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Abstract This work is concerned with consensus control for a class of leader-following multi-agent

systems (MASs). The information that each agent received is corrupted by measurement noises. To

reduce the impact of noises on consensus, time-varying consensus gains are adopted, based on which

consensus protocols are designed. By using the tools of stochastic analysis and algebraic graph theory, a

sufficient condition is obtained for the protocol to ensure strong mean square consensus under the fixed

topologies. This condition is shown to be necessary and sufficient in the noise-free case. Furthermore,

by using a common Lyapunov function, the result is extended to the switching topology case.
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1 Introduction

The leader-following MAS is an important kind of MASs. It has been extensively used
to represent systems in many practical applications such as biological systems[1], formation
control[2] and large scale robotic systems[3], etc. In leader-following MASs, the leaders are
usually independent of their followers, but have influence on the followers’ behaviors. Therefore,
one can realize one’s control objective of the agents by only controlling the leaders, which
transfers the control of the whole system to that of a single-agent. This not only simplifies
the design and implementation of the controls but also helps to save energy and reduce control
costs[4−5].

Consensus control for leader-following MASs has attracted much attention. For instance,
Jadbabaie et al.[6] considered the nearest neighborhood principle, and under time-varying
topologies, proved that if all the agents were jointly connected with their leader, then their
states would converge to the state of the leader as time goes on. Ren and Beard[7] extended the
results of [6] to the directed topology case. Hong et al.[8] considered the multi-agent consensus
with an active leader and variable interconnection topology.

A common feature of the existing works on consensus control for leader-following MASs
is that measurement noises are not considered and the state information is assumed to be
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exactly obtained. However, real communication processes are often disturbed by various random
factors. Therefore, just as Ren et al.[9] pointed out, for the consensus problems it is important
to investigate how to design consensus protocols applicable to the cases with communication
noises. This paper will focus on leader-following consensus control under measurement noises.

For leader-following MASs, the main difficulties of consensus control under measurement
noises stem from noise disturbance and state coupling of the closed-loop system. Here, mea-
surement noises come into the consensus protocol, which renders the closed-loop system a
stochastic differential equation. Also, the communication topology among agents in the MAS
is described by a digraph. This makes the state matrix of the above stochastic differential
equation neither symmetric nor diagonalizable since the Laplacian matrix of a digraph is non-
symmetric. Thus, the closed-loop system cannot be decoupled, and hence, it is hard to analyze
the convergence of the consensus protocol.

It is worth pointing out that different from [10] and [11], here the digraph is not assumed
to be balanced, and thus, the method of the symmetrized graph in [10] is not suitable to the
convergence analysis. Also, unlike the noise-free cases (e.g. [6, 12]) where the convergence
properties of the protocol are often analyzed by employing the theory of stochastic matrices,
here due to the existence of measurement noises, the state matrix of the closed-loop equation
is no longer a stochastic matrix, and thus, the tools of stochastic matrices do not work.

With these observations, to overcome the impact of measurement noises, time-varying con-
sensus gains are introduced into the consensus protocol designed. And convergence properties
of the protocol are analyzed by using a common Lyapunov function. Under fixed topologies, a
sufficient condition is obtained for the state of each follower to converge to that of the leader
in mean square, which is also found necessary and sufficient in the noise-free case. In addition,
under switching topologies, the protocol is also shown to be a strong mean square consensus
protocol if the subgraph formed by the followers is balanced.

The remainder of this paper is organized as follows. Some preliminary results of graph theory
are briefly reviewed in Section 2. The problem to be investigated is formulated in Section 3.
The consensus protocols are designed in Section 4, and in Section 5 the convergence properties
of the closed-loop system are analyzed under fixed and switching topologies, respectively. A
numerical example is given in Section 6 to illustrate our results. Finally, some concluding
remarks and future research topics are discussed in Section 7.

The following notations will be used throughout this paper: R
m×n denotes the family of

m×n dimensional real matrices; Im denotes the m×m dimensional identity matrix; 1 denotes a
column vector with all ones; R denotes the real number field; λmax (X) and λmin (X) denote the
maximum and minimum eigenvalues of the real symmetric matrix X , respectively. For a given
vector or matrix X , XT denotes its transpose; tr (X) denotes its trace; ‖X‖ denotes its Eu-
clidean norm. For a given set S, χS denotes the indicator function of S. For a family of random
variables {ξλ, λ ∈ Λ}, σ (ξλ, λ ∈ Λ) denotes the σ-algebra generated by {ξλ ∈ B, B ∈ B, λ ∈ Λ}
where B denotes the 1-dimensional Borel sets.

2 Preliminaries

In this paper, we model information exchange among agents in MASs by digraphs. Thus,
before formulating our problem, we first introduce some basic notations from digraphs[4,9,12].

Let G = (V , E) be a digraph with the set of vertices V = {1, 2, · · · , N} and the set of edges
E ⊆ V × V . In G, the ith vertex represents the ith agent, and a directed edge from i to j is
denoted as an ordered pair (i, j) ∈ E , which means that agent j can directly receive information
from agent i. If there is a directed edge from i to j, then the vertex i is called the parent vertex
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and the vertex j is called the child vertex. The set of neighbors of the ith agent is denoted by
Ni = {j ∈ V | (j, i) ∈ E}. (i, i) is called a self-loop. In this paper, we assume that the digraph
has no self-loops, unless stated otherwise.

A sequence of edges (i1, i2), (i2, i3), · · · , (ik−1, ik) is called a directed path from vertex i1 to
vertex ik. A digraph is called strongly connected if there is a directed path from every node to
every other node. A directed tree is such a digraph whose every vertex except the root, which
has only children but no parent, has exactly one parent. A spanning tree of a digraph is a
directed tree that contains all the vertices of the digraph.

Suppose G = (V , E) and G = (V , E) are two digraphs. If V ⊆ V and E ⊆ E , then G is said to
be a subgraph of G.

A = (aij) ∈ R
N×N is called the weighted adjacency matrix of G = (V , E) with nonnegative

elements, and aii = 0, aij > 0 ⇔ j ∈ Ni. Specially, if aij = aji, i, j = 1, 2, · · · , N , then
G = (V , E ,A) is said to be an undirected graph. The in-degree and out-degree of vertex
i are defined as degin(i) =

∑N
j=1 aij and degout(i) =

∑N
j=1 aji, respectively. If degin(i) =

degout(i), i = 1, 2, · · · , N , then G is called balanced.
The Laplacian matrix of the weighted digraph G = (V , E ,A) is defined as LG = D − A,

where D = diag (degin(1), degin(2), · · · , degin(N)).
Let G = (V , E ,A) be a weighted digraph and Ẽ = {(j, i) | (i, j) ∈ E}. The mirror of G denoted

by Ĝ = (V , Ê , Â) is an undirected graph, where the set of edges Ê = E ∪ Ẽ , and the symmetric

weighted adjacency matrix Â = (âij) with elements âij = âji =
aij + aji

2
≥ 0.

Below are important results for the Laplacian matrix.
Lemma 1[13] Suppose that G = (V , E ,A) is a weighted digraph and Ĝ = (V , Ê , Â) is the

mirror digraph of G. Then,
LG + LT

G
2

is the Laplacian matrix of Ĝ if and only if G is balanced,
where LG is the Laplacian matrix of G.

Lemma 2[4] The Laplacian matrix LG of a digraph G = (V , E ,A) has at least one zero
eigenvalue and all the nonzero eigenvalues are in the open right half plane. Furthermore, LG
has exactly one zero eigenvalue if and only if G has a spanning tree.

3 Problem Formulation

Here, we consider a system consisting of N + 1 agents where an agent indexed by 0 acts as
the leader and the other agents indexed by 1, 2, · · · , N , respectively, act as the followers. The
dynamics of the ith follower is described as follows:

ẋi(t) = ui(t), i = 1, 2, · · · , N, (1)

where xi(t) ∈ R and ui(t) ∈ R are the state and control input of the ith follower, respectively.
In general, the behavior of the leader is independent of the followers. x0 denotes the state of
the leader and keeps being a constant.

With regarding the N + 1 agents as vertices, the topology relationships among them can be
conveniently described by a digraph G = (V , E ,A) with

V = {0, 1, 2, · · · , N}, A =

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0
a10 0 · · · a1N

...
...

. . .
...

aN0 aN1 · · · 0

⎞

⎟
⎟
⎟
⎠

∈ R
(N+1)×(N+1). (2)
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For simplicity, let B = diag(b1, b2, · · · , bN) represent the leader adjacency matrix associated
with G, where bi = ai0 ≥ 0. Obviously, bi > 0 ⇔ 0 ∈ Ni. Let the digraph G = (V , E ,A)
represent the subgraph formed by the N followers, where

V = V \ {0}, A =

⎛

⎜
⎝

0 · · · a1N

...
. . .

...
aN1 · · · 0

⎞

⎟
⎠ ∈ R

N×N .

As it is well-known, real communication processes are often corrupted by random noises. In
our models, the ith agent receives information from its neighbors with measurement noises:

yji(t) = xj(t) + nji(t), j ∈ Ni,

where yji(t) denotes the measurement of the jth agent’s state xj(t) by the ith agent, and
{nji(t), j ∈ Ni, i = 1, 2, · · · , N} are independent standard white noises.

A group of controls U = {ui, i = 1, 2, · · · , N} is called a measurement-based distributed
protocol[10], if

ui(t) ∈ σ

(

xi(s),
⋃

j∈Ni

yji(s), 0 ≤ s ≤ t

)

, ∀ t ≥ 0, i = 1, 2, · · · , N.

The so-called consensus problem for leader-following MASs under measurement noises is
to design a measurement-based distributed protocol such that as time goes on, each follower’s
state will finally converge to the leader’s.

This paper is to investigate the above problem. First, we design the consensus protocol for
each follower.

4 Consensus Protocol

We propose a protocol for the ith follower as

ui(t) = a(t)

[
∑

j∈Ni

aij (yji(t) − xi(t)) + bi (y0i(t) − xi(t))

]

, t ≥ 0, i = 1, 2, · · · , N, (3)

where a(·) : [0,∞) −→ (0,∞) is a piecewise continuous function, usually called a time-varying
consensus gain[10] and aij is defined as in (2); Ni = Ni(G) denotes the neighbor set of agent i
and varies with G in the switching topology case.

Remark 1 i) Different from the leader-following consensus protocols in [6–8], the mea-
surement noises are explicitly taken into account in the consensus protocol (3).

ii) From (3) it is obvious that the consensus protocol devised for the ith follower is indeed a
measurement-based distributed protocol since it depends only on the state information of itself
and its neighbors’.

Next, a natural question is that after applying (3), whether the state of the ith follower will
converge to that of the leader? To answer this question, we first investigate the closed-loop
system based on (3).

Let αi represent the ith row of the matrix A, H = diag (α1, α2, · · · , αN ) which is an N ×N2

dimensional block diagonal matrix, n0(t) = (n01, n02, · · · , n0N)T, ni(t) = (n1i, n2i, · · · , nNi)
T,

i = 1, 2, · · · , N , and Q = (B, H) which is an N ×
(
N2 + N

)
dimensional block matrix.
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Denote X(t) = (x1(t), x2(t), · · · , xN (t))T. Substituting the consensus protocol (3) to the
system (1), we have

dX(t)
dt

= a(t)
(
−LG − B

)
X(t) + a(t)B (1⊗ x0) + a(t)QZ(t), (4)

where ⊗ denotes the Kronecker product, LG is the Laplacian matrix of G and Z(t) =
(
nT

0 (t), nT
1 (t),

· · · , nT
N (t)

)T is an N2 + N dimensional independent standard white noise sequence.
We can construct an N2+N dimensional standard Brownian motion W ∗(t) = (W01(t), · · · ,

W0N (t), W11(t), · · · , WN1(t), · · · , W1N (t), · · · , WNN (t))T , and rewrite (4) as

dX(t) = a(t)
(
−LG − B

)
X(t)dt + a(t)B (1 ⊗ x0) dt + a(t)QdW ∗(t). (5)

To facilitate analysis, it is convenient to construct an N dimensional standard Brownian
motion W (t) = (W1(t), W2(t), · · · , WN (t))T where

Wi(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

biW0i(t)+
∑

j∈Ni

aijWji(t)

√
b2i +

∑

j∈Ni

a2
ij

, b2
i +

∑

j∈Ni

a2
ij �= 0;

W0i(t), b2
i +

∑

j∈Ni

a2
ij = 0.

Combining with (5), we get

dX(t) = a(t)
(
−LG − B

)
X(t)dt + a(t)B (1⊗ x0) dt + a(t)GdW (t), (6)

where

G = diag

⎛

⎝
√

b2
1 +

∑

j∈N1

a2
1j ,

√

b2
2 +

∑

j∈N2

a2
2j , · · · ,

√

b2
N +

∑

j∈NN

a2
Nj

⎞

⎠ .

In the sequel, we will show that under the consensus protocol (3), each follower’s state will
converge to the leader’s.

5 Convergence Analysis

After applying the consensus protocol (3), the closed-loop system (6) is stochastic, since (3)
takes into account measurement noises. Thus, before establishing the convergence properties of
the consensus protocol (3), we first introduce a definition of consensus protocols for stochastic
systems.

Definition 1[14] A distributed protocol U = {ui, i = 1, 2, · · · , N} is called a strong mean
square consensus protocol if U = {ui, i = 1, 2, · · · , N} renders the system (1) has the following
properties:

lim
t→∞

E (xi(t) − x∗)2 = 0, i = 1, 2, · · · , N,

where x∗ is a random variable and E(x∗)2 < ∞.
For the system (1), we make the following assumptions:
(A1) G = (V , E ,A) has a spanning tree.
(A2)

∫∞
0

a(s)ds = ∞.
(A3)

∫∞
0 a2(s)ds < ∞.



40 CUIQIN MA · TAO LI · JIFENG ZHANG

Remark 2 i) Generally speaking, a digraph does not always have a spanning tree.
However, a strongly connected digraph must have a spanning tree. Therefore, Assumption
(A1) is weaker than the strong connectivity condition.

ii) (A2)–(A3) are standard assumptions often used in stochastic approximation[15], which
(especially (A2)) in some cases happen to be the weakest conditions to ensure a consensus
protocol (see Theorem 2 below).

Denote δ(t) = X(t) − 1⊗ x0. Then, by (6) we have

dδ(t) = a(t)
(
−LG − B

)
δ(t)dt + a(t)GdW (t). (7)

Next, we will demonstrate that the consensus protocol (3) is a strong mean square consensus
protocol under Assumptions (A1)–(A3).

5.1 Fixed Topology

Theorem 1 For the system (1) with the protocol (3), if Assumptions (A1)–(A3) hold, then

lim
t→∞

E‖δ(t)‖2 = 0, (8)

that is, (3) is a strong mean square consensus protocol.
Proof Noticing the definition of the matrix B and the fact that LG is the Laplacian matrix

of G, we know that

LG =
(

0 0
−B · 1 LG + B

)

is the Laplacian matrix of G. Consequently, from Assumption (A1) and Lemma 2, it follows
that LG has exactly one zero eigenvalue and all of the nonzero eigenvalues are in the open right
half plane. Thus, all the eigenvalues of LG + B are in the open right half plane, and hence,
−LG − B is a stable matrix, and the Lyapunov equation

(
−LG − B

)
P + P

(
−LG − B

)T = −IN (9)

has a unique positive definite solution P . Let

V (t) = δT(t)Pδ(t),

Then, by (7) and the Itô formula, we get

dV (t) = −a(t)δT(t)δ(t)dt + a2(t)tr
(
PGGT

)
dt + 2a(t)δT(t)PGdW (t).

Noticing that P > 0, we have

dV (t) ≤ − a(t)
λmax(P )

V (t)dt + a2(t)tr
(
PGGT

)
dt + 2a(t)δT(t)PGdW (t). (10)

Now, we prove that

E

∫ t

t0

a(s)δT(s)PGdW (s) = 0, ∀ 0 ≤ t0 ≤ t. (11)
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For any given t0 ≥ 0, T ≥ t0, let τ t0
K = inf

{
t ≥ t0 | δT(t)Pδ(t) ≥ K

}
, where K is a given

positive integer. From (10) one can get

E
[
V
(
t ∧ τ t0

K

)
χ{t≤τ

t0
K }

]
− E [V (t0)]

≤− 1
λmax(P )

∫ t

t0

a(s)E
[
V
(
s ∧ τ t0

K

)
χ{s≤τ

t0
K }

]
ds + tr

(
PGGT

)
∫ t

t0

a2(s)ds

≤tr
(
PGGT

)
∫ T

t0

a2(s)ds, ∀ t0 ≤ t ≤ T,

which implies that there exists a constant Mt0,T > 0 such that

E
[
V
(
t ∧ τ t0

K

)
χ{t≤τ

t0
K }

]
≤ Mt0,T < ∞, ∀ 0 ≤ t0 ≤ T.

Noticing that t ∧ τ t0
K

a.s.−−−−→
K→∞

t, by the above inequality and the Fatou lemma, we have

sup
t0≤t≤T

E [V (t)] ≤ Mt0,T .

Thus,

E

∫ t

t0

a2(s)V (s)ds ≤ sup
t0≤t≤T

E [V (t)]
∫ T

t0

a2(s)ds < ∞, ∀ t0 ≤ t ≤ T.

By the arbitrariness of T , we obtain

E

∫ t

t0

a2(s)V (s)ds < ∞, ∀ 0 ≤ t0 ≤ t.

This together with

E

∫ t

t0

a2(s)‖δT(s)PG‖2ds ≤ ‖P‖‖G‖2E

∫ t

t0

a2(s)V (s)ds

gives (11). From (10) it follows that for any t ≥ 0 and h > 0,

E [V (t + h)] − E [V (t)] ≤ − 1
λmax(P )

∫ t+h

t

a(s)E [V (s)] ds + tr
(
PGGT

)
∫ t+h

t

a2(s)ds,

or equivalently,

E [V (t + h)] − E [V (t)]
h

≤
− 1

λmax(P )

∫ t+h

t
a(s)E [V (s)] ds + tr

(
PGGT

) ∫ t+h

t
a2(s)ds

h
.

Further,

lim sup
h→0+

E [V (t + h)] − E [V (t)]
h

≤ lim sup
h→0+

− 1
λmax(P )

∫ t+h

t a(s)E [V (s)] ds + tr
(
PGGT

) ∫ t+h

t a2(s)ds

h

= − 1
λmax(P )

a(t)E [V (t)] + tr
(
PGGT

)
a2(t).
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Thus, by the comparison principle[16], we have that for any t ∈ [0, t + h],

E [V (t)] ≤ E [V (0)] exp
{

− 1
λmax(P )

∫ t

0

a(s)ds

}

+tr
(
PGGT

)
∫ t

0

a2(s)exp
{

− 1
λmax(P )

∫ t

s

a(τ)dτ

}

ds. (12)

By Assumption (A3), for any given ε > 0, there exists s0 > 0 such that
∫∞

s0
a2(s)ds < ε. Hence,

tr
(
PGGT

)
∫ t

0

a2(s)exp
{

− 1
λmax(P )

∫ t

s

a(τ)dτ

}

ds

=tr
(
PGGT

)
∫ s0

0

a2(s)exp
{

− 1
λmax(P )

∫ t

s

a(τ)dτ

}

ds

+ tr
(
PGGT

)
∫ t

s0

a2(s)exp
{

− 1
λmax(P )

∫ t

s

a(τ)dτ

}

ds

≤tr
(
PGGT

)
exp

{

− 1
λmax(P )

∫ t

s0

a(τ)dτ

}∫ s0

0

a2(s)ds + tr
(
PGGT

)
∫ t

s0

a2(s)ds

≤tr(PGGT)exp
{

− 1
λmax(P )

∫ t

s0

a(τ)dτ

}∫ ∞

0

a2(s)ds + tr
(
PGGT

)
∫ ∞

s0

a2(s)ds

≤o(1) + tr
(
PGGT

)
ε, t → ∞.

Since ε is arbitrary,

lim
t→∞

tr
(
PGGT

)
∫ t

0

a2(s)exp
{

− 1
λmax(P )

∫ t

s

a(τ)dτ

}

ds = 0.

Noticing that ‖δ(t)‖2 ≤ V (t)
λmin(P ) , by Assumption (A2) and (12), (8) holds.

Remark 3 From Theorem 1 one can see that for the fixed topology case, under Assump-
tions (A1)–(A3), the designed protocol ensures that the state of each follower converges to that
of the leader in mean square.

Remark 4 Different from [10] and [11], here we only require G has a spanning tree, and
do not require it is balanced.

It is worth pointing out that, unlike [6] and [12], here random measurement noises are
considered. To reduce the influence of noises, time-varying consensus gains are adopted, which
renders the closed-loop system (7) is a time-varying stochastic differential equation. From the
proof of Theorem 1, it can be seen that by constructing a stochastic Lyapunov function V (t),
the convergence of the closed-loop system is analyzed, where Assumption (A1) ensures the
existence of a Lyapunov function, while Assumptions (A2)–(A3) ensure that the mean square
error E‖δ(t)‖2 converges to zero.

As stated in Theorem 1, Assumptions (A1)–(A3) are sufficient conditions to guarantee that
the protocol (3) is a strong mean square consensus protocol. In what follows, we will prove that
when the measurement noises are zeros, Assumptions (A1)–(A2) are necessary, too.

When nji(t) ≡ 0, the protocol (3) is reduced to

ui(t) = a(t)

⎡

⎣
∑

j∈Ni

aij (xj(t) − xi(t)) + bi(x0 − xi(t))

⎤

⎦ , t ≥ 0, i = 1, 2, · · · , N. (13)
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In this case, applying the protocol (13) to the system (1), we obtain a tracking error equation
as follows:

dδ(t) = a(t)
(
−LG − B

)
δ(t)dt. (14)

For this tracking error, we state the following result.
Theorem 2 For the system (1), if the protocol (3) is applied and nji(t) ≡ 0, j ∈ Ni,

i = 1, 2, · · · , N , then for any initial value X(0), lim
t→∞

‖δ(t)‖ = 0 if and only if Assumptions

(A1)–(A2) hold.
Proof Sufficiency: Similar to the proof in Theorem 1, by using the unique positive definite

solution P of (9), we can define a Lyapunov function V (t) = δT(t)Pδ(t), which together with
(14) gives

dV (t)
dt

= −a(t)δT(t)δ(t). (15)

Noticing that P > 0, by (15) we have

dV (t)
dt

≤ − a(t)
λmax(P )

V (t).

Integrating both sides of the above inequality results in

V (t) ≤ V (0)exp
{

− 1
λmax(P )

∫ t

0

a(s)ds

}

.

This together with Assumption (A2) implies that

lim
t→∞

V (t) = 0.

Further, by ‖δ(t)‖2 ≤ V (t)
λmin(P ) , we have lim

t→∞
‖δ(t)‖ = 0.

Necessity: By contradiction, suppose Assumption (A1) was not true. Then, there would
exactly exist the following two cases[7]:

(I) There exist at least two separate subgraphs in G without information exchange;
(II) There exist at least two vertices in G receiving no information.
For case (I), suppose V1 and V2 are the sets of vertices of the two separate subgraphs,

respectively. Then, V1

⋃
V2 ⊆ V , and for any i ∈ V1 and j ∈ V2, neither (i, j) nor (j, i) is in E .

If the leader is not in V1 ∪ V2, then we can choose xi(0) = 0, i ∈ V1 and xj(0) = 1, j ∈ V2.
In this case, by applying the protocol (13), there exist two Laplacian matrices L1 and L2 such
that

dX1(t) = −a(t)L1X1(t)dt, dX2(t) = −a(t)L2X2(t)dt,

where X1(t) and X2(t) are column vectors whose elements are composed of states of vertices
in V1 and V2, respectively. Noting that 0 and 1 are the solutions of the above two equations,
respectively, by the existence and uniqueness of solutions, we have X1(t) ≡ 0, X2(t) ≡ 1. Thus,
lim

t→∞
X1(t) �= lim

t→∞
X2(t). This contradicts lim

t→∞
‖δ(t)‖ = 0.

If the leader is in V1 ∪ V2, without loss of generality, suppose 0 ∈ V1, then

dX1(t) = −a(t)(L1 + B1)X1(t)dt + a(t)B1 (1⊗ x0) dt,

dX2(t) = −a(t)L2X2(t)dt,

where B1 denotes the leader adjacency matrix associated with V1. Choosing xi(0) = x0, i ∈ V1;
xj(0) = 1 + x0, j ∈ V2, and noting that 1⊗ x0 and 1⊗ (1 + x0) are solutions of the above two
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equations, respectively, by the existence and uniqueness of solutions, we get X1(t) ≡ 1⊗x0 and
X2(t) ≡ 1⊗ (1 + x0). Thus, lim

t→∞
X1(t) �= lim

t→∞
X2(t), which leads to a contradiction.

For case (II), there exist at least two vertices in G receiving no information, which implies
that there exists at least one follower, say i0, having no neighbors in G. Selecting xi0 (0) �= x0

and by applying (13) to the follower i0, we have

xi0 (t) = xi0(0) �= x0.

This contradicts lim
t→∞

‖δ(t)‖ = 0.

From (I) and (II), one can see that if lim
t→∞

‖δ(t)‖ = 0, then G has a spanning tree. Namely,

Assumption (A1) holds.
Now we only need to prove Assumption (A2).
By Assumption (A1), (15) holds. Thus,

dV (t)
dt

≥ − a(t)
λmin(P )

V (t).

Integrating both sides of the above inequality, we have

V (t) ≥ V (0)exp
{

− 1
λmin(P )

∫ t

0

a(s)ds

}

.

Suppose Assumption (A2) was not true, namely,
∫ t

0 a(s)ds < ∞. Then, we would have

lim inf
t→∞

V (t) ≥ V (0)exp
{

− 1
λmin(P )

∫ ∞

0

a(s)ds

}

> 0, ∀ δ(0) �= 0.

By ‖δ(t)‖2 ≥ 1
λmax(P )V (t), we get

lim inf
t→∞

‖δ(t)‖2 ≥ 1
λmax(P )

lim inf
t→∞

V (t) > 0, ∀ δ(0) �= 0.

This contradicts lim
t→∞

‖δ(t)‖ = 0. Thus, Assumption (A2) holds.

Remark 5 When nji(t) ≡ 0, from Theorem 2 it can be seen that Assumptions (A1)–
(A2) are necessary and sufficient conditions ensuring the followers can eventually follow the
leader, where Assumption (A1) guarantees the connectivity of the communication topology
which makes the state of each follower eventually equal the leader’s; and Assumption (A2)
guarantees the consensus error δ(t) converges to zero with a certain rate.

Remark 6 When nji(t) ≡ 0, in [6] and [12], the theory of stochastic matrices and
nonnegative matrices was used for the convergence analysis. However, here Assumption (A2)
cannot guarantee that there exists a positive constant α > 0 such that a(t) ≥ α, ∀t ≥ 0 (for
example, a(t) = 1

t+1 , ∀t ≥ 0), and so, the positive entries of those off-diagonal ones in the state
matrix of the closed-loop system (14) are not uniformly bounded away from zero. Thus, the
main condition Assumption 1(b) in [12] does not hold, and the stochastic matrix methods used
in [6] and [12] do not work here.

Remark 7 In Theorem 2, G is not required to be balanced, which makes the tools of
symmetric digraphs used in [10] do not work. Here, we propose a Lyapunov-based approach to
deal with the problem.

As shown above, we analyze the convergence of the consensus protocol (3) under the fixed
topologies. However, in most real communication processes, the communication links among
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the agents often change in time. For example, in the flocking and vehicle formation control, the
communication topology depends on the environment of the flocking and the relative positions
of the vehicles, which are usually changing in time. Thus, it will be interesting to study the
convergence of the consensus protocol under switching topologies.

5.2 Switching Topology

Let σ(t) : [0,∞) −→ IT ∗ represent a switching signal that determines the communication
topology. T ∗ is a set of digraphs with a common vertex set V . Since at most a digraph
with vertex set V has N2 + N directed edges, the set T ∗ is finite and can be denoted as
T ∗ = {G1,G2, · · · ,GN∗}, where N∗ represents the total number of digraphs in T ∗ and IT ∗ =
{1, 2, · · · , N∗} is the index set associated with the elements of T ∗. We can rewrite the consensus
protocol (3) as

ui(t) = a(t)

⎡

⎣
∑

j∈Ni(Gσ(t))

aij(Gσ(t))
(
yji(t) − xi(t)) + bi(Gσ(t))(y0i(t) − xi(t)

)
⎤

⎦ , t ≥ 0, (16)

where i = 1, 2, · · · , N ; Ni

(
Gσ(t)

)
is the set of neighbors of follower i in the digraph Gσ(t);

aij

(
Gσ(t)

)
(i, j = 1, 2, · · · , N) is the element of the adjacency matrix of Gσ(t), and BGσ(t)=

diag
(
b1

(
Gσ(t)

)
, b2

(
Gσ(t)

)
, · · · , bN

(
Gσ(t)

))
such that bi

(
Gσ(t)

)
> 0 if and only if 0 ∈ Ni

(
Gσ(t)

)
.

Let δ(t) = X(t) − 1 ⊗ x0 as in Subsection 5.1. Then, by substituting the protocol (16) to
the system (1), we get

dδ(t) = a(t)
(
−LGσ(t)

− BGσ(t)

)
δ(t)dt + a(t)GGσ(t)dW (t), (17)

where LGσ(t)
is the Laplacian matrix of the digraph Gσ(t) formed by N followers in the digraph

Gσ(t) and

GGσ(t) = diag

⎛

⎝
√

b2
1(Gσ(t)) +

∑

j∈N1(Gσ(t))

a2
1j(Gσ(t)), · · · ,

√

b2
N (Gσ(t)) +

∑

j∈NN (Gσ(t))

a2
Nj(Gσ(t))

⎞

⎠ .

In the sequel, we will analyze the convergence of the consensus protocol (16) based on the
closed-loop system (17). Denote Mσ(t) = LGσ(t)

+ BGσ(t) , which will play an important role in
the subsequent convergence analysis. First, we introduce a property of Mσ(t).

Proposition 1 Suppose the digraph Gσ(t) is balanced. Then, Mσ(t) + MT
σ(t) is positive

definite if and only if the digraph Gσ(t) has a spanning tree.
Proof Sufficiency: Since the subgraph Gσ(t) =

(
V , EGσ(t) , AGσ(t)

)
of Gσ(t) is balanced, by

Lemma 1,
LGσ(t)

+ LT
Gσ(t)

2
is the Laplacian matrix of Ĝσ(t) =

(
V , ÊGσ(t) , ÂGσ(t)

)
, which is the

mirror digraph of Gσ(t). Thus,

L̂σ(t) =

(
0 0

−BGσ(t) · 1
Mσ(t)+MT

σ(t)

2

)

is the Laplacian matrix of the digraph Ĝσ(t) =
(
V , Êσ(t), Âσ(t)

)
, where

Âσ(t) =

(
0 0

BGσ(t) · 1 ÂGσ(t)

)

.
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By Lemma 2, L̂σ(t) has at least one zero eigenvalue and all of the nonzero eigenvalues are in
the open right half plane. Since Gσ(t) has a spanning tree and by the definition of the mirror
digraph, Ĝσ(t) must have a spanning tree. Thus, L̂σ(t) has exactly one zero eigenvalue, and
hence, all the eigenvalues of Mσ(t) + MT

σ(t) are in the open right half plane. Further, by the
symmetry of Mσ(t) + MT

σ(t), Mσ(t) + MT
σ(t) is positive definite.

Necessity: Since

LGσ(t) =
(

0 0
−BGσ(t) · 1 Mσ(t)

)

is the Laplacian matrix of Gσ(t), by Lemma 2, Mσ(t) has either at least one zero eigenvalue or
eigenvalues with positive real-parts. If Mσ(t) has zero eigenvalue and α is the correspond-
ing eigenvector, then α �= 0 and Mσ(t)α = 0. A straightforward calculation shows that

αT
(
Mσ(t) + MT

σ(t)

)
α = 0, which in turn implies that Mσ(t) + MT

σ(t) is not positive definite.
This is a contradiction. Thus, Mσ(t) has no zero eigenvalues, and hence, LGσ(t) has exactly one
zero eigenvalue. This together with Lemma 2 implies that Gσ(t) has a spanning tree.

Based on Proposition 1 and the fact that T ∗ is finite,

λ∗ = λmax

{
Mσ(t) + MT

σ(t)

∣
∣
∣ Gσ(t) has a spanning tree

}
> 0,

μ∗ = λmin

{
Mσ(t) + MT

σ(t)

∣
∣
∣ Gσ(t) has a spanning tree

}
> 0

are well defined.
The main result of this section can be summarized as follows:
Theorem 3 For the system (1) with the protocol (16), if for any t ≥ 0, Gσ(t) is balanced,

and Gσ(t) has a spanning tree, then under Assumptions (A2)–(A3),

lim
t→∞

E‖δ(t)‖2 = 0.

Proof By (17) and the Itô formula, we get

d‖δ(t)‖2 ≤ −μ∗a(t)‖δ(t)‖2dt + a2(t)tr
(
GGσ(t)G

T
Gσ(t)

)
dt + 2a(t)δT(t)GGσ(t)dW (t). (18)

Noticing σ(t) ∈ IT ∗ = {1, 2, · · · , N∗} and the fact that IT ∗ is finite, we can define

β0 = max
{
tr
(
GGσ(t)G

T
Gσ(t)

) ∣
∣
∣∀ σ(t) ∈ IT ∗

}
> 0.

Thus, by (18) we have

d‖δ(t)‖2 ≤ −μ∗a(t)‖δ(t)‖2dt + β0a
2(t)dt + 2a(t)δT(t)GGσ(t)dW (t). (19)

Similar to the proof of (11) in Theorem 1, one can get

E

∫ t

t0

a(s)δT(s)GGσ(s)dW (s) = 0, ∀ 0 ≤ t0 ≤ t. (20)

This together with (19) implies that for any t ≥ 0 and h > 0,

E
[
‖δ(t + h)‖2

]
− E

[
‖δ(t)‖2

]
≤ −μ∗

∫ t+h

t

a(s)E
[
‖δ(s)‖2

]
ds + β0

∫ t+h

t

a2(s)ds,
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or equivalently,

E
[
‖δ(t + h)‖2

]
− E

[
‖δ(t)‖2

]

h
≤

−μ∗ ∫ t+h

t
a(s)E

[
‖δ(s)‖2

]
ds + β0

∫ t+h

t
a2(s)ds

h
.

Further,

lim sup
h→0+

E
[
‖δ(t + h)‖2

]
− E

[
‖δ(t)‖2

]

h
≤ lim sup

h→0+

−μ∗ ∫ t+h

t a(s)E
[
‖δ(s)‖2

]
ds + β0

∫ t+h

t a2(s)ds

h

= − μ∗a(t)E
[
‖δ(t)‖2

]
+ β0a

2(t).

Thus, by the comparison principle[16], we have

E
[
‖δ(t)‖2

]
≤ E

[
‖δ(0)‖2

]
exp

{

−μ∗
∫ t

0

a(s)ds

}

+ β0

∫ t

0

a2(s)exp
{

−μ∗
∫ t

s

a(τ)dτ

}

ds.

The remaining of the proof is largely similar to that of Theorem 1, and hence, omitted here.
Remark 8 From Theorem 3, it can be seen that even under the switching topologies, the

consensus protocol (3) can still guarantee the state of each follower converges to that of the
leader in mean square, i.e., (3) is a strong mean square consensus protocol.

6 Numerical Example

In this section, we will use an example to demonstrate the leader-following consensus after
applying the consensus protocol (3) to each follower.

Example 1 We consider a system consisting of one leader indexed by 0 and two followers
indexed by 1 and 2, respectively. x0 = 1 is the state of the leader and the dynamics of the ith
follower is described as follows:

ẋi(t) = ui(t), i = 1, 2. (21)

Assume the initial states of the two followers indexed by 1 and 2 are x1(0) = 2 and x2(0) = −2,
respectively.

�
0

�
�

�
�

����1

�
�
�
�
��� � 2�

Figure 1 The communication topology among agents

The communication topology within the above leader-following MAS is described by the
digraph G∗ = (V∗, E∗,A∗) as shown in Figure 1, where

V∗ = {0, 1, 2}, E∗ = {(0, 1), (0, 2), (1, 2)}, A∗ =

⎡

⎣
0 0 0
1 0 0
1 1 0

⎤

⎦ .

In this example, {nji(t), i, j = 0, 1, 2} are independent standard white noises.
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Figure 2 States of the followers and the leader

To make the state of each follower converge to that of the leader, we apply the consensus
protocol (3) to the system (21) and choose the consensus gain function a(t) = 1

t+1 , t ≥ 0. The
simulation result for the follower following the leader is shown in Figure 2.

From Figure 2, one can see that after applying the consensus protocol (3), the states of
follower 1 and 2 will eventually converge to that of the leader as time goes on.

7 Conclusions

This paper studies the consensus control for leader-following MASs under measurement
noises. For the leader-following MAS, a measurement-based distributed protocol is designed
and convergence properties of the protocol are analyzed by using the tools of stochastic analysis
and algebraic graph theory. Under fixed topologies, the protocol is proved to ensure the state of
each follower converge to that of the leader in mean square. Also, under the switching topology
case, the result still holds if the subgraph formed by followers is balanced.

It is worth pointing out that this paper is only a preliminary step on leader-following con-
sensus under measurement noises. When the state of the leader is not a constant, as Ren[17]

pointed out, the extension of consensus algorithms from a constant reference to a time-varying
one is non-trivial, it will be challenging to design consensus protocols to guarantee the conver-
gence of the state of each follower to that of the time-varying leader under measurement noises.
Of course, There are many other topics worth investigating, such as, how to design protocols
for time-delay cases, and how to get almost sure consensus protocols, etc.
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