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The need for filling information gaps while reducing toxicity testing in animals is

becoming more predominant in risk assessment. Recent legislations are accepting in

silico approaches for predicting toxicological outcomes. This article describes the results

of Quantitative Structure Activity Relationship (QSAR) modeling efforts within Tox21 Data

Challenge 20141, which calculated the best balanced accuracy across all molecular

pathway endpoints as well as the highest scores for ATAD5 andmitochondrial membrane

potential disruption. Automated QSPR workflow systems, OCHEM (http://ochem.eu),

the analytics platform, KNIME and the statistics software, CRAN R, were used to conduct

the analysis and develop consensus models using 10 different descriptor sets. A detailed

analysis of QSAR models for all 12 molecular pathways and the effect of underlying

models’ accuracy on the quality of the consensus model are provided. The resulting

consensusmodels yielded a balanced accuracy as high as 88.1%± 0.6 for mitochondrial

membrane disruptors. Such high balanced accuracy and use of the applicability domain

show a promising potential for in silico modeling to complement design HTS screening

experiments. The comprehensive statistics of all models are publicly available online at

https://github.com/amaziz/Tox21-Challenge-Publication while the developed consensus

models can be accessed at http://ochem.eu/article/98009.

Keywords: computational toxicology, alternative testing, Quantitative structure activity relationship, high

throughput screening, predictive toxicology, Tox21

INTRODUCTION

High-throughput screening (HTS) allows researchers to conduct millions of chemical, genetic, or
pharmacological experiments with minimal intervention. Such procedures may quickly identify
potentially active compounds, antibodies, or genes that control particular biochemical pathways.
The results of such assays guide the research process. And thus this approach has become a valuable
and viable tool for large-scale evaluation of chemicals (Kavlock and Dix, 2010; Judson et al., 2011;
Wetmore et al., 2012). The large amounts of data generated by HTS available today may be used
to correlate chemical structures to their biological activities. QSARs may support the identification

1Tox21 Data Challenge 2014—Data Available at: https://tripod.nih.gov/tox21/challenge/data.jsp
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of key characteristics in chemical structures responsible for
such activities. This knowledge is then used to provide
predictions about the possible activity of test compounds in
virtual screening settings for regulatory purposes. The quality
of QSAR models based on large chemical libraries from HTS
experiments varies. However, the accuracy is usually high enough
to support prioritizing chemicals that are worth being subjected
to experimental testing. This approach satisfies the imminent
need to prioritize chemicals testing, filling information gaps,
accelerating the chemical registration process and lowering the
overall costs of testing (US EPA, OCSPP).2

Tox21 (Tice et al., 2009; Betts, 2013) represents a multi-
agency effort that uses HTS assays for toxicity modeling
and prediction in the US. The US Environmental Protection
Agency (EPA), The National Institutes of Health (NIH),
The National Center for Advancing Translational Sciences
(NCATS), The National Institutes of Environmental Health
Sciences/National Toxicology Program (NIEHS/NTP) and the
Food and Drug Administration (FDA) cooperate in screening
chemical substances for some selected potential toxic effects.
The data may then be used, with the assistance of in silico
techniques, for providing an alternative for expensive, time-
consuming, and ethically-questioned animal testing. This implies
the potential for providing an economical method for toxicity
testing prioritization for thousands of yet untested compounds
(Betts, 2013).

Similar efforts to reduce animal testing and utilize
computational toxicity modeling are made in Europe. The
European Chemical Agency (ECHA) described the role of
animals in ensuring the safe use of chemical substances as being
the last resort. This is one of the key principles for the REACH
(Registration, Evaluation, Authorization, and Restriction of
Chemicals) legislations. It encourages the use of so-called
“alternative approaches” to reduce animal testing. QSAR
modeling is one of the promoted mechanisms for alternative
chemicals’ risk assessment. Guiding documents exist that explain
the best practices and the requirements for accepting QSAR
models’ predictions (Worth et al., 2005). These guidelines are
essential for directing the stakeholders on how to utilize QSAR
methodologies in a manner that gets accepted by the regulators.
The guidelines warrant evaluating the human and environmental
toxicity risks, complying with the regulatory requirements
and reducing the need for animal testing at the same
time.

The Tox21 Data challenge follows the open-innovation
principles (Chesbrough, 2006) to crowdsource scientists’ efforts
in analyzing HTS data generated through the Tox21 project. It
aspires to predict the pathways’ interference of chemicals using
only their chemical structures. Such predictions can therefore
guide regulators and participating governmental agencies in
identifying the chemicals (either drugs or industrial) that carry
the highest concern for human and environmental risks. The
aim of this study is to describe the methodologies used by

2US EPA, OCSPP, O. Using Predictive Methods to Assess Hazard under

TSCA. Available at: http://www2.epa.gov/tsca-screening-tools/using-predictive-

methods-assess-hazard-under-tsca#models [Accessed October 15, 2015].

the winning corresponding author during the challenge (team:
AMAZIZ) and to extend the analysis on the chemical libraries
beyond what was possible during the limited duration of the
challenge. The study investigates a comprehensive approach
on consensus modeling and analyzes multiple descriptor
packages.

MATERIALS AND METHODS

Molecular Pathways Screening
In this study, 12 molecular pathway endpoints were investigated,
which were selected on the basis of toxicological relevance.
The targets were experimentally screened as part of the Tox21
program and the resulting data library made accessible for
competitors by the Tox21 Data Challenge organizers (Tox21
Data Challenge 2014—Data).

Estrogen Receptor (ER) (AID 7430773, AID 7430794)
Tox21 compounds library was screened for potentially acting as
agonist at the estrogen receptor alpha. Such activators could lead
to reproductive dysfunction (Aop:30)5. Two different cell lines
were used:

- ER-alpha-UAS-bla GripTiteTM cell line (ER-LBD): This cell
line was developed by Invitrogen, Carlsbad, CA, USA. Cells
contain a beta-lactamase reporter gene controlled by an
Upstream Activator Sequence (UAS) stably integrated into
HEK293 cells.

- BG1-Luc-4E2 cell line (ER-full): Dr. Michael Denison
from University of California provided the cell line. Cells
endogenously express the full-length ER-alpha and are
stably transfected with a plasmid containing four estrogen
responsive elements (ERE) under the control of an upstream
luciferase reporter gene.

Androgen Receptor (AR) (AID 7430406, AID 7430537)
Compounds that agonist the AR may cause reproductive
dysfunction (Aop:23)8. The ability of Tox21 compounds to

3AID 743077—qHTS assay to identify small molecule agonists of the estrogen

receptor alpha (ER-alpha) signaling pathway: Summary—PubChem BioAssay

Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=

743077 [Accessed July 10, 2015].
4AID 743079—qHTS assay to identify small molecule agonists of the estrogen

receptor alpha (ER-alpha) signaling pathway using the BG1 cell line—PubChem

BioAssay Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.

cgi?aid=743079 [Accessed July 10, 2015].
5Aop:30—Estrogen receptor antagonism leading to reproductive dysfunction-

aopwiki Available at: https://aopkb.org/aopwiki/index.php/Aop:30 [Accessed

December 15, 2015].
6AID 743040—qHTS assay to identify small molecule agonists of the androgen

receptor (AR) signaling pathway using the MDA cell line—PubChem BioAssay

Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=

743040#aDescription [Accessed July 10, 2015].
7AID 743053—qHTS assay to identify small molecule agonists of the

androgen receptor (AR) signaling pathway: Summary—PubChem BioAssay

Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=

743053 [Accessed July 10, 2015].
8Aop:23—Androgen receptor agonism leading to reproductive dysfunction—

aopwiki Available at: https://aopkb.org/aopwiki/index.php/Aop:23 [Accessed

December 15, 2015].
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agonist the androgen receptor alpha was measured in two
different cell lines.

- GeneBLAzer AR-UAS-bla-GripTite cell line (AR-LBD): This
cell line is provided by Invitrogen, Carlsbad, CA, USA.
Cells contain a beta-lactamase reporter gene controlled by
an upstream activator sequence (UAS) stably integrated into
HEK293 cells.

- MDA-kb2 AR-luc cell line (AR-full): This cell line was
deposited by Wilson et al. It is a human breast carcinoma cell
line that was stably transfected with a luciferase reporter gene
under control of the MMTV promoter containing response
elements for both androgen receptor (AR) and glucocorticoid
receptor (GR).

Aryl Hydrocarbon Receptor (AHR) (AID 743122)9

AHR activation is thought to lead to multiple adverse
outcomes including hepatic steatosis (Aop:57)10, uroporphyria
(Aop:131)11, developmental abnormalities and embryolethality
(in birds) (Aop:22)12, and embryo toxicity in fish (Aop:21)13

inter alia. A cell based HepG2-AhR-luc assay was used to
assess the activation of AhR for Tox21 compounds. The
HG2L7.5c1 cell line, as developed by Dr. Michael S. Denison
(University of California at Davis), was utilized. The human
hepatocellular carcinoma (HepG2) cells were stably transfected
with an Ah receptor-responsive firefly luciferase reporter gene
plasmid carrying 20 dioxin responsive elements and luciferase
reporter gene. AhR activation leads to an increase in luciferase
activity and therefore ligands can be detected.

Peroxisome Proliferator-Activated Receptor Gamma

(PPAR-gamma) (AID 743140)14

PPAR-gamma activation has been associated with impaired
fertility in adult females (Aop:7)15. GeneBLAzer PPAR gamma
UAS-bla HEK293H cell line was used in this assay. This cell line
is provided by Invitrogen, Carlsbad, CA, USA. Cells contain a
beta-lactamase reporter gene controlled by an upstream activator
sequence (UAS) stably integrated into HEK293H cells.

9AID 743122—qHTS assay to identify small molecule that activate the aryl

hydrocarbon receptor (AhR) signaling pathway: Summary—PubChem BioAssay

Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=

743122 [Accessed July 10, 2015].
10Aop:57—AhR activation leading to hepatic steatosis—aopwiki Available at:

https://aopkb.org/aopwiki/index.php/Aop:57 [Accessed December 15, 2015].
11Aop:131—Aryl hydrocarbon receptor activation leading to uroporphyria—

aopwiki Available at: https://aopkb.org/aopwiki/index.php/Aop:131 [Accessed

December 15, 2015].
12Aop:22—AHR1 activation leading to developmental abnormalities and

embryolethality (in birds)—aopwiki Available at: https://aopkb.org/aopwiki/

index.php/Aop:22 [Accessed December 15, 2015].
13Aop:21—AhR activation leading to embryo toxicity in fish—aopwiki Available

at: https://aopkb.org/aopwiki/index.php/Aop:21 [Accessed December 15, 2015].
14AID 743140—qHTS assay to identify small molecule agonists of the peroxisome

proliferator-activated receptor gamma (PPARg) signaling pathway: Summary—

PubChem BioAssay Summary Available at: https://pubchem.ncbi.nlm.nih.gov/

assay/assay.cgi?aid=743140 [Accessed July 10, 2015].
15Aop:7—PPAR γ activation leading to impaired fertility in adult female- aopwiki

Available at: https://aopkb.org/aopwiki/index.php/Aop:7 [Accessed December 15,

2015].

Nuclear Factor (erythroid-derived 2)-Like

2/Antioxidant Responsive Element (Nrf2/ARE) (AID

743219)16

The CellSensor ARE-bla Hep-G2 assay was used to assess
the activation of the report gene and thus identify chemicals
that stimulate oxidative stress. The cells contain a beta-
lactamase reporter gene controlled by the Antioxidant Response
Element (ARE) stably integrated into HepG2 cells. Fluorescence
intensity was measured to assess the activation of the responsive
element.

Aromatase Enzyme Inhibitors (AID 743139)17

Aromatase inhibition is associated with reproductive dysfunction
among other adverse outcomes (Aop:25)18. The MCF-7 aro
ERE cell line (human breast carcinoma), as provided by Dr.
Shiuan Chen (Beckman Research Institute of the City of
Hope), was used in order to identify aromatase inhibitors. Cells
were stably transfected with a promoter plasmid, pGL3-Luc,
encompassing three repeats of the estrogen responsive element
(ERE).

ATAD5 Receptor (ATAD5) (AID 720516)19

A cell-based assay using embryonic kidney cells (HEK293T)
was used to screen the Tox21 compounds library. The assay was
developed by Kyungjae Myung (NHGRI, NIH) to detect any
enhanced Level of Genome Instability Gene 1 (ELG1; human
ATAD5) protein, which increase in response to different kinds of
DNA damage. The assay uses a luciferase reporter-gene tagged
with ATAD5 to measure the induction of ELG1. Therefore, an
increase in luciferase activity marks a chemically induced genetic
stress.

Heat Shock Response (HSE) (AID 743228)20

HSE-bla HeLa cell line was utilized in this HTS assay. This
cell line is provided by Invitrogen, Carlsbad, CA, USA. Cells
contain a beta-lactamase reporter gene controlled by the heat
shock response elements.

16AID 743219—qHTS assay for small molecule agonists of the antioxidant

response element (ARE) signaling pathway: Summary—PubChem BioAssay

Summary Available at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=

743219 [Accessed July 10, 2015].
17AID 743139—qHTS assay to identify aromatase inhibitors: Summary—

PubChem BioAssay Summary Available at: https://pubchem.ncbi.nlm.nih.gov/

assay/assay.cgi?aid=743139 [Accessed July 10, 2015].
18Aop:25—Aromatase inhibition leading to reproductive dysfunction (in fish)—

aopwiki Available at: https://aopkb.org/aopwiki/index.php/Aop:25 [Accessed

December 15, 2015].
19AID 720516—qHTS assay for small molecules that induce genotoxicity in

human embryonic kidney cells expressing luciferase-tagged ATAD5: Summary—

PubChem BioAssay Summary Available at: https://pubchem.ncbi.nlm.nih.gov/

assay/assay.cgi?aid=720516 [Accessed July 10, 2015].
20AID 743228—qHTS assay for small molecule activators of the heat shock

response signaling pathway: Summary—PubChem BioAssay Summary Available

at: https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=743228 [Accessed July

10, 2015].
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TABLE 1 | Number of records and unique molecules in each dataset.

Molecular pathway endpoint Training set records

(unique molecules)

Test set

records

Complete training set

records (unique molecules)

NUCLEAR RECEPTOR SIGNALING PANEL

Aryl hydrocarbon receptor (nr-ahr) 8169 (6716) 272 8441 (6988)

Androgen receptor MDA-kb2 AR-luc cell line (nr-ar) 9362 (7468) 292 9654 (7760)

Androgen receptor GeneBLAzer

AR-UAS-bla-GripTite cell line (nr-ar-lbd)

8599 (6927) 253 8852 (7180)

Aromatase enzyme (nr-aromatase) 7226 (5966) 214 7440 (6180)

Estrogen receptor alpha BG1-Luc-4E2 cell line (nr-er) 7697 (6334) 265 7962 (6599)

Estrogen receptor alpha ER-alpha-UAS-bla

GripTiteTM cell line (nr-er-lbd)

8753 (7138) 287 9040 (7425)

Peroxisome proliferator-activated receptor gamma

(nr-ppar-gamma)

8184 (6607) 267 8451 (6874)

STRESS RESPONSE PANEL

Nuclear factor (erythroid-derived 2)-like 2/antioxidant

responsive element (Nrf2/ARE) (sr-are)

7167 (5959) 234 7401 (6193)

ATAD5 receptor (sr-atad5) 9091 (7256) 272 9363 (7528)

Heat shock factor response element (sr-hse) 8150 (6617) 267 8417 (6884)

Mitochondrial membrane potential (sr-mmp) 7320 (5941) 238 7558 (6179)

p53 signaling pathway (sr-p53) 8634 (6931) 269 8903 (7200)

Nuclear receptor (nr) assay panel contained seven assays while the stress response (sr) assay panel covered five assays.

Disruptors of the Mitochondrial Membrane Potential

(MMP) (AID 720637)21

The mitochondrial dysfunction is considered a key event
in multiple adverse outcomes (Event:177)22 including
neuroinflammation leading to neurodegeneration, excitotoxicity,
and learning and memory impairment. A homogenous cell-
based assay with a water-soluble mitochondrial membrane
potential sensor (m-MPI, Codex Biosolutions, MD) was applied
to the Tox21 compounds in order to identify those that can
induce mitochondrial toxicity. In healthy cells, the water-soluble
dye accumulates in the mitochondria as aggregates, causing
red fluorescence. In case of a decrease in MMP, the dye cannot
accumulate in the mitochondria and thus remains in the
cytoplasm as monomers causing green fluorescence.

Agonists of the p53 Signaling Pathway (P53) (AID

720552)23

p53 gene has been identified as target of AFB1-induced adduction
and subsequent mutation which is a key event leading to
Hepatocellular Carcinoma (HCC; Aop:46)24. Using CellSensor
p53RE-bla HCT-116 cell line, the Tox21 compounds were

21AID 720637—qHTS assay for small molecule disruptors of the mitochondrial

membrane potential: Summary—PubChem BioAssay Summary Available at:

https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=720637 [Accessed July 10,

2015].
22Event:177—Mitochondrial dysfunction - aopwiki Available at: https://aopkb.org/

aopwiki/index.php/Event:177 [Accessed December 15, 2015].
23AID 720552—qHTS assay for small molecule agonists of the p53 signaling

pathway: Summary—PubChem BioAssay Summary Available at: https://pubchem.

ncbi.nlm.nih.gov/assay/assay.cgi?aid=720552 [Accessed July 10, 2015].
24Aop:46—Mutagenic Mode-of-Action leading to Hepatocellular Carcinoma

(HCC)—aopwiki Available at: https://aopkb.org/aopwiki/index.php/Aop:46

[Accessed December 15, 2015].

screened. This cell line is provided by Invitrogen, Carlsbad,
CA, USA. Cells contain a stably integrated beta-lactamase
(BLA) reporter gene controlled by the p53 response elements.
Fluorescence intensity was measured to assess the activation of
the responsive element.

Datasets and Data Cleaning
Data were downloaded from the Tox21 challenge website
(NIH)25 in both SDF and SMILES formats. The files contained
the molecular representation (SDF or SMILES), a molecule name
as well as the target response. In addition, SDF files contained
few extra tags for the DSSTox compound ID (DSSTox_CID), the
chemical formula and the average mass (FW). Both file formats
were compared to examine consistency. KNIME (Berthold et al.,
2007) was used to compare the structures and responses in both
file formats. The data covered 12 pathway endpoints covering the
“Nuclear Receptor Signaling Panel” (seven assays) and the “Stress
Response Panel” (five assays). All assay endpoints are listed in
Table 1.

For each molecular pathway endpoint, both training and
leaderboard test sets were combined to form a whole training
set. Some molecules were presented multiple times (i.e., exact
SMILES representation in spite of different molecule names).
The basis for such duplicated records may be the result of
intentional repetitive testing for quality control purpose. The
Online CHEmical database and Modeling environment platform
(OCHEM; Sushko et al., 2011) was used to check records
duplication. It calculates the INCHI (James et al., 1995) key
structure hash to compare structures. Some records showed
different experimental responses despite exhibiting the same

25NIH Tox21 Data Challenge 2014. Available at: https://tripod.nih.gov/tox21/

challenge/about.jsp
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FIGURE 1 | Example of conflicting training data. The examples shown

were obtained from the Estrogen Nuclear Receptor dataset. In some cases, it

could be reasonable to assume that p-Kresol would be inactive (four records

shows inactive against only one active record). In other cases, such as

methoxypropan-2-ol, it is not possible tell whether the compound was truly

activating the Estrogen nuclear receptor (with one record in every class).

Compounds are compared using their calculated INCHI keys generated from

the SDF representation. All 12 targets showed similar cases.

molecular structures. Figure 1 shows an example of such
duplicates with conflicting experimental measurements. Table 1
shows the number of records per dataset as well as the number of
unique molecules.

Computational Methods
Software Tools
OCHEM (Sushko et al., 2011) offers an interactive web interface
(http://www.ochem.eu) that may be used to explore the data,
construct QSAR models and run predictions. It also offers
the ability to interpret results using prediction-driven matched
molecular pairs (Sushko et al., 2014). Handling large datasets
and thousands of QSAR models is more convenient using
workflow systems such as KNIME (Berthold et al., 2007). For
that, OCHEM exposes a number of methods through SOAP web
services (Using SOAP web-services—OCHEM user’s manual—
eADMET docs)26. These methods allow the user to login, upload
data, create properties, create or delete QSAR models, download
model statistics, and to run predictions on the constructed
models. OCHEM implements an xml format that allows users
to configure the QSAR modeling tasks with regard to all steps
including descriptors calculation, descriptors pre-filtering, and
configuring the machine learning algorithms.

26Using SOAP web-services—OCHEM user’s manual—eADMET docs Available

at: http://docs.ochem.eu/display/MAN/Using+SOAP+web-services [Accessed

January 5, 2015].

Throughout this work, different KNIME (Berthold et al.,
2007) workflows were used to explore the data, initialize the
QSAR model building process on OCHEM and download the
modeling results. All QSAR models were built using OCHEM.
CRAN R (R Core Team, 2015) was used to build consensus
models and analyze models’ performance.

In silico Descriptors Calculation
Ten descriptor packages were selected from OCHEM to be used
for constructing QSAR models. These packages were compiled
from multiple academic and commercial sources. The selected
packages are: GSFrag (Aires-de-Sousa and Gasteiger, 2001),
ISIDA fragments (length 2–4; Varnek et al., 2008), Chemaxon
descriptors (Introduction to Calculator Plugins—Calculator
Plugins—ChemAxon - DOCS)27, Estate indices (Hall et al., 1995;
Huuskonen et al., 2000), and AlogPS (Tetko et al., 2001a,b), CDK
(using all constitutional, topological, geometrical, electronic,
and hybrid descriptors; Steinbeck et al., 2003), Inductive
descriptors (Cherkasov et al., 2008), Dragon 6 (Todeschini and
Consonni, 2009), Adriana.Code (ADRIANA.Code—Calculation
ofMolecular Descriptors |Inspiring Chemical Discovery)28, Mera
and Mesry (Grishina et al., 2002; Potemkin and Grishina, 2008;
Potemkin et al., 2009), QNPR (using SMILES representations—
length 1–3 and a threshold of 5; Thormann et al., 2007). Further
details on these packages and their integration within OCHEM
was reported earlier (Sushko et al., 2011).

The same structure-preprocessing protocol was used prior to
the calculation of any descriptor package utilizing Chemaxon
Standardizer that is integrated within OCHEM workflow. The
standardization workflow consisted of salt counter-ion removal,
charge neutralization and the standardizing of certain chemotype
representations; such as nitro groups and aromatic rings. For 3D
descriptor packages, structural coordinates were optimized using
CORINA (Sadowski et al., 1994) starting from a clean SMILES
representation. Descriptors calculation failed for some chemicals,
the number of failed molecules depends on the nature of the
descriptor package. Reasons for calculation failure could be large
molecular sizes or undefined chemotypes. The Supplementary
Materials (Data Sheet 1) include the count of failedmolecules for
each constructed model.

Machine Learning
The associative neural networks (ASNN; Tetko, 2002a,b)
algorithm was used to construct all models. ASNN is a
multilayered perceptron (Rosenblatt, 1957) neural networks
algorithm that utilizes ensemble learning. As such, it can be
represented by a multilayered graph in which all nodes in a
certain layer are linked to the nodes of the preceding one. The
resulting class membership is the output of a single neuron in
the last layer of the network. ASNN uses a k-Nearest Neighbors
(kNN) approach over the space of ensemble predictions to
accommodate for a local correction for the ensemble of neural

27Introduction to Calculator Plugins—Calculator Plugins—ChemAxon—DOCS

Available at: https://docs.chemaxon.com/display/CALCPLUGS/Introduction+to+

Calculator+Plugins [Accessed January 9, 2015].
28ADRIANA.Code—Calculation of Molecular Descriptors |Inspiring Chemical

Discovery Available at: http://www.molecular-networks.com/products/

adrianacode [Accessed September 28, 2013].
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networks. The kNN distance is based on the correlation between
the vectors of predicted samples by the networks of the ensemble.
All configurations for the algorithm were set to OCHEM defaults
[i.e., three neurons in the hidden layer, 1000 iterations, using
model ensemble size of 64, the method for neural network
training was SuperSAB (Tollenaere, 1990)].

Performance Measures and Validation Protocol
Due to the unbalanced nature of the datasets, balanced accuracy
was used throughout the study, as well as during the challenge,
as the primary measure for comparing models’ performance. It
is important to notice that the challenge did not only account
for the balanced accuracy but also the Area Under the Receiver
Operating Characteristic (AUROC) curve (Hanley and McNeil,
1983).

Bagging (Breiman, 1996) was used to validate the accuracy
of the training set. Bagging is a meta-algorithm that involves
the aggregation of many models, each of which is based on its
own training set (“bag”). Bagging utilizes the random sampling,
with repetition, of many subsets of the training set. In each
bagging meta-model constructed, an ensemble of 64 models was
developed. For each model in the ensemble the training examples
were selected randomly from the original training set allowing
duplicates (i.e., resampling with replacement). The prediction
of each classification was determined by majority voting among
the ensemble members. Stratified bagging (Tetko et al., 2013)
was used as the validation protocol. It also served to handle
the unbalance of the training set (Kotsiantis et al., 2006). In

the current implementation, for each of the 64 models in an
ensemble, equal numbers of active and inactive compounds were
randomly selected. Thus, the size of the training set was always
double the size of the minority class.

The calculation of statistical measures was done only using
the validation set (out of bag compounds). For molecules with
conflicting experimental measurements (see Figure 1), the class
with more experimental measurements (majority vote) was
selected. Molecules that showed an equal number of active and
inactive experimental measurements were excluded.

Consensus Modeling
For each endpoint, consensus models were built using all possible
combinations of the underlying 10 models (each built using
different in silico descriptor package), i.e.,

∑10
i= 1 C

10
i . In total,

12,276 models (1023 × 12 endpoints) were constructed. Simple
averaging of the predictions was used for building each of the
consensus models.

Two approaches for consensus model selection were
investigated in this study. The first approach considers consensus
models that show the highest validated balanced accuracy on the
training set. The second approach considers consensus models
which combine models built with all 10 descriptor packages
regardless of the resulting validation balanced accuracy. Both
approaches performed comparatively well.

Applicability Domain
In this study, a distance-based method was used to estimate the
applicability domain for all models. The distance to model is

FIGURE 2 | Training set balanced accuracies for all 120 models as grouped by their respective endpoints. Red points represent the validated (through

bagging) balanced accuracies calculated on the training set. Blue points represent the balanced accuracy on the evaluation set.
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defined in the property space (rather than the descriptor space;
Tetko et al., 2006). This approach uses the standard deviation
between the predictions of an ensemble of models (generated
through bagging) as a measure of distance.

RESULTS AND DISCUSSION

Individual Models
In total 10 descriptor packages were used to model 12 in vitro
assay endpoints resulting in 120 QSAR models constructed

TABLE 2 | Comparison of the performance of different descriptor

packages in constructing QSAR models for in vitro pathway disruption

prediction.

Descriptors Training Training Evaluation Evaluation

package total score set rank total score set rank

Dragon 6 111 1 86 2

CDK 105 2 98 1

ISIDA Fragments 88 3 65 5

Chemaxon Descriptors 79 4 71 4

ALogPS, OEstate 73 5 79 3

Adriana.Code 55 6.5 55 8

QNPR 55 6.5 45 9

Inductive Descriptors 36 8 57 7

Mera, Mersy 30 9 62 6

GS Fragments 28 10 42 10

with 64-bagging-validation. Different endpoints showed varying
success. Figure 2 shows the balanced accuracy of all 120
models as grouped by their respective targets with respect to
both training and evaluation sets. Other statistical parameters
such as specificity, sensitivity, Matthews’s correlation coefficient
(MCC), and overall accuracy are provided in the Supplementary
Materials (Data Sheet 1). All models are published online and
may be examined through http://www.ochem.eu/mode/[model-
id] replacing [model-id] with the respective model identification
number available in the results tables. Users can see a model’s
summary with performance statistics and applicability domain
graphs as well as apply the model to new compounds.

To compare descriptor packages’ success, each package was
given a score from 1 to 10 according to its rank (a score of 10
was given to the descriptor package contributing to the model
with the highest balanced accuracy and a score of 1 for the
lowest). The scores were summed for all endpoints. The final
rank of descriptors is summarized in Table 2. Dragon and CDK
descriptor packages shared the top positions in both training and
evaluation sets.

As shown in Figure 2, a direct correlation exists between the
validated training and the evaluation sets’ balanced accuracies
with the exception of the nr-ar-lbd endpoint. This can also be
seen by directly plotting the training set against the evaluation
set balanced accuracies as shown in Figure 3.

Table 3 lists the performance of the single descriptor package
models with the highest balanced accuracy for each pathway
endpoint together with their corresponding performance on the

FIGURE 3 | Correlation between training and validation set balanced accuracies for 120 models constructed for 12 endpoints using 10 individual

descriptor packages for each endpoint.
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TABLE 3 | Performance of the single-descriptor-package models with the

highest training set balanced accuracy for each pathway endpoint.

Molecular Descriptors Training Evaluation Wining

pathway package balanced balanced balanced accuracy

endpoint accuracy accuracy (evaluation set)

nr-ahr CDK 0.850 0.836 0.853

nr-ar CDK 0.779 0.768 0.736

nr-ar-lbd CDK 0.834 0.643 0.650

nr-aromatase Dragon 6 0.818 0.699 0.737

nr-er CDK 0.728 0.726 0.749

nr-er-lbd Dragon 6 0.795 0.650 0.715

nr-ppar-gamma Dragon 6 0.776 0.784 0.785

sr-are Dragon 6 0.770 0.704 0.729

sr-atad5 Dragon 6 0.788 0.773 0.741

sr-hse Dragon 6 0.771 0.803 0.799

sr-mmp CDK 0.858 0.888 0.904

sr-p53 ISIDA Fragments 0.781 0.716 0.765

The balanced accuracies of winning models in the data challenge (Tox21 Data Challenge

2014 - Final Leaderboard) are shown for reference. Cases were models perform better

than wining balanced accuracy are underlined. Three significant digits are shown for

comparison. However, the difference in the balanced accuracy in many cases is not

significant to justify some models as being more superior than others. Supplementary

Materials (Data Sheet 1) include the upper and lower boundaries for balanced accuracies

as well as p-values.

final evaluation set. The highest balanced accuracy achieved by
any of the competing teams (measured on the evaluation set)
during the challenge was reported online (Tox21 Data Challenge
2014—Final Leaderboard)29. It is also shown in Table 3 (referred
to as “winning balanced accuracy”) for reference.

Consensus Modeling
Table 4 shows the consensus models with highest validated
balanced accuracy based on the training set for each endpoint
as well as their respective performance on the evaluation set.
For all endpoints, consensus modeling was able to improve the
performance on the training set. In six endpoints, the consensus
models’ predictive ability on the evaluation set would also result
in a better than winning balanced accuracy.

For comparison, Table 5 shows the performance of the
consensus models involving all 10 underlying descriptor
packages for each pathway endpoint. In seven endpoints, the
predictive ability of these models on the evaluation set slightly
exceeded those of the highest validated balanced accuracy
(Table 4).

Descriptor packages differed in their success in representing
the chemical structures. Some descriptor packages failed during
the calculation phase for some of the molecules (e.g., reporting
a chemical structure being too large for calculation). Therefore,
models based on them would be deprived from any information
gain from those failed molecules (i.e., will have a smaller training
set size). AQSARmodel built on such descriptorsmay show good

29Tox21 Data Challenge 2014—Final Leaderboard Available at: https://tripod.nih.

gov/tox21/challenge/leaderboard.jsp [Accessed June 18, 2015].

TABLE 4 | Performance of the consensus models with the highest training

set balanced accuracy for each pathway endpoint.

Molecular Training Evaluation Wining Ids for

pathway set balanced set balanced balanced models used

endpoint accuracy accuracy accuracy in building

(evaluation set) consensus

nr-ahr 0.865 0.859 0.853 512

nr-ar 0.785 0.752 0.736 515

nr-ar-lbd 0.838 0.592 0.650 516

nr-aromatase 0.824 0.715 0.737 513

nr-er 0.736 0.756 0.749 517

nr-er-lbd 0.810 0.726 0.715 518

nr-ppar-gamma 0.802 0.741 0.785 514

sr-are 0.799 0.730 0.729 534

sr-atad5 0.809 0.734 0.741 519

sr-hse 0.794 0.767 0.799 520

sr-mmp 0.882 0.900 0.904 521

sr-p53 0.795 0.783 0.765 522

The balanced accuracies of winning models in the data challenge (Tox21 Data Challenge

2014 - Final Leaderboard) are shown for reference. Cases where models perform better

than wining balanced accuracy are underlined. Three significant digits are shown for

comparison. However, the difference in the balanced accuracy in many cases is not

significant to justify some models as being more superior than others. Supplementary

Materials (Data Sheet 1) include the upper and lower boundaries for balanced accuracies

as well as p-values.

statistics on the smaller training set but fail to perform similarly
for an external evaluation set.

The second approach has the advantage of covering the largest
number of molecules by compensating for the failure of some
packages in descriptors calculation. It can also compensate for
some packages bias by offering a wider range of molecular
representations. However, it might suffer from the disadvantage
of picking noise from descriptor packages with particularly
bad performance. It also involves the highest computational
expense, as applying suchmodels to newmolecules would require
calculation of all descriptors from 10 packages. On the other
hand, the first approach has the advantage of picking fewer
descriptor packages with the highest performance.

DISCUSSION

The combination of the workflow tool (KNIME), the QSAR
modeling platform (OCHEM), and the statistical package
(CRAN R) allowed the creation and analysis of thousands of
models with high efficiency. The use of HTS in vitro assays
to construct QSAR models that are able to predict certain
molecular pathways’ perturbation paves the way toward a
better understanding for the mode of chemical toxicity and
allows for prioritization of testing efforts. This is in line
with the vision of EPA and ECHA for replacing unnecessary
animal toxicity testing, rapidly reducing information gaps,
and achieving higher outcomes with available efforts and
resources.

Due to the time constraint during the challenge, the consensus
models selection for team AMAZIZ was based on expert
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TABLE 5 | Performance of the consensus models involving all 10

descriptor packages for each pathway endpoint.

Molecular Training Evaluation Wining

pathway set balanced set balanced balanced accuracy

endpoint accuracy accuracy (evaluation set)

nr-ahr 0.850 0.858 0.853

nr-ar 0.770 0.754 0.736

nr-ar-lbd 0.824 0.599 0.650

nr-aromatase 0.811 0.760 0.737

nr-er 0.730 0.744 0.749

nr-er-lbd 0.794 0.756 0.715

nr-ppar-gamma 0.779 0.759 0.785

sr-are 0.789 0.707 0.729

sr-atad5 0.786 0.727 0.741

sr-hse 0.766 0.773 0.799

sr-mmp 0.875 0.903 0.904

sr-p53 0.784 0.759 0.765

The balanced accuracies of winning models in the data challenge (Tox21 Data Challenge

2014 - Final Leaderboard) are shown for reference. Cases where models perform better

than wining balanced accuracy are underlined. Three significant digits are shown for

comparison. However, the difference in the balanced accuracy in many cases is not

significant to justify some models as being more superior than others. Supplementary

Materials (Data Sheet 1) include the upper and lower boundaries for balanced accuracies

as well as p-values.

knowledge including the criteria discussed in this study, namely
the performance of the model with regard to their balanced
accuracy and to a lesser extent the AUROC, preference to
descriptor packages, which show more success in representing
a larger size of the training set and the simplicity of the
underlying descriptor packages (e.g., 2D descriptors are simpler
in calculation than 3D descriptors, as they do not need 3D
optimization). Table 6 shows the models that were used for the
final submission of team AMAZIZ in the challenge. All models
can be accessed through their identification numbers for further
analysis and to run predictions on new compounds. This study
represents a systemic approach to consensus models selection as
well as a deeper analysis beyond the challenge.

The Androgen receptor GeneBLAzer AR-UAS-bla-GripTite
cell line endpoint showed exceptional difficulty in modeling.
Big discrimination exists between validated performance on the
training set and the prediction ability on the evaluation set.
Indeed, the endpoint has the lowest success in modeling in
the challenge with the winning model being able to achieve
a balanced accuracy of only 65% only (the lowest among all
endpoints).

Further investigation of the models constructed for this
endpoint shows multiple models that would have been able to
achieve a higher predictive ability on the evaluation set (0.75–
0.80) as shown in Figure 4. However, such models did not
show the highest validated balanced accuracy and were thus
not selected. The lack of direct correlation between validated
balanced accuracy and predictive ability on the evaluation set
(Figure 3) can be attributed to the statistical variation in the
prediction performance of models for these sets and may also
suggest that the split of the whole cluster of chemicals into

TABLE 6 | Models used for the final submission by team AMAZIZ during

the Tox21 challenge.

Molecular pathway endpoint Ids for models used in building consensus

nr-ahr 523

nr-ar 524

nr-ar-lbd 525

nr-aromatase 351

nr-er 526

nr-er-lbd 527

nr-ppar-gamma 528

sr-are 533

sr-atad5 529

sr-hse 530

sr-mmp 531

sr-p53 532

Consensus models involving all 10 descriptor packages (sr-are and sr-mmp) failed for the

calculation of 23 molecules of the evaluation set and were replaced by simpler models,

based on the consensus of three models only, predicting these molecules.

training and evaluation sets may not have been completely
random.

Although the alternative approaches for animal testing are
highly encouraged, their proper use, and validity must be
ensured. For QSAR model building, five OECD principles were
established in 2004 (Directorate et al., 2007; OECD Quantitative
Structure-Activity Relationships Project [(Q)SARs])30. The
OECD principles were taken into consideration during the
development of all QSAR models in this study as following:

− The first OECD principle is to have a defined endpoint to
ensure the transparency in any physicochemical, biological, or
environmental effect that a QSAR model is trying to assess. In
this Tox21 challenge, 12 biological targets were well-defined
by groups working on the experimental HTS part of the
project - for assessment as listed in Table 1.

− The second principle is having an unambiguous algorithm.
The “algorithm” refers to the form of relationship between
the descriptors of chemical structure and the endpoint
in the QSAR model. This can be mathematical/statistical
methods or rule-based models defined by experts. Presenting
a clear description of the algorithm ensures transparency
and allows others to reproduce the model and explain how
predictions are generated. In this study, all algorithms used for
machine learning, descriptor packages, prefiltering criteria,
validation as well as the chemical standardization procedures
are described and can be reproduced using the online platform
OCHEM. Indeed the process of building high quality QSAR
models is tedious and complex. However, by documenting
all steps, it is reproducible. Furthermore, by publishing all
final models online, the scientific community has continuous
access to perform predictions on the constructed QSAR
models without a need to reproduce them.

30OECD Quantitative Structure-Activity Relationships Project

[(Q)SARs] Available at: http://www.oecd.org/chemicalsafety/testing/

oecdquantitativestructure-activityrelationshipsprojectqsars.htm [Accessed

June 23, 2015].
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FIGURE 4 | Each sub-figure shows the performance of 1023 consensus models constructed for a single endpoint with x-axis representing the

validated balanced accuracy on the training set and y-axis shows the balanced accuracy on the evaluation set. A positive trend line can be noticed with all

endpoints except nr-ar-lbd.

− The third principle, defining domain of applicability, QSAR
models are expected to give reliable predictions only for
chemicals that are similar to the ones used in the model’s
training process. In this study, quantitative assessment of the
model’s confidence in prediction was estimated for all models.
This reports the degree of similarity between the compound
to be predicted and the model’s training set (Sushko, 2011;
Sahigara et al., 2012).

− The fourth principle is having appropriate measures of
goodness-of-fit, robustness, and predictivity. This principle
highlights the need for statistical validation of QSAR models
in order to judge models’ performance. Such performance
validation can be either internal or external. In this
study, bootstrap aggregation was used to estimate validation
accuracy for the training set. The main statistical parameter

applied for comparing all models was balanced accuracy.
Performance of all models was also verified against an external
test set.

− The fifth and last principle is having a mechanistic
interpretation, if possible. The “if possible” phrase shows
that the mechanistic interpretation is not mandatory for
model acceptance by regulators. Sometimes, the iterative
model building process and the involvement of data-mining
techniques increase the complexity of the developed QSAR
models through multiple training set refinements rendering
the mechanistic interpretation hard to directly establish. A
different approach for interpretation of complex models using
matched molecular pairs was previously suggested (Sushko
et al., 2014). All models in this study can be examined using
this approach on the OCHEM platform.
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The ultimate goal of QSAR models in predictive toxicology,
ordinarily, is to forecast an adverse outcome rather than
protein binding. In this sense, QSAR prediction of molecular
pathways’ perturbation is, in itself, an attempt to mechanistically
understand toxicological risks. In the context of adverse outcome
pathways (AOP), such perturbations are considered as molecular
initiating events (MIE), or key events (KE) leading to certain
adverse outcome. Such KEs are connected through key event
relationships (KERs) to form the network of multiple AOPs.
These AOPs form the functional prediction component for real-
life circumstances (Villeneuve et al., 2014). In a joint effort
between the European Commission—DG Joint Research Centre
(JRC) and U.S. EPA, an AOP wiki is being developed. Among
its goals is the accommodation of the worldwide efforts for AOP
development. The wiki is one of the components of the OECD-
sponsored AOP Knowledgebase. The investigated molecular
pathways have been suggested to play a role in many adverse
outcomes. A comprehensive analysis of the biological impact of
the perturbation of these pathways is beyond the scope of this
article.

CONCLUSIONS

Using QSAR for modeling the outcome of in vitro toxicity assays
(representing different molecular pathways) showed promising
success with balanced accuracies reaching up to more than 85%
for several endpoints as shown in Table 4. The relatively high
balanced accuracies among models confirmed the possibility
of modeling HTS results from in vitro assays using in silico
descriptors as reported in earlier studies (Abdelaziz et al., 2015).

Bagging validation provided a good indication for the models’
predictive ability on external validation sets (Figure 3). Stratified
bagging addressed the unbalanced nature of the training set and
reduced bias toward the majority class. The stratified bagging
contributed models, which were optimized toward the balanced
accuracy. Moreover, the selection of consensus models also used
balanced accuracy as the optimization criteria. This is one of
the reasons why models developed in this study calculated the
best balanced accuracy across all 12 analyzed targets and did not
get the highest AUROC scores, which were used by competition
organizers to rank the models. However, despite this, the used
strategy allowed to calculate the highest AUROC scores for two
targets. It is also important to realize that, due to the model
prediction variances, selecting a model with the highest validated
accuracy does not guarantee the highest predictive ability for an
evaluation set.

Consensus modeling improved the predictive ability of
models as signified by both validation and evaluation set
accuracies. To a large degree this result was achieved thanks to

the diversity of descriptor packages, which captured different
aspects of the molecular structures. Use of different descriptors
also compensated for failure of some descriptors to represent
certain structures and thus covering the entire training set.

In summary, a computational methodology used to develop
QSAR models was described. This methodology achieved the
highest balanced accuracy for all of the Tox21 Data Challenge
organized by the NIH. A similar strategy of consensus modeling

was also successful to develop Rank-1 model for another Tox21
Challenge organized by the EPA and TopCoder (Novoratskyi
et al., under review). Moreover, the developed models are made
publicly available at http://ochem.eu/article/98009 thus allowing
other researchers to use them for prospective and retrospective
analyses.
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