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Abstract
The coronavirus disease 2019 (COVID-19) is a pandemic that has severely posed substantial health challenges and claimed 
millions of lives. Though vaccines have been produced to stem the spread of this disease, the death rate remains high since 
drugs used for treatment have therapeutic challenges. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the 
virus that causes the disease, has a slew of potential therapeutic targets. Among them is the furin protease, which has a cleav-
age site on the virus’s spike protein. The cleavage site facilitates the entry of the virus into human cells via cell–cell fusion. 
This critical involvement of furin in the disease pathogenicity has made it a viable therapeutic strategy against the virus. 
This study employs the consensus docking approach using HYBRID and AutoDock Vina to virtually screen a pre-filtered 
library of 3942 natural product compounds of African origin against the human furin protease (PDB: 4RYD). Twenty of 
these compounds were selected as hits after meeting molecular docking cut-off of − 7 kcal.mol−1, pose alignment inspec-
tion, and having favorable furin-ligand interactions. An area under the curve (AUC) value of 0.72 was computed from the 
receiver operator characteristic (ROC) curve, and Boltzmann-enhanced discrimination of the ROC curve (BEDROC) value 
of 0.65 showed that AutoDock Vina was a reasonable tool for selecting actives for this target. Seven of these hits were pro-
posed as potential leads having had bonding interactions with catalytic triad residues Ser368, His194, and Asp153, and other 
essential residues in the active site with plausible binding free energies between − 189 and − 95 kJ/mol from the Molecular 
Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations as well as favorable ADME/Tox properties. The 
molecules were also predicted as antiviral, anti-inflammatory, membrane permeability inhibitors, RNA synthesis inhibitors, 
cytoprotective, and hepatoprotective with probable activity (Pa) above 0.5 and probable inactivity values below 0.1. Some of  
them also have anti-influenza activity. Influenza virus has many similarities with SARS-CoV-2 in their mode of entry into 
human cells as both are facilitated by the furin protease. Pinobanksin 3-(E)-caffeate, one of the potential leads is a propolis 
compound. Propolis compounds have shown inhibitory effects against ACE2, TMPRSS2, and PAK1 signaling pathways of 
SARS-CoV-2 in previous studies. Likewise, quercitrin is structurally similar to isoquercetin, which is currently in clinical 
trials as possible medication for COVID-19.
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Introduction

Coronaviruses (CoVs) are a family of viruses that cause 
several diseases in humans. These diseases range from 
common cold infections to severe acute respiratory syn-
dromes [1, 2]. In recent times, coronaviruses have caused 
major outbreaks in the world. Among these are the 2003 
severe acute respiratory syndrome coronavirus (SARS-
CoV) outbreak in China, the 2012 Middle East respiratory 
syndrome coronavirus (MERS-CoV) outbreak in Saudi 
Arabia [3], and recently, the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) outbreak that emerged 
from the Wuhan province of China in December 2019 [4]. 
According to recent studies, SARS-CoV-2 is a new strain 
of the virus and is responsible for the coronavirus disease 
2019 (COVID-19) [5]. The fast spreading rate of the virus 
across the world prompted the World Health Organiza-
tion (WHO) to declare the outbreak as a pandemic [6]. As 
of January 2022, case numbers above 300 million were 
reported worldwide with over 5.5 million deaths. When 
infected with the disease, symptoms such as dry cough, 
sore throat, fever, and tiredness are commonly experienced. 
Ageusia, anosmia, and runny nose are also common symp-
toms of the disease [7]. In more severe cases, patients bear 
serious symptoms such as difficulty in breathing, chest 
pains, among others [8]. In some instances, oxygen is 
administered through ventilators to augment patient’s sur-
vival [9, 10]. The severity of this disease has instigated 
the demand to identify new antiviral drug candidates or 
repurpose existing drugs for its treatment. Currently, a 
number of vaccines have been rolled out in the quest to 
provide immunity against the virus; however, availability 
and acceptance have become major issues as people con-
tinually get infected every day [11]. Thus, effective therapy 
is required, necessitating the use of medications as an addi-
tional therapeutic option in the fight against the disease.

CoVs share a lot of similarities in their genome organi-
zation [12]. Recent studies have shown that SARS-CoV-2 
uses similar host cell receptors as SARS-CoV to enter 
human cells. This is attributable to the similarity in 
sequence of the spike proteins of both viruses. The entry 
of CoVs into host cells is facilitated by host-cell mem-
brane fusion that involves several processes of receptor 
binding and proteolytic cleavage of the spike (S) protein. 
The spike (S) protein consists of two subunits namely S1 
and S2 that are responsible for the attachment and entry 
of the virus into the host cell. While S1 is involved in the 
receptor binding on host cell surfaces, S2 facilitates the 
whole fusion mechanism. During the S protein proteolytic 
activity, several host cell proteases like furin, cathepsin B,  
trypsin, elastase, plasmin, and cell surface transmembrane  
protease/serine (TMPRSS) cleave the S protein to facili-
tate the viral entry [13]. Inhibition of these proteases has 

been suggested as plausible therapeutic targets for viral 
infections and can decrease viral infectivity [13]. Fusion 
between the virus and host cells occurs either via cyto-
plasmic or endosomal membrane fusion [14]. The first 
important step for target cell entry is the interaction of the 
virus spike protein with angiotensin-converting enzyme 
2 (ACE-2) [15]. Alongside ACE2, the virus also employs 
the enzyme TMPRSS2 for priming [16].

Though the virus enters cells using these important recep-
tors, emphasis has been placed on furin protease cleavage 
sites found on the virus spike protein for its role in facilitat-
ing its entry into host cells [17]. Furin belongs to a fam-
ily of serine secretory proteases known as proprotein con-
vertases (PCs) [18]. PCs are responsible for the regulation 
of majority of biological processes by activating precursor 
forms of a wide range of receptors, hormones, and cell sur-
face protein [19]. In viral disease processes, furin and other 
PCs activate cell surface glycoproteins in the pathogenicity 
of several family of viruses including CoVs, paramyxovi-
ruses, herpesviruses, togaviruses, bornaviruses, flaviviruses, 
bunyaviruses, filoviruses, orthomyxoviruses, retroviruses, 
and pneumoviruses, facilitating their entry into target cells 
[20–22]. Other pathogenic examples include furin activa-
tion of precursor proteins by influenza virus—a virus that 
has been shown to have several similarities with SARS-CoV 
virus, the Ebola virus, distemper virus, and many more [19]. 
These and other roles played by furin proteases make them 
important in the viral maturation process, SARS-CoV-2 
pathogenesis, and viral transmission in humans. CRISPR-
Cas9 knockout of furin has been reported to significantly 
reduce the production of infectious SARS-CoV-2 virus [23]. 
In ferrets, SARS-CoV-2 virus which lacks the furin cleavage 
site (FCS) was observed to have low transmission to other 
animals as compared to the wild-type virus [24]. Also, very 
low frequencies were observed for SARS-CoV-2 mutants 
that had FCS deletions in human tissues [24]. The spike 
FCS has a total of ten amino acid residues, of which the 
682RRARSVAS689 region is highly conserved [25] and 
the 681PRRA684 region has been reported to be unique to 
SARS-CoV-2 [26]. Inhibiting the furin protease has been 
shown to prevent SARS-CoV-2 binding to the human furin 
protease, thereby suppressing viral production [22].

Drug discovery experiments in cell culture and animal 
models targeting the inhibition of furin protease as therapeu-
tic intervention for specific diseases have been promising. In 
2015, some novel furin inhibitors were tested via cell culture 
experiments against influenza virus, anthrax, and diphtheria 
toxins. Their findings showed that, in the presence of these 
inhibitors, the spread of the avian influenza viruses, H5N1 
and H7N1, was strongly inhibited [19]. Anthrax and diph-
theria toxins which are not viruses but depend on furin for 
their propagation showed signs of protective effect in the 
presence of the inhibitors [19].
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Several types of synthetic inhibitors have been designed 
for furin protease since the human and mouse protein crystal 
structures were solved. Majority of these inhibitors are either 
peptide-based or non-peptide based derivatives such as 
nona-d-Arg-amide (D9R) and 2,5-dideoxystreptamine [27, 
28]. However, only a few of these inhibitors have entered 
human clinical trials. Diminazene, an antiparasitic drug was 
identified to be a potent furin inhibitor via structure-based 
virtual screening and in vitro enzyme-based assay with an 
 IC50 of 5.42 ± 0.11 μM [29]. Another study reported an  IC50 
of 13.2 μM for diaminazene against the furin protease [30]. 
It has also been reported that furin inhibitors, decanoyl-
RVKR-chloromethylketone (CMK), and naphthofluorescein 
showed antiviral activity against the SARS-CoV-2 virus in 
VeroE6 cells by blocking viral entry and suppressing viral 
RNA transcription [22].

Few studies have targeted the inhibition of the enzyme 
using natural product sources [31]. Natural products and 
their associated moieties have historically been great sources 
of therapeutic agents [32]. Due to the resistance most viruses 
have towards antiviral therapy, there is a growing interest 
in natural products as one of the best resource for finding 
new chemically diverse leads that can be used to develop 
therapeutically new antiviral agents [33]. Natural products 
are rich sources of diverse chemical compounds from which 
drugs can be isolated [34]. Compared to synthetic drugs, 
drugs from natural sources have lower side effects, are less 

expensive, and are mostly less toxic [35]. In view of this, the 
exploration of its chemical space for scaffold purposes has 
been an essential part of drug discovery.

In this study, we aimed to identify putative antiviral inhib-
itors of furin protease using natural product-derived com-
pounds of African origin as potential therapeutic agents for 
COVID-19 disease. We carried out consensus docking using 
pre-filtered libraries of African natural products against the 
binding site of the protein. The binding mechanisms, active 
site residue interactions, and binding free energies of the 
potential leads were evaluated using molecular dynamics 
simulations and the Molecular Mechanics Poisson-Boltz-
mann Surface Area (MM-PBSA) calculations. The biologi-
cal activity and pharmacological profiles of the compounds 
were predicted [36–38].

Methods

The study employed consensus docking approach by using 
OEDocking HYBRID (version 3.5.0.4) [39] and AutoDock 
Vina [40] for the molecular docking studies of furin pro-
tease and natural product-derived compounds from African 
sources (Fig. 1). The compounds with binding energies 
of − 7 kcal.mol−1 or less from both docking studies were 
considered [41]. The best poses of each compound from 
the two docking applications were compared and those with 
RMSD better than 2 Å were considered for downstream 

Fig. 1  A graphical representation of the step-by-step approach employed 
in this study. The work involved screening of natural product library 
against furin protease using molecular docking, molecular dynamics 
(MD) simulations, elucidation of molecular interactions, and predic-

tion of biological activity. ANPDB, African Natural Products Database; 
MM-PBSA, Molecular Mechanics Poisson-Boltzmann Surface Area; 
PASS, Prediction of Activity Spectra for Substances; ADMET, absorp-
tion, distribution, metabolism, excretion and toxicity
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analysis (Fig. 1) [42]. The molecular interactions between 
the furin protease and the selected ligands were investi-
gated using PyMOL (v 2.0.6) and Ligplot + [43]. Molecular 
dynamics simulations and MM-PBSA computations were 
also performed to support the selection of the potential lead 
compounds (Fig. 1).

Database preparation

A library of 7391 natural product compounds were obtained 
from three databases comprising Northern African Natural 
Products Database (NANPDB) [44], East African Natural 
Products Database (EANPDB) [45], and AfroDb database 
[34], a catalog of ZINC15 [46]. NANPBD and EANPDB 
have recently been merged to form the African Natural Prod-
ucts Database (ANPDB) [45].

The compounds were then filtered using FILTER 
(v4.0.0.4, OpenEye Scientific Software, Inc., Santa Fe, NM, 
USA; www. eyeso pen. com) to eliminate all compounds with 
undesirable properties from the library especially non-drug-
likeness, non-lead-likeness, and toxicity. FILTER is a molec-
ular filtering application whose algorithm works based on 
physical property calculations and functional group knowl-
edge. Its default drug/lead-like parameters were used for the 
filtration. After filtering, a total of 3942 compounds passed 
and were used for the virtual screening.

Protein structure retrieval and preparation

Crystal structure of the human furin protease was retrieved 
from the protein databank (PDB ID: 4RYD). The structure 
was solved using X-ray diffraction at a resolution of 2.15 Å 
[19]. The hexameric protein structure of 4RYD is composed 
of six similar chains namely A, B, C, D, E, and F, each hav-
ing 482 amino acids sequence length [19, 47]. As a result 
of the similarity, chain A was selected for this study. Within 
the active site of the crystal structure was the bound ligand 
para-guanidinomethyl-Phac-R-Tle-R-Amba (MI-1148). The 
bound ligand and ions such as calcium and sodium found 
within the structure were removed using PyMOL (v 2.0.6).

Consensus docking

Consensus docking methodology is an approach that com-
bines multiple docking programs by comparing their top 
scoring poses. A previous study [48] applied the consensus 
docking methodology on co-crystallized complexes using 
AutoDock [49], AutoDock Vina [40], and DOCK6 [50]. A 
success rate of 82% was observed by using more than one 
docking tool as compared to individual accuracies of 55%, 
64%, and 58%, respectively [48]. Furthermore, because 
docking tools differ so greatly in their search and scoring 

algorithms, putting more emphasis on their intersection 
should compensate for their weaknesses [51–53]. OEDock-
ing HYBRID [39] and AutoDock Vina [40] were combined 
in this study to predict potential inhibitors of the human furin 
protease. Only ligands which had binding energies equal 
to or less than − 7.0 kcal.mol−1 from both OEDocking and 
AutoDock Vina were selected for further studies since this 
threshold has been shown to distinguish between putative 
and non-putative binders of proteins [41]. Although, a more 
negative binding energy does not imply a better inhibition 
[54, 55], previous studies have shown that ~ 97.7% of known 
inhibitors have binding energies of − 7.0 kcal.mol−1 or less 
[41, 56] and this threshold filters ~ 95% of non-inhibitors. 
Other studies have also used the − 7.0 kcal.mol−1 threshold 
to prioritize compounds [57, 58].

Docking validation

HYBRID and AutoDock Vina were both validated before 
employed in the virtual screening process. A dataset of 52 
furin active compounds and 224 decoys were used to assess 
the performance of the tools in the enrichment of actives 
for the furin protease. Fifty of the active compounds were 
retrieved from BindingDB [47] while the remaining two were 
the co-crystallized ligands obtained from complexes (PDB 
IDs: 4RYD and 4OMC). All 52 actives were submitted to 
Database of Useful Decoys (DUD-E) [59] and 224 decoys 
were obtained for them. For HYBRID, conformers of the 
compounds were generated using OMEGA [39, 60]. An 
OEDocking receptor was also created. An OEDocking recep-
tor usually consists of the protein structure, its co-crystallized 
ligand, and descriptions of the active site. OpenEye Spruce-
4Docking (OpenEye Scientific Software, Inc., Santa Fe, NM, 
USA, www. eyeso pen. com) utility program was used for gen-
erating the OEDocking receptor with default parameters. The 
OEDocking receptor of the furin protease was generated using 
the obtained complex (PDB ID: 4RYD) devoid of the other 
cofactors and water molecules. In other words, the furin pro-
tease and the bound ligand para-guanidinomethyl-Phac-R-Tle-
R-Amba were used for the OEDocking receptor. The presence 
of the bound ligand guides the tool to select similar poses for 
the compounds used in the virtual screening process based on 
the reference ligand’s shape and 3-dimensional arrangement 
of its chemical features. HYBRID (version 3.5.0.4) was used 
to dock the conformer-generated active-decoy dataset into the 
active site of the produced receptor.

For AutoDock Vina, the set of actives and decoys were 
initially energy minimized before docking was carried out. 
The protein’s active site was defined using grid box dimen-
sions set at X = 26.86 Å, Y = 27.66 Å, and Z = 0.38 Å for the 
center while box size dimensions were set at X = 23.31 Å, 
Y = 23.79 Å, and Z = 26.44 Å.
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The validation of each of the docking protocols was 
assessed via Screening Explorer by evaluating the ROC 
curves and Boltzmann-enhanced discrimination of ROC 
(BEDROC) [61]. Results from this docking validation were 
used as guide for the subsequent virtual screening of our 
pre-filtered natural product library against furin in HYBRID 
and AutoDock Vina.

Virtual screening via OEDocking HYBRID

The first phase of the molecular docking process was per-
formed using the OEDocking HYBRID (version 3.5.0.4) 
[39]. HYBRID has an improved scoring algorithm with a 
higher mean area under the curve (AUC) value of 0.78 than 
its predecessor, FRED (0.75) [39, 60]. Using the pose mode 
in OMEGA [62] with default parameters, different conform-
ers were generated for the pre-filtered library of compounds. 
OMEGA implements an algorithm that breaks small mol-
ecules into fragments and reassembles them into 3D con-
formations subjecting each conformer to energy evaluations 
[62]. Conformers are finally clustered after meeting a par-
ticular energy threshold [62, 63].

The conformer-generated library was then docked into 
the active site of the prepared receptor using HYBRID 
3.5.0.4 docking program of the OEDocking tools. The same 
OEDocking receptor prepared during the docking validation 
was used for the docking. The Chemgauss4 scoring function 
(OpenEye Scientific Software, Inc., Santa Fe, NM, USA, 
www. eyeso pen. com) was used to score the best binding con-
formations. This was the first phase of the structure-based 
virtual screening in the consensus docking methodology.

Virtual screening with AutoDock Vina

The pre-filtered library of 3942 compounds was also virtu-
ally screened against the human furin protease using Auto-
Dock Vina [64]. The structure-data file (SDF) format of 
the 3942 compounds was loaded into PyRx (version 0.8) 
[65] and energy minimized using its integrated Open Babel 
[66]. The energy minimization was done using the United 
Force Field (UFF) with a limit of 200 iterations for each 
ligand. The energy minimized ligands were each converted 
to PDBQT format, an acceptable input for AutoDock Vina. 
PyRx was again used to prepare the receptor into an accept-
able AutoDock format. The same grid box dimensions used 
for the docking validation were selected for the screening 
of the hits. These dimensions alongside a specified exhaus-
tiveness of eight were registered in a configuration file. The 
configuration file was retrieved along with the PDBQT files 
of the receptor and the ligands. The docking was performed 
on a Dell EMC high-performance computing (HPC) system 

which consists of CentOS 7 operating system, 6 nodes, 12 
GPUs, 216 CPUs, and 277 TB of storage situated at the 
West African Centre for Cell Biology of Infectious Patho-
gens (WACCBIP), University of Ghana, Accra. After dock-
ing, nine different poses were generated for each compound. 
For each compound, the pose with the most negative bind-
ing energy and zero RMSD value was selected. Compounds 
which had binding energies equal to or below − 7 kcal.mol−1 
were considered for further analysis [41].

Root mean square deviation comparisons

Docking poses of hit compounds obtained from Auto-
Dock Vina screening were compared to their respective 
poses obtained from screening with HYBRID docking tool 
using the LigAlign [67] program interfaced with PyMOL 
(v 2.0.6). The root mean square deviation (RMSD) calcu-
lation was used to score how well poses align with each  
other. An RMSD cut-off of 2 Å was used [42] since this 
cut-off value is widely regarded as the most effective 
threshold value for validating correctly posed molecules 
[42, 48]. Previous studies have used this threshold to vali-
date docking protocols [42, 68, 69], rank ligands [70], 
align ligands to reference structures [71, 72], and for com-
parative studies [73–75]. Herein, compounds with pose 
alignment scoring below the RMSD cut-off were retained 
for further analysis.

Selection of potential lead compounds

Compounds were selected as potential leads based on three 
criteria. Firstly, the compounds must have reasonably good 
binding energies from both docking protocols and be con-
sidered top hit after each screening. Secondly, their ability 
to align well in the pose comparison analysis, that is, com-
pound alignment RMSD score must meet the cut-off of 2 Å 
[42]. Lastly, occupation of active site regions based on pose 
visualization analysis and compound interactions with criti-
cal residues (His194, Ser368, and Asp153) of the active site. 
The selected potential leads were then subjected to stability 
and binding free energy analysis using molecular dynamics 
(MD) simulation and MM-PBSA calculations in GROningen 
MAchine for Chemical Simulations (GROMACS) version 
2018 [76].

Molecular dynamics simulation

The potential lead compounds in complex with the receptor 
were subjected to 100 ns MD simulation. This was done to 
study the stability of the interactions between the compounds 
and the receptor. GROMACS (version 2018) was used to 
carry out the MD simulations for the unbound protein and 
protein–ligand complexes [77, 78]. The GROMOS96 43a1 
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force field was employed for each simulation. The ligand 
topology files were generated using PRODRG2 server [79]. 
The complexes were solvated within an SPC water model 
in a dodecahedron box, with box-solute distance of 1.0 nm. 
Due to the negative charges on the protein, the system was 
neutralized using 14 sodium ions. The steepest descent 
algorithm was then used to energy minimize the system 
over 1000 steps. The system was equilibrated using the 
constant-temperature constant-pressure (NPT) and constant-
temperature, constant-volume (NVT) ensembles. A 100 ns 
production MD was finally run on each complex system. 
The simulations were performed on the same computing 
resource used for the docking procedure. Xmgrace was used 
to plot the simulation graphs after the production run was 
completed [80].

MM‑PBSA calculations

The Molecular Mechanics Poisson-Boltzmann Surface Area 
(MM-PBSA) binding energy calculations method was used 
to calculate the binding free energies of each protein–ligand 
complex of the potential leads with g-mmpbsa [81, 82] after 
they had been subjected to MD simulations via GROMACS 
(version 2018) [76] using the GROMOS96 43a1 force field. 
The total binding free energies of the complexes were calcu-
lated from the van der Waals, electrostatic, polar solvation, 
and non-polar solvation energies. The polar solvation and 
non-polar solvation energies are estimated from the Poisson– 
Boltzmann equation and the solvent accessible surface area 
(SASA) methods. The total binding energy ( ΔGbind ) equation 
is given [83] as Eq. 1.

Structural similarity search and activity prediction 
of hits

A search for compounds similar in structure to the predicted 
hits was done via DrugBank [84] with a threshold of 0.7 in 
order to find close analogues of the predicted hits. Literature 
was then searched for the use of these analogues in the treat-
ment of similar disease conditions or in any experimental 
studies relevant to our findings. Furthermore, the biologi-
cal activities of the predicted hits were determined using 
Prediction of Activity Spectra for Substances (PASS) [37, 
85]. PASS uses Bayesian models to predict biological activi-
ties of compounds and their mechanisms of action [37, 85]. 
Hence, PASS can estimate the likelihood of a compound 
belonging to a specific class of active compounds using the 
probable activity (Pa) and probable inactivity (Pi) measures, 
which range between 0 and 1. The SMILES of the predicted 
hits were used as inputs for the PASS predictions.

(1)ΔGbind = ΔGcomplex − [ΔGreceptor + ΔGligand]

Pharmacokinetic and toxicity profiling of potential 
leads

The absorption, distribution, metabolism, excretion, and 
toxicity (ADME/Tox) properties of the potential leads were 
profiled using SwissADME [86], pkCSM [87], and ProTox-
II [88]. It is crucial to determine the ADME/Tox profiles 
of compounds since exposure to some compounds and 
their combinations may be harmful [88]. In silico toxicity 
models complement existing experimental models by pre-
dicting the effects of compounds, which in turn reduce the 
time, cost, and number of animal models required for test-
ing [88]. SwissADME employs multiple linear regression, 
BOILED-Egg, and various binary classification models for 
compound pharmacokinetic predictions [86]. Likewise, the 
pkCSM server uses distance-based graph modeling approach 
to predict and optimize the pharmacokinetic properties and 
toxicity of compounds [87]. Graph modeling is an approach 
where atoms of compounds are represented as nodes and 
their bonds as edges [89]. However, ProTox-II is solely for 
toxicity prediction of chemicals focusing mainly on cytotox-
icity, acute toxicity, hepatotoxicity, carcinogenicity, adverse 
outcomes pathways (Tox21), mutagenicity, immunotoxicity, 
and toxicity targets. ProTox-II relies on molecular similar-
ity, pharmacophores, fragment propensities, and machine-
learning predictive models for the various toxicity predic-
tions [88].

Results and discussion

The availability of a crystallized 3D furin protease struc-
ture and a bound ligand makes it convenient to employ 
structure-based virtual screening (SBVS) methods in this 
study. SBVS is a computational approach used at the early 
stage of drug discovery that makes it easier and faster to 
sample out potential bioactive compounds from a large 
library of compounds/chemical space. With SBVS, the 
best interaction mode between compounds and their tar-
gets are easily predicted [90]. In view of this, top-ranked 
hit compounds which bind to a target must achieve a par-
ticular conformation, position, and orientation (pose) in 
order to attain the desired interaction with residues of 
the protein active site [91]. Improvement of poses has 
become very important now in virtual screening because 
the accuracy of most scoring functions of docking algo-
rithms depends on them. Due to this, the consensus dock-
ing methodology which is similar to the consensus scoring 
approach was proposed [48]. This study used the approach 
to predict inhibitors for the human furin protease, combin-
ing OEDocking HYBRID [39] and AutoDock Vina [40]. 
We compared poses of 45 hit compounds obtained through 
consensus docking from both docking programs. Twenty 
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compounds had an RMSD below 2 Å, a threshold below 
which poses are said to align properly [42]. Subsequently, 
seven potential leads were selected based on their interac-
tions with active site residues.

Docking validation

This study evaluated the docking performance of HYBRID 
and AutoDock Vina via Screening Explorer [61] in order 
to ascertain how effectively these docking tools can dis-
tinguish between active and inactive molecules for the 
furin target. Their performances were thus evaluated 
using metrics including the area under the curve (AUC) 
of the receiver operating characteristic curve (ROC) and 
Boltzmann-enhanced discrimination of ROC (BEDROC). 
The ROC AUC metric, with values ranging between 0 and 
1, measures the relationship between sensitivity (fraction 
of selected true active compounds out of the total actives) 
and specificity (fraction of false positives out of the total 
inactive compounds). An AUC value close to 0 and less 
than 0.5 means poor discrimination [67, 68]. The greater 
the AUC, the higher the likelihood of the virtual screening 
protocol to discriminate between active and inactive com-
pounds. AUC values of approximately 0.50 and 0.72 were 
achieved for HYBRID and AutoDock Vina, respectively.

Early recognition of active molecules by both dock-
ing protocols was assessed using BEDROC. BEDROC is 
an enrichment metric that uses an exponential function 
to assign more weights to early ranked molecules than 
late ones. BEDROC values range between 0 and 1, with 
0.5 being the value expected for random selection. The 
BEDROC parameter α was set to 20.0 which means that 
80% of the maximum contribution to the metric comes 
from 8% of the data list [67]. BEDROC values of 0.024 
and 0.649 were observed for OEDocking and AutoDock 
Vina, respectively. BEDROC values greater than 0.5 
are considered best performance for early enrichment. 
HYBRID had relatively low AUC and BEDROC values 
because the tool was unable to generate poses for 32 of the 
active compounds and 81 decoys using the bound MI-1148 
as reference. The AUC value for AutoDock Vina which 
was above 0.7 (Fig. 2), implies that AutoDock Vina has 
a highly acceptable discrimination rate for our data com-
pared to HYBRID.

HYBRID has the advantage of using the reference ligand 
to enhance the docking performance by selecting com-
pounds with similar poses while AutoDock Vina has been 
predicted to have a high active-decoy discrimination rate. 
Thus using these two docking protocols complement the 
other’s strengths. Values obtained for the assessment analy-
sis are suggestive that AutoDock Vina is a good docking tool 
for selecting actives against the protein target.

Molecular docking studies

Virtual screening with HYBRID

A library of 3942 pre-filtered natural product compounds 
was docked into the active site of the crystal structure of 
human furin protease. The spatial disposition of the known 
ligand (MI-1148) was used to define the active site by using 
Spruce4Docking (OpenEye Scientific Software, Inc., Santa 
Fe, NM, USA, www. eyeso pen. com). A bound ligand is 
important when using HYBRID because its docking and 
scoring algorithm work based on how well docked mole-
cules mimic the shape and 3D positioning of chemical fea-
tures of the co-crystallized ligand in the protein active site. 
Docked poses of compounds are usually biased towards the 
pose of the crystallographic ligand. This is one reason why 
this docking application was employed for our initial dock-
ing protocol to obtain compounds which might dock with 
similar binding poses as MI-1148 (Fig. 3).

HYBRID 3.5.0.4 was used to run the initial molecular  
docking taking as inputs the receptor-ligand complex  
and the pre-filtered library. This formed the first phase of 
the consensus docking process. After this phase of virtual 
screening with HYBRID, compounds with binding energies 
below − 7 kcal.mol−1 were considered [41]. A total of 89 
compounds were found in all, with the most negative bind-
ing energy being − 12.04 kcal.mol−1, implying the highest 
binding affinity. Upon visual inspections with VIDA (Open-
Eye Scientific Software, Inc., Santa Fe, NM, USA, www. 
eyeso pen. com), all 89 compounds were found to dock in 
the active site. Compound ZINC000001530775 had the 

Fig. 2  ROC AUC assessment of AutoDock Vina after screening 52 
active compounds and 224 decoys against the furin protease. A rea-
sonable AUC value of 0.72 was achieved
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most negative binding energy with the furin protease with 
a value of − 12.035076 kcal.mol−1, followed by smirno-
vine and tubastrine with binding energies of − 10.141556 
and − 9.564701  kcal.mol−1, respectively. Naringenin 
7-p-coumaroylglucoside and ( +)-lariciresinol-9-O-beta-
D-glucopyranoside had binding energies of − 9.401727 
and − 9.345255 kcal.mol−1, respectively. Caulindole A, 
6-bromo-N-methylaplysinopsin and pinobanksin_3-(E)-
caffeate also had strong binding affinity to the furin pro-
tease with binding energies of − 9.247932, − 9.177244, 
and − 8.666552 kcal.mol−1, respectively.

Virtual screening with AutoDock Vina

The pre-filtered library was also docked against the furin 
protease using AutoDock Vina. A total of 3911 out of the 
3942 compounds were successfully screened against the 
furin protease. In all, 1754 compounds had binding ener-
gies of − 7.0 kcal.mol−1 or lower. ZINC000095486208 dem-
onstrated the most negative binding energy of − 10.0 kcal.
mol−1 against the human furin protease. The known inhibi-
tor, MI-1148, 10′-hydroxyusambarensine and 3-O-(beta-D-
glucopyranosyl)_etioline had a binding energy of − 9.7 kcal.
mol−1 when docked against the protease. Comparatively, a 
previous study docked 163 ligands against the furin protease 
and the TMPRSS2 using AutoDock Vina [92]. The top 23 
compounds found from the study were reported to bind with 
the catalytic residues of furin at the active site with bind-
ing energies ranging from − 8.7 to − 7.0 kcal.mol−1 [92]. 
Also, in the quest to find SARS-CoV-2 inhibitors, 29 phy-
tocompounds from Acacia pennata (L.) Willd were docked 
against the SARS-CoV-2  Mpro and the furin protease [93]. 
The 29 compounds had binding energies ranging from − 9.0 
to − 2.0 kcal.mol−1 [93]. Another study docked mozenavir 
with the furin protease using AutoDock and reported a bind-
ing energy of − 12.05 kcal.mol−1 as against the reference 

furin inhibitor decanoyl-RVKR-chloromethyl ketone which 
had a binding energy of − 6.89 kcal.mol−1 [94].

Selecting hits from the docking protocol

Compounds which had met the − 7.0 threshold when 
docked using both OEDocking HYBRID and AutoDock 
Vina were shortlisted for further studies. From the top 89 
and 1754 compounds from HYBRID and AutoDock Vina, 
respectively, 45 compounds demonstrated binding energies 
of − 7.0 kcal.mol−1 or lower with both docking protocols and 
were thus selected as potential hits. The binding energies 
of the top 45 compounds ranged from − 9.7 to − 7.0 kcal.
mol−1. The compound, 10′-hydroxyusambarensine had the 
least binding with the furin protease with a binding energy 
of − 9.7  kcal.mol−1, followed by ZINC000095486212 
with − 9.4 kcal.mol−1. ZINC000085967772 and apigenin-7-
O-6″-E-p-coumaroyl-beta-D-glucopyranoside_beta_2 both 
had a binding energy of -9.3 kcal.mol−1. The compounds 
identified herein have relatively high binding affinity to the 
furin protease than those predicted using AutoDock Vina in 
previous studies [92, 93] and are worthy of further explo-
ration. Furthermore, visualization of the selected hit com-
pounds in PyMOL (v 2.0.6) showed that all the selected 
compounds docked well in the active site.

RMSD comparison

The poses of the top 45 compounds from AutoDock Vina 
were compared to their respective HYBRID poses. Out of 
the 45 selected compounds from the docking with AutoDock 
Vina, 20 of them had RMSD values ≤ 2 Å when compared to 
their corresponding HYBRID pose. The compound with the 
best aligned pose (malvinidin-3-arabinoside) had a RMSD 
score of 0.616, whereas pinobanksin_3-(E)-caffeate had the 

Fig. 3  Chemical structure of the bound ligand, para-guanidinomethyl-Phac-R-Tle-R-Amba (MI-1148)
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highest RMSD value of 1.993 Å among the top 20 compounds 
(Table 1). Compound 10′-hydroxyusambarensine which had 
the highest affinity to the furin protease (as predicted via 
AutoDock Vina) also had a RMSD of 0.772 Å (Table 1).

Furin‑ligand interactions

Inhibitors which bind to the human furin protease were 
observed to bind at certain interaction sites on the catalytic 
domain of the protein (Fig. 4) [95]. These interaction sites 
within the active site contain the catalytic triad Ser368, 
His194, and Asp153 which are important for ligand inter-
actions. Aside these catalytic residues, other ligand binding 
residues include Trp254, Pro256, Val231, Asn295, Glu257, 
Gly255, Ala267, Asp233, Asp236, Tyr308, and Asp264 
[93, 94]. Mozenavir was previously shown in silico to inter-
act with Tyr308, Gly265, Gly255, Asp154, and Val231 
via hydrogen bonds and formed hydrophobic contacts 
with Glu236, Pro256, Trp254, Leu227, His194, Gly229, 
Asp264, Asp191, Glu230, and Gly229 [94]. Imatinib forms 
two hydrogen bonds with Glu236 and Gly255, and interacts 
with the furin protease via weak hydrophobic contacts with 
Val231, Pro256, Trp254, and Gly294 [29].

After visual inspection, most of the compounds occu-
pied sites S1 to S4 (Fig. 4). None of the compounds was 

found to occupy position S5. Also, none of the compounds 
was found to occupy all the five sites. This may be due to 
the smaller sizes of the compounds when compared to the 
co-crystallized ligands.

A total of seven compounds were shortlisted based 
on the following criteria: (i) visual inspection of com-
pound occupation of the active site mainly in the areas S1, 
S2, S3, S4, and S5; and (ii) compound interaction with 
important active site residues, with emphasis being placed 
on the catalytic triad. The seven shortlisted compounds 
include quercitrin, teucrol, malvinidin-3-arabinoside, 
N-E-caffeoyl tyramine, ZINC000085967772, pinobank-
sin 3-(E)-caffeate, and abyssinone IV. It is worthy to note 
that all seven selected potential leads (Fig. 5) occupied 
mostly S1 and S2 as these are the areas where majority 
of the interacting residues are found including the cata-
lytic triad. Two compounds namely quercitrin and abys-
sinone IV were also found to form hydrogen bond interac-
tions with critical residue Ser368 and hydrophobic bond 
interactions with His194 (Table 2 and Fig. 6A and B). 
The other five compounds did not share hydrogen bond 
interactions with any of the catalytic triad; however, they 
shared hydrophobic bond interactions with Ser368 and 
His194 (Figure S1). They also shared strong hydrogen 
bond contacts with other important surrounding residues 
(Table 2).

Table 1  Top 20 potential hit compounds seeded for analysis after consensus docking of human furin protease. Shown in the table are their bind-
ing energy scores obtained from HYBRID and AutoDock Vina docking. RMSD values obtained from pose comparison are also presented

Compound name Binding energy (HYBRID docking 
(kcal.mol−1))

Binding energy (AutoDock Vina docking 
(kcal.mol−1))

RMSD value (Å)

Malvinidin-3-arabinoside  − 7.47553  − 8.0 0.616
10′-hydroxyusambarensine  − 7.65450  − 9.7 0.772
Z-hymenialdisine  − 7.43515  − 8.3 0.899
Quercetin 3-O-arabinopyranoside  − 7.13269  − 7.9 1.245
ZINC000085967772  − 7.13617  − 9.3 1.252
Z-debromohymenialdisine  − 7.07985  − 7.4 1.405
Abyssinone_IV  − 7.78757  − 8.8 1.432
Teucrol  − 7.23971  − 8.2 1.499
6-bromo-N-methylaplysinopsin  − 9.17724  − 7.4 1.554
( ±)-enterofuran  − 7.06213  − 7.2 1.558
ZINC000095485902  − 7.07927  − 7.3 1.589
ZINC000014780903  − 7.62793  − 7.6 1.671
Caulindole B  − 7.32471  − 8.0 1.796
ZINC000095486083  − 7.91902  − 8.4 1.800
Rosmarinic acid  − 7.58047  − 8.8 1.841
N-E-caffeoyl tyramine  − 7.75178  − 8.2 1.850
Bidwillon_A  − 7.62793  − 8.1 1.895
Quercitrin  − 7.03509  − 8.1 1.930
Caulindole A  − 9.24793  − 9.1 1.937
Pinobanksin_3-(E)-caffeate  − 8.66655  − 9.1 1.993
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Molecular dynamics simulation

Understanding the dynamic behavior of the proposed poten-
tial leads within the target’s binding pocket involves studying 

factors such as stability, structure compactness, and residue 
fluctuations. These factors were assessed via the root mean 
square deviation (RMSD) and radius of gyration (Rg) plots 
for 100-ns simulation time.

Fig. 4  Furin protease binding pocket. (A) Active site region of furin 
protease. Labels S1, S2, S3, S4, and S5 are regions within the active 
site where active ligands are supposed to occupy. Regions S1 and S2 
are areas where catalytic triad Ser368 (green), His194 (yellow), and 

Asp153 (purple) are found, and these were areas most occupied by 
potential inhibitors. (B) The active site catalytic triad are rendered in 
sticks representation

Fig. 5  Chemical structures of the potential lead compounds predicted against furin protease. (A) Quercitrin. (B) Teucrol. (C) Malvinidin-3-arabinoside. 
(D) N-E-caffeoyl tyramine. (E) Pinobanksin 3-(E)-caffeate. (F) Abyssinone IV. (G) ZINC000085967772
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Root mean square deviation (RMSD)

The RMSD measures the flexibility/stability of the protein. 
This was monitored both for the unbound protein and the 
protein–ligand complexes. At the initial stages of the simula-
tion, both the unbound protein and the complexes had their 
RMSD values peak to about 0.25 nm. The RMSDs of all the 
complexes rose until about 80 ns where they were observed 
to remain stable till the end of the 100-ns simulation time 
(Fig. 7). These results were consistent with the RMSD plots 
for furin-mozenavir, furin-folic acid, and furin-folinic acid 
complexes [94, 96]. However, same observation cannot be 
said about the unbound protein as the RMSD continued to 
rise even after 80 ns to levels around 0.3 nm. Similar obser-
vations have been reported in a 10-ns MD study, where the 
RMSD of the furin protease rose towards the end of the sim-
ulation time to about 0.4 nm [94]. This is indicative that the 
presence of the ligands may have brought stability to the pro-
tein. Nonetheless, complexes with ligands pinobanksin_3-
(E)-caffeate (yellow colored) and teucrol (cream colored) 
achieved stability at RMSDs of 0.3 nm and higher.

Radius of gyration (Rg)

Rg is used to evaluate the compactness of the protein struc-
tures throughout the simulation period. A steady Rg for a 

particular structure indicates that the protein is stably folded 
[97, 98]. Most of the complexes including the unbound pro-
tein had relatively stable Rg values revolving between 2.15 
and 2.2 nm (Fig. 8), consistent with previous Rg studies on 
furin-folic acid and furin-folinic acid complexes [96]. Only 
quercitrin and teucrol complexes had their Rg values below 
this range; however, they maintained a steady value of about 
2.14 and 2.125 nm, respectively, beyond 60 ns (Fig. 8).

Binding free energy

MM-PBSA calculations have been deemed to be more accurate 
in estimating binding free energies of compounds than scoring 
functions of most docking programs [99]. Estimating binding 
free energies for protein–ligand interactions has been made 
robust using g-mmpbsa [81]. The g-mmpbsa integrates both 
GROMACS and APBS for its energy calculations. Herein, 
binding energies for each of the eight complexes were esti-
mated separately after each undergoing molecular dynamics 
simulation. After the calculations, pinobanksin 3-(E)-caffeate 
had the strongest binding with a binding free energy score 
of − 189.219 ± 25.602 kJ/mol (Table 3 and Fig. 9). Compara-
tively, the same compound had a better binding affinity score 
from the molecular docking results with a value of − 9.1 kcal.
mol−1 (Table 2). ZINC000085967772 which had the most 
negative binding energy (− 9.3 kcal.mol−1) in the docking 

Table 2  Potential lead compounds and interacting residues via hydrogen bond (H-bond) interactions. Also shown is their binding energies 
obtained via AutoDock Vina comparable to that of MI-1148 which was used as control

Compound name Binding energy 
(kcal.mol−1)

Number of 
H-bond contacts

Residues involved in H-bond interactions Residues involved in hydrophobic 
interactions

Quercitrin  − 8.1 9 Ser368, Leu227, Asp258, Asn295, 
Thr365, Asp191

His194, Ser253, Trp254, Gly294, 
Gly366, Thr367

Teucrol  − 8.2 7 Pro256, Asp154, Asn192, Asp191, 
Ala292, Leu227, Asp306

Asp228, Trp254, Gly255, Asp258, 
Gly294, Ser293, Thr309, Thr367

Malvinidin-3-arabinoside  − 8.0 6 Pro256, Gly255, Asp258, Asn295 Asp154, His194, Leu227, Val231, 
Glu236, Ser253, Trp254, Glu257, 
Gly294, Thr367

N-E-caffeoyl tyramine  − 8.2 5 Asp154, Asn192, Ala292, Asp191, 
Asp306, Leu227

His194, Asp228, Ser253, Trp254, 
Gly255, Pro256, Asp258, Ser293, 
Gly294, Thr367, Ser368

ZINC000085967772  − 9.3 5 Pro256, Asp306, Asp258, Ala292, 
Asn295

His194, Leu227, Val231, Trp254, 
Gly255, Trp291, Ser293, Gly294, 
Thr309, Thr367

Pinobanksin 3-(E)-caffeate  − 9.1 5 Pro256, Asp154, Asn192, Ala292, 
Asp191

His194, Leu227, Asp228, Ser253, 
Trp254, Gly255, Asp258, Ser293, 
Gly294

Abyssinone IV  − 8.8 2 Ser368, Leu227 Asp153, Asp154, Asp191, His194, 
Val231, Ser253, Asp258, Asn295, 
Trp254, gly255, Gly294, Thr367

MI-1148 (control)  − 9.7 13 Asp191, Asn192, His194, Ala292, 
Ser368, Asp258, Pro256, Asp306, 
Tyr308, Asp264, Glu236, Leu227

Asp154, Thr232, Asp233, Ser253, 
Trp254, Gly255, Glu257, Ala267, 
Asp288, Asp264, Ser293, Gly294, 
Thr309, Thr367
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Fig. 6  Poses of selected potential lead compounds. Almost all the 
compounds were found to bind in S1 and S2 regions where cata-
lytic residues are located. (A) Abyssinone IV and (B) Quercitrin had 
hydrogen or hydrophobic interactions with catalytic residues His194 

and Ser368. Residues involved in hydrogen bond interactions with 
ligands are labelled in black while residues involved in hydrophobic 
interactions are labelled red. Images were generated with PyMOL (v 
2.0.6)

2232 Structural Chemistry (2022) 33:2221–2241



1 3

results among the potential leads also showed strong binding 
from the MM-PBSA calculations with a binding free energy 
score of − 172.892 ± 24.913 kJ/mol (Table 3 and Fig. 9). All 
the other potential leads had reasonable binding free energies 
(Table 3) which correlated well with their binding affinities 
obtained after molecular docking. A previous study inves-
tigated the molecular interactions between the furin protein 
and two ligands comprising folic and folinic acids using the 
MM-PBSA method. Folic and folinic acids had binding free 
energies of − 27.90 and − 12.84 kcal.mol−1, respectively [96]. 
Although, the interacting residues of the furin protease with 
folic and folinic acids are different from those observed herein, 
the predicted compounds in this study have higher affinities to 
the furin protease than the two folate analogues [96].

Herein, MM-PBSA calculations on the control (MI-1148) 
showed very strong binding with the target detailing a bind-
ing energy of − 2178.767 kJ/mol ± 67.643 kJ/mol. This is par-
ticularly not surprising as the compound was synthetically 
designed to specifically target the protein [19]. Nonetheless, 
the binding free energies exhibited by the predicted com-
pounds are reasonable. Therefore, structural modifications or 
utilization as scaffolds for the design of furin-targeted com-
pounds could elicit stronger binding with the furin protease.

Biological activity prediction and structural 
similarity search

Quercitrin, one of the potential leads is a glycoside formed 
from the flavonoid quercetin and deoxy sugar rhamnose. 

Quercetin has also been found to show therapeutic effects 
against Enterovirus 71 protease, therefore blocking the virus 
replication in hosts [100]. Enterovirus 71 is also a single-
stranded RNA virus known to cause hand, foot, and mouth 
disease in under-aged children (< 5 years) [100]. Quercitrin 
is found in some medicinal plants used by folk medicine in 
the treatment of inflammation [101]. Additionally, it was 
predicted to be anti-inflammatory with Pa of 0.754 and Pi of 
0.010. Inflammation is a key feature in COVID-19 disease, 
accounting for some unforeseen circumstances or even death 
in patients [102]. A study identified anti-inflammatory com-
pounds which targeted p38 MAPK receptor in the quest to 
salvage high concentrations of pro-inflammatory cytokines 
in COVID-19 mechanisms [103]. Quercitrin was also pre-
dicted to be a membrane permeability inhibitor (Pa = 0.986 
and Pi = 0.001), RNA synthesis inhibitor (Pa = 0.558 
and Pi = 0.004), as anti-influenza virus (Pa = 0.683 and 
Pi = 0.007), and anti-herpes (Pa = 0.518 and Pi = 0.008).

Teucrol, abyssinone IV, and ZINC000085967772 were 
all predicted to be membrane permeability inhibitors with 
Pa values of 0.759, 0.644, and 0.714 and Pi values of 
0.018, 0.065, and 0.033, respectively. Teucrol was also pre-
dicted to be a membrane integrity agonist (Pa = 0.948 and 
Pi = 0.004) with anti-inflammatory properties (Pa = 0.569 
and Pi = 0.039). Abyssinone IV and ZINC000085967772 
were predicted to be cytoprotectant (Pa = 0.694 and 
Pi = 0.005) and hepatoprotectant (Pa = 0.589 and 
Pi = 0.013). Abyssinone IV has antiviral properties against 
the rhinovirus (Pa = 0.600 and Pi = 0.006). Pinobanksin 

Fig. 7  Root mean square 
deviation (RMSD) plot of furin-
ligand complexes over 100-ns 
simulation. The backbone after 
least-squares (lsq) fit to the 
backbone
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3-(E)-caffeate which is a propolis component was pre-
dicted to be anti-inflammatory (Pa = 0.821, Pi = 0.005) 
and hepatoprotectant (Pa = 0.829, Pi = 0.004). Interest-
ingly, propolis components have recently been studied as  
possible therapeutics for COVID-19, and it showed inhib-
itory effects on ACE2, TMPRSS2, and PAK1 signaling 
pathways [104, 105]. Propolis is also used in traditional 
medicine worldwide due to its reported biological activities 
which include antibacterial, antiviral, anti-inflammatory, 
and anticancer [106–108].

In addition, rosmarinic acid, which was part of the 20 
selected hits, has also been shown to have anti-influenza 
effects when its activity was tested on mice infected with 
A/FM/1/47 H1N1 virus. Significant improvements were 
observed in the infected mice treatment [109]. Rosmarinic 
acid is a compound isolated from a plant known as Sarcan-
dra glabra (Thunb.) Nakai. Pursuing these compounds for 
antiviral, anti-inflammatory, and cell protective activities 
hold promising future especially against single-stranded 
viruses like SARS-CoV-2. Therefore, the potential leads and 
some of the hit compounds could be explored via in vitro 
and in vivo studies for antiviral purposes.

Structural similarity search was performed for each of the 
selected compounds via DrugBank using a similarity thresh-
old of 0.7. This procedure was performed to decipher if any of 
the potential leads have similar structures or analogues stud-
ied in vitro, in vivo, or in clinical tests. Quercitrin (quercetin 
3-O-α-l-rhamnopyranoside) had a DrugBank similarity index 
(SI) of 1.0 with isoquercetin, a quercetin derivative which 
is monoglycosylated. Malvinidin-3-arabinoside which was 
also identified as a potential lead compound had a similarity 
index of 0.822 with isoquercetin. Isoquercetin is a drug that 
is currently being tested clinically as medication for moderate 
to severe COVID-19 patients [110]. This supports the pos-
sible evaluation of quercitrin with a broad antiviral activity 
as a potential COVID-19 therapeutic agent. Likewise, teucrol 
was structurally similar to amiloxate with similarity index 
of 0.722. Amiloxate is a derivative of cinnamic acid which 
is known to have anti-inflammatory properties [111]. Abys-
sinone IV and pinobanksin 3-(E)-caffeate were also found 
to be structurally similar to taxifolin, a compound known 
to be an anti-inflammatory agent [112, 113] with similarity 
indexes of 0.749 and 0.767, respectively. Abyssinone IV also 
has similarities to hesperetin (SI: 0.805). Hesperetin is known 

Fig. 8  Radius of gyration (Rg) plot of furin-ligand complexes over 100-ns simulation
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to have anti-cancer and anti-inflammatory effects [114, 115]. 
Pinobanksin 3-(E)-caffeate is also structurally similar to sili-
binin with SI of 0.767. Silibinin is a flavonolignan which is 
said to have hepatoprotective effects and is used in managing 
hepatitis [116, 117]. Hepatitis is caused by the hepatitis virus 
which is known to exploit furin family of proteins (proprotein 
convertases) in its disease mechanism [21].

Pharmacokinetic and toxicity profiling of potential 
leads

SwissADME and pkCSM predictions showed that all the 
potential lead compounds have reasonable solubility and 
intestinal absorption with an absorption rate greater than 

45% (Table 4 and Fig. 10). Also, none of the compounds 
were predicted to cross the blood–brain barrier (BBB). This 
is specifically significant because earlier studies have estab-
lished that drugs that target sections of the human body other 
than the nervous system should not cross the BBB in order 
to avoid psychotropic side effects [118]. The compounds 
were also favorable towards cytochrome P450 enzymes, 
having shown none or few possible inhibitions to CYP2D6, 
CYP2C19, CYP2C9, and CYP1A2. However, four of the 
ligands namely Teucrol, N-E-caffeoyl tyramine, Pinobank-
sin 3-(E)-caffeate, and Abyssinone IV were predicted as 
possible substrates of CYP3A4 enzyme. Hepatic and renal 
clearance were low for all the compounds. For the toxicity 
predictions, the compounds passed the Ames test for toxicity 

Table 3  Contributing energies of the potential leads estimated from molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calcu-
lations. The energy values are stated in average with their standard deviations

Compound name van der Waals 
energy (kJ/mol)

Electrostatic energy (kJ/mol) Polar solvation 
energy (kJ/mol)

Nonpolar solvation 
energy (kJ/mol)

Binding free energy

Quercitrin  − 197.532 ± 20.459  − 107.316 ± 28.560 229.403 ± 40.315  − 19.562 ± 1.354  − 95.007 ± 22.816
Teucrol  − 182.988 ± 21.019  − 50.614 ± 22.080 128.654 ± 27.686  − 16.986 ± 1.193  − 121.935 ± 25.297
Malvinidin-3-arabinoside  − 158.093 ± 33.267  − 70.333 ± 36.322 113.350 ± 45.573  − 15.654 ± 1.857  − 130.731 ± 35.454
N-E-caffeoyl tyramine  − 188.480 ± 12.010  − 46.255 ± 15.189 92.678 ± 23.135  − 14.939 ± 1.065  − 156.996 ± 19.169
ZINC000085967772  − 244.543 ± 24.925  − 66.744 ± 16.519 158.873 ± 34.790  − 20.478 ± 1.494  − 172.892 ± 24.913
Pinobanksin_3-(E)-caffeate  − 220.695 ± 17.948  − 72.870 ± 25.096 122.875 ± 34.294  − 18.529 ± 1.343  − 189.219 ± 25.602
Abyssinone IV  − 172.210 ± 31.278  − 39.115 ± 16.107 74.818 ± 33.845  − 16.395 ± 2.274  − 152.902 ± 27.063

Fig. 9  Binding free energies of 
protein–ligand complexes of 
potential lead compounds from 
MM-PSA calculations

2235Structural Chemistry (2022) 33:2221–2241
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Table 4  ADMET property predictions of potential leads using pkCSM server

Parameters Quercitrin Teucrol Malvinidin-
3-arabinoside

N-E-
caffeoyl 
tyramine

ZINC000085967772 Pinobanksin 
3-(E)-caffeate

Abyssinone IV

Absorption Water solubility (log 
mol/L)

 − 3.087  − 3.183  − 3.139  − 3.18  − 4.273  − 4.534  − 4.457

Caco2 perme-
ability (log Papp 
10–6 cm/s)

0.121  − 0.183  − 0.831 0.868 1.362  − 0.025 1.07

Intestinal absorption 
(% absorbed)

62.005 65.224 48.562 90.997 93.397 73.62 91.499

Skin permeability 
(log Kp)

 − 2.735  − 2.735  − 2.735  − 2.735  − 2.992  − 2.735  − 2.774

P-glycoprotein I 
inhibitor

No No No No Yes Yes Yes

P-glycoprotein II 
inhibitor

No No No No No Yes Yes

Distribution VDss (human, log 
L/Kg)

0.451 0.292 0.45 0.62 0.36  − 0.692 0.136

BBB permeability 
(log BB)

 − 1.69  − 1.228  − 1.986  − 0.962  − 0.991  − 1.196  − 0.183

CNS permeability 
(log PS)

 − 4.196  − 3.195  − 4.176  − 2.634  − 2.664  − 3.327  − 1.737

Metabolism CYP2D6 substrate No No No No No No No
CYP3A4 substrate No Yes No Yes No Yes Yes
CYP2C19 inhibitor No No No No No No Yes
CYP2C9 inhibitor No No No No No Yes Yes
CYP1A2 inhibitor No No No Yes No No No

Excretion Total clearance (log 
ml/min/kg)

0.479 0.253 0.728 0.195 0.004  − 0.024 0.801

Renal OCT2 substrate 
clearance

No No No No No No No

Toxicity Ames toxicity No No No No No No No
Hepatotoxicity No No No Yes No No No
Oral rat acute toxicity 

(LD50, mol/kg)
2.889 2.358 2.648 2.499 2.564 2.372 2.217

Skin sensitization No No No No No No No

Fig. 10  Predicted ADME properties of potential lead compounds via SwissADME. (A) Quercitrin. (B) Teucrol. (C) Malvinidin-3-arabinoside. 
(D) N-E-caffeoyl tyramine. (E) ZINC000085967772. (F) Pinobanksin 3-(E)-caffeate. (G) Abyssinone IV

2236 Structural Chemistry (2022) 33:2221–2241
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and none but N-E-caffeoyl tyramine was found to be hepato-
toxic (Table 4). Protox-II toxicity predictions revealed that 
the compounds were immunotoxic with probability greater 
than 0.6. Since furin is induced in T cells and is crucial for 
maintaining peripheral immune tolerance [119], this may 
be expected. All the compounds, except for N-E-caffeoyl 
tyramine had plausible lethal doses  (LD50) making them 
favorably less toxic (Table 5). The higher the lethal dose 
per kilogram of a compound, the lesser its toxicity. Three 
of the compounds namely Quercitrin, ZINC000085967772, 
and Pinobanksin 3-(E)-caffeate were predicted to have about 
50% chance of being carcinogenic. Teucrol was predicted to 
have three other active targets with each having a probability 
above 0.7 (Table 5). However, the fact that most of these 
compounds were predicted to be within the toxicity classes 
of 4 and 5 gives strong indications that these compounds 
may nonetheless be non-toxic.

Conclusion

The study used the consensus docking approach via the 
structure-based virtual screening of human furin pro-
tease to effectively identify seven potential novel anti-
COVID-19 compounds consisting of quercitrin, teu-
crol, malvinidin-3-arabinoside, N-E-caffeoyl tyramine, 
ZINC000085967772, pinobanksin_3-(E)-caffeate, and 
abyssinone IV. This is in a bid to support ongoing efforts 
to identify effective therapeutics against the SARS-CoV-2 
by targeting the furin protease [29, 30]. Furin protease is a 
plausible COVID-19 target due to its cleavage site on the 

spike protein and its role in facilitating the entry of SARS-
CoV-2 into host cells. The molecules showed strong active 
site interactions with the catalytic residues of the furin 
with plausibly high binding affinity than previously iden-
tified compounds from earlier studies [92, 93]. They also 
had favorable results when subjected to MD simulations 
including MM-PBSA calculations, biological activity pre-
diction, and structural similarity search [78, 94–96]. The 
compounds were predicted as antiviral, anti-inflammatory, 
anti-cancer, hepatoprotective, cytoprotective, RNA synthe-
sis inhibitors, and membrane permeability inhibitors with 
reasonable ADMET properties. Isoquercetin, a structur-
ally similar compound to quercitrin is currently undergo-
ing clinical trials as COVID-19 drug. Once the biological 
activities of these compounds are reinforced experimen-
tally, they could nonetheless serve as scaffolds for the 
design of new and improved furin protease inhibitors with 
potent antiviral properties.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11224- 022- 02056-1.

Acknowledgements The authors are grateful to the West African Cen-
tre for Cell Biology of Infectious Pathogens (WACCBIP), University 
of Ghana for allowing us to use Zuputo, a DELL high-performance 
computing systems for the computational studies.

Author contribution B.D., S.K.K., and M.D.W. conceptualized and 
designed the project. S.K.K. and D.B. performed the computational 
analysis with contributions from E.B., K.S.E., and M.D.W. B.D. 
wrote the first draft with contributions from S.K., E.B., K,S.E., and 
M.D.W. All authors have read and agreed to the submitted version of 
the manuscript.

Table 5  Toxicity prediction of 
potential lead compounds using 
Protox-II

Compound name LD50 mg/Kg Toxicity 
class

Predicted active targets Probability

Quercitrin 5000 5 Carcinogenicity
Immunotoxicity
Aryl hydrocarbon receptor

0.50
0.97
0.55

Teucrol 5000 5 Immunotoxicity
Estrogen receptor ligand-binding 

domain
Phosphoprotein (tumor supressor) 

p53
ATPase family AAA domain-

containing protein 5

0.68
0.84
0.85
0.77

Malvinidin-3-arabinoside 5000 5 Immunotoxicity
Cytotoxicity

0.99
0.50

N-E-caffeoyl tyramine 500 4 Immunotoxicity 0.64
ZINC000085967772 5000 5 Carcinogenicity

Immunotoxicity
0.51
0.97

Pinobanksin 3-(E)-caffeate 2000 4 Carcinogenicity
Immunotoxicity

0.55
0.97

Abyssinone IV 2000 4 Immunotoxicity
Mitochondrial membrane potential

0.88
0.69
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