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Abstract— Consensus algorithms for networked dynamic
systems provide scalable algorithms for sensor fusion in sensor
networks. This paper introduces a distributed filter that allows
the nodes of a sensor network to track the average of n sensor
measurements using an average consensus based distributed
filter called consensus filter. This consensus filter plays a crucial
role in solving a data fusion problem that allows implemen-
tation of a scheme for distributed Kalman filtering in sensor
networks. The analysis of the convergence, noise propagation
reduction, and ability to track fast signals are provided for
consensus filters. As a byproduct, a novel critical phenomenon
is found that relates the size of a sensor network to its
tracking and sensor fusion capabilities. We characterize this
performance limitation as a tracking uncertainty principle. This
answers a fundamental question regarding how large a sensor
network must be for effective sensor fusion. Moreover, regular
networks emerge as efficient topologies for distributed fusion
of noisy information. Though, arbitrary overlay networks can
be used. Simulation results are provided that demonstrate the
effectiveness of consensus filters for distributed sensor fusion.

Keywords: sensor networks, sensor fusion, consensus

problems, distributed Kalman filters, complex networks,

networked dynamic systems, graph Laplacians

I. INTRODUCTION

Sensor networks have broad applications in surveillance

& monitoring of an environment, collaborative processing

of information, and gathering scientific data from spatially

distributed sources for environmental modeling and protec-

tion [19], [4], [8], [10], [2], [1], [3], [13], [14], [17], [23],

[25], [5]. Dealing with sensor networks requires multidisci-

plinary collaborations among researchers with background

in computer science, wireless communication networks, and

systems & control science.

A fundamental problem in sensor networks is to solve de-

tection and estimation problems using scalable algorithms.

This requires development of novel distributed algorithms

for estimation and in particularly Kalman filtering that are

currently unavailable. In a recent paper, Spanos, Olfati-

Saber, and Murray [23] proposed a scalable sensor fusion

scheme that requires fusion of sensor measurements com-

bined with local Kalman filtering. The key component of

this approach is to develop a distributed algorithm that

allows the nodes of a sensor network to track the average

of all of their measurements. We refer to this problem as

dynamic average-consensus. The main contribution of this

paper is to develop a distributed low-pass filter that solves

this tracking problem via reaching an average-consensus.

Consensus problems [18], [21] for networked dynamic

systems have been extensively used by many researchers

as part of the solution of more complex problems in-

cluding collective control of motion of swarms/flocks of

mobile agents [15], ultrafast consensus in small-world net-

works [16], [24], state-dependent graphs [11], random net-

works [7], and directed networks [12], [20]. More recently,

consensus-based information processing has been applied

to sensor fusion in sensor networks [23], [22], [25].

This paper generalizes the average-consensus algorithm

for n constant values in [18], [21] to the case of n
measurements of noisy signals obtained from n sensors in

the form of a distributed low-pass filter called the Consensus

Filter. The role of this consensus filter is to perform

distributed fusion of sensor measurements that is necessary

for implementation of a scalable Kalman filtering scheme

proposed in [23]. We show that consensus filters can be also

used independently for distributed sensor fusion.

The outline of the paper is as follows. Section II provides

some preliminaries on consensus problems in networked

systems and graph Laplacians. In Section III, the main

results on design and analysis of distributed consensus

filters are presented. Section IV provides detailed simulation

results. Finally, concluding remarks are made in Section V.

II. CONSENSUS PROBLEMS IN NETWORKED SYSTEMS

Let G = (V, E) be a graph with a nonnegative adjacency

matrix A = [aij ] that specifies the interconnection topology

of a network of dynamic systems, sensors, or agents. The

set of nodes is denoted by V = {1, . . . , n}. For complex

networks, we refer to |V | and |E| as the scale and size of

the network, respectively. Let Ni = {i ∈ V : aij �= 0}
denote the set of neighbors of node i and Ji = Ni ∪ {i}
denote the set of inclusive neighbors of node i. A consensus

algorithm can be expressed in the form of a linear system

ẋi(t) =
∑

j∈Ni

aij(xj(t) − xi(t)), x(0) = c ∈ R
n. (1)

Given a connected network G, all the solutions of system

(1) converge to an aligned state x∗ = (µ, . . . , µ)T with
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identical elements equal to µ = x̄(0) = 1

n

∑

i ci. This

explains why in the term ”average-consensus” was first

coined in [21] to refer to the distributed algorithm in (1).

In a more compact form, system (1) can be expressed as

ẋ = −Lx, (2)

where L is the Laplacian matrix [6] of graph G and is

defined as

L = ∆ −A (3)

where ∆ = diag(A · 1) is the degree matrix of G with

diagonal elements di =
∑

j aij . Here, 1 = (1, . . . , 1)T ∈
R

n denotes the vector of ones that is always a right

eigenvector of L corresponding to λ1 = 0 (i.e. L1 = 0). The

second smallest eigenvalue λ2 of L determines the speed

of convergence of the algorithm [16], [18].

III. CONSENSUS FILTERS

Consider a sensor network of size n with information

flow1G. Assume each sensor is measuring a signal s(t) that

is corrupted by noise vi that is a zero-mean white Gaussian

noise (WGN). Thus, the sensing model of the network is

ui(t) = r(t) + vi(t), i = 1, . . . , n (4)

or u(t) = r(t)1+v(t). Let Ri denote the covariance matrix

of vi for all i.
Our objective is to design the dynamics of a distributed

low-pass filter with state x = (x1, . . . , xn)T ∈ R
n that takes

u as the input and y = x as the output with the property

that asymptotically all nodes of the network reach an ǫ-

consensus regarding the value of signal r(t) in all time t. By

ǫ-consensus, we mean there is a ball of radius ǫ that contains

the state of all nodes (i.e. approximate agreement). In most

applications, r(t) is a low-to-medium frequency signal and

v(t) is a high-frequency noise. Thus, the consensus filter

must act as a low-pass filter.

We propose the following dynamic consensus algorithm

ẋi(t) =
∑

j∈Ni

aij(xj(t) − xi(t)) +
∑

j∈Ji

aij(uj(t) − xi(t)),

(5)

as a candidate for a distributed low-pass consensus filter.

The reminder of the paper is devoted to establishing the

properties of this distributed filter. Note that the algorithm in

(5) only requires communication among neighboring nodes

of the network and thus is a distributed algorithm [9].

Remark 1. In discrete-time, the dynamic consensus algo-

rithm in (5) can be stated as follows:

x+

i = xi + δ[
∑

j∈Ni

aij(xj − xi) +
∑

j∈Ji

aij(uj − xi)], (6)

where xi is the current state of node i, x+

i is the next state,

and δ is the step-size of iterations. We will conduct all of

our analysis in continuous-time.

1Keep in mind that the information flow in a sensor network might
(or might not) be the same as the overlay network (i.e. communication
network).

Proposition 1. The distributed algorithm in (5) gives a

consensus filter with the following collective dynamics

ẋ = −(In + ∆ + L)x + (In + A)u (7)

that is an LTI system with specification A = −(I +∆+L),
B = In+A, C = In and a proper MIMO transfer function.

Proof. First, let us rewrite the system in (5) as

ẋi =
∑

j∈Ni

aij(xj − xi) +
∑

j∈Ji

aij(uj − ui + ui − xi),

=
∑

j∈Ni

aij(xj − xi) +
∑

j∈Ni

aij(uj − ui)

+ |Ji|(ui − xi).

Noting that |Ji| = 1 + di, from the definition of graph

Laplacian, we get

ẋ = −Lx − Lu + (In + ∆)(u − x),

= −(In + ∆ + L)x + (In + ∆ − L)u

But ∆−L = A and therefore ẋ = Ax + Bu, y = Cx with

matrices that are defined in the question.

The transfer function of the consensus filter is given by

H(s) = [sIn + (In + ∆ + L)]−1(In + A) (8)

Applying Geřsgorin theorem to matrix A = In + 2∆ + A
guarantees that all poles of H(s) are strictly negative and

fall within the interval [−(1 + dmin),−(1 + 3dmax)] with

dmax = maxi di and dmin = mini di. i.e. 1 + dmin ≤
λi(A) ≤ (1 + 3dmax) for all i. This immediately implies

the following stability property of the consensus filter.

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−140

−120

−100

−80

−60

−40

−20

0

Frequency (rad/sec)

S
in

g
u
la

r 
V

a
lu

e
s
 (

d
B

)

Fig. 1. The singular value plots of the low-pass consensus filter for a
regular network.

Corollary 1. The consensus filter in (8) is a distributed

stable low-pass filter.

Proof. Apparently, all the poles of H(s) are strictly nega-

tive and thus the filter is stable. On the other hand, H(s) is a
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proper MIMO transfer function satisfying lims→∞ H(s) =
0 which means it is a low-pass filter.

Fig. 1 shows the singular value plots of the low-pass

consensus filter (or CFlp) for a regular network with n =
100 nodes and degree k = 6.

Remark 2. The following dynamic consensus algorithm [22]

ẋ = −Lx + u̇(t)

gives a high-pass consensus filter (CFhp) that is useful for

distributed data fusion applications with low-noise data.

It remains to establish that all nodes asymptotically can

reach an ǫ-consensus regarding r(t).

Proposition 2. Let r(t) be a signal with a uniformly

bounded rate |ṙ(t)| ≤ ν. Then, x∗(t) = r(t)1 is a globally

asymptotically ǫ-stable equilibrium of the dynamics of the

consensus filter given by

ẋ = −Lx − Lu + (In + ∆)(u − x) (9)

with input u = r(t)1 and

ǫ =
ν
√

n(1 + dmax)λ
1

2

max(A)

λ
5

2

min(A)
(10)

Proof. Given the input u = r(t)1, the dynamics of the

system in (9) reduces to

ẋ = −Lx + (In + ∆)(r(t)1 − x) (11)

with an obvious equilibrium at x = r(t)1 that is an aligned

state with elements that are identical to the signal r(t). This

is due to the fact that L1 = 0. Defining the error variable

η = x − r(t)1 gives

η̇ = −Aη + ṙ(t)1 (12)

where A = In + ∆ + L is a positive definite matrix with

the property that

1 + dmin ≤ λmin(A) ≤ λmax(A) ≤ 1 + 3dmax. (13)

Let us define the Lyapunov function ϕ(η) = 1

2
ηT Aη for

the perturbed linear system in (12). We have

ϕ̇ = −‖Aη‖2 + ṙ(t)(1T Aη)

≤ −λ2
min(A)‖η‖2 + ν

√
n(1 + dmax)‖η‖.

This is because

1
T A = 1

T + 1
T ∆ = (1 + d1, 1 + d2, . . . , 1 + dn),

and thus

|1T Aη| ≤ [
∑

i

(1 + di)
2]

1

2 ‖η‖ ≤
√

n(1 + dmax)‖η‖.

As a result, one obtains

ϕ̇(η) ≤ −
(

λmin(A)‖η‖ − ν
√

n(1 + dmax)

2λmin(A)

)2

+

(

ν
√

n(1 + dmax)

2λmin(A)

)2

Let Bρ be a closed ball centered at η = 0 with radius

ρ =
ν
√

n(1 + dmax)

λ2
min(A)

(14)

and let Ωc = {η : ϕ(η) ≤ c} be a level-set of the

Lyapunov function ϕ(η) with c = 1

2
λmax(A)ρ2. Then, Bρ

is contained in Ωc because

‖η‖ ≤ ρ =⇒ ϕ(η) =
1

2
ηT Aη ≤ 1

2
λmax(A)ρ2 = c,

and thus η ∈ Ωc. As a result, any solution of (12) starting

in R
n \Ωc satisfies ϕ̇ < 0. Thus, it enters Ωc in some finite

time and remains in Ωc thereafter (i.e. Ωc is an invariant

level-set). This guarantees global asymptotic ǫ-stability of

η = 0 with a radius ǫ = ρλmax(A)/λmin(A). To show this,

note that

1

2
λmin(A)‖η‖2 ≤ ϕ(η) ≤ 1

2
λmax(A)ρ2 (15)

Thus, the solutions enter the region

‖η‖ ≤ ρ

√

λmax(A)

λmin(A)

which implies the radius of ǫ-stability is

ǫ =
ν(1 + dmax)

λ2
min(A)

√

nλmax(A)

λmin(A)
(16)

Of course, ǫ-stability of η = 0 implies ǫ-tracking of

r(t) by every node of the network (i.e. ǫ-consensus is

asymptotically reached).

The following result describes the occurrence of a critical

phenomenon in regular complex networks.

Proposition 3. Consider a regular network G of degree k.

Let r(t) be a signal with a finite rate |ṙ| ≤ ν. Then, the

dynamics of the consensus filter in the form

ẋ = −Lx − Lu + (I + ∆)(u − x) (17)

satisfies the following properties:

i) The mean µ(t) = x̄(t) of the state of all nodes is the

output of a scalar low-pass filter

µ̇ = (k + 1)(ū(t) − µ) (18)

with and input ū(t) = r(t) + w(t) and a zero-mean

noise w(t) = 1

n

∑

i vi(t).
ii) Assume the network node degree k = βnγ is expo-

nentially scale-dependent. Then, there exists a critical

exponent γc = 1

2
such that for all γ > γc (or networks

with more than O(n1.5) links), the radius of ǫ-tracking

vanishes as the scale n becomes infinity large for any

arbitrary ν, β (ǫ is defined in Proposition 2).

Proof. Part i) follows from the fact that µ = 1

n
(1T x) and

1
T L = 0. Moreover, for regular networks with degree k,

In + ∆ = (k + 1)In. To show part ii), note that for a

regular network with degree k, dmax = dmin = k = βnγ
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and λmax(A) = λmin(A) = 1 + k (the least conservative

upper bound on ǫ is attained by a regular network). Hence,

the expression for ǫ greatly simplifies as

ǫ =
ν
√

n

1 + k
=

ν
√

n

1 + βnγ
(19)

Thus, for all γ > γc = 1

2
, ǫn → 0 as n → ∞ regardless

of the values of β, ν < ∞. In other words, ǫn-tracking

of r(t) is achieved asymptotically by every node with a

vanishing ǫ for large-scale regular networks of size (i.e.

nk/2) greater than O(n1.5).

Remark 3. The white noise w(t) = 1

n

∑

i vi(t) has a

covariance matrix 1

n
R̄ that is n times smaller that the

average covariance R̄ = 1

n

∑

i Ri of all (uncorrelated)

vi’s. For a large-scale network, w(t) can possibly become

multiple orders of magnitude weaker than all the vi’s.

Corollary 2. (scale-uncertainty principle) A regular com-

plex network with density σ = (2|E|+n)/n1.5 and tracking

uncertainty ε = ǫ/ν that runs the dynamic consensus

algorithm in (5) satisfies the following uncertainty principle

(network density) × (tracking uncertainty) = 1, (20)

or σ × ε = 1.

Proof. The proof follows from (19) and the identity 2|E| :=
∑

i di = nk.

Defining the performance of tracking as 1/ε, we get

the following trade-off between tracking performance and

network density:

(network density) ∝ (tracking performance).

The most common application is to track a signal that

has a single, or multiple, sinusoidal components.

Example 1. (tracking of sinusoidal signals) Consider the

case of a signal r(t) = asin(ωt) with a, ω > 0 that is being

measured by every sensor in a sensor network. This signal

could possibly represent the x-coordinate of the position of

a moving object that goes in circles. The main question of

interest is how large the sensor network must be? This is

important for the purpose of tracking r(t) within a tube of

radius ǫ ≤ δa (e.g. δ = 0.1).

Notice that ν = aω and therefore the tracking uncertainty

satisfies To guarantee ǫ ≤ δa, we must have ε = ǫ/ν ≤
δ/ω. Using the uncertainty principle, σ × ε = 1 and thus

ω ≤ δ × σ.

For a network with n = 1000 nodes and weighted degree

k = βnγ with β = 10, γ = 0.6 > γc (all weights of the

graph are in {0, β}), we get k = 631 and ω ≤ 2 (rad/sec)

for ǫ = 0.1a accuracy. This is a relatively conservative

bound and in practice the network is capable of tracking

much faster signals with only 100 nodes. Finding a less

conservative uncertainty principle is a real challenge.

One cannot arbitrarily increase β because based on the

low-pass filter with state µ, this is equivalent to using a

high-gain observer for ū that amplifies noise.

IV. SIMULATION RESULTS

In this section, we present simulation results for sensor

networks with two type of topologies: a) a regular network

of degree k = 6 and b) a random network obtained as a

spatially induced graph from n = 400 points with coordi-

nates {qi}i∈V that are distributed uniformly at random in

an n × n square region with a set of neighbors Ni = {qj :
‖qi − qi‖ < ρ0} and a radio range of ρ0 = 2

√
n. These

networks are shown in Fig 2. Networks (a) and (b), shown

in Fig. 2, have an average-degree of 6 and 7.1, respectively.

Apparently, the random network is irregular.

(a)

(b)

Fig. 2. Sensor network topologies: a) a regular network with n = 100
and degree k = 6 and b) a random network with n = 400 and 2833
links.

We use the following three test signals

r1(t) = sin(2t);

r2(t) = sin(t) + sin(2t + 3) + sin(5t + 4),

r3(t) = sin(10t).

For r1 and r2, we set the covariance matrix to Ri = 0.3
for all nodes and for r3, Ri = 0.6 for all i.
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Fig. 3 demonstrates sensor fusion using a low-pass

consensus filter with a regular network topology for sensor

measurements r1(t) + vi(t) obtained from n = 100 nodes.

The fused measurements Fig. 3 (b) have a covariance that is

almost 100 times smaller than the covariance of the sensor

data.
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Fig. 3. a) sensor measurements r1(t) + vi(t) and b) fused sensor data
via a low-pass consensus filter in a regular network.

Similarly, Fig. 4 demonstrates sensor fusion using a

distributed low-pass consensus filter for sensor data r2(t)+
vi(t) obtained from n = 100 nodes. Again, the network

topology is regular. All nodes are apparently capable of

tracking r3(t) within a radius of uncertainty that is deter-

mined by |ṙ3 and the noise covariance Ri.

Now, to demonstrate tracking capabilities of larger net-

works, we consider tracking r3(t) that is 5 times faster than

r1(t) using a consensus filter in a network with random

topology. The results of the sensor fusion are shown in Fig.

fig:measurements3.
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Fig. 4. a) sensor measurements r2(t) + vi(t) and b) fused sensor data
via a low-pass consensus filter with a regular network topology.

V. CONCLUSIONS

We introduced consensus filters as a tool for distributed

sensor fusion in sensor networks. The consensus filter is a

dynamic version of average-consensus algorithm that has

been extensively used for sensor fusion as well as other

applications that involves networked dynamic systems and

collaborative decision making. It was mentioned that based

on a new scalable Kalman filtering scheme, a crucial part

of the solution is to estimate the average of n signals

in a distributed way. It was shown that consensus filters

effectively solve this dynamic average-consensus problem.

This distributed filter acts as a low-pass filter induced by

the information flow in the sensor network. In addition, ǫ-

tracking properties of consensus filters for sensor fusion

was analyzed in details. The byproduct of this analysis

was a novel type critical phenomenon in complex networks

that relates the size of the sensor network to its capability

to track relatively fast signals. This limitation was char-

acterized as a tracking uncertainty principle. Simulations
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Fig. 5. (a) upper and lower envelops (maxi ui(t), mini ui(t)) of sensor
measurements r3(t) + vi(t), and b) fused measurements (i.e. states xi)
after consensus filtering in a sensor network with randomly distributed
nodes.

results for large regular and random sensor network were

presented.
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