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Abstract. In data analysis, induction of decision trees serves two
main goals: first, induced decision trees can be used for classifica-
tion/prediction of new instances, and second, they represent an easy-
to-interpret model of the problem domain that can be used for expla-
nation. The accuracy of the induced classifier is usually estimated using
N-fold cross validation, whereas for explanation purposes a decision tree
induced from all the available data is used. Decision tree learning is rel-
atively non-robust: a small change in the training set may significantly
change the structure of the induced decision tree. This paper presents
a decision tree construction method in which the domain model is con-
structed by consensus clustering of N decision trees induced in N-fold
cross-validation. Experimental results show that consensus decision trees
are simpler than C4.5 decision trees, indicating that they may be a more
stable approximation of the intended domain model than decision tree,
constructed from the entire set of training instances.

1 Introduction

Decision tree induction (Breiman et al. 1984, Quinlan, 1986) has been recognized
as one of the standard data analysis methods. In particular, variants of Quinlan’s
C4.5 (Quinlan, 1993) can be found in virtually all commercial and academic data
mining packages.

In data analysis, induction of decision trees serves two main goals: first,
induced decision trees can be used for the classification (or prediction) of new
instances, and second, they represent an easy-to-interpret model of the problem
domain that can be used for explanation. In the standard decision tree learning
methodology (e.g., as implemented in the WEKA system (Witten & Frank,
1999)) the accuracy of the induced classifier is estimated using N-fold cross-
validation, whereas for explanation purposes a decision tree induced from all the
available data is used. Its explanation capability is evaluated qualitatively by
the domain expert, whereas quantitative measures estimate only the simplicity
of decision trees, measured by the number of leaves and nodes.
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The main advantages of decision tree learning are computational efficiency,
reasonable accuracy and simplicity of explanations. It is well known, however,
that decision tree learning is a rather non-robust method: a small change in
the training set may significantly change the structure of the induced deci-
sion tree, which may result in experts’ distrust in induced domain models.
Improved robustness and improved accuracy results can be achieved e.g., by
bagging/boosting (Breiman, 1996) at a cost of increased model complexity and
decreased explanatory potential.

This paper addresses the model selection problem of the standard decision
tree learning methodology in which the induced domain model is the decision
tree induced from all the available data. The accuracy of the induced classifier is
estimated using N-fold cross-validation, which is a bias-free (Stone, 1974) but not
variance-free (Zhang, 1992, Kohavi, 1995) estimate of the true accuracy, i.e., the
accuracy of a classifier that is learned by the same algorithm on the complete
data set. For model selection purposes, a 63,2% bootstrap (Efron 1979) may
be preferable to learning from a complete set of training instances (Scheffer &
Herbrich, 1997). The bootstrap approach is based on re-sampling of a number
of training sets of size n from an original data set of size n by randomly drawing
samples with replacement, leading to 63,2% distinct samples in the training set,
on the average.

Despite the statistical advantages of this method for choosing the optimal
model, this method is still non-robust in the case of decision tree learning. To
improve robustness, this paper presents a decision tree construction method in
which the domain model in the form of a decision tree is constructed by consensus
clustering of N decision trees induced in N-fold cross-validation. Experimental
results show that consensus decision trees are simpler than C4.5 decision trees,
indicating that they may be a more stable approximation of the intended domain
model than decision trees constructed from the entire set of training instances.

The paper is organized as follows. Section 2 presents the basic methodology of
decision tree induction and hierarchical clustering, Section [l outlines the novel
approach of consensus decision tree construction, and Section Hl provides the
experimental evaluation of the proposed approach. We conclude by a summary
and plans for further work.

2 Background Methodology

2.1 Decision Trees

Induction of decision trees is one of the most popular machine learning methods
for learning of attribute-value descriptions (Breiman et al., 1984, Quinlan, 1986).
The basic decision tree learning algorithm builds a tree in a top-down greedy
fashion by recursively selecting the ‘best’ attribute on the basis of an information
measure, and splitting the data set accordingly. Various modifications of the basic
algorithm can be found in the literature, the most popular being Quinlan’s C4.5
(Quinlan, 1993). In our work we used the WEKA (Witten and Frank, 1999)
implementation of C4.5.
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2.2 Hierarchical Clustering

Clustering methods in general aim at building clusters (groups) of objects so
that similar objects fall into the same cluster (internal cohesivity) while dissim-
ilar objects fall into separate clusters (external isolation). A particular class of
clustering methods, studied and widely used in statistical data analysis (e.g.,
Sokal and Sneath, 1963; Gordon, 1981; Hartigan, 1975) are hierarchical cluster-
ing methods.

The purpose of hierarchical clustering is to fuse objects (instances) into suc-
cessively larger clusters, using some measure of (dis)similarity. A typical result
of this type of clustering is a hierarchical tree or dendrogram.
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Fig. 1. A sample dendrogram obtained as a result of hierarchical clustering.

As shown in Figure[T], a dendrogram is a binary tree where single objects form
the leaves of the tree and each node of the tree represents a cluster of similar
objects. The further the node is from the tree root, the more similar the items are
under the node. The height of the branches (vertical lines) in a dendrogram are
directly proportional to the dissimilarity between clusters. Thus, for each node in
the dendrogram (where a new cluster is formed) we can read off the dissimilarity
at which the respective objects were joined together into a new single cluster.
This dissimilarity is called the cluster level and is used to determine the most
appropriate number of clusters that reflects the real structure in the data.

The dendrogram illustrates the actual procedure of hierarchical clustering.
It starts by forming N clusters, each consisting of one single object (training
instance). Then, step by step, the threshold regarding the decision when to
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declare two objects to be members of the same cluster is lowered. As a result,
larger clusters of increasingly dissimilar objects are aggregated. Finally, in the
last step, all objects are joined to form a single cluster. The cluster levels are
computed and where the difference between successive cluster levels is maximal
(Figure [[) the dendrogram is ‘cut’, producing the partition where each cluster is
the most internally cohesive and there is the highest external isolation between
clusters. Note that the number of clusters is determined dynamically through
the procedure of dendrogram ‘cutting’.

There is one last question that remains to be answered in order to understand
the hierarchical clustering: “how should we measure the (dis)similarity between
objects and between clusters of objects?” These questions are addressed in the
following two paragraphs, respectively.

Dissimilarity measures. The hierarchical clustering method uses the dissim-
ilarities between objects when forming the clusters. The most straightforward
way of computing dissimilarities between objects in a multi-dimensional space
is to compute the Euclidean distances; many other dissimilarity measures are
also used in clustering algorithms (e.g., Gordon, 1981: 13-32). In our CDT al-
gorithm, described in Section Bl we use a modified disagreement dissimilarity
measure which we describe in detail in Section [

Aggregation or linkage rules. At the first step, when each object repre-
sents its own cluster, the dissimilarities between these objects are defined by
the chosen dissimilarity measure. Once several objects have been aggregated,
the dissimilarities between these new clusters has to be determined. There are
various possibilities: for example, the dissimilarity between the fused cluster
(C; U C;) and another cluster (Cy) can be the smallest dissimilarity between
d(C;, Cy) and d(Cj, Cy); this method is called the single linkage method. Alter-
natively, one may use the largest dissimilarity between d(C;, Cy) and d(C;, Cy),
ie., d(C; U Cj,C) = max(d(Cy, Ck),d(C}, Cy)). This method, called the com-
plete linkage method, has been used in our CDT algorithm. There are numerous
other linkage rules (e.g., Gordon, 1981).

An example of hierarchical clustering. To better illustrate the hierarchi-
cal clustering method, a simple example is presented in Figure 2l Having five
points (z,y,z,w,v) in a two-dimensional space (Figure Ph), we want to assign
these points to clusters. Taking the Euclidian distance between points as the
dissimilarity measure, we compute the dissimilarity matrix (Figure Bb). What
follows is one step of the hierarchical clustering algorithm: find the smallest dis-
similarity value in the matrix (Figure 2b - encircled value), fuse the appropriate
elements together (Figure[2b - points  and y), delete from the matrix the row
and column containing this (smallest) value and recompute the dissimilarity
matrix according to the complete linkage aggregation rule. Figure 2k is what
we get after applying one step of this algorithm. Repeating the step until the
dissimilarity matrix ‘shrinks’ to a single value (Figures 2k,d,e; the last step is
not shown), we obtain a dendrogram (Figure 2¥). The cluster levels 1, 1, 1.41
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and 5.66 correspond to the encircled values in Figures [2b,c,d,e; the differences
between successive cluster levels are thus: 0, 0.41 and 4.25. The dendrogram in
Figure [2f is cut where this difference is maximal (4.25), yielding two clusters of
points: (z,y,z) and (w,v).

Consensus clustering. Consensus hierarchical clustering deals with the fol-
lowing problem: given a set of concept hierarchies (represented by dendrograms),
find a consensus concept hierarchy by merging the given concept hierarchies in
such a way that similar instances (those that belong to the same concept/cluster)
will remain similar also in the merged concept hierarchy. In the last thirty years
many consensus clustering methods have been proposed (e.g., Regnier, 1965;
Adams, 1972; McMorris and Neuman, 1983; Day, 1983). In 1986, a special issue
of the Journal of Classification was devoted to consensus classifications. Excellent
reviews of this topic are also available (Faith, 1988; Leclerc, 1988).
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Fig.2. A short example problem solved using hierarchical clustering with complete
linkage aggregation rule.

3 Consensus Decision Tree Construction

3.1 Motivation

As pointed out by Langley (Langley, 1996), decision tree induction can be seen
as a special case of induction of concept hierarchies. A concept is associated with
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each node of the decision tree, and as such a tree represents a kind of taxonomy,
a hierarchy of many concepts. In this case, a concept is identified by the set of
instances in a node of the decision tree. Hierarchical clustering also results in
a taxonomy of concepts, equally identified by the set of instances in a ‘node’
of a dendrogram representing the concept hierarchy. Concept hierarchies can be
induced in a supervised or unsupervised manner: decision tree induction algo-
rithms perform supervised learning, whereas induction by hierarchical clustering
is unsupervised.

Our idea of building consensus decision trees is inspired by the idea of con-
sensus hierarchical clustering. A consensus decision tree should be constructed
in such a way that instances that are similar in the original decision trees should
remain being similar also in the consensus decision tree. To this end, it is crucial
to define an appropriate measure of similarity between instances. This measure
may only consider the distances between instances or may also profit from the
fact that instances are labelled by class labels and appropriately increase the
similarity value of two instances labelled by the same class label. We have tested
both approaches.

3.2 CDT: An Algorithm for Consensus Decision Tree Construction
The consensus tree building procedure consists of the following main steps:

1. perform N-fold cross-validation resulting in N decision trees induced by a
decision tree learning algorithm (e.g., C4.5),

2. use these decision trees for computing a dissimilarity matrix that measures
the dissimilarity of pairs of instances,

3. construct a concept hierarchy using the dissimilarity matrix of step 2 and
define concepts by ‘cutting’ the dendrogram w.r.t. the maximal difference in
cluster levels,

4. induce a consensus decision tree using the same decision tree algorithm as
in step 1.

Decision tree construction. First, N-fold cross-validation is performed re-
sulting in N decision trees induced by the C4.5 learning algorithm (the WEKA
implementation of C4.5 with default parameterdl is used for this purpose). The
decision trees are then stored and used to compute the dissimilarity between
pairs of instances.

Dissimilarity between instances. The dissimilarities between pairs of in-
stances are computed from the N stored decision trees in the following way:

— first we measure the similarity s between instances i and j by counting (for
all N decision trees) how many times the two instances belong to the same
leaf (i.e., are described by the same path of attribute-value tests leading

! The default parameters were: binary splits = NO, confidence factor for pruning =
0.25, minimum number of objects in a leaf = 2.
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from the root to the leaf of the decision tree). Therefore s(i, j) is defined as

follows:
N
s(i,5) = > _ (i, j)
I=1
where
1,if i and j belong to the same leaf (are described by
Ty(i,§) = the same attribute values) in the [—th decision tree

0, otherwise

— then we compute the dissimilarity measure d(i, j) by simply subtracting the
similarity s(¢, j) from the number of trees N, i.e., d(i,j) = N — s(4, j), which
gives the same results as its normalized variant:

s(i,J)
N

d(Z7J) =1-

By calculating the dissimilarities for all pairs of instances, we obtain the dissim-
ilarity matrix, which is the input for the hierarchical clustering algorithm.

Concept hierarchy construction. A concept hierarchy is constructed using
the following hierarchical clustering algorithm:

Each instance is a cluster: C; = {i};
REPEAT
find the ‘nearest’ pair of clusters C}, and Cy:
d(Cp, Cq) = miny , d(Cy, Cy);
fuse clusters C}, and C; in a new cluster C, = C, U Cy;
replace clusters C}, and C, by the cluster C;;
determine the dissimilarities between C, and the other clusters
using the complete linkage method,;
UNTIL one cluster is left

This algorithm produces a dendrogram as its output. The concepts (clusters)
can then be identified by ‘cutting’ this dendrogram according to the maximal
difference in cluster levels (as described in Section 2:2). If needed, we increase the
height of the cutpoint to ensure that the number of clusters remains greater or
equal to the number of classes of the given classification problem. Consequently,
we sometimes force the algorithm to cut the dendrogram producing more clusters
than the optimal number of clusters according to the maximal difference between
successive cluster levels.

Induction of consensus decision trees. Within each cluster of instances, we
select the majority class. We have tested the following versions of the algorithm:
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Learning by data relabelling. In this algorithm, not reported in this paper,
we re-classify the instances belonging to non-majority classes by assigning
them to the majority class. We then use the C4.5 learning algorithm to
induce a consensus decision tree from the set of all instances, some being
relabelled.

Learning by data reduction. In the algorithm reported in this paper, we
remove from the cluster all instances not belonging to the majority class. We
then use the C4.5 learning algorithm to induce the consensus decision tree
from the remaining subset of instances.

In all runs of the C4.5 algorithm the same (default) parameter setting is used
(as in the first step of this algorithm). Notice that in the case of a tie (two
or more classes being the majority class), a random choice between these class
assignments is made. The results of learning by data reduction slightly (non-
significantly) outperform the results of learning by data relabelling. Due to the
lack of space, only the results of learning by data reduction are reported in
Table 2

4 Experimental Evaluation

4.1 Experimental Design

In standard 10-fold cross-validation, the original data set is partitioned into 10
folds with (approximately) the same number of examples. Training sets are built
from 9 folds, leaving one fold as a test set. Let G denote the entire data set, T;
an individual test set (consisting of one fold), and G; the corresponding training
set (G; « G\ T;, composed of nine folds). In this way, 10 training sets G1— G1o,
and 10 corresponding test sets T7-T}o are constructed. Every example occurs
exactly once in a test set, and 9 times in training sets.

In the first experiment we used C4.5 (WEKA implementation, default pa-
rameter settingE) to induce decision trees on training sets G1—G19. We measured
the average accuracy Acc(C4.5(G)) (and standard deviation) and the informa-
tion scord?’| Info(C4.5(G)) of ten hypotheses C4.5(G;) constructed by C4.5 on
training sets G;, i € [1,10], where Acc(C4.5(G)) = & }0 Ace(C4.5(G;)), and
Info(C45(G)) = 5 }0 Info(C4.5(G;)). The average size of decision trees
Leaves/Nodes(C4.5(G)) was measured by the number of leaves and the num-
ber of all decision tree nodes (number of leaves + number of internal nodes),
averaged over 10 folds.

The above result presents the baseline for comparing the quality of
our consensus tree building algorithm CDT, measured by the average
accuracy Acc(CDT(Q)), Leaves/Nodes(CDT(G)), and information score
Info(CDT(QG)) over ten consensus decision trees CDT(G;).

2 See footnote 1 in Section 3.2

3 Whereas accuracy computes the relative frequency of correctly classified instances,
the information score takes into the account also the improvement of accuracy com-
pared to the prior probability of classes, see (Kononenko and Bratko, 1991).



Consensus Decision Trees: Using Consensus Hierarchical Clustering 259

As described in Section a consensus decision tree is constructed from
ten C4.5 decision trees. Building of consensus decision trees was performed in
a nested 10-fold cross-validation loop: for each G;, i € [1,10], training sets G,
J € [1,10] were used to construct decision trees C4.5(G;;) by the C4.5 algo-
rithm. Training sets G;; were obtained by splitting each G into ten test sets Tj;
(consisting of one sub-fold), and ten training sets G;; <— G; \ T;; (composed of
nine sub-folds).

Ten decision trees C4.5(G;;) were merged into a single consensus deci-
sion tree CDT(G;). Let Acc(CDT(G;)) denote its accuracy tested on T;. Ac-

cordingly, Acc(CDT(G)) = & }0 Ace(CDT(G;)), and information contents

Info(CDT(G)) = 5 10 Info(CDT(G;)). Leaves/Nodes(CDT(G)) is also
the average of Leaves/Nodes(CDT(G;)).

In order to compare accuracy, tree size and information score of con-
sensus trees and C4.5 trees, we calculate their relative improvements as

follows: Rel(Acc(G)) = % — 1, Rel(Leaves/Nodes(G)) = 1 —

Leaves/Nodes(CDT(Q)) _ Info(CDT(G
Leaues//Nodes(C4.5((G)) ’ Rel([nfO(G)) - W - L

Table 1. Characteristics of data sets.

Data set #Attr. #Class. #Inst. Class distribution (%)
Anneal 38 5 898 1:11:76:8:4

Audiology 69 24 226 1:1:25:9:1:1:8:21:1:2:1:2:1:1:3:1:1:1:9:2:1:2:4:1
Australian 14 2 690 56:44

Autos 25 6 205 1:11:33:26:16:13
Balance 4 3 625 46:8:46

Breast 9 2 286 70:30

Breast-w 9 2 699 66:34

Car 6 4 1728  70:22:4:4

Colic 22 2 368 63:37

Credit-a 15 2 690 44:56

Credit-g 20 2 1000 70:30

Diabetes 8 2 768 65:35

Glass 9 6 214 33:36:8:6:4:14
Heart-c 13 2 303 54:46

Heart-stat 13 2 270 56:44

Hepatitis 19 2 155 21:79

Tonosphere 34 2 351 36:64

Iris 4 3 150 33:33:33

Labor 16 2 57 35:65

Lymph 18 4 148 1:55:41:3

Prim. tumor 17 21 339 25:5:3:4:11:1:4:2:1:8:4:2:7:1:1:3:8:2:1:1:7
Segment 19 7 2310 14:14:14:14:14:14:14
Sonar 60 2 208 47:53

Tic-tac-toe 9 2 958 65:35

Vehicle 18 4 846 25:26:26:24

Vote 16 2 435 61:39

Wine 13 3 178 33:40:27

Zoo 17 7 101 41:20:5:13:4:8:10
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4.2 Results of Experiments

Experiments were performed on 28 UCI data sets whose characteristics are out-
lined in Table [ (boldface denoting the majority class). Results of experiments
are shown in Table 2 (boldface meaning that CDT performed equally well or
better than C4.5).

Table 2. Results of the experiments.

C4.5 CDT Relative improvement
Data set Acc(Sd) leaves  info. Acc(Sd) leaves info. Acc leaves info.
/nodes /nodes /nodes

Anneal |97,14 (0,0893) 39/77 2,7130|99,13 (0,0497) 52/103 2,7811|0,0205 -0,333/-0,338 0,0251
Audiol. [77,88 (0,1193) 32/54 2,6579(80,09 (0,1288) 29/49 2,5316|0,0284 0,094,/0,093 -0,0475
Austral. (85,51 (0,3455) 31/45 0,6183| 84,64 (0,3919) 17/24 0,6813|-0,0102 0,452/0,467 0,1019
Autos (82,44 (0,2022) 49/69 1,8198| 80,49 (0,2361) 39/57 1,7598|-0,0237 0,204,/0,174 -0,0330
Balance |77,76 (0,3567) 58/115 0,6778| 69,12 (0,4537) 8/15 0,5598|-0,1111 0,862/0,870 -0,1741
Breast |75,17 (0,4423) 4/6 0,1005| 72,73 (0,5222) 13/17 0,2630|-0,0326 -2,250/-1,833 1,6169
Brst-w |95,28 (0,2116) 16/31 0,8020| 94,85 (0,2269) 9/17 0,8189|-0,0045 0,438/0,452 0,0211
Car 92,48 (0,1628) 131/182 1,0218| 68,66 (0,3946) 29/41 0,2687|-0,2576 0,779/0,775 -0,7370
Colic (85,87 (0,3518) 4/6 0,4993| 83,42 (0,4071) 11/17 0,6023|-0,0285 -1,750/-1,833 0,2063
Crdt-a (85,94 (0,3402) 30/42 0,6221| 85,07 (0,3864) 18/25 0,6901|-0,0101 0,400/0,405 0,1093
Crdt-g (69,70 (0,4922) 103/140 0,1193| 69,50 (0,5523) 82/114 0,1949|-0,0029 0,204,/0,186 0,6337
Diab. (74,09 (0,4356) 22/43 0,2993| 73,96 (0,5103) 21/41 0,3766|-0,0018 0,045/0,047 0,2583
Glass  [67,29 (0,2837) 30/59 1,3307(68,69 (0,2991) 23/45 1,3524|0,0208 0,233/0,237 0,0163
Heart-c |79,21 (0,2619) 30/51 0,5354|79,21 (0,2884) 18/29 0,5917|0,0000 0,400/0,431 0,1052
Heart-s |77,78 (0,4322) 18/35 0,4847| 75,93 (0,4907) 21/41 0,5054|-0,0238 -0,167/-0,171 0,0427
Hepat. |79,35 (0,4200) 11/21 0,1445| 77,42 (0,4752) 8/15 0,1510|-0,0244 0,273/0,286 0,0450
Ionos. (90,88 (0,2887) 18/35 0,7416| 89,74 (0,3203) 16/31 0,7247|-0,0125 0,111/0,114 -0,0228
Iris 95,33 (0,1707) 5/9 1,4663| 94,67 (0,1886) 3/5 1,4692|-0,0070 0,400/0,444 0,0020
Labor |[78,95 (0,4285) 3/5 0,3496(80,70 (0,4393) 3/5 0,5257|0,0222 0,000/0,000 0,5037
Lymph |[77,03 (0,3274) 21/34 0,6074|77,70 (0,3339) 18/28 0,6712|0,0088 0,143/0,176 0,1050
Prim.t. [40,71 (0,1961) 47/88 1,2050(41,30 (0,2310) 29/54 1,2396|0,0145 0,383/0,386 0,0287
Segment |97,14 (0,0893) 39/77 2,7130| 96,02 (0,1067) 52/103 2,6867|-0,0116 -0,333/-0,338 -0,0097
Sonar |74,04 (0,4986) 18/35 0,4662|75,81 (0,4952) 15/29 0,5050|0,0239 0,167,/0,171 0,0832
T-tac-t |84,76 (0,3485) 95/142 0,5613| 78,91 (0,4592) 71/106 0,4793|-0,0690 0,253/0,254 -0,1461
Vehicle (73,40 (0,3272) 98/195 1,3607| 70,92 (0,3813) 56/111 1,2996|-0,0338 0,429/0,431 -0,0449
Vote (96,78 (0,1650) 6/11 0,8580| 96,55 (0,1857) 6/11 0,8908|-0,0024 0,000/0,000 0,0382
Wine (94,94 (0,1776) 5/9  1,4476| 93,26 (0,2120) 7/13  1,4192|-0,0178 -0,400/-0,444 -0,0196

Zoo 92,08 (0,1359) 9/17 2,1435|92,08 (0,1504) 9/17 2,1014|0,0000 0,000/0,000 -0,0196
Average [82,10 (0,2900) 34,71/  1,01] 80,38 (0,3300) 24,39/  1,01|-0,0195 0,037/  0,0960
58,32 41,54 0,051

Results of experiments show that there is no significant difference in average
accuracy between the consensus decision trees and the decision trees induced by
C4.5 (t = 1.8664, df = 27, p = 0.0729, using two-tailed ¢-test for dependent sam-
ples, where t, df and p stand for t-statistics, degrees of freedom and significance
level, respectively), using a 95% significance level (the bound used throughout
this paper). Notice, however, that the CDT algorithm improves the information
score (compared to C4.5) in 18 domains (9.6% improvement on the average).

Our hypothesis that the structure of CDT is simpler than the structure of
the induced C4.5 decision trees was confirmed: indeed, the average number of
leaves of CDT is significantly smaller than the average number of leaves of the
C4.5 decision trees (t = 2.3787, df = 27, p = 0.0247, using two-tailed t-test for
dependent samples). Moreover, the average tree size (measured by the number
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of all decision tree nodes) of CDT is also significantly smaller than that of C4.5
(t = 2.4413, df = 27, p = 0.0215, using two-tailed t-test for dependent samples).

The relative improvement in tree size also shows that in 19 domains the CDT
algorithm learned smaller decision trees than C4.5 yielding, on the average, 3.7%
smaller trees according to the number of leaves (5.1% according to the number
of all nodes).

5 Summary and Conclusions

Results show that consensus decision trees are, on the average, as accurate as
C4.5 decision trees, but simpler (smaller w.r.t. the number of leaves and nodes).
Moreover, consensus decision trees improve the information score compared to
C4.5 decision treedd.

We also tested alternative ways of constructing consensus decision trees.
First, the similarity measure that only considers the distances between instances
was replaced by a measure that takes into the account that instances are la-
belled by class labels; the similarity value of two instances labelled by the same
class label was appropriately increased. Opposed to our expectations, this way
of measuring similarities between instances has not proved to be better than the
one described in this paper.

Second, instead of labelling instances by class labels, instances may be la-
belled by cluster labels, considering clusters generated by consensus clustering
as classes for learning by C4.5. This approach has turned out to be inferior
compared to the approaches described in the paper.

In further work we are planning to measure the similarities between instances
not just by counting how many times two instances belong to the same leaf (have
the same attribute-value representation), but also by putting different weights
on the segments of this path (higher weights assigned to segments closer to the
root).

Moreover, our plan is to test the hypothesis that consensus decision trees are
more robust with respect to adding of new instances, i.e., that the structure of
the consensus decision tree would change less than the structure of C4.5 decision
trees. To this end we need to propose new measures of tree structure variability,
and measure the robustness accordingly. The current results indicate that a step
in the direction of improving the robustness has been achieved, assuming that
simpler tree structures are more robust.

There is however a performance drawback that we should take into account
when using the CDT method for building decision trees. Since the CDT algo-
rithm builds 11 decision trees (10 in the cross-validation process and the final
one) and does also the hierarchical clustering, it is much slower than the tradi-
tional decision tree building algorithm.
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