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Abstract—This paper deals with the consensus control design
for Lipschitz nonlinear multi-agent systems with input delay.
The Artstein-Kwon-Pearson reduction method is employed to
deal with the input delay and the integral term that remains
in the transformed system is analyzed by using Krasovskii
functional. Upon exploring certain features of the Laplacian
matrix, sufficient conditions for global stability of the consensus
control are identified using Lyapunov method in the time domain.
The proposed control only uses relative state information of
the agents. The effectiveness of the proposed control design is
demonstrated through a simulation study.

Index Terms—Consensus control, Chua Circuit, Multi-agent
systems, Input delay, Lipschitz nonlinearity.

I. INTRODUCTION

W ITH the recent advances in measurements and com-
munication, dynamic systems, or agents, are often

connected together to achieve specified control tasks. In many
applications, the cooperative control of such multi-agent sys-
tems is to design a distributed control strategy based on local
information that enables all agents to achieve an agreement,
or consensus. One significant advance in consensus control is
to use tools in graph theory, in particular, Laplacian matrices,
to characterize the network connection [1].

Consensus control has attracted a significant attention in
recent years. Many theoretic and practical issues have been
analyzed and reported in the literature, [1]–[5], to cite a few.
Many of the results are based on linear system dynamics.
Consensus control design for nonlinear systems is more in-
volved than for the linear systems counterpart. The results
on consensus control of nonlinear systems are often restricted
to local stability [6], or to certain network connection [7],
to certain types of nonlinearities [8]. The obstacle to solving
consensus control problem for nonlinear systems stems mainly
from certain restrictions the nonlinearity imposes on using
the information of the individual systems. This problem has
attracted significant attention in the control community, as ev-
idenced by recent publications [9]–[16]. Consensus problems
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of high-order multi-agent systems with Lipschitz nonlinear
dynamics under directed or switching graph are studied in
[9]–[12]. Synchronization via pinning control, a related but
different problem, on general complex dynamical networks are
addressed in [13]. The works [14]–[16] address the consensus
output regulation problem of nonlinear multi-agent systems.

Delays are inevitable in physical systems due to the time
taken for transportation of materials, transmission of signals
etc. The importance of addressing delay has been well recog-
nized for a long time (see [17] and the references therein).
A wide variety of predictor-based methods such as Smith
predictor [18], modified Smith predictor [19], finite spectrum
assignment [20], Artstein-Kwon-Pearson reduction method
[21]–[22] and the truncated predictor feedback approach [23]
are effective for systems with input delays. Among these tools,
the Artstein-Kwon-Pearson reduction method is well-known
and relatively straightforward for linear systems with any
constant input delay. The stabilization problems are reduced
to similar problems for ordinary differential equations.

With the internet and other communication tools used in the
consensus control of multi-agent systems, time delay often
arises. The network communication delay usually occurs in
the consensus control input when the inputs depend on the
relative state information transmitted via the network. The
existing studies [24]–[28] of consensus with time delay mainly
focus on linear systems. However, for nonlinear systems, the
state transformation can only apply to the linear parts, and
the nonlinear functions remain functions of the original state,
which leads to extra complexity in the stability analysis.
The consensus analysis for nonlinear systems with delay is
even more complicated. The difficulty lies in dealing with
the nonlinear term in each agent, which remains a function
of the original state after the state transformation. Judicious
analysis is needed to tackle the influence of the nonlinear terms
under the state transformation. In this paper, we systematically
investigate the consensus control problem for multi-agent
systems with nonlinearity and input delay. A reduction method
is adopted to deal with the input delay in the presence of
nonlinearity in the agent dynamics. Further rigorous analysis is
carried out to ensure that the extra integral terms of the system
state associated with nonlinear functions are properly consid-
ered by means of Krasovskii functionals. By transforming the
Laplacian matrix into the real Jordan form, global stability
analysis is put in the framework of Lyapunov functions in real
domain. For the control design, only the relative information
obtained via the network connection is used, without local
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feedback control of the agents. A simulation study is carried
out to demonstrate the results obtained in the paper.

The remainder of this paper is organized as follows. Some
notations and the problem formulation are given in Section II.
Section III presents a few preliminary results for the consensus
analysis. Section IV presents the main results on the consensus
control design and stability analysis. Simulation results are
given in Section V. Section VI concludes the paper.

II. PROBLEM STATEMENT

In this paper, we consider control design for a group of
N agents, each represented by a nonlinear subsystem that is
subject to input delay and Lipschitz nonlinearity,

ẋi(t) = Axi(t) +Bui(t− h) + φ(xi), (1)

where for agent i, i = 1, 2, . . . , N , xi ∈ Rn is the state vector,
ui ∈ Rm is the control input vector, A ∈ Rn×n and B ∈
Rn×m are constant matrices with (A,B) being controllable,
h > 0 is input delay, and the initial conditions xi(θ), θ ∈
[−h, 0], are given and bounded, and φ : Rn → Rn, φ(0) = 0,
is a Lipschitz nonlinear function with a Lipschitz constant γ,
i.e., for any two constant vectors a, b ∈ Rn,

‖φ(a)− φ(b)‖ ≤ γ‖a− b‖.

The connections among the agents are specified by a di-
rected graph G, which consists of a set of vertices denoted
by V and a set of edges denoted by E . A vertex represents
an agent, and each edge represents a connection. Associated
with the graph is its adjacency matrix Q, where element qij
denotes the connection between two agents. More specifically,
qij = 1 if there is a connection from agent j to agent i, and
qij = 0 otherwise. The Laplacian matrix L = lij is commonly
defined by

lij =

{ ∑N
k=1,k 6=i qik, i = j,

−qij , i 6= j.

From the definition of the Laplacian matrix, it is clear that

L1 = 0,

where
1 = [1, 1, · · · , 1]T ∈ RN ,

which implies that the Laplacian matrix has 0 as an eigenvalue
associated with the right eigenvector 1.

Assumption 1: The eigenvalue of the Laplacian matrix at 0
is a single eigenvalue.

This assumption is necessary for solving the consensus
problem. In terms of the network collections, this condition
implies that the network has a spanning tree that connects any
two agents in the system.

The consensus control problem considered in this paper is to
design a control strategy, using the relative state information,
to ensure that all agents asymptotically converge to an identical
trajectory.

III. PRELIMINARY RESULTS

In this section, we present a few preliminary results which
are useful for the consensus analysis later in the paper. We first
present an overview of the Artstein-Kwon-Pearson reduction
method. Consider an input-delayed system

ẋ(t) = Ax(t) +Bu(t− h) + φ(x), (2)

with φ : Rn → Rn, φ(0) = 0, being a Lipschitz nonlinear
function, and the initial conditions x(θ), θ ∈ [−h, 0], being
bounded. Let

z(t) = x(t) +

∫ t+h

t

eA(t−τ)Bu(τ − h)dτ, (3)

Differentiating z(t) against time yields

ż(t) = Ax(t) + φ(x) + e−AhBu(t)

+A

∫ t+h

t

eA(t−τ)Bu(τ − h)dτ

= Az(t) +Du(t) + φ(x), (4)

where D = e−AhB. When φ(x) is absent, system (4) is delay
free.

Remark 1: It is straightforward to verify that the control-
lability of (A,B) and (A, e−AhB) are equivalent. We need
additional conditions in the sequel due to the nonlinearity and
the consensus requirement.

We consider a controller

u(t) = Kz(t). (5)

From (3) and (5), we have

‖x(t)‖ ≤ ‖z(t)‖+ h

(
max
−h≤θ≤0

‖eAθ‖
)
‖B‖‖K‖‖zt(θ)‖,

where zt(θ) := z(t + θ), −h ≤ θ ≤ 0. Thus, x(t) → 0 as
z(t) → 0. In other words, if the controller (5) stabilizes the
transformed system (4), then the original system (2) is also
stable with the same controller [21].

Remark 2: With any given bounded initial condition u(θ),
θ ∈ [−h, 0], a stable feedback controller (5) implies that
u(t) in (3) is locally integrable, which allows for the model
reduction as (4).

We next recall a lemma from [10].
Lemma 1: For a Laplacian matrix that satisfies Assumption

1, there exists a similarity transformation T , with its first
column being T1 = 1, such that

T−1LT = J, (6)

with J being a block diagonal matrix in the real Jordan form

J =



0
J1

. . .
Jp

Jp+1

. . .
Jq


, (7)
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where Jk ∈ Rnk , k = 1, 2, . . . , p, are the Jordan blocks for
real eigenvalues λk > 0 with the multiplicity nk in the form

Jk =


λk 1

λk 1
. . . . . .

λk 1
λk

 ,
and Jk ∈ R2nk , k = p+ 1, p+ 2, . . . , q, are the Jordan blocks
for conjugate eigenvalues αk± jβk, αk > 0 and βk > 0, with
the multiplicity nk in the form

Jk =


ν(αk, βk) I2

ν(αk, βk) I2
. . . . . .

ν(αk, βk) I2
ν(αk, βk)

 ,
with I2 being the identity matrix in R2×2 and

ν(αk, βk) =

[
αi βi
−βi αi

]
∈ R2×2.

We also need the following lemmas from [29].
Lemma 2: For a positive definite matrix P , and a function

x : [a, b] → Rn, with a, b ∈ R and b > a, the following
inequality holds:(∫ b

a

xT (τ)dτ

)
P

(∫ b

a

x(τ)dτ

)

≤(b− a)

∫ b

a

xT (τ)Px(τ)dτ. (8)

Lemma 3: For a positive definite matrix P , the following
identity holds

eA
T tP eAt − eωtP = −eωt

∫ t

0

e−ωτeA
T τReAτdτ, (9)

where
R = −ATP − PA+ ωP.

Furthermore, if R is positive definite, for t > 0,

eA
T tP eAt < eωtP. (10)

IV. CONSENSUS CONTROL

For the multi-agent system (1), we use (3) to transform the
agent dynamics to

żi(t) = Azi +Dui(t) + φ(xi), (11)

where D = e−AhB.
We propose a control design using the relative state infor-

mation. The control input takes the structure,

ui = −K
N∑
j=1

lijzj , (12)

where K ∈ Rm×n is a constant control gain matrix to be
designed later.

The closed-loop system is then described by

ż = (IN ⊗A− L⊗DK)z + Φ(x), (13)

where

z =


z1
z2
...
zN

 , Φ(x) =


φ(x1)
φ(x2)

...
φ(xN )

 ,
and ⊗ denotes the Kronecker product of matrices.

Let us define rT ∈ R1×N as the left eigenvector of L
corresponding to the eigenvalue at 0, that is, rTL = 0.
Furthermore, let r be scaled such that rT1 = 1 and let the
first row of T−1 be (T−1)1 = rT .

Based on the vector r, we introduce a state transformation

ξi = zi −
N∑
j=1

rjzj , (14)

for i = 1, 2 . . . , N . Let

ξ = [ξT1 , ξ
T
2 , · · · , ξTN ]T .

We have

ξ = z − ((1rT )⊗ In)z

= (M ⊗ In)z,

where M = IN − 1rT . Since rT1 = 1, it can be shown that
M1 = 0. Therefore the consensus of system (13) is achieved
when limt→∞ ξ(t) = 0, as ξ = 0 implies z1 = z2 = · · · =
zN , due to the fact that the null space of M is span(1). The
dynamics of ξ can then be obtained as

ξ̇ = (IN ⊗A− L⊗DK)z − 1rT ⊗ IN [IN ⊗A− L⊗DK]z

+ (M ⊗ In)Φ(x)

= (IN ⊗A− L⊗DK)ξ + (M ⊗ In)Φ(x). (15)

To explore the structure of L, let us introduce another state
transformation

η = (T−1 ⊗ In)ξ. (16)

Then we have

η̇ = (IN ⊗A− J ⊗DK)η + Ψ(x), (17)

where Ψ(x) = (T−1M ⊗ In)Φ(x), and

η =


η1
η2
...
ηN

 ,Ψ(x) =


ψ1(x)
ψ2(x)

...
ψN (x)

 ,
with ηi ∈ Rn and ψi : Rn×N → Rn for i = 1, 2, . . . , N . Then
from (14) and (16), we have:

η1 =
(
rT ⊗ In

)
ξ

=
(
(rTM)⊗ In

)
z

≡ 0.

The nonlinear term Ψ(x) in the transformed system dynamic
model (17) is expressed as a function of the state x. For the
stability analysis, first we need to establish a bound of this
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nonlinear function in terms of the transformed state η. The
following lemma gives a bound of Ψ(x).

Lemma 4: For the nonlinear term Ψ(x) in the transformed
system dynamics (17), a bound can be established in terms of
the state η as

‖Ψ‖2 ≤ γ20(‖η‖2 + 4λ2σ(Q) ‖δ‖2), (18)

with

γ0 = 2
√

2Nγ ‖r‖ ‖T‖F λσ(T−1), (19)

δ = −
∫ t+h

t

eA(t−τ)BKη(τ − h)dτ, (20)

where λσ(·) and ‖·‖F denote the maximum singular value and
Frobenius norm of a matrix, respectively.

Proof: Based on the state transformations (14) and (16),
we have

Ψ(x) =
(
T−1 ⊗ In

)
(M ⊗ In) Φ(x)

=
(
T−1 ⊗ In

)
µ,

where µ = (M ⊗ In)Φ(x). Then, we have

‖Ψ(x)‖ ≤ λσ(T−1) ‖µ‖ , (21)

where µ = [µ1, µ2, . . . , µN ]
T .

Recalling that M = IN − 1rT , we have

µi = φ(xi)−
N∑
k=1

rkφ(xk)

=

N∑
k=1

rk (φ(xi)− φ(xk)) .

It then follows that

‖µi‖ ≤ γ
N∑
k=1

|rk| ‖xi − xk‖ (22)

From the state transformation (3), we have

xi − xk = (zi − σi)− (zk − σk)

= (zi − zk)− (σi − σk)

where

σi =

∫ t+h

t

eA(t−τ)Bui(τ − h)dτ.

Then, we have

‖µi‖ ≤ γ
N∑
k=1

|rk| (‖zi − zk‖+ ‖σi − σk‖) . (23)

From η = (T−1 ⊗ In)ξ, we obtain ξ = (T ⊗ In)η, and from
the state transformations (14), we have

zi − zk = ξi − ξk
= ((ti − tk)⊗ In) η

=

N∑
j=1

(tij − tkj)ηj ,

where tk denotes the kth row of T . Then, we obtain

‖zi − zk‖ ≤ (‖ti‖+ ‖tk‖) ‖η‖ . (24)

We next deal with the derived terms σi and σk. We have
N∑
k=1

|rk| ‖σi − σk‖ ≤
N∑
k=1

|rk| ‖σi‖+

N∑
k=1

|rk| ‖σk‖

≤ ‖r‖
√
N ‖σi‖+ ‖r‖ ‖σ‖ , (25)

where σ = [σT1 , σ
T
2 , · · · , σTN ]T , and we used the inequality

N∑
i=1

|ai| ≤
√
N ‖a‖ .

Then, from (23), (24) and (25), we can obtain that

‖µi‖ ≤ γ
N∑
k=1

|rk| (‖ti‖+ ‖tk‖) ‖η‖

+ γ
√
N ‖r‖ ‖σi‖+ γ ‖r‖ ‖σ‖

≤ γ(‖r‖
√
N ‖ti‖+ ‖r‖ ‖T‖F ) ‖η‖

+ γ
√
N ‖r‖ ‖σi‖+ γ ‖r‖ ‖σ‖

= γ ‖r‖ [(
√
N ‖ti‖+ ‖T‖F ) ‖η‖

+
√
N ‖σi‖+ ‖σ‖]. (26)

It then follows that

‖µ‖2 =

N∑
i=1

(‖µi‖)2

≤ 4γ2 ‖r‖2
N∑
i=1

(N ‖ti‖2 + ‖T‖2F ) ‖η‖2

+ 4γ2 ‖r‖2
N∑
i=1

(N ‖σi‖2 + ‖σ‖2)

= 8γ2 ‖r‖2N
[
‖T‖2F ‖η‖

2
+ ‖σ‖2

]
, (27)

where we have used
N∑
k=1

‖tk‖2 = ‖T‖2F ,

and the inequality

(a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2).

Next we need to deal with ‖σ‖2. From (12), we can get

σi =

∫ t+h

t

eA(t−τ)Bui(τ − h)dτ

= −
∫ t+h

t

eA(t−τ)BK

N∑
j=1

lijzj(τ − h)dτ.

From the relationship between Q and L, we have
N∑
j=1

lijzj =

N∑
j=1

qij(zi − zj)

=

N∑
j=1

qij ((ti − tj)⊗ In) η

=

N∑
j=1

qij

N∑
l=1

(til − tjl)ηl. (28)
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Here we define δl

δl = −
∫ t+h

t

eA(t−τ)BKηl(τ − h)dτ. (29)

Then we can obtain that

σi =

N∑
j=1

qij

N∑
l=1

(til − tjl)δl.

It then follows that

‖σi‖ ≤
N∑
j=1

qij (‖ti‖+ ‖tj‖) ‖δ‖ . (30)

where δ = [δT1 , δ
T
2 , · · · , δTN ]T . With (30), the sum of the ‖σi‖

can be obtained
N∑
i=1

‖σi‖ ≤ ‖δ‖
N∑
i=1

N∑
j=1

qij(‖ti‖+ ‖tj‖)

= ‖δ‖
N∑
i=1

N∑
j=1

qij ‖ti‖+ ‖δ‖
N∑
i=1

N∑
j=1

qij ‖tj‖

≤ λσ(Q) ‖T‖F ‖δ‖+ λσ(QT ) ‖T‖F ‖δ‖
= 2λσ(Q) ‖T‖F ‖δ‖ , (31)

with λσ(Q) = λσ(QT ). Therefore we have

‖σ‖2 =

N∑
i=1

(‖σi‖)2

≤

(
N∑
i=1

‖σi‖

)2

≤ 4λ2σ(Q) ‖T‖2F ‖δ‖
2
. (32)

Hence, together with (27) and (32), we get

‖µ‖2 ≤ 8γ2 ‖r‖2N ‖T‖2F
(
‖η‖2 + 4λ2σ(Q) ‖δ‖2

)
. (33)

Finally, we obtain the bound for Ψ as

‖Ψ‖2 ≤ λ2σ(T−1) ‖µ‖2

≤ γ20
(
‖η‖2 + 4λ2σ(Q) ‖δ‖2

)
, (34)

with

γ0 = 2
√

2Nγ ‖r‖ ‖T‖F λσ(T−1),

δ = −
∫ t+h

t

eA(t−τ)BKη(τ − h)dτ.

This completes the proof.
With the control law shown in (12), the control gain matrix

K is chosen as
K = DTP, (35)

where P is a positive definite matrix. In the remaining part
of the paper, we will use Lyapunov-function-based analysis to
identify a condition for P to ensure that consensus is achieved
by using the control algorithm (12) with the control gain K
in (35).

The stability analysis will be carried out in terms of η. As
discussed earlier, the consensus control can be guaranteed by

showing that η converges to zero, which is sufficed by showing
that ηi converges to zero for i = 2, 3, . . . , N , since we have
shown that η1 = 0.

From the structure of the Laplacian matrix shown in (7),
we can see that

Nk = 1 +

k∑
j=1

nj ,

for k = 1, 2, . . . , q. Note that Nq = N .
The agent state variables ηi from i = 2 to Np are the state

variables which are associated with the Jordan blocks of real
eigenvalues, and ηi for i = Np+1 to N are with Jordan blocks
of complex eigenvalues.

For the state variables associated with the Jordan blocks Jk
of real eigenvalues, i.e., for k ≤ p, we have the dynamics
given by

η̇i = (A− λkDDTP )ηi −DDTPηi+1 + ψi(x),

for i = Nk−1 + 1, Nk−1 + 2, · · · , Nk − 1, and

η̇i = (A− λkDDTP )ηi + ψi(x),

for i = Nk.
For the state variables associated with the Jordan blocks

Jk, i.e., for k > p, corresponding to complex eigenvalues,
we consider the dynamics of the state variables in pairs. For
notational convenience, let

i1(j) = Nk−1 + 2j − 1

i2(j) = Nk−1 + 2j

for j = 1, 2, . . . , nk/2. The dynamics of ηi1 and ηi2 for j =
1, 2, . . . , nk/2− 1 are expressed by

η̇i1 = (A− αkDDTP )ηi1 − βkDDTPηi2 −DDTPηi1+2 + ψi1 ,

η̇i2 = (A− αkDDTP )ηi2 + βkDD
TPηi1 −DDTPηi2+2 + ψi2 .

For j = nk/2, we have

η̇i1 = (A− αkDDTP )ηi1 − βkDDTPηi2 + ψi1 ,

η̇i2 = (A− αkDDTP )ηi2 + βkDD
TPηi1 + ψi2 .

Let

Vi = ηTi Pηi, (36)

for i = 2, 3 . . . , N . Let

V0 =

N∑
i=2

ηTi Pηi. (37)

For the convenience of presentation, we borrow the following
results for V0 from [10].

Lemma 5: For a network-connected dynamic system (1)
with the transformed state η, V̇0 has following bounds specified
in one of the following two cases:
1) If the eigenvalues of the Laplacian matrix L are distinct,
i.e., nk = 1 for k = 1, 2, . . . , q, V̇0 satisfies

V̇0 ≤
N∑
i=2

ηTi
(
ATP + PA− 2αPDDTP + κPP

)
ηi

+
1

κ
‖Ψ‖2, (38)
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with κ being any positive real number and

α = min{λ1, λ2, . . . , λp, αp+1, αp+2, . . . , αq}.

2) If the Laplacian matrix L has multiple eigenvalues, i.e.,
nk > 1 for any k ∈ {1, 2, · · · , q}, V̇0 satisfies

V̇0 ≤
N∑
i=2

ηTi
(
ATP + PA− 2(α− 1)PDDTP + κPP

)
ηi

+
1

κ
‖Ψ‖2, (39)

with κ being any positive real number.
Using Lemmas 4 and 5, we easily obtain

V̇0 ≤
N∑
i=2

ηTi
(
ATP + PA− 2αPDDTP + κPP

+
γ20
κ
In

)
ηi +

4γ20
κ
λ2σ(Q)∆, (40)

for Case 1) with ∆ = δT δ, and

V̇0 ≤
N∑
i=2

ηTi
(
ATP + PA− 2(α− 1)PDDTP + κPP

+
γ20
κ
In

)
ηi +

4γ20
κ
λ2σ(Q)∆, (41)

for Case 2). Here we have used ‖η‖2 =
∑N
i=2 ‖ηi‖2.

The remaining analysis is to explore the bound of ∆. With
δl in (29) and Lemma 2, we have

∆i =

∫ t+h

t

ηTi (τ − h)KTBT eA
T (t−τ)dτ

×
∫ t+h

t

eA(t−τ)BKηi(τ − h)dτ

≤ h
∫ t+h

t

ηTi (τ − h)PDDT eA
TheA

T (t−τ)

× eA(t−τ)eAhDDTPηi(τ − h)dτ.

In view of Lemma 3 with P = In, provided that

R = −AT −A+ ω1In > 0, (42)

we have
eA

T teAt < eω1tIn,

and

∆i ≤ h
∫ t+h

t

eω1(t−τ)ηTi (τ − h)PDDT eA
Th

× eAhDDTPηi(τ − h)dτ

≤ ρ2heω1h

∫ t+h

t

eω1(t−τ)ηTi (τ − h)ηi(τ − h)dτ

≤ ρ2he2ω1h

∫ t+h

t

ηTi (τ − h)ηi(τ − h)dτ,

where ρ is a positive real number satisfying

ρ2In ≥ PDDTDDTP. (43)

Then the summation of ∆i can be obtained as

∆ =

N∑
i=2

∆i

≤
N∑
i=2

ρ2he2ω1h

∫ t+h

t

ηTi (τ − h)ηi(τ − h)dτ. (44)

For the integral term ∆ shown in (44), we consider the
following Krasovskii functional

Wi =

∫ t+h

t

eτ−tηTi (τ − h)ηi(τ − h)dτ

+

∫ t+h

t

ηTi (τ − 2h)ηi(τ − 2h)dτ.

A direct evaluation gives that

Ẇi =−
∫ t+h

t

eτ−tηTi (τ − h)ηi(τ − h)dτ

− ηi(t− 2h)T ηi(t− 2h) + ehηTi (t)ηi(t)

≤−
∫ t+h

t

ηTi (τ − h)ηi(τ − h)dτ + ehηTi (t)ηi(t).

With W0 =
∑N
i=2Wi, we have

Ẇ0 =

N∑
i=2

Ẇi

≤−
N∑
i=2

∫ t+h

t

ηTi (τ − h)ηi(τ − h)dτ

+

N∑
i=2

ehηTi (t)ηi(t). (45)

Let

V = V0 + ρ2he2ω1h
4γ20
κ
λ2σ(Q)W0. (46)

From (40), (41), (44) and (45), we obtain that

V̇ ≤ ηT (t) (IN ⊗H) η(t), (47)

where

H :=ATP + PA− 2αPDDTP + κPP

+
γ20
κ

(
1 + λ2σ(Q)ρ2he(2ω1+1)h

)
In, (48)

for Case 1), and

H :=ATP + PA− 2(α− 1)PDDTP + κPP

+
γ20
κ

(
1 + λ2σ(Q)ρ2he(2ω1+1)h

)
In, (49)

for Case 2).
The above expressions can be used for consensus analysis

of network-connected systems with Lipschitz nonlinearity and
input delay. The following theorem summarizes the results.

Theorem 1: For an input-delayed multi-agent system (1)
with the associated Laplacian matrix that satisfies Assumption
1, the consensus control problem can be solved by the control
algorithm (12) with the control gain K = DTP specified in
one of the following two cases:
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1) If the eigenvalues of the Laplacian matrix L are distinct,
the consensus is achieved if the following conditions are
satisfied for W = P−1 and ρ > 0, ω1 ≥ 0,

(A− 1

2
ω1In)T + (A− 1

2
ω1In) < 0, (50)

ρW ≥ DDT , (51)WAT +AW − 2αDDT + κIn W

W
−κIn

γ20(1 + 4h0ρ2)

 < 0,

(52)

where κ is any positive real number and h0 =
λ2σ(Q)he(2ω1+1)h.

2) If the Laplacian matrix L has multiple eigenvalues, the
consensus is achieved if the conditions (50), (51) and the
following condition are satisfied for W = P−1 and ρ > 0,
ω1 ≥ 0,WAT +AW − 2(α− 1)DDT + κIn W

W
−κIn

γ20(1 + 4h0ρ2)

 < 0,

(53)

where κ is any positive real number and h0 =
λ2σ(Q)he(2ω1+1)h.

Proof: When the eigenvalues are distinct, from the anal-
ysis in this section, we know that the feedback law (12) will
stabilize η if the conditions (42), (43) and H < 0 in (48)
are satisfied. Indeed, it is easy to see the conditions (42) and
(43) are equivalent to the conditions specified in (50) and (51).
From (48), it can be obtained that H < 0 is equivalent to

P−1AT +AP−1 − 2αDDT + κIn

+
γ20
κ

(1 + 4h0ρ
2)P−1P−1 < 0, (54)

which is further equivalent to (52). Hence we conclude that η
converges to zero asymptotically.

When the Laplacian matrix has multiple eigenvalues, the
feedback law (12) will stabilize η if the conditions (42),
(43) and H < 0 in (49) are satisfied. Following the similar
procedure as Case 1), we can show that, under the conditions
(50), (51) and (53), η converges to zero asymptotically. The
proof is completed.

Remark 3: The conditions shown in (50) to (53) can be
checked by standard LMI routines for a set of fixed values
ρ and ω1. The iterative methods developed in [31] for single
linear system may also be applied here.

V. SIMULATION

In this section, we will illustrate in some details the pro-
posed consensus control design through a circuit example. The
system under consideration is a connection of four agents (i.e.
N = 4) as shown in Figure 1, each of which is described by
a second-order dynamic model as{

ṗi(t) = vi(t),
v̇i(t) = f(vi) + ui(t− h),

(55)

where pi = [pix, piy, piz]
T ∈ R3 denotes the position vector

of agent i, vi = [vix, viy, viz]
T ∈ R3 the velocity vector,

f(vi) ∈ R3 the intrinsic dynamics of agent i, governed by
the chaotic Chua circuit [30]

f(vi) =

 −0.59vix + viy − 0.17(|vix + 1| − |vix − 1|)
vix − viy + viz
−viy − 5viz

 .
Let xi = [pTi , v

T
i ]T ∈ R6. The dynamic equation (55) of each

agent can be re-arranged as the state space model (2) with

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −0.59 1 0
0 0 0 1 −1 1
0 0 0 0 −1 −5

 , B =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 ,

and φ(xi) = [0, 0, 0,−0.17(|vix + 1| − |vix − 1|), 0, 0]T . The

Fig. 1. Communication topology.

adjacency matrix is given by

Q =


0 0 0 1
1 0 0 0
0 0 0 1
0 1 0 0

 ,
and the resultant Laplacian matrix is obtained as

L =


1 0 0 −1
−1 1 0 0
0 0 1 −1
0 −1 0 1

 .
The eigenvalues of L are

{
0, 1, 3/2± j

√
3/2
}

, and there-
fore Assumption 1 is satisfied. Furthermore, the eigenvalues
are distinct. We obtain that

J =


0 0 0 0
0 1 0 0

0 0 3
2

√
3
2

0 0 −
√
3
2

3
2

 ,
with the matrices

T =


1 0 1

2

√
3
2

1 0 −1 0

1 −2 1
2

√
3
2

1 0 1
2 −

√
3
2

 ,
and rT = [1/3, 1/3, 0, 1/3]T .

The nonlinear function φ(xi) in each agent dynamics is
globally Lipschitz with a Lipschitz constant γ = 0.34, which
gives γ0 = 3.7391 by (19). Based on the Laplacian matrix
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Fig. 2. The positions disagreement of 4 agents: h = 0.03s.

L, we have α = 1. In simulation, the input delay is set as
h = 0.03s. A positive definite matrix P can be obtained with
κ = 0.01, ω1 = 1.5 and ρ = 2, as

P =


5.03 −0.53 0.18 2.58 0.29 0.08
−0.53 5.37 0.43 0.28 2.39 0.47
0.18 0.43 7.75 −0.08 −0.38 1.58
2.58 0.28 −0.08 2.65 0.93 0.17
0.29 2.39 −0.38 0.93 2.17 0.25
0.08 0.47 1.58 0.17 0.25 0.92

 ,

to satisfy the conditions of Theorem 1. Consequently, the
control gain is obtained as

K =

−2.19 −0.12 −0.01 −2.46 −0.74 −0.15
−0.13 −2.10 0.30 −0.75 −2.08 −0.32
−0.09 −0.43 −1.64 −0.18 −0.18 −1.27

 .
Simulation study has been carried out with the results shown

in Figure 2 for the positions state disagreement of each agent.
Clearly the conditions specified in Theorem 1 are sufficient
for the control gain to achieve consensus control for the multi-
agent systems. The same control gain has also been used for
different values of input delay. The results shown in Figure 3
indicate that the conditions could be conservative in the control
gain design for a given input delay and Lipschitz nonlinear
function. Indeed, extensive simulation shows that the same
control gain can possibly achieve consensus control for the
system with a much larger delay and Lipschitz constant.
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Fig. 3. The positions disagreement of 4 agents: h = 0.3s.

VI. CONCLUSION

This paper has investigated the impacts of nonlinearity and
input delay in consensus control. This input delay may rep-
resent some delays in the network communication. Sufficient
conditions are derived for the multi-agent systems to guarantee
the global consensus using Lyapunov-Krasovskii method in the
time domain. The significance of this research is to provide
a feasible method to deal with consensus control of a class
of Lipschitz nonlinear multi-agent systems with input delay
which includes some common circuits such as Chua circuits.
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