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ABSTRACT

This paper studies the convergence properties of consensus algorithms for agents with double integrator dynamics
communicating over networks modelled by undirected graphs. The positions and velocities of the agents are shared along
heterogeneous, i.e. different, undirected communication networks. The main result is that consensus can be achieved, even though
the networks along which position and velocity information are shared are different, and not even connected. Insights on the
consensus rate are given based only on the topological properties of the network.
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I. INTRODUCTION

Consensus algorithm is the umbrella term for any algo-
rithm that results in a number of autonomous mobile agents
agreeing on a state variable using only local information. The
widest-known single integrator consensus algorithm was first
introduced in [1] in the context of sociological networks. Later
consensus reemerged in the context of distributed computing.
This work led to [2] and has since been an active research area
within the control community. A lot of consensus applications
can be found in [3,4] and the references therein.

Most existing literature addresses the case of agents
governed by single integrator dynamics. However, many real
life applications possess higher order dynamics. Particularly in
the area of autonomus vehicles it is often desirable to achieve
consensus using not only information on the agents’ positions
but also on their velocities. For example, some mobile robots
can be feedback linarised and then described as having double
integrator dynamics, which naturally leads to an extended
algorithm that uses the additional state information.

An algorithm for double integrator dynamics has been
proposed by [5]. Recently, a lot of work has focused on
double integrator consensus. This can be roughly separated in
two groups: [6–11] assume that both velocity and position

information can be measured and communicated in the same
way, resulting in homogeneous communication networks. On
the other hand, [12,13] assume that there is no velocity infor-
mation at all. In this case, the system in [5] becomes unstable
and consensus is reached by data sampling or introducing
delays in information exchange. Reference [14] studies
double integrator consensus modelled by a Markov process.

In our work [15], different assumptions are made. Par-
ticularly, we believe that communication networks are rarely
homogeneous and we study the case where velocity and posi-
tion information is shared along different, and possibly
disconnected, networks, making the overall network heteroge-
neous. This is motivated by application: agents that measure
and communicate only one of their states are cheaper both in
terms of hardware and communication costs. Furthermore,
even if the networks were assumed to be homogeneous, infor-
mation loss may create a heterogeneity. Homogeneous net-
works can be treated as a special case of heterogeneous
networks, and in fact the results in [5] still hold in this context.

In the current paper, we study the algorithm introduced
in [5] under different communication networks for velocity
and position information. We thus generalize the existing
work to heterogeneous communication topologies and show
conditions under which it achieves consensus. Our main
result is that consensus on velocities can be achieved even if
the networks are disconnected. The results are given for undi-
rected graphs. The present work is an extended and corrected
version of [15].

The article is organised as follows. In Section II we give
the theoretical background of our work, restating some basic
results in graph theory and matrix polynomial theory. In
Section III we introduce our model and the algorithm used.
Section IV contains the main result on the convergence of the
consensus algorithm in heterogeneous networks. In Section V
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we study the convergence rate of the algorithm and its
dependence on the graph structure. Finally, in Section VI we
give an outlook on our current work on consensus for double
integrator systems over directed graphs.

II. PRELIMINARIES

Throughout this paper we write Im¥m for the m ¥ m iden-
tity matrix and 1k¥m and 0k¥m for the one and zero matrix of
size k ¥ m, respectively. We write lowercase latin letters (e.g.
x) for vectors. Re(a) and Im(a) denote the real and imaginary
parts of a complex number, respectively. The conjugate trans-
pose of a vector v is denoted by v*. We use greek letters
(e.g. l) to denote eigenvalues and order the eigenvalues
according to |Re(l1)| � |Re(l2)| � . . . � |Re(lm)|. The spec-
trum of a matrix L is denoted by spec(L). We write the
Jordan canonical form of L as J(L). The number of
Jordan blocks of L corresponding to the eigenvalue l is
jL(l), while |jL,i(l)|, 1 � i � jL(l) denotes the size of the
ith Jordan block of L corresponding to l. We order the
Jordan blocks of an eigenvalue according to their size,
j j jL L L jL, , , ( )( ) ( ) ( )1 2λ λ λλ≥ ≥ ≥… . We reserve n for the

number of agents in the formation.
The high-level properties of the communication topol-

ogy can be modelled by a communication graph. In order to
make this paper self-contained we now present some existing
definitions and results in algebraic graph theory and matrix
polynomial theory. In this section all results provided without
proof are taken from the respective literature.

2.1 Graph theory

A standard book on graph theory is, e.g., [16]. Let us
briefly recap the notions that will be used in this article.

A graph is generally given by a tuple G = (V, E).
Herein, the set of nodes is given by V = {v1, v2, . . . , vn}, and
a node represents an individual agent. The set of edges is
E ⊆ V ¥ V. An edge eij ∈ E between two nodes signifies that vi

may send information to vj. N(vi) denotes the neighborhood of
vi, i.e. all vj such that eji ∈ E.

We assume that the graphs are undirected, i.e.
eij ∈ E ¤ eji ∈ E and that they contain no self-loops, i.e., that
there is no edge eii.

A k-partition of V is given by p = (V1, . . . , Vk), Vi ⊆ V,
such that each node belongs to exactly one Vi. The character-
istic matrix of a k-partition is given by Q ∈ Rn¥k, where qij = 1
if vi ∈ Vj and qij = 0 otherwise. The partition is called almost
equitable [17] if "i, j ∈ {1, . . . , k} with i � j, "v ∈ Vi:
|N(v) � Vj| = dij, dij ∈N0 .

The union of graphs Gi = (V, Ei) is defined as
G: = (V, �iEi). A path in a graph is an ordered sequence of
nodes such that any pair of consecutive nodes in the sequence
are connected by an edge.

An undirected graph is connected if there exists a path
between any two nodes. It is disconnected otherwise. If the
graph is disconnected, then it has several connected compo-
nents. The extreme case is the graph with no edges, E = /0,
which has n connected components. The converse case,
E = {V ¥ V \ �ieii}, is called a fully connected graph.

An important property of graph structures is that they
have a matrix representation, among them the adjacency
matrix A(G), with entries aji = 1 if an edge from vi to vj exists
and aji = 0 otherwise.

The degree of a node is given by d(vi) = Sjaij. The graph
Laplacian L(G) is given as L(G) = diag(d(vi)) - A(G). When
clear, we will write L instead of L(G). The Laplacian matrix of
an undirected graph has the following properties:

• L is symmetric positive semi-definite and therefore has
n linearly independent eigenvectors, all nonzero eigen-
values of L are positive and real, and the left and right
eigenvectors coincide,

• the number of zero eigenvalues is the number of con-
nected components of the graph, i.e. L has exactly one
zero eigenvalue if the graph is connected (Matrix Tree
Theorem),

• if G has k connected components, then its nodes can be
renamed such that L has block diagonal form with k
blocks, where each of the blocks is a Laplacian matrix

• the rows and columns of L sum up to 0, i.e. ln¥1 is a right
eigenvector of L corresponding to a zero eigenvalue,

Lemma 1. Let L be an n ¥ n Laplacian matrix associated
with a connected undirected graph, let b = (b1, . . . , bn)T be a
real vector with entries bi � 0, b � 0. There is no vector v that
satisfies Lv = �b.

Proof. Suppose that such a vector existed. Multiply both
sides of Lv = �b by l1¥n from the left. Knowing that the
column sums of L are zero we obtain 0

1
= ±

=∑ bi

i

n
, which is

a contradiction. �

Particularly there is no v satisfying Lv = 1n¥1.

Lemma 2. Let L be an n ¥ n Laplacian matrix associated
with a connected undirected graph. The vector v = (11¥k,
01¥m)T, k + m = n, k, m � 0, is not an eigenvector of L.

Proof. Suppose that v is an eigenvector of L to the eigenvalue

l. Write L
L L

L L

k k

T m m
= ⎛
⎝⎜

⎞
⎠⎟

×

×
1 2

2 3

. Then Lv = lv, i.e.,

L

L

k

T k

k

m

1
1

2
1

1

1

1

1

1

0

×

×

×

×

⎛
⎝⎜

⎞
⎠⎟
= ⎛

⎝⎜
⎞
⎠⎟

λ . This implies LT m
2

11 0× ≡ . This is satisfied

if and only if LT
2 0≡ , as all offdiagonal elements of a Lapla-

cian are nonpositive. This is a contradiction to the require-
ment that L is connected. �
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Suppose that G consists of k connected components of
size k1, k2, . . . , kk. L, therefore, can be presented in block
diagonal form. A basis of the kernel of L can then be given by
the k vectors
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where n1 = n - k1 - k2 and n2 = n - kk - kk-1. With n3 = n1-k3

and �k kii

k
=

=

−∑ 1

1 an equivalent orthogonal basis is given by
1n¥1 and
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2.2 Matrix polynomial theory

A recent book on matrix polynomial theory is [18].
Here we summarise some of the definitions that are important
for this paper. The function

P I L Lx x( )λ λ λ= + +2
� (3)

is a quadratic matrix polynomial. The eigenvalues l0 of (3)
are defined by det P(l0) = 0 and the corresponding
eigenvectors by P(l0)v = 0, i.e. ( )I L L vx xλ λ0

2
0 0+ + =� .

Eigenproblems of quadratic matrix polynomials are
genereally referred to as quadratic eigenvalue problems
(QEP). For an extensive review of applications and solutions
of the QEP see [19].

If Lx and Lx� are real-valued, all the eigenvalues of P(l)
are real or arise in complex-conjugated pairs. If Lx and Lx� are
symmetric we speak of a self-adjoint matrix polynomial.
If P(l) is self-adjoint, then its left and right eigenvectors
coincide.

Every quadratic matrix polynomial admits a number of
matrix pencil linearizations, where the n ¥ n matrix P(l) is
transformed to a 2n ¥ 2n matrix (P1 - lI), which is linear in l
and has the same eigenvalues and multiplicities as P(l). One
of the most common linearizations involves the matrix

P
I

L Lx x
1

0
=

− −
⎛
⎝⎜

⎞
⎠⎟�

(4)

and l0 is an eigenvalue of P(l) if and only if it is an
eigenvalue of P1.

Lemma 3 [18]. Let P(l) be a quadratic matrix polynomial
and L the corresponding linearization with an eigenvalue l0.
The following two statements are equivalent:

• P(l0) has a right eigenvector v and left eigenvector w
crorresponding to l0.

• L has a right eigenvector (vT, l0vT)T and left eigenvec-
tor ( ( ), )w I L wxλ0 + � corresponding to l0.

III. MODELLING AND
CONSENSUS ALGORITHM

We consider a group of n mobile agents moving in a
two- or three-dimensional space. We do not specify further
the considered agent type, however, we do assume that the
individual agent’s dynamics is decoupled along the different
dimensions, i.e. that consensus in each direction can be inves-
tigated as a one-dimensional problem.

We denote the position of the ith agent as xi, i ∈
{1, . . . , n} and its velocity as �xi . The dynamics of an agent
are goverened by ��x t u ti i( ) ( )= , where ui(t) is the control input.
This model is fairly simple, however it reflects a number of
technical applications sufficiently well.

The positions (velocities) of all agents are collected in
the n ¥ 1 vector x x( )� and the control inputs in the vector u,
thus the collected dynamics are given by

��x t u t( ) ( ).=

The agents move in a common reference frame and can
measure their own position or velocity or both. The velocity
data is then shared along a graph Gx� and the position data
along a graph Gx. The control variable u(t) is determined by
the following intuitive consensus algorithm for the double
integrator case [5]:

u t L G x t L G x tx

L

x

Lx x

( ) ( ) ( ) ( ) ( ).
: :

= − −
= =

� �� �� �� �� ��
�

�

The closed loop system can then be written as

�
�� ��� ����� �����

x

x

I

L L

x

x

n n n n

x x

⎛
⎝⎜
⎞
⎠⎟
=

− −
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜
⎞
⎠⎟

× ×

=

0

:

.

L

(5)

We say that an algorithm achieves velocity consensus
asymptotically if for any initial condition x x n

0 0, � ∈R , as
t → •, � �x xi j− → 0, 1 � i, j � n and that it achieves position
consensus asymptotically if |xi - xj| → 0. We will use the term
consensus type to characterise what kind of consensus
(position and velocity, only velocity, or none) is achieved.
Consensus is bounded if the consensus value is bounded.

In [5–9] and related work L Lx x= � is assumed. In our
work generally L Lx x≠ �. But since Gx and Gx� share the same
set of nodes, there is a structural dependance between the two
matrices: If the nodes of Gx are renamed such that Lx obtains
a specific form, then the structure of Lx� changes accordingly.
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Throughout this paper we implicitly assume that if we trans-
form one of the matrices, the other matrix changes as well.

Obviously, L in (5) corresponds to P1 in (4) and the
eigenvalues of L coincide with the eigenvalues of the quad-
ratic matrix polynomial (3).

There is an established spectral theory for quadratic
matrix polynomials in the case that Lx, Lx� are positive defi-
nite. In particular, it is a well-known result, called law of
inertia, that all eigenvalues of (3) then have positive real parts.
Our starting point is that Lx, Lx� are Laplacians of undirected
graphs and therefore positive semi-definite. Due to the special
form of graph Laplacians we are able to present a constructive
statement on the eigenvalues of P(l). This extends the field of
application of the QEP to consensus in multi-agent systems
and the law of inertia to semi-definite Laplacian matrices.

IV. MAIN RESULT

In this section we present our main result related to
undirected heterogeneous networks. First, we derive the spec-
trum of L, followed by a proof of convergence.

4.1 Zero eigenvalue of L

Let us first consider the zero eigenvalue of L.
Since L and P(l) have the same spectrum, we will use the
2n ¥ 2n matrix and the n ¥ n quadratic matrix polynomial
interchangingly.

Lemma 4. Let L be given by (5). Then l0 = 0 is an eigen-
value of L. Furthermore jL(0) = k if and only if j kLx ( )0 = . All
the corresponding right eigenvectors are then given by (vT,
01¥n)T, and all the corresponding left eigenvectors are given by
( , )wL wx� where v is a right and w a left eigenvector of Lx

corresponding to the eigenvalue 0.

Proof. The form of the eigenvectors for l0 = 0 follows
directly from Lemma 3. The eigenproblem for L is then
reduced to Lxv = 0, thus jL(0) = k if and only if the kernel of Lx

contains k linearly independent eigenvectors. �

Lemma 5. Let L be given by (5). It holds that jL(0) = k with
|jL,1(0)| = 2, and |jL,i(0)| = 1, i = 2 . . . k, if and only if Gx

consists of k connected components and G Gx x∪ � is
connected.

Proof. The fact jL(0) = k stems from Lemma 4. It remains to
consider the sizes of the Jordan blocks.

Let Gx have k connected components of size k1, . . . , kk.
Then, according to Lemma 4, jL(0) = k. Furthermore, Lx has k
linearly independent eigenvectors v1, . . . , vk correspoinding
to the eigenvalue 0, given by (1). A set of k linearly

idependent eigenvectors of L is then, according to Lemma 4,
given by u vi i

T T T= ( , )0 , i = 1, . . . , k.
Next, we need to show that there is one Jordan chain of

length 2. Let u1 = (11¥n, 01¥n)T. We see that u2 = (01¥n, 11¥n)T is
a generalized eigenvector that satisfies Lu2 = u1, therefore
|jL,1(0)| � 2. By Lemma 1 we know that there is no vector u3

satisfying Lu3 = u2. Hence |jL,1(0)| = 2.
Next we show that |jL,2(0)| = 1 with the eigenvector

( , )vT n T
2

10 × . We partition L
L

L
x

x

x

= ⎛
⎝⎜

⎞
⎠⎟

1

2

0

0
, where Lx1 is of

dimension k1 ¥ k1, Lx2 of (n - k1) ¥ (n - k1). If G Gx x∪ � is con-
nected, we see that there must be at least one edge between the
sets of nodes { , , }1 1ν ν… k and { , , }1 1ν νk n+ … in Gx� . Therefore

the corresponding partition of Lx� is given by L
L L

L L
x

x x

x
T

x
�

� �

� �
= ⎛
⎝⎜

⎞
⎠⎟

1 3

3 2

where Lx�3 0/≡ . Clearly, if b b b b bk n k k n k T= × × − × × −( , , , )( ) ( )
1
1

2
1

3
1

4
11 1 1 1 is

a generalized eigenvector belonging to ( , )vT n T
2

10 × , it must
hold that ( , ) ( , )( )b b vT T T k n k T

3 4 2
1 11 01 1= = × × − and therefore

− = ≠×L b Lx x
T k

2 2 3
11 01

� . The right hand of this equation is
elementwise less than or equal to zero, therefore it follows
from Lemma 1 that there is no vector b2 that satisfies the
equation. Hence, we have shown that |jL,2(0)| = 1. The proof
for |jL,i(0)| = 1, i ( {3, . . . , k} is identical. This completes the
sufficiency part of the proof.

We now show the necessity. From Lemma 4 and
jL(0) = k it follows that j kLx ( )0 = , i.e., Gx consists of k con-
nected components. To prove that |jL,1(0)| = 2 and |jL,i(0)| = 1,
i = 2, . . . , k, implies connectedness of G Gx x∪ � , assume that
G Gx x∪ � is not connected: without loss of generality (wolog)
assume that it consists of two connected components. Then
we can relabel the node set V such that

L
L

L
L

L

L
x

x

x
x

x

x

= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

1 0

0

0

02

1

2

, �
�

�

and Lx1, Lx�1 (and thus Lx2, Lx�2 ) have identical dimensions.
It is then seen that L is similar to the matrix

�
�

�
�

�

L
L

L
=

− −

− −

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
⎛
⎝⎜

0 0 0

0 0

0 0 0

0 0

0

0

1 1

2 2

1

2

I

L L

I

L L

x x

x x

:
⎞⎞
⎠⎟

. (6)

Clearly, both �L1 and �L2 have a zero eigenvalue with a Jordan
block of size 2, hence L has two such Jordan blocks, which
contradicts |jL,i(0)| = 1, i = 2 . . . k. �

An important special case of the above is that if Gx is
connected, then jL(0) = 1 with |jL(0)| = 2. This will be relevant
when analyzing the stability of the consensus algorithm.
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4.2 Nonzero eigenvalues of L

Before we give our next result, let us derive an explicit
formula for the eigenvalues of L. Multiplying P(l)v = 0 by v*
from the left gives the quadratic equation

λ λ2 0v v v L v v L vx x* * *+ + =� .

Its coeffcients are real for all v due to the symmetry of Lx and
Lx� . We can obtain l as the solutions of

λ = − ± −v L v v L v v v v L v

v v
x x x* * * *

*
� �( ) ( )( )

,
2 4

2
(7)

where v is an eigenvector of P(l) [19].

Lemma 6. Let L be given by (5). Then L has no eigenvalues
with positive real parts.

Proof. The matrices Lx� and Lx are positive semi-definite,

thus
v L v

v v
x*

*
� ≥ 0 and

v L v

v v
x*

*
≥ 0 for all v � 0. Thus, it is

evident that all solutions of (7) are real, imaginary, or
complex conjugate with a nonpositive real part. �

It remains to establish when L has nonzero imaginary
eigenvalues.

Lemma 7. Let L be given by (5). All eigenvalues of L are
zero or have negative real parts if and only if for the system
�� � ��x L x L ux x= + , 0 is the only uncontrollable eigenvalue of Lx.

Proof. We have already shown that L has no eigenvalues
with a positive real part. We see that (7) has the imaginary
solution l = �gi, g ∈ R+, if and only if

∃ /≡ ∈ =v v L L v vx x0 2: ker( ) .� and γ (8)

Whenever such a v exists, P(gi)v = 0 is reduced to
(Lx - Ig 2)v = 0. As Lx and Lx� are symmetric, we can write the
conditions (8) in matrix form as

∃ /≡ − =v v I L LT
x x0: 02( | )γ � , i.e.

rank( )γ 2 | .I L L nx x− <�

Using the well-known Popov–Belevitch–Hautus test [20], this
is equivalent to g2 > 0 being an eigenvalue of Lx which is
uncontrollable for the pair ( , )L Lx x� . �

Corollary 1. Let L be given by (5) and Gx� be connected.
Then L has no imaginary eigenvalues.

Proof. If Gx� is connected, then the only vector in the kernel
of Lx� is 1n¥1, which is also in the kernel of Lx. The result
follows from Lemma (7). �

4.3 Convergence

We have shown that L has at least one Jordan block of
size 2 corresponding to the zero eigenvalue, i.e. (5) is not
stable in the classical sense. However, stability is not the
required system behaviour. Clearly, if the agents achieve
velocity consensus and agree on some constant velocity, their
positions will still evolve in time. We are now ready to present
our main result.

Theorem 1. Consider the double integrator consensus
problem for n mobile agents. Let the position information be
shared along the communication network Gx and the velocity
information along Gx� . Algorithm (5) achieves velocity con-
sensus asymptotically if and only if

(i) G Gx x∪ � is connected,
(ii) rank( | ) {0}λ λI L L nx x− = ∀ ∈� C \ .

It achieves velocity and position consensus asymptotically if
and only if (i–ii) hold and additionally

(iii) Gx is connected.

Proof. The second part of this theorem is equivalent to
jL(0) = 1, |jL(0)| = 2 and all the other eigenvalues having nega-
tive real parts, which is a special case of [5] and the proof is
given there. For the first part, note that with Lemma 5,
Lemma 6 and Lemma 7, (i–ii) ensures that L has no purely
imaginary eigenvalues or eigenvalues with postive real parts,
as well as jL(0) = k, |jL,1(0)| = 2, |jL,i(0)| = 1, i = 2, . . . , k,
where k is the number of connected components of Gx.

The Jordan canonical form of L, J(L) is given by

V V

w

w

u u

n

n
−

−

−=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( ) =1

0

2 1

0 2 1L L J	 … ,

where ui can be chosen among the right eigenvectors and
generalized eigenvectors of L, and wi are left eigenvectors
and generalized eigenvectors of L scaled and allocated
accordingly. Let Lx have k connected components of size k1,
. . . , kk. We can choose u0 = (11¥n, 0n¥1)T, u1 = (01¥n, 11¥n)T and
thus w0 = (p111¥n, 01¥n), w1 = (01¥n, p111¥n), p1 = 1/n. We know
that Lx admits the additional set of eigenvectors (2), denoted
v2, . . . , vk. We then know from Lemma 4 that u vi i

T n T= ×( , )01

can be chosen as the right eigenvectors of L associated with
the zero eigenvalue. The Jordan matrix then has the form

J =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

J

J

J

0 0 0

0 0

0 0 �
,

where J0

0 1

0 0
= ⎛
⎝⎜

⎞
⎠⎟

and J = 0(k-1)¥(k-1) are the collected Jordan

blocks corresponding to the zero eigenvalue and �J are the
remaining Jordan blocks. Thus
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⎟
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1

�

. (9)

Since all nonzero eigenvalues of L have negative real
parts we know that eJt� → 0 as t → •. On the other hand

e
t

J t0
1

0 1
= ⎛
⎝⎜

⎞
⎠⎟

and eJt = I(k-1)¥(k-1) Denote by w2, . . . , wk the

lines 2 . . . k of V-1. Then for t → •

e u u
t w

w
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or equivalently

e
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(10)

Thus we obtain

lim
t

j

j

n
nx t

n
x

→∞
=

×=
⎛
⎝⎜

⎞
⎠⎟∑� �( )

1
(0) 1

1

1

which is bounded velocity consensus.
For necessity, note that if condition (i) is violated, the

resulting Jordan matrix has at least two blocks of the form J0

and thus no global convergence is achieved. If condition (ii) is
violated, then there is at least one imaginary eigenvalue pair

�ig and J contains a block
i

i

γ
γ

0

0 −
⎛
⎝⎜

⎞
⎠⎟

. The corresponding

left eigenvector is (vT, �igvT)T, where v lies in the nullspace of
Lx� and is not 1n¥1. Thus the agents’ velocities oscillate
without converging. �

Note that if Gx has k connected components, then the
individual components will achieve position consensus
within themselves with a constant offset between the agent
groups. This result is physically plausible: while position
consensus is impossible without velocity consensus, the con-

verse makes sense. With x t x d dx( ) ( )= +∫ � τ τ we see that dx is

exactly the offset produced by the different connected com-
ponents. This offset can be calculated from (10) as

d
n

x v v

w

w

x

x
x

i

n
n

k

k

= ⎛
⎝⎜

⎞
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+ ( )
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⎛
⎝⎜

⎞
=

×∑1
0 1

(0)

(0)1

1
2

2

( ) … 	
� ⎠⎠⎟

. (11)

Condition (ii) in Theorem 1 ensures that L has no
imaginary eigenvalues. One of its direct consequences is that
agents with double integrator dynamics cannot achieve con-
sensus using only position information. Indeed, if Lx� ≡ 0 then
all nonzero eigenvalues of L are imaginary.

In general, checking condition (ii) is equivalent to check-
ing if there is an eigenvector of Lx that lies in the kernel of Lx�,
i.e., that is a linear combination of the vectors in (1). Thus the
problem is reduced to finding necessary and sufficent condi-
tions for eigenvectors of Lx to have repeated entries.To our best
knowledge, there are no straightforward, graph-based neces-
sary conditions that state the shape of the eigenvectors of a
Laplacian, except for some special cases. However, several
sufficient conditions can be found, so that the presence of
imaginary eigenvalues can often be seen from the structure of
Gx. We list here the most interesting cases. For the rest of this
section we assume wolog that condition (i) holds and that Gx�

has at least two connected components.

Lemma 8. Let Gx� consist of k connected components
V1, . . . , Vk, where k < n. If Gx has an almost equitable
m-partition W1, . . . , Wm m � k, such that V1, . . . , Vk is at least
as fine as W1, . . . , Wm, then L has imaginary eigenvalues.
( ( ) { , , }: ) ( ) (∀ ⊆ = ∨ = ∨ ∀ ≠≤ ≤ ∈ ≤ ≤I k W V W V ii i m i j I j i m ii1 11 … ∪ ∪

: = /j W Wi j∩ 00) , here V is the node set of Gx and Gx� .

Proof. Let Gx have an almost equitable partition W1, . . . , Wm

of size m1, . . . , mm. With V1, . . . , Vk of size k1, . . . , kk as above,
any linear combination of the vectors in (1) is in the kernel of
Lx� . By [17], Proposition 2, Lx has an eigenvector

v
m m

m m

mm

= ( , , , )1 1 2 2

1 2

β β β β β β… … … …
� ��� ��� � ��� ��� � ��� ��� , bi ∈ R with a corre-

sponding positive eigenvalue. Thus v can be chosen as a linear
combination of the vectors in (1) and the condition (8) from
Lemma 7 is satisfied.

Lemma 9. Let Gx� consist of two connected components on
node sets V1, V2. Then L has imaginary eigenvalues if and only
if (V1, V2) is an almost equitable 2-partition of Gx.

Proof. Sufficiency follows from Lemma 8.To show necessity,
note that for an almost equitable 2-partition with the charac-

teristic matrix Qx [17] LxQxb = g2b, g ∈ R+, where b = ⎛
⎝⎜

⎞
⎠⎟

β
β

1

2

and Qx

k k

k k
= ⎛
⎝⎜

⎞
⎠⎟

× ×

× ×

1 0

0 1

1 1

2 2

1 1

1 1
. If the 2-partition is almost equitable,

each node in V1 (V2) has d12 (d21) neighbors in V2 (V1), i.e.

L Q
d d

d d
x x

k k

k k
=

−
−
⎛
⎝⎜

⎞
⎠⎟

× ×

× ×
12

1
12

1

21
1

21
1

1 1

2 2
. Let the partition be not almost equi-

table, wolog let there be one node νk V1 1∈ such that it has
e12 � d12 neighbors in V2. Then
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b Qx

!
2 1

2

.γ
β
β

Then d12(b1 - b2) = g2b1 and e12(b1 - b2) = g2b1 must hold
simultaneously. Thus either g2 = 0 or d12 = e12 and the
partition is almost equitable. �

Particularly, if Gx� has one isolated node v and the
remaining graph is connected, then L has imaginary eigen-
values if and only if d(v) = n-1 in Gx, i.e. if the isolated node
is connected to all nodes of Gx.

Lemma 10. If Gx is fully connected then L has imaginary
eigenvalues for any disconnected Gx� .

Proof. If Gx is fully connected then its Laplacian is given by
Lc = nI - 1n¥n. Choose v from (2), i.e. v Lx∈ker( )� and
vT1n¥1 = 0. Then Lcv = nv - 1n¥1v = nv and thus condition (8) is
always satisfied. �

Further, more complex conditions can be found based
on graph automorphism groups and other properties of the
Laplacian. However to date, no full set of conditions for a
Laplacian to have repeated eigenvector entries has been found
by the authors.

V. CONVERGENCE RATE

We expect that the convergence rate of (5) largely
depends on the chosen communcation topologies. It is a
known result that the convergence rate of the single integrator
consensus is bounded by the second smallest eigenvalue of
the corresponding Laplacian matrix. In this section we
expand the result for the algorithm (5). In the following we
assume that conditions (i)–(ii) of Theorem 1 hold.

Define the group position error vector as

e t x t d t dx x( ) ( )= − −� . Here d
n

xx
i

i

n n
� �= ⎛⎝⎜

⎞
⎠⎟=

×∑1
(0) 1

1

1 is the

vector average velocity at t = 0 and dx, given by (11), is the
position offset after velocity consensus has been achieved.
Note that dx� lies in the kernel of any Laplacian matrix and dx

lies in the kernel of Lx. The error dynamics of the second
order consensus algorithm are then given by

�� � �� �e
d

dt
L x L x L e L ex x x x= − − = − −( )

or, rewritten as a first order system,

�
�� ��

e

e

I

L L

e

ex x

⎛
⎝⎜
⎞
⎠⎟
=

− −
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜
⎞
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0
. (12)

Let λ λλcrit i n ii= ∈ ≠min {1, ,2 }, 0 ( )… Re , where li are the
eigenvalues of L. Consider eLt in (9). The block e t�J converges
to zero with a rate that is equal to or faster than lcrit and
therefore (12) tends to zero with a rate that is equal to or faster
than lcrit. In order to find the value of lcrit we use the numeri-
cal range

0 , 0≤ ≤ /≡
v Lv

v v
vn

*

*
μ

where mn is the largest eigenvalue of the Laplacian. We are
interested in the solutions of (7), thus only such v are
considered which are eigenvectors of P(l) corresponding to
an eigenvalue with a nonzero real part.

Let a graph have k connected components of size
k1, . . . , kk, and Gki be the graph corresponding to the
connected component of size ki. Then the largest eigenvalue
of the corresponding Laplacian is bounded by [21]

min max maxi k
i

i
j j k n i ii i

k

k
d v G k, 1

1
( )≠ −

∈ ≤ ≤μ . Here d(vj)

denotes the degree of node vj. Note that
max j j k id v G ki( ) 1∈ ≤ − .

Let Gx� have k x� connected components of size
k kx

k
x
x1 , ,� �… � , whith k kmax

x
i i

x� �= max . Let Gx have kx connected
components, with, analogously, k kmax

x
i i

x= max and assume
that there are no purely imaginary eigenvalues. Then

0 < ≤v L v

v v
kx

max
x*

*
� � .

Choose v*v = 1 and consider (7). We see that if
( ) 42v L v v L vx x* *� ≤ , lcrit depends entirely on the eigenvalues
of Lx�, particularly λcrit max

xk≤ � . Thus, if k kmax
x

max
x� � , it is pos-

sible that L will have eigenvalues where the real and the
imaginary part have a small resp. large magnitude. On
the other hand, if Lx� is “well” connected and kmax

x is small, the
eigenvalues of L will be real or have small imaginary parts.
This leads us to the surprising conclusion that if only a small
number of agents can exchange their velocity (i.e., kmax

x� is
small), the number of agents exchanging their position should
be as small as possible, too, in order to avoid oscillations. But
this in turn leads to a small lcrit. We further see that lcrit is
bounded by

0 < ≤λcrit n,

where the upper bound is tight (choose Gx� fully connected
and Gx empty).

Example 1. Consider the graphs in Fig. 1. Let Gx be graph 1,
Gx� be graph 2. Both graphs are disconnected, however
G Gx x∪ � is connected and {1,2,3}, {4,5} is not an almost
equitable partition of Gx. As Gx has three connected
components, we expect the system to achieve velocity
consensus and the agents 3-5 to achieve position consensus.
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This is validated by the simulation in Fig. 2 with initial
positions from the interval (0, 50). We see that the agents
continue to move at a fixed distance. The spectrum of L is
spec(L) = {0, 0, 0, 0, -2.96, -0.84 � 1.26i, -0.30 � 0.94i,
-0.77}, which explains the high amount of oscillation in the
velocity plot. Here k kmax

x
max
x= =� 3 coincides with the largest

eigenvalue of both Laplacians.
Choosing Gx� as graph 4 in Fig. 1 leads to kmax

x� = 5 and

the numerical range is now given by 0 3.6≤ ≤v L v

v v
x*

*
� . As can

be seen in Fig. 3 consensus is achieved faster and without
oscillations.

Example 2. Let Gx be given by graph 3 in Fig. 1. Choosing
Gx� as the complete graph (graph 5 in Fig. 1) leads to L
having only real eigenvalues. The system achieves velocity
and position consensus asymptotically. The simulation results
are given in Fig. 4.

On the other hand, choosing Gx as a fully connected
graph and Gx� as graph 3 leads to L having eigenvalues with
large imaginary parts and real parts that are so small that they

are numerically rounded to zero. Here v L v

v v
x*

*
� ≤ 3.6 and

v L v

v v
x*

*
≤ 5 .

VI. OUTLOOK

In the present work we have studied consensus over
constant, undirected networks. While this assumption holds
for many technical applications, it is certainly only a first step
towards a complete understanding of double integrator con-
sensus. Directed networks need to be considered if the infor-
mation is assumed to be broadcasted by the agents, while the
communication topology itself should be modelled as switch-
ing if, e.g., sensor breakdowns are to be accounted for. Our
current work focuses on expanding the results in this paper to
the case of directed graphs.

Connectivity is defined differently for directed graphs.
We say that a graph contains a spanning tree if there is a node
vi sucht that there is a directed path from vi to any other node
in the graph. It is a classic result that single integrator agents
reach consensus over a network containing a spanning tree.

1

2

3

4

5

(a) Graph 1

1

2

3

4

5

(b) Graph 2

1

2

3

4

5

(c) Graph 3

1

2

3

4

5

(d) Graph 4

1

2

3

4

5

(e) Graph 5

Fig. 1. Different communication topologies for five agents.
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Fig. 2. Gx as graph 1, Gx� as graph 2, velocity consensus.
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Fig. 3. Gx as graph 1, Gx� as graph 4, velocity consensus.
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However, this result does not translate to the double integrator
case. Consider Fig. 5. Here, Gx and Gx� both contain a span-
ning tree, but L has positive eigenvalues and the algorithm
(5) does not achieve consensus. Furthermore, choosing
�� ��x L xx= − , i.e., assuming Gx to be empty, achieves velocity
consensus. Thus, additional edges in Gx may lead to instabil-
ity when directed graphs are considered. This is also the case
for homogeneous networks, cf. [5]. Moreover we can find
examples where Gx� does not contain a spanning tree, but the
algorithm achieves consensus.
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