can handle two real VideoRays or include them

as part of the virtual swarm.

The real VideoRays can then cooperate with the virtual ones

and thus determine how well they cooperate and how accurate

the simulations are.

XII. CONSENSUS

In order to test the consensus control, a simple task was pro-

vided. The swarm of robots were to patrol a square path defined

by four waypoints. Ten simulated VideoRays were produced all

at different depths to avoid collisions.

As can be seen in Fig. 5, the robots are very haphazard to the

patrol. Bunching up in places and leaving other areas sparse.

To create a better patrol the robots should be evenly spaced.

For this to happen, consensus control demands that each robot

must have the same overall goal, know where the other robots

are, and hence share its position and then decide on its own

action.

There are four steps required to set up consensus control [17].

A. Cooperation Objective

It must be determined what constitutes cooperation. In this

case the distance between each of the robots must be the same.

Hence

(1)

where is the distance between two VideoRays,

one following the other, and where
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Fig. 5. VideoRays patrolling a square without consensus control (The two
middle robots are the real VideoRays sitting on the bottom).

total distance of the path;

number of VideoRays;

cooperation constraint.

In this case, cooperation is said to be achieved when the dis-

tance between all the robots (VideoRays) is equal to the total

length of the path divided by the number of robots in which case

would be zero. To allow some tolerance one can say that when

then the robots have achieved -cooperation, where is

the error margin allowed.

B. Information Requirements

To achieve cooperation, it must be determined what informa-

tion is to be shared.

In this case that information in each robots location and its

identification, a unique number to define each robot.

C. Centralized Strategy

Next, a centralized strategy is identified to obtain the required

goal.

In this case, each robot much be sped up or slowed down

to maintain its position in the patrol and to maintain the equal

distances between each robot.

D. Consensus Building

Now the centralized strategy is broken down so each robot

can make its own decisions to achieve the common goal.

In this case each robot can determine the number of robots

present (or the number it thinks are present if communications

are bad). It knows the total length of the patrol path, and so can

calculate the distance that it must stay behind the robot in front

of it.

As can be seen from Fig. 6, the consensus control has given

better control to the robots that are not using any sensors,

just the location information being shared. There is still some

Fig. 6. VideoRays patrolling a square with consensus control.

bunching up due to creating some time delay in the communi-

cations system.

XIII. COMMUNICATIONS TIME DELAY

Using 300-Bd communications means that very little infor-

mation can be sent and only very slowly. Each robot will share

its positional information. The information packet sent consists

of the robots ID, its , and coordinates and its heading.

The robot with the smallest ID number sends its information

first. With the act of sending goes the power to transmit again.

All robots receive this information and the robot with the next

highest ID gains the power to transmit its information which it

does as soon as possible. Once the robot with the highest num-

bered ID transmits, no robot can send. The lowest numbered

ID robot waits for an allocated period of time and, if nothing is

received, starts the process again. This method can be used if

the robots are sequentially numbered and are all close enough

to each other to ensure that they will all receive every transmis-

sion. This method had a break in transmission after the highest

robot has transmitted, but no time is lost in acknowledgement

transmissions.

Even so, the time delay is very large and hard to deal with

even in this fixed topology system.[26] Because of the large

time delay, we will not consider it in the consensus algorithms

as many others have done for smaller delays [16], [27], [28] but,

instead attempt to correct the data.

The time delay means that each robot knows the position of

the other robots sometime in the past, but it does not know its

current position. As seen in the last run, there is a bunching up

of robots as each robot has invalid positional information about

the other robots. There are actually two time delays, the time

it takes to communicate and the positional data that gets more

inaccurate as time passes until it is updated.

The first delay is very small compared to the second delay

and has been studied in various papers [18], [29].
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Fig. 7. VideoRays patrolling a square with consensus control using position
prediction.

The second delay can be as large as 2 s. The robots used can

move up to 600 mm in 2 s or almost two robot lengths! This is the

delay that needs to be addressed. We can try to predict the other

robots paths [30]. Various control methods look at disruption

to the communications system and the need to use prediction

[1]–[5]. All of these studies, however, assumed that the robots

had the sensor capability to determine the other robots positions

without any communications. This was not the case here as the

VideoRays only had a compass and a depth sensor. The camera

on the VideoRays was not being used as it was decided that

murky water could easily render this option useless.

To predict the current position, each robot timestamps each

packet of information as it is received and keeps the last two

packets of information about each other robot. Linear extrapo-

lations are then done to predicted or estimate the current location

of each robot as follows:

(2)

where

robot’s ID;

estimated , , coordinates of robot ;

last known position of robot ;

next-to-last known position of robot ;

time of ;

time of ;

current time.

Using this prediction/estimation approach, a further run was

performed as seen in Fig. 7.

As can be seen, the distribution of the robots is much more

even. Let us look closer at one of the robots as seen by the robot

behind it.

Fig. 8. Plot of robot (� coordinate is constant and therefore ignored).

Fig. 9. � coordinate of robot over time.

Fig. 8 shows the movement of one robot finding its first way-

point and then starting to move around the square of four way-

points. It shows the given or last known positions, the predicted

plot, and the actual plot. The predicted plot looks terribly wrong

in places while the given positions always look right. This is de-

ceiving however. The given positions are always right but they

are only valid at certain points in time. A better way to look at

this is by looking at each coordinate over time.

Figs. 9 and 10 show the and coordinates of a robot as

seen from the robot following it. The given and last given plots

show the stepwise nature of the information sent by the robots.

As can be seen, the given positions are initially accurate but then

become more inaccurate compared to the real position of the

robot. The predicted plot is only truly accurate when the robot

has been moving in a straight line, after all, a linear extrapola-

tion was used, but in most cases the predicted position is more

accurate then the given position—see Table I.

Table I shows quite large errors, particularly in the axis.

This begs the question: Even with the improvement in error, how

did the predicted approach work?

A review of the data saw that there were a few very large

errors, mainly while turning corners. A better examination of

the errors is to look at 95% of the errors, removing the largest

errors, see Table II.
Table II shows that most of the errors were much more reason-

able with about a 7% improvement using the prediction model.
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Fig. 10. � coordinate of robot over time.

TABLE I
% AVERAGE ERRORS IN GIVEN AND PREDICTED POSITIONS

TABLE II
95% OF ERRORS, (5% OF LARGEST ERRORS REMOVED)

The larger errors were not being used long enough to destroy
the advantages of the predicted model.

A more accurate prediction could be made if the last three or
more given positions were kept and higher order extrapolations
were made. The linear extrapolation however was a significant
improvement over straight consensus control and higher order
extrapolations would only be used if the time delays were much
larger.

XIV. SIMULATED AND REAL

With the simulated task complete, the real VideoRays were
introduced. Both the simulated and real VideoRays were to do
the task, patrolling a path, together. The MicroNav was to track
the real robots and feed their positions into the simulation.

The problem that cropped up here was that the MicroNav did
not work in the pool environment. The walls of the pool caused
too many reflections for the system to work.

Because of this, it was decided to use the simulator tracking
system itself to track the real robots. The only sensors that the
VideoRays had were a depth sensor and an electronic compass.
The tracking system knows the power level that the real robot is
using and its orientation from the on board compass. By using
dead reckoning, it could estimate the robots position just as it
tracked the simulated robots. This was not the ideal situation as it
is an open control system. The robots do not know exactly where
they are without the feedback of the MicroNav system. The first
test run included the two real robots with the 10 simulated robots.

Fig. 11. Simulation run with the two real VideoRays.

The real robots are numbered 1 and 2. The side panels on
each side of the simulation section Show the details of the real
robots. VideoRay 1 is on the left. The items displayed from top
to bottom for both robots are:

• Tx—The serial control string sent to the VideoRay;
• Rx—The serial string received from the VideoRay;
• power/thrust levels of the thrusters (a centred slider is zero

thrust, up is forward/upward thrust and down is the re-
verse);

• a compass (a red bearing is negative.);
• a depth graph and readout (VideoRay 1 is at 2 m and the

other at 1.1 m);
• a control selection—the robots are set to Autonomous

control.
The lower section displays the information that the MicroNav

is sending. It is blank as the MicroNav was not being used here.
The center top section allows mouse control via trackballs

and sonar selection when a VideoRay is equipped with a sonar
unit. Neither was equipped here.

To judge how well the control system worked the VideoRays
were filmed and then broken down into a series of images in a
similar fashion to time lapse photography. One image is shown
in Fig. 12.

The resulting images were overlaid on each other to see
motion of the Videorays. Over that the route, that each Vide-
oRay took was traced, VideoRay 1 in black. Then the reference
squares were traced in red.Fig. 13

The misalignment of the reference squares is due to a number
of factors. The compasses on the VideoRays were out by about
8 degrees to each other. The camera was at about a 30–degree
angle to the water and the VideoRays were at different depths.
The deeper VideoRays route looks smaller and higher up on the
image due to this.

Note however that the VideoRays end up where they started.
This indicates that the simulator system was able to control the



72 IEEE SYSTEMS JOURNAL, VOL. 4, NO. 1, MARCH 2010

Fig. 12. Two VideoRay patrolling in a pool.

Fig. 13. Route taken by each VideoRay.

Fig. 14. Route of two VideoRays with bearing correction.

VideoRays well, even in an open system, and hence, that the
simulator gives a good representation that of how the VideoRays
move.

It was also noted that even though the paths closed, they were
erratic. This was due to a lag in the compass reading of up to 2 s.
To overcome this, the previous two compass readings were used
to extrapolate a new reading closer to the true compass bearing.
The results are seen in Fig. 14.

The VideoRays motion was still erratic in places but dis-
played a smoother route overall.

In this trail, the two VideoRays were not started in the same
reference square as the author, manually controlling two Video-
Rays and watching the software, had more than a little difficulty
getting both VideoRays to the right starting spot at the same
time to begin the trial. This did not matter however as the con-
trol system was controlling a square patrol path and assumed
that the real VideoRays were in the right square.

This image, Fig. 14, also shows how the handheld camera’s
motion was corrected for. The Red ball at the bottom left was
a fix buoy and as each image was overlaid on the next one, the
image was adjusted so that the buoy was in the one position.

Finally, looking at Fig. 11, it can be seen that the consensus
control system effectively incorporated both the real VideoRays
and the simulated ones ensuring that they all followed the patrol
route and did not interfere with each other.

XV. FUTURE WORK

Now that real robots can be controlled along with simulated
ones, new scenarios can be tried. For example, in a rescue situa-
tion, the simulated robots can be used to search and the real ones
can affect the rescue. A system with real time delays can tested
and previous theoretical work, such as [21] can be applied to it.

XVI. CONCLUSION

In an underwater robotic swarm environment, consensus al-
lows a distributed control over the robots. The most important
factor in achieving control is the communication rate which can
be very slow as can the time between information updates. To
counteract this, a prediction/estimation algorithm must be em-
ployed. A simple linear extrapolation will perform the estima-
tion with sufficient accuracy to allow the consensus control to
be effective.

Further, real robots can be incorporated with the simulation
and will allow more algorithms to be tested with real systems.
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