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ABSTRACT To solve abruptly occurrence of parameters jumping and directed communication topologies

changing in the control process of networked manipulators, in this paper, distributed switched consensus

control algorithms are formulated for a group of robot manipulators in realizing cooperative consensus

performance. In fact, networked Lagrange systems are modeled as switched systems regarding the different

parameters and topologies. Namely, the dynamic models switch when the system parameters or the topology

structures change. The consensus control strategy is constructed by resorting to (improved) average dwell

time (ADT) method and sliding-mode control technique, and a unified analysis methodology is developed

to perform the convergence analysis for the closed-loop system by Lyapunov stable theory. The main contri-

bution of this paper is the development of a systematically adaptive consensus algorithm by simultaneously

considering shifting parameters and switching communication network (as two unavoidable key factors) in

the process of communication interaction among robots. A distinctive feature of the developed consensus

protocol is to introduce the directed network topology characterizing the local communication interaction

among robots, which is especially suitable for representing the the structures and features of the realistic

cooperative multi-robotic systems. Accordingly, the developed consensus tracking strategy for manipulators

possess prominent advantages including robustness,stability and effectiveness over the existing concentrated

on single robot counterparts. Finally, numerical simulations of two-link manipulators are performed to

illustrate the effectiveness of the obtained control algorithm.

INDEX TERMS Networked manipulators, switching control, parameters jump, communication topologies

change, cooperative consensus, (improved) average dwell time method.

I. INTRODUCTION

Coordination of multi-agents systems has spawned

widespread attention over the last two decades, which is

partly aroused by the vast applications in assembly lines, res-

cue, reconnaissance, etc [1]–[7]. Compared to single robot,

multiple robots can operate more complex tasks effectively

with high flexibility and reliable performance [8]–[10]. As a

matter of fact, diverse control techniques such as adaptive

control, slide mode control, tracking control, backstepping

scheme for multi-agent systems have been proposed to solve

the problem of network flocking, consensus, formation con-

trol over the last decades, please see [11]–[13]. In particular,

one of the typical cases regarding consensus for a team of
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robots is to cooperatively transport large and heavy loads,

they even need to lay down and carry up different loads

repeatedly. Accordingly, the mass center and the inertia for

each robot change with the shifting load, which leads to the

system parameters for all the agents keep switching among

several values [14]. In this paper, the two link robotic manip-

ulators are taken as typical research object to investigate the

coordinated consensus control problems.

In practical applications, robot systems inevitably possess

various uncertainty because of a large volume of complicated

factors, such as unstructured dynamics, external disturbances

and varying environments as well as the changing loads,

etc [15], [16]. Consequently, it is difficult to find accurate

dynamic models, and impractical to use basic control meth-

ods that are highly dependent on accurate model parame-

ters in the industry assembly lines. It is well known that
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robust control and adaptive control are very effective meth-

ods for dealing with system uncertainties [17]. Nevertheless,

the uncertainty caused by loads change is more prominent

compared to other uncertainties [18]. This is mainly because

the uncertainty caused by the switching loads will greatly

expand its upper bound, which results in the high energy

consumption [19]. In order to solve the above problems,

an autonomous switched control algorithm is proposed to

perform tracking control for single manipulator with shifting

loads in the reference [20], besides, a switched mode is

constructed with respect to each different load, the model

switched if the load shifts.

For another, switched system, which is composed of sub-

systems and switching rules, is a typical hybrid system, and

plays an important role in the era of intelligence [21]–[26].

Accordingly, the switched systems have attracted increas-

ing attention owing to the ability to deal with a variety

of dynamics behaviour including logic commands, varying

structures, parameters jump, etc [27]–[30]. Apart from the

loads change, the communication topologies may be unstable

in the process of coordinated control for networked robot

systems. The main reasons are originated from the failure

of information transmission among some agents, message

dropouts of the communication and external disturbance and

so on [31]–[33]. Therefore, new communication connections

will be created among the nearby agents [34]–[36]. Generally

speaking, cases including loads change or the communica-

tion structures change of the robotic manipulators can be

dealt with the switched Lagrange dynamic model. That is,

the model switches when the loads shift or the directed graphs

transform. In conclusion, the switching control algorithm is

meaningful both in system switching and topology switching

for multiple mobile robots.

Inspired in part by the aforementioned backgrounds,

the coordinated consensus for the switched multiple

Lagrangian systems are studied in the presence of the parame-

ters changing and directed topologies switching for a team of

manipulators governed by Euler-Lagrange systems. Specif-

ically, a novel distributed consensus algorithm is proposed

based on the integration of sliding-mode control scheme

and (average) ADT method to solve consensus problem,

where a smaller average dwell time is derived to guarantee

the stable of the closed-loop system. In particular, each

different load or communication topology corresponds to one

subsystem whose sub-controllers have designed beforehand.

It is noted that the switched controllers are given under the

condition that sub-controllers switch synchronously with the

switched sub-systems. The merits and novelty of this work

are summarized in the three aspects:

(i) a simple yet general analysis framework regarding

the proposed switching control algorithm is presented

to develop a unified methodology for the coopera-

tive switching control in the point view of multi-agent

systems.

(ii) the problems of model parameters jump and the switch-

ing communication topologies are all considered in the con-

trol protocol, a smaller average dwell time is derived by ADT

and improved ADT methods.

(iii) the information interaction among the manipulators

is appropriately characterized by communication topology

under the graph theory.

The remainder of this paper is organized as follows. The

problem preliminaries are briefly provided in Section 2.

Section 3 describes switched multiple Euler-Lagrange sys-

tems. Section 4 gives the control design for multi-mobile

robots. In Section 5, examples and simulations are presented

to validate the proposed control scheme. Finally, the conclu-

sion is drawn in Section 6.

II. PROBLEM PRELIMINARIES

A. GRAPH THEORY

The information exchange connections of n robots can be rep-

resented by a weighted directed graph G = (V, E,W), where

V = {1, 2, · · · n}, E ∈ V × V andW = [wij]n×n are the node

set, edge set and the weight adjacency matrix, respectively.

(i, j) ∈ V denotes that robot j can receive the information

form robot i. Where wij = 0 if (i, j) 6∈ E , otherwise, wij 6= 0,

and wii ≡ 0 means that there is no self-loop. A directed

spanning tree is that a root node has a directed path to other

path. In general, we define the Laplacian matrix Lw = [lij]n×n

as lii =
n
∑

j=1

wij if i = j, and lij = −wij if i 6= j.

The switching connected topologies will be described

below. For any switching signal σ (t) ∈ 3 = {1, 2, · · · },

t ∈ [tr , tr+1), r = 0, 1, 3 · · · , the switching time sequence

{tr }
+∞
r=0 is assumed satisfy t0 < t1 < t2 < · · · < ∞, where

the map σ (t) : [0, +∞) is right continuous piecewise and

constant stochastic. The time subsequence rm with [tr , tr+1)

can be expressed as [tr , tr+1) =
⋃nm+1

m=1 [trm , trm+1
), and

trm+1
− trm < δ, δ > 0. The switched topology is fixed with

t ∈ [trm , trm+1
) such that every robot i ∈ 4 is reachable in the

union graph
⋃nm+1

m=1 Gσ (tm) instead of every Gσ (tm) is required

to be strongly connected, then the switched topology Gσ (t)

is jointly connected. Note that, the corresponding adjacency

matrixWσ (t) and Laplace matrix L
σ (t)
w are time varying.

B. SWITCHED SYSTEMS

For the switched systems, it is commonly known that theADT

scheme describes a large class of stable switching signals.

Consider the switched systems [38]

ẋ(t) = fσ (t)(x) (1)

where x ∈ R
n is the state, the switching signal σ (t) :

[0, ∞) → 3 = {1, 2, · · · d} is is right continuous piecewise,

and σ (t) = p means that the pth subsystem is active. Then,

we give the switched rules regarding average dwell time for

nonlinear systems.

Let τl = tl− tl−1 denotes the dwell time, the definition and

lemmas of (improved) ADT method are given:
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Definition 1: A switching signal σ (t) has average dwell

time τl , if there are numbers N0, τl such that

Nσ (T , t0) ≤ N0 +
T − t0

τl
, ∀T ≥ t0 ≥ 0 (2)

Lemma 1: [23] For the nonlinear switched system (1),

if there exist function Ui = xTPix, i, j ∈ 3 and two class

K∞ functions α1 and α2, a positive number λ such that

α1‖x(t)‖
2 ≤ Ui(x) ≤ α2‖x(t)‖

2, (3)

∂Ui(x)

∂x
fi(x) ≤ −λUi(x), (4)

Ui(x) ≤ µUj(x). (5)

(i) [ADT approach] for some positive number µ, then the

switched system is globally asymptotically stable under any

switching signal with the ADT:

τ̌ > τ̌ ∗ =
lnµ

λ
; (6)

(ii) [improved ADT approach (IADT)] [38] if the inequal-

ities (3)(4) hold, for some positive number µ∗, then the

switched system is globally asymptotically stable under any

switching signal with the ADT:

τ̌ ≥ τ̌ ∗ =
lnµ∗

λ
, µ∗ = sup

p∈3

αi2

αi1
. (7)

Remark 1: The Lemma 1 (i) and (ii) are the classical ADT

approach and improved ADT (IADT) approach, respectively.

For convenience, we combine them together here. Obviously,

both ADT and IADT methods need to satisfy conditions (3)

and (4), and ADT approach also require condition (5) that

IADT approach doesn’t. As state in [38], the IADT criterion

to some extend is simpler and more significant in theoretical

analysis and control application. Especially, for linear switch-

ing systems, theminimum average dwell time required for the

IADT method is smaller than the ADT method.

C. SWITCHED EULER-LAGRANGE SYSTEMS

As known to us all, a group of robots are usually used

to coordinated carry heavy or large objects in modern fac-

tory. And sometimes, they need to repeatedly lay down

and pick up different kinds of goods mechanically, which

leads to the uncertainties in the value of system parameters.

Moreover, the communication topology structures maybe

unstable and changeable for various factors including equip-

ment limitation, external disturbance, etc. Now, the switching

construction of networked manipulators will be introduced

to characterize the switching behaviour. Supposed that there

exist N manipulators, and the ith robot is described by fol-

lowing switched Lagrange systems:

Miσ (t)(qi)q̈i + Ciσ (t)(qi, q̇i)q̇i + Giσ (t)(qi) = τiσ (t), (8)

where σ (t) is the switching signal, σ (t) = p means that

the pth subsystem of the ith robot is active, i ∈ 4 =

{1, 2, · · · ,N }, qi, q̇i ∈ R
n are the vectors of generalized coor-

dinates and velocities, respectively, Miσ (t)(qi) ∈ R
n×n is a

symmetric and positive definite inertia matrix,Ciσ (t)(qi, q̇i) ∈

R
n×n represents the coriolis and centrifugal force matrix and

Giσ (t)(qi) ∈ R
n represents the gravitational force, τiσ (t) ∈ R

n

is the control input of the robot i.

Remark 2: The mechanism of switching model (8) is that

when the parameters or topology change, the switching sys-

tem switches from one subsystem to another, and all sub-

systems in the switching model are different. It is practical

to assume that the times of parameter and topology shifting

is limited, which means that the number of subsystems is

also limited. Moreover, we only consider the case that all the

subsystems are stable subsystems for the switching Lagrange

system, then, corresponding sub-controller for each subsys-

tem is designed beforehand to make it stable.

For the sequel applications, several properties, definitions

and lemmas are given to facilitate the control process. First,

suppose that the Lagrange system has following properties:

Property 1: (Boundedness) [16]Mip(qi) andCip(qi, q̇i) are

bounded, and α
p
i1‖xi‖ ≤ xTi Mip(qi)xi ≤ α

p
i2‖xi‖, i ∈ 4,

p ∈ 3.

Property 2: (Skew symmetric) [15] Ṁip(qi) − 2Cip(qi, q̇i)

is skew symmetric.

Lemma 2: [4]If a directed topology graph has a directed

spanning tree, then the corresponding Laplacian matrix Lw

has only one zero eigenvalue and the other eigenvalues have

positive real parts.

Definition 2: [4] The switched control torque τiσ (t)(i =

1, 2, · · ·N ) for a group of agents with parameter and

topologies changing is said to solve consensus problem,

if lim
t→∞

‖qi − qj‖ = 0, lim
t→∞

‖q̇i − q̇j‖ = 0.

Assumption 1: Assume that the switching communication

topology Gσ (t) has a directed spanning tree in each interval

[tk , tk+1]. If not, assume that every node is connected in the

union graph
⋃nm+1

m=1 Gσ (tm).

III. SWITCHED CONSENSUS OF EL SYSTEMS

A. CONTROL DESIGN

In this section, we deal with the adaptive switched consensus

control problems for multi-mobile robots. Assume that the

sub-controller match the active subsystem simultaneously

when the loads (parameters) shifting. Before moving on,

an auxiliary slide-mode reference variable q̇ri regarding posi-

tion error information is presented,

q̇
p
ri = −

∑

j∈Ni

ω
p
ij(qi − qj), (9)

and its derivative along time t is given by:

q̈
p
ri = −

∑

j∈Ni

ω
p
ij(q̇i − q̇j), (10)

then, a slide mode vector s
p
i ∈ R

n containing topological

information can be designed as:

s
p
i = q̇i − q̇

p
ri. (11)
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Accordingly, the distributed switched subcontroller is formu-

lated by

τip = Mip(qi)q̈
p
ri + Cip(qi, q̇i)q̇

p
ri + Gip(qi) − Kips

p
i , (12)

where Kip is a positive definite matrix, i ∈ 4, σ (t) = p ∈ 3.

Combining the Eq. (12) with (8), one can obtain the following

closed-loop system:

Mip(qi)ṡ
p
i = −Cip(qi, q̇i)s

p
i − Kips

p
i . (13)

B. CONVERGENCE ANALYSIS

Based on above preparations, here, we give the following the-

orems regarding switched consensus control by ADTmethod

and improved ADT method for multiple mobile manipula-

tors.

Theorem 1: Under Assumption 1, the switched multi-

Lagrange systems (8) can reach consensus qi → qj as t → ∞

by adaptive switched control protocol (12) under arbitrary

switching path σ (t) with the average dwell time:

τ̌ia > τ̌ ∗
ia =

lnµimin

λimin
, (14)

where

µimin = min{µi, µ
∗
i }, λimin = min

i∈4,p∈3
λip,

µi = sup
s
p
i 6=0,p,q∈3

α
p
i2

α
q
i1

, µ∗
i = sup

s
p
i 6=0,p∈3

α
p
i2

α
p
i1

Proof: The proof procedure of Theorem 1 in this part

involves two steps by adopting ADT and improved ADT

method, together with lyapunov-like analysis approach. In the

first step, the minimum average dwell time by ADT and

IADT methods will be calculated to guarantee the stability of

the switched system. In the second step, the specific trajectory

tracking for all the manipulators will be further proved.

Step 1: (1) ADT method

For the closed loop system (13), one considers following

Lyapunov function candidate:

Vip =
1

2
s
pT
i Mips

p
i , i ∈ 4, p ∈ 3, (15)

differentiating the Eq. (15) along Eq.(13) yields:

dVip(s
p
i (t))

dt
= V̇ip(s

p
i (t)) = −s

pT
i Kips

p
i . (16)

For any t ∈ [tk , tk+1), i ∈ 3, by using Property 1 and Eq (15),

we have:

min
i∈4,p∈3

α
p
i1

2
‖s
p
i ‖

2 ≤
α
p
i1

2
‖s
p
i ‖

2 ≤ Vip(s
p
i )

≤
α
p
i2

2
‖s
p
i ‖

2 ≤

max
i∈4,p∈3

α
p
i2

2
‖s
p
i ‖

2. (17)

Combining Eqs.(16) and (17), one can obtain:

V̇ip(s
p
i ) ≤ −λmin(Kip)‖s

p
i ‖

2

≤ −
2

α
p
i2

λmin(Kip)Vip(s
p
i )

= −λipVip(s
p
i ), i ∈ 4, p ∈ 3, (18)

where λip = 2

α
p
i2

. Moreover, from Eq (17) we have:

Vip(s
p
i ) ≤

α
p
i2

α
q
i1

Viq(s
p
i ) ≤ µipqViq(s

p
i )

≤ max
p,q∈3

(µipq)Viq(s
p
i )

= µiViq(s
p
i ), ∀i ∈ 4, p, q ∈ 3 (19)

Taken together, the inequations (17), (18) and (19) hold

when the subcontrollers switching synchronously with the

subsystems in the presence of the known σ (t), which satisfy

the conditions (3), (4) and (5), where λimin = min
i∈4,p∈3

(λip).

Accordingly, the switched Lagrange systems are global

asymptotic stability with the ADT τ̌ia > τ̌ ∗
ia = lnµi

λimin
, µi =

sup
s
p
i 6=0,p,q∈3

α
p
i2

α
q
i1

.

(2) IADT method

Now, we further to calculate another average dwell time by

improved ADT method.

The Lyapunov function is chosen same as (15), and let

t1, t2, · · · , tNσ
denote the switching instant during (0,T ), for

∀T > 0, and pk be the value of σ (t) on the time interval

[tk−1, tk ). Integrate Eq.(18) over time [tk−1, tk ), we have:

lnVipk [s
p
i (tk )] − lnVipk [s

p
i (tk−1)] ≤ λipk τ̌k (20)

Vipk [s
p
i (tk )] ≤ e−λipk τ̌kVipk [s

p
i (tk−1)] (21)

Combining Property 1 and Eq.(27) give

α
p
i1‖s

p
i (tk )‖

2 ≤ Vipk [s
p
i (tk )] ≤ e−λipk τ̌kVipk [s

p
i (tk−1)]

≤ α
p
i2e

−λipk τ̌k‖s
p
i (tk−1)‖

2‖s
p
i (tk )‖

2

≤
1

α
p
i1

Vipk [s
p
i (tk )] ≤

α
p
i2

α
p
i1

e−λipk τ̌k‖s
p
i (tk−1)‖

2

≤ µ∗
i e

−λipk τ̌k‖s
p
i (tk−1)‖

2 (22)

Therefore, for arbitrary t satisfying t0 < t1 < t2 <

, · · · , tm ≤ t < tm+1, one can have:

‖s
p
i (t)‖

2 ≤
1

α
σ (tm)
i1

Viσ (t)

≤
1

α
σ (tm)
i1

e−λiσ (tm)(t−tm)Viσ (t)[s
p
i (tm)]

≤
α

σ (tm)
i2

α
σ (tm)
i1

e−λiσ (tm)(t−tm)‖s
p
i (tm)‖

2

= µ∗
iσ (tm)

e−λiσ (tm)(t−tm)‖s
p
i (tm)‖

2

≤ µ∗
iσ (tm)

µ∗
iσ (tm−1)

e−λiσ (t)(t−tm)−λiσ (tm)(tm−tm−1)

×‖s
p
i (tm−1)‖

2

...
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≤ µ∗
i

N
∏

m=1

eaimNσm (t0,t)−λimTim(t0,t)‖s
p
i (0)‖

2, (23)

where aim = lnµ∗
im.

Since the Lyapunov function Vip > 0, and its derivative

V̇ip < 0, thenwe can get si is bounded.Moreover, it is obvious

that µim ≥ 1, aim ≥ 0.

(i) If aim = 0, i.e., uim = 1, from the inequality (23), we can

have:

‖s
p
i (t)‖

2 ≤

N
∏

m=1

e−λimTim(t0,t)‖s
p
i (0)‖

2

≤ e−λimin(t−t0)‖s
p
i (0)‖

2 (24)

where λimin = min
i∈4,p∈3

(λip), which indicates that the closed

loop Lagrange systems (13) are global asymptotic stability

under arbitrary average dwell time.

(ii) If aim 6= 0, together with the inequality (2), we get:

aimNσm (t0, t) − λimTim(t0, t)

≤ aimN0im + (
aim

τ̆ia∗
− λim)Tim(t0,t). (25)

By combining Eq.(23) with (25), then, one can obtain:

‖s
p
i (t)‖

2 ≤ µ∗
i

N
∏

m=1

eaimN0im(t0,t)+(aim/τ̆ia∗−λim)Tim(t0,t)

×‖s
p
i (0)‖

2

= µ∗
i h̄ie

λmin(t−t0)‖s
p
i (0)‖

2, (26)

where h̄i =
N
∏

m=1

eaimN0im , λmin =
N

min
m=1

{λim − aim
τ̆ia∗

}, as a

result, the systems (13) are global asymptotic stability with

the average dwell time τ̌ia > τ̌ ∗
ia =

lnµ∗
i

λimin
, µ∗

i = sup
s
p
i 6=0,p∈3

α
p
i2

α
p
i1

.

It is worth mentioning that the closed loop system (13)

can be stabilized by both ADT and IADT method, but the

obtained ADT is different since the different µi, µ
∗
i . There-

fore, we take the smaller average dwell time with (14).

Step 2: Now, we further to verify that the networked

manipulators can reach consensus qi → qj as t → ∞

from the point view of multi-agent systems. For convenience,

the sliding-mode variables (11) can be written as a vector

form:

q̇ = Sp + q̇pr = Sp − (Lpw ⊗ Im)q, (27)

where⊗ denotesKronecker product,q = (qTi , qT2 , · · · , qTN )
T ,

Sp = (s
pT
1 , s

pT
2 , ·, s

pT
N )T , qr = (q

pT
r1 , q

pT
r2 , · · · , q

pT
rN )

T . Here,

we construct a decomposition transform matrix D,

D =















r1 r2 · · · rN−1 rN
−1 1 · · · 0 0

0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 1















, (28)

which makes that D−1LwpD = diag(0, −Lr ), where −Lr ∈

R(N−1)×(N−1) is Hurwitz stable. Consider the coordinate

transformation:

ζ = (D⊗ Im)q (29)

Note that the matrix D is independent of inertia of the agents,

and ζ can be described as ζ = [ζ T1 , ζ TR ]
T , where ζ1 =

N
∑

i=1

riqi,

ζR = [(q2 − q1)
T , (q3 − q2)

T , · · · , (qN − qN−1)
T ]T . Differ-

entiating the system (29) and in combination with Eq.(27),

we have:

ζ̇ = −(DLpwD
−1 ⊗ Im)ζ + (D⊗ Im)S

p (30)

we can rewrite Eq. (30) as following two parts:

ζ̇1 = (r ⊗ Im)S
p (31)

ζ̇R = −(Lpw ⊗ Im)ζR + s
p
R (32)

where r = [r1, r2, · · · , rN ]
T , s

p
R = [(s

p
2 − s

p
1)
T , (s

p
3 −

s
p
2)
T , · · · , (s

p
N − s

p
N−1)

T ]T .

It follows form (15)(16) that Vip > 0, and its derivative

V̇ip < 0, which indicates that s
p
i ∈ L2 ∩ L∞. From Eq. (31)

we obtain that ζ̇1 is bounded. Since −L
p
w is Hurwitz stable,

the Eq. (32) is input-to-state stable with respect to s
p
R and ζR.

Since the motion trajectories of robots are bounded, then s
p
i

and s
p
R are bounded, one can get from Eqs. (31), (32) that

ζR is bounded, and ζ̇R ∈ L∞, ζ̇1 is bounded. Differentiating

Eq. (29), that is, ζ̇ = (D⊗ Im)Pq, so, Pq is bounded. In the light

of Eqs. (11) and (10), one can get q̇
p
ri and q̈

p
ri are bounded.

From the closed-loop system (13), one have ṡi is bounded.

Since V̈ip = −2ṡTi Kips̈i is bounded, V̇ip is uniformly contin-

uous. By Barbalat’s lemma, one can get s
p
i → 0 as t → ∞,

which reveals that qi → qj as t → ∞.

By above discussion, if the ADT (14) holds, the cooper-

ative consensus is ensured by the control protocol (12) for

arbitrary switching signal, and lim
t→∞

‖qi − qj‖ = 0.

Remark 3: As discussed in above section, both ADT and

improved ADT approaches are utilized to calculate the min-

imum average dwell time for guaranteeing the stability of

the switched multi-EL-systems. Moreover, the differences

between the ADT and IADT method in Theorem 1 are: (i)

ADT method needs to satisfy the condition Vip ≤ µiViq, i ∈

4, p, q ∈ 3, that IADT approach doesn’t require; (2) it

is obviously that the difference of µi = sup
si 6=0,p,q∈3

αip2
αiq1

and

µ∗
i = sup

si 6=0,p∈3

αip2
αip1

leads to the different average dwell time.

In deed, the conditions (3), (4), (5) are all satisfied in the

EL switching model investigated in this paper, we select the

smaller dwell time. In particular, if there exist the case that

the condition (5) can be ensured, the improved ADT method

can be applied.

Remark 4: It is worth mentioning that the cases parameter

jumping and topology switching are all considered for a team

of manipulators in the designing of the distributed consensus

tracking strategies from the point of view of multi-agent
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systems. It is obvious that the occurrence of suddenly param-

eters and communication structures changes in the control

process can result in the whole systems unstable within finite

time. The proposed switching adaptive control algorithm

can perfectly deal with these problems. Actually, we only

consider the condition that the switched Lagrange systems

autonomous match the corresponding sub-controllers once

the parameters or the communications change, the mismatch

case will study in the later works. Further more, the sys-

tem parameters and shifting loads (switching parameters) is

known.

Remark 5: So far, numerous significant switching control

techniques have been proposed for general linear and non-

linear switched systems for its widespread potential applica-

tions in various fields [21], [22], [38], [39]. But for single

manipulator, there are only few works have been down [14],

[20], [27], let alone a team of manipulators. Accordingly,

networked lagrange systems in the presence of changing

parameters (loads) and switching topologies are investigated

in this technique paper. Note that there have been a lot of

studies on switching topology for multi-agent systems, and

considerable meaningful results have been obtained [32],

[34], [35], so this paper does not take it as a key problem to

investigate.

IV. ILLUSTRATIVE EXAMPLES

In this section, numerical simulations are given to illustrate

the effectiveness and validity of our results. For ease of

calculating, we study five two-link revolute manipulators,

and assume that the parameters (loads) change and com-

munication constructs switch occur at the same time. Here,

the switching system (8) we consider contains two subsys-

tems, and the detailed parameters and communication struc-

tures are given as:

Mip(qi) =

[

ui1p + 2ui2p cos qi2 ui3p + ui2p cos qi2
ui3p + 2ui2p cos qi2 ui3p

]

,

Cip(qi, q̇i) =

[

−ui2pq̇i2 sin qi2 −ui2(q̇i1 + q̇i2 sin qi2)

ui2pq̇i1 sin qi2 0

]

,

gip =

[

ui4pgq̇i2 cos qi1 + ui5pg cos(qi1+qi2 )

ui5pg cos(qi1 + qi2)

]

,

where g = 9.8 m/s2, qi = (qi1, qi1)
T , ui1p = mi1pl

2
ai1 +

mi2p(l
2
i1 + l2ai2) + Ji1p + Ji2p, ui2p = mi2pli1plai1, ui3p =

mi2pl
2
ai2 + Ji2, ui4p = mi1plai1 + mi2pli1p, ui5p = mi2plai2,

Ji1p = mi1pl
2
ai1/3 kg · m2, Ji2p = mi2pl

2
ai2/3 kg · m2, lai1 =

li1p/2, lai2 = li2p/3. θip = [ui1p, ui2p, ui3p, ui4p, ui5p]
T , p ∈

3 = {1, 2}, i ∈ 4.

p = 1, mi11 = 2.2 kg, mi21 = 2.0 kg, li11 = 2.2 m, li21 =

2.5 m.

p = 2, mi12 = 1.2 + 0.2ikg, mi22 = 1.4 + 0.12ikg, li12 =

1.8 + 0.08im, li22 = 2.3 + 0.04im.

Example 1: The switched communication topology is con-

nected. The initial conditions are chosen as q1(0) = [2, −3]T ,

q2(0) = [−4, 2.1]T , q3(0) = [4, −2]T , q4(0) = [5, 2]T ,

q5(0) = [3, −2]T ; q̇1(0) = [4, −2]T , q̇2(0) = [−4, −2]T ,

FIGURE 1. Switching communication topology.

FIGURE 2. Switching signal.

FIGURE 3. The position qi1, qi2 regarding time t of the five manipulators.

q̇3(0) = [3, 5]T , q̇4(0) = [2.1, 1.4]T , q̇5(0) = [2.8, −2]T .

The switching communication topology and switching path

are presented in Figure 1 and 2, respectively. Besides, the rel-

evant Laplacian matrix is:

L1 =













2 −1 −1 0 0

0 2 0 −1 −1

0 0 2 −1 −1

0 0 0 1 −1

0 0 0 0 0













,
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FIGURE 4. The velocities q̇i1, q̇i2 of the five manipulators.

FIGURE 5. The position synchronization error P1eij , P2eij of the five
manipulators.

L2 =













4 −1 −1 −1 −1

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

0 0 0 0 0













.

Obviously, Assumption 1 of Theorem 1 is satisfied, and

average dwell time is chosen as τ̌ia = 1 > τ̌ ∗
ia.

The detailed simulation results are shown from Figure 1 to

6. Figure 3 shows the state of qi1, qi2 about time t , which

indicates that the five manipulators achieve position syn-

chronization quickly with the proposed switched adaptive

algorithm. Noting that, the five manipulators have the jump

parameters and unstable communication structures will lead

to unstable state during the synchronization process, which is

difficult to realize the control objective by applying general

control approach. The velocities q̇i1, q̇i2 of each manipu-

lator is described in Figure 4. The position synchroniza-

tion errors and velocity errors are given in Figure 5 and

Figure 6, respectively. According to the simulation results

above, we can see that the synchronization process of the five

manipulators is not affected even if there is parameter change

and communication instability by the control protocol of

Theorem 1.

FIGURE 6. The velocity error V1eij , V2eij regarding time t of the five
manipulators.

FIGURE 7. Switching communication topology.

FIGURE 8. Switching signal.

Example 2: The switched topology is jointly connected.

With respect to the condition that switched topology Gp is

jointly connected, our results are also valid. For convenience,

the system parameters and initial conditions are chosen same

as example 1.

As shown in Figure 7, the communication topology is

jointly connected, the switching path is given in Figure 8.

It’s is easy to prove that all the conditions of Theorem 1 are

satisfied. Figure 9 and Figure 10 show the position qi1, qi2 and
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FIGURE 9. The state trajectory qi1, qi2 of the five robots.

FIGURE 10. The velocities q̇i1, q̇i2 of the five robots.

FIGURE 11. The position error P1eij , P2eij regarding time t of the five
robots.

the velocities q̇i1, q̇i2 for the five manipulators, respectively.

Finally, the position synchronization error and velocity error

are described in Figure 11 and Figure 12, respectively. Exam-

ple 2 reveals that our obtained control technique is effective

for jointly connected switching communication graph. Since

the proof process is similar to Theorem 1, we omit it and only

give the simulation results.

FIGURE 12. The velocity error V1eij , V2eij regarding time t of the five
robots.

V. CONCLUSION

In this paper, we have studied coordinated consensus of the

switched networked Lagrangian systems under the condi-

tions of both loads shifting and directed topologies switch-

ing. Adaptive switched control protocols have been obtained

in combination with the sliding-mode surface including the

switching communication information. Further more, both

ADT and improved ADT approaches are utilized to calcu-

late the smaller average dwell time, Lyapunov-like analysis

together with slidemode technique have been applied to guar-

antee the convergence analysis for the a group of switched EL

systems. Finally, the effectiveness of the proposed approaches

have been illustrated by numerical simulations.

In our further research work, some effective control strate-

gies for a group of robot systems, such as topology-dependent

average dwell time method, adaptive fuzzy output-feedback

control, should be further investigated and fully to reduce the

conservatism [40]–[43].
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