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ABSTRACT 
We report predictive models of acute oral systemic toxicity represent- 
ing a follow-up of our previous work in the framework of the NICEATM 
project. It includes the update of original models through the addition 
of new data and an external validation of the models using a dataset 
relevant for the chemical industry context. A regression model for LD50 
and multi-class classification model for toxicity classes according to the 
Global Harmonized System categories were prepared. ISIDA descrip- 
tors were used to encode molecular structures. Machine learning algo- 
rithms included support vector machine (SVM), random forest (RF) and 
naïve Bayesian. Selected individual models were combined in consen- 
sus. The different datasets were compared using the generative topo- 
graphic mapping approach. It appeared that the NICEATM datasets 
were lacking some relevant chemotypes for chemical industry. The 
new models trained on enlarged data sets have applicability domains 
(AD) sufficiently large to accommodate industrial  compounds.  The 
fraction of compounds inside the models’ AD increased from 58% 
(NICEATM model) to 94% (new model). The increase of training sets 
improved models’ prediction performance: RMSE  values decreased 
from 0.56 to 0.47 and balanced accuracies increased from 0.69 to 0.71 
for NICEATM and new models, respectively. 
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Introduction 

 
The estimation of the acute oral toxicity is a mandatory requirement under the Registration, 
Evaluation, Authorization  and Restriction of Chemicals (REACH, EC No. 1907/2006) legislation 
for substances manufactured or imported in quantities of 1 ton or more per year [1]. In most 
cases,  this information is  generated by  performing an animal test according to  the 
Organisation for Economic Co-operation and Development (OECD) guidelines.  Until 2002, 
the reference guideline was OECD 401, however it was abolished for animal welfare reasons. 
Nowadays, more advanced guidelines are available which demand much less testing on 
animals and are likely to produce more reliable results [2]. Currently used guidelines are: 
OECD 420 (fixed dose procedure),  OECD 423 (acute toxic class method),  OECD 425 (up and 
down procedure) [3]. These guidelines are designed to classify the substances according to the 
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Global Harmonized System (GHS) categories  and LD50 values are only roughly estimated, at 
best. 

To reduce animal testing, REACH encourages the use of non-testing methodologies, such 
as weight of evidence approaches, read across and QSAR modelling. In the past years, 
several QSAR models  have already been developed to predict Acute Oral toxicity [4–7]. 
Some models are nowadays implemented  in both commercial and free software (Table 1). 

By the beginning of 2018, the National Toxicology Programme Interagency Centre for the 
Evaluation of Alternative Toxicological Methods (NICEATM) [8], as part of the effort to support 
the use of alternative methods, organized a worldwide workgroup to develop in silico models 
of acute oral toxicity. In particular, five relevant endpoints needed by regulatory agencies were 
targeted. These endpoints included (i) identification of ‘very toxic’ chemicals (LD50 less than 
50 mg/kg) and (ii) ‘non-toxic’ chemicals (LD50 greater than or equal to 2000 mg/kg), (iii) point 
estimates for LD50s,  (iv) categorization of toxicity hazard using the U.S.  Environmental 
Protection  Agency (EPA)  [9] and (v) the GHS  [10] classification  schemes. The NICEATM 
collected rat oral LD50 data on over 15,000 substances  from different publicly available 
databases and resources. The curated dataset was split into training and validation set. In 
the first stage, only the former was provided to the participants. The validation  set was later 
used to externally validate the submitted models. The committee evaluated each model 
qualitatively with respect to the OECD  principles  [11] and quantitatively based on the 
predictive performance against the test set. Models were then employed to screen a large 
prediction set of ≈40 k chemicals of interest to different agencies and finally were also 
included into a consensus model, which leverages the strengths and compensate for the 
weaknesses of each individual approach [12]. More information about data preparation can 
be found on the workgroup website [8] and described by Ballabio et al. [13]. 

As participants, we submitted a regression model for LD50 estimation. In this manu- 
script we present our modelling approach and a continuation of our work, including: 

 
(1) Generation of a new multi-classification model based on GHS categories; 
(2) Collection of additional acute oral toxicity data from several sources to extend the 

model’s training set; 
(3) External validation against a dataset relevant for the context of the chemical 

industry (hereafter named ‘Industrial  set’), provided by Solvay. 
 

Finally, all public data was merged to constitute a ‘Global set’ (counting 11981 com- 
pounds) and models were updated. To the best of our knowledge, this is the largest 
reported dataset used for the development of QSARs predicting acute toxicity (Table 1). 

 
 
 
 

Table 1. Tools for acute oral LD50 estimation. 
Model         Tr. size                          Employed  descriptors                                                     Algorithm                       Ref. 
TESTF                            7420    Chemistry Development Kit (CDK) [15]          Consensus on five methods                   [16] 
ADMETC                  7150    2D, 3D molecular  descriptors                      Artificial neural network                         [17] 
ACD/LabsC          8631    Expert knowledge and structural descriptors Expert knowledge and classification-SAR  [18] 
TerraBaseC      ≈ 10000 Molecular structure descriptors                   Probabilistic Neural Network                  [19] 
AccelrysC           ≈ 4000  Molecular structure descriptors                   Consensus on several models                [20] 

F = freely available; C = commercial 
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Our models are available through the online ISIDA/Predictor platform [14], available 
at the Laboratory of Chemoinformatics webpage: http://infochim.u-strasbg.fr/cgi-bin/ 
predictor.cgi. 

 
 
Methods 

 
Modelling workflow 

 
A graphical representation of the general workflow is shown in Figure 1; its main steps 
will be detailed in the present chapter. 

 

 
 

Data collection 
 

Curated experimental data was  distributed by the NICEATM  workgroup. The original 
continuous  LD50 training and validation set counted respectively 6734 and 2174 com- 
pounds; analogously, for GHS classes 8960 and 2885 compounds were available. Additional 
oral rat LD50 data was collected from the database of the European Chemicals Agency 
(ECHA) through the eChem portal [21], the relevant databases from the QSAR Toolbox 
software  (SI, Section 1) [22] and the Toxicity Estimation Software Tool (TEST) training set 
[16]. Furthermore, a dataset on LD50 (Industrial set) was provided by the industrial partner 
Solvay. This naming has been chosen in order to underline the existing structural differ- 
ences between the compounds coming from an industrial context, which may represent 
new trends in large-scale production, from those available in public databases. To support 

 
 

 
 

Figure 1. General workflow.   (1)  data is  collected  from different sources; (2) ISIDA descriptors 
encoding;  (3) GTM is employed  to compare the structural  space of the datasets; (4), (5) individual 
models are trained and combined in consensus; (6) the Industrial  set is used for external validation 
(7) the ‘Global set’ is issued by the merging of all public data and (8) models are updated; (9) models 
are published on the online platform. 
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this statement, collected databases  were analysed through GTM (results  section) and 
pairwise comparison of the Tanimoto similarities (SI, Section 2). Both approaches high- 
lighted structural differences between their chemical spaces and the presence of unique 
chemotypes. Finally, an additional dataset of 462 compounds, not overlapping with the 
collected data, was provided by Solvay afterwards. This dataset (Blind set) was thus used to 
externally validate the last model version built on all collected data (public + industrial). 

All collected public data (i.e. a total of 13682 unique compounds after the curation 
procedure) is available on Zenodo (DOI 10.5281/zenodo.3300664)  with the respective 
LD50 and/or GHS property; the industrial compounds cannot be provided due to con- 
fidentiality reasons. 

 

 
 

Data curation and standardization 
 

To avoid additional sources of variability, data was limited to rat-only assays. Mixtures, 
polymers and UVCBs (Unknown or Variable composition, Complex reaction products or 
Biological materials) were discarded. Chemical standardization included: removal of 
salts/solvents,  neutralization, removal of explicit hydrogens, aromatic representation 
for benzene rings, removal of stereo information, standardization of -nitro and -sulpho 
containing groups. This step was performed with a standardization workflow implemen- 
ted in the Konstanz Information Miner (KNIME)  [23]. In case of duplicates only one 
structure was kept and their LD50 median value was selected (computed according to 
norm ISO16269-7). Multiple LD50 values available the same compound were used to 
estimate the experimental error of the measurements. For each compound with at least 
2 data points, a LD50 range (maximum – minimum over reported values) was calculated, 
and the average of these range widths over concerned compounds was interpreted as 
the experimental error. GHS classes [10] were assigned based on the continuous LD50 

value, using the following thresholds (in mg/kg): ≤5, class 1; >5 and ≤50, class 2; >50 and 
≤300, class 3; >300 and ≤2000, class 4; >2000,  class 5. In order to maintain the same 
NICEATM classification  system, the GHS ‘not classified’ category  (i.e. > 5000 mg/kg) and 
GHS Category  5 (i.e. > 2000 mg/kg) were merged together in one unique class. For the 
regression model, LD50 values originally expressed in mg/kg body weight were trans- 
formed to the inverse log of the molar dose (pLD50 in mmol/kg body weight). 

 
 

Encoding of chemical structures 
 

ISIDA property-label molecular descriptors [24] were employed. This led to the generation 
of dozens of different descriptor spaces which corresponds to different fragment sizes, 
topologies and encoded chemical information, called ‘colouration’ (elements labels, phy- 
sical properties mapped on the atoms explicit or implicit chemical bonds, atom pairs). The 
number of fragments of the given descriptor space depends on selected fragmentation 
scheme. It varied from 387 (IIAB(2–2), atom centred fragments with radius 1) to 31623 (IIAB 
(2–5), atom centred fragments with radius 5), with an average of 7974 (SI, section 1). 
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Generative topographic mapping 
 

The chemical space of the collected databases was compared by means of the GTM 
approach [25], a dimensionality reduction method allowing the visualization of data 
distribution on a 2-dimensional map. A data property can be added as a 3rd axis forming 
such called activity landscape. Each landscape ‘spot’ on the 2D map is coloured accord- 
ing to the property value (either continuous or categorical); this value is the average 
property of the data subset concerned by that position on the landscape [26–28]. Two 
types of analysis were carried out: (i) the NICEATM dataset set was pairwise compared 
with the other databases  (i.e. QSAR Toolbox,  TEST, etc.);  (ii) a map was generated on the 
Global set and the LD50 value was used as property landscape. For the former, the goal 
was to identify which chemotypes were unique to the industrial context and under- 
represented in public available data. For the latter, the goal was to visualize how toxic 
and non-toxic compounds are distributed in the chemical space. The ISIDA descriptor 
space IIB(2–2) [24] associated to the best support vector machine  (SVM) model (in terms 
of balanced accuracy) was chosen. These descriptors are based on molecular fragments 
consisting in an atom and information on the corresponding chemical bonds. The 
manifold [21] was built on the whole available chemical space (i.e. the Global set). 

 

 
 

Model generation 
 

Employed machine learning approaches  included: SVM with  linear and radial basis 
function kernels, random forest (RF) and multinomial naïve Bayesian (NB). SVM models 
were generated with libSVM (v. 3.22) [29]; WEKA (v. 3.9.3) [30] was used for RF and for NB 
models. The SVM parameters  (Cost and Gamma) corresponding to minimal RMSE  in 
3-fold CV were found by genetic algorithm driven optimization. The RMSE was estimated 
using a dedicated 3-fold CV,  isolated from  the cross-validation  procedure used to 
evaluate the final models, mentioned below. Concerning RF,  default parameters of 
WEKA were selected, with the number of generated trees equal to 100. No strategy 
was used to compensate the class imbalance  in the dataset. 

The modelling workflow is depicted in Figure 2: (1) dozens of ISIDA descriptor  spaces 
(DSs) were generated (different fragment sizes and topologies); (2) for each DS, SVM and RF 
models were trained (individual models); (3) individual models were ranked according to 
their root mean squared error (RMSE) in 3-fold CV; (4) the best performing individual model 

 
 
 

 
 

Figure 2. Model generation workflow. 
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for the given DS was retained;  (5) models are internally and externally validated. Internal 
validation was carried out by random splitting 3-fold CV. This procedure  was repeated  5 
times after reshuffling (i.e. the property for each molecule is predicted 5 times). The Model 
quality criteria  (see Figure 2) were assessed for each repetition followed by their averaging. 
During CV no further optimization of SVM parameters  was performed. The absence of 
chance correlation was checked through the Y-scrambling procedure (repeated 100 times). 

The Industrial set was used in external validation. In addition, it was predicted by the 
model TEST (Table  1). To evaluate the performance of regression models, the r2 deter- 
mination coefficient and the RMSE parameters are reported. For multi-class classification 
models, the sensitivity  (Sn), specificity  (Sp) and balanced accuracy (BA) are instead used. 
Dealing with multi-classes, the overall values for Sn, Sp and BA were computed as the 
weighted average among the classes based on the number of instances of the given 
class, following the same approach implemented in WEKA (v. 3.9.3) [30]. 

The following terminology is adopted: 
 

●  ‘NICEATM original’:  the regression LD50 model generated for the workgroup. Its 
training set is based solely on the NICEATM training set. 

●  ‘NICEATM  full’:  regression and multi-class classification models generated on all 
NICEATM data (i.e. training plus validation set). 

●  ‘Global’:  regression and classification models generated on  all collected data, 
externally validated on the Industrial set. 

 

 
 

Applicability domain 
 

The applicability domain was evaluated trough the so-called ‘fragment control’ assess- 
ment  (Figure 3,  step 2): if  a test molecule is found  to  have one fragment (i.e. 
a determined sequence of atoms and/or bonds) which is not present in the individual 
model, that molecule is marked to  be outside the applicability domain since it  is 
uncertain whether the model’s predictions can be extrapolated to this not yet chartered 
chemical space zone [24]. 

 

 
 

Consensus modelling 
 

To derive the consensus decision, the following strategy was implemented (Figure 3). The 
ensemble decision is taken either by computing the median (regression model) or by 
a majority vote (classification model) from the individual models of the different algorithms 
considered together (step 1). All out-of-AD predictions (based on the fragment control) are 
excluded (step 2) and the consensus is computed (step 3). Finally, a 4-grade reliability scale 
is associated to the output (step 4), based on a combined score of (i) the concordance of 
the predictions and (ii) the % of individual models,  out of the total,  for which the 
compound was inside the AD. The former  was estimated  by the median absolute deviation 
for regression models or the entropy value for classification models (SI, section  2). 
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Figure 3. Consensus model  workflow.  Step 1: predictions  for each algorithm  (SVM, RF and NB) are 
merged  together;  Step 2 & 3: the consensus  is the average of the predictions, excluding those 
models identifying  the compound   as out of applicability  domain;  Step 4: reliability  assessment is 
associated to the output. 

 
 

Graphical interpretation  of predictions: coloratom 
 

ISIDA ColorAtom [14] analyses local gradients of descriptors as reflecting their contributions 
to the variation of the modelled property [31]. A colour is assigned to each atom of the 
predicted molecule reflecting its positive or negative increment to the modelled property. 
This is a graphical representation of how the model interpreted the molecule for calculating 
the predicted value, not a mechanistic statement of the role played by each atom. 

 
 
Results 

 
Curated datasets 

 
Table 2 reports summary statistics of the collected datasets; Figure 4 shows the dis- 
tribution in the five GHS classes (SI, Section  2). The distribution pattern is the same for 
NICEATM, QSAR Toolbox and TEST datasets,  for which the most populated class is the 
GHS class 4; on the other hand, for ECHA and the Industrial set the GHS class 5 is the 
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Table 2. Statistics of the curated datasets. 
Numerical pLD50  statistics GHS class repartition 

 

Curated datasets Total no. Min Max Mean 1 2 3 4 5 
NICEATMa

 10863 −2.71 4.6 −0.48 180 650 1395 3359 2643 
QSAR Toolbox 10531 −3.34 4.21 −0.53 276 760 1628 3987 3880 
TEST 7315 −2.71 4.21 −0.45 237 661 1250 2819 2348 
ECHA 1717 −2.79 2.42 −0.97 4 20 131 694 868 
Industrial set 1563 −4.57 1.31 −0.95 1 9 121 437 995 
Blind set 462 −2.31 0.89 0.58 0 0 16 96 211 
Global setb 11981 −4.57 4.21 −0.54 317 851 1773 4350 4690 

adataset used to build the ‘NICEATM full’ model; bdataset used to build the ‘Global model’. The Global setb was issued 
by merging of the whole public data. 

 
 

 
 

Figure 4. Class frequency distribution for the classification model. 
 

most abundant. The experimental variability, when multiple values for the same com- 
pound were available, was calculated to be 0.40 log unit. 

 
 

Database comparison by GTM 
 

Once the molecules are projected, landscapes are generated according to the envisaged 
property, and colours are assigned to the nodes of the map. In this context, two different 
landscapes  were used: (i) the compound’s  database affiliation (i.e. NICEATM,  QSAR 
Toolbox, etc.) and (ii) the LD50 value. 

 
Database affiliation maps 
With this analysis,  the NICEATM  was pairwise compared against all the remaining 
datasets. The goal was to verify if its set of compounds was sufficiently diverse to 
cover most of the chemical space, especially when confronted to the industrial context 
(i.e. the REACH registration dossiers on the ECHA database  and the data provided by 
Solvay). Figure 5 shows all the pairwise comparison.  Red areas are uniquely populated 
by the  NICEATM  dataset and blue by the  others; intermediate colours are mixed 
populated areas. As visible from the first and the second landscape, NICEATM is almost 
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Figure 5. GTM database  comparison.  Each map compares the NICEATM vs. the other dataset: (a) 
QSAR Toolbox,  (b) TEST, (c) ECHA and  (d) Industrial  set. Red regions are mainly  populated  by the 
NICEATM compounds and blue ones by the dataset it is compared to. White areas are empty regions 
of the map. 

 
 

completely overlapping with QSAR Toolbox and TEST datasets. Some exceptions are two 
areas marked by the black rectangles  ‘A’, indicative of some chemotypes under-sampled 
in the NICEATM dataset. For example, molecules with methylxanthine (CAS 81250-17-1; 
66172-75-6) or imidazothiazole (CAS 102410-20-8;  102410-31-1)  as substructures   are 
almost unique to the QSAR Toolbox  and TEST datasets. 

For the third and fourth landscape, the situation is quite different: even though the 
chemical  space is mainly dominated by NICEATM compounds (since its size is almost 
four times ECHA and the Industrial dataset), there are several spots dominated by ECHA 
or Industrial compounds  (black rectangles ‘B’). Interestingly,  these areas are localized on 
a similar  X, Y position of the map, suggesting that the NICEATM dataset is missing some 
chemotypes which are, however, shared between the Industrial set and ECHA.  To 
provide few examples,  the chemotype containing a sequence of Halogen-Silicium- 
Halogen atoms (e.g. CAS  5283-66-9) and  long  aliphatic  chains terminating  with 
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Figure 6. ‘Global map’ for LD50.  The map is built by merging all the available sources of data. Very 
toxic compounds are identified by red zones while less toxic compounds by blue ones. 

 
 

a positively charged nitrogen-containing functional group (e.g. CAS 15416-74-7)   are 
unknown or under-sampled to the other databases. 

 
 

LD50 property map 
Figure 5 reports the Global map coloured according to the LD50 value. There are several 
spots of very highly toxic chemicals (indicated by black rectangles). For example, the area 
delimited by rectangle ‘A’ is populated by members of the dioxine and furane family (such 
as TCDD and TCDF); while in the area of the rectangle ‘B’ there is a collection of chemicals 
with the benzimidazole  as substructure (e.g. CAS 89427-34-9) (Figure 6). 

 
 

Table 3. Model performances.  
Internal validation (3-fold CV)a External validation 

Regression Model r2 RMSE r2 Y-scrb RMSE Data  coverage  (%)b
 

 

NICEATM original 0.79 (0.050) 0.55 (0.051) 0.13 0.56 58 (287/479) 
NICEATM full 0.77 (0.045) 0.56 (0.053) 0.15 0.51 87 (205/235) 
Global model 0.78 (0.047) 0.55 (0.055) 0.12 0.47 94 (186/197) 
TEST c

 – – – 0.61 90 (293/322) 
Internal validation (3-fold CV)a External validation 

 

Classification  Model BA BA Y-scrb  BA Sn Sp Data  coverage  (%)b 
 

NICEATM full 0.70 (0.031) 0.30 0.69 0.74 0.63 82 (669/811) 
Global model 0.70 (0.029) 0.32 0.72 0.76 0.69 85 (635/744) 

Regression LD50   model (upper part) and classification  model (bottom part). aIn brackets,  the standard  deviation 
computed in the 3-fold CV is  reported   for the r2  and RMSE values  averaged  over the number of repetitions. 
External validation  is based on the Industrial  set. BA = balanced  accuracy, Sn = sensitivity,  Sp = specificity. bThe 
first number is the data coverage in %; the number between the parentheses is a ratio of the number of compounds 
inside AD and the total number of compounds. cresults from the TEST model. 
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RMSE Data coverage (%)  Sn Sp BA Data coverage (%) 
0.48 92 (207/224)  0.77 0.97 0.87 93 (303/323) 

 

 
Table 4. Performance of selected machine learning methods.  

 
External validation 

Regression Method RMSE Data coverage (%) 
Random forest 0.47 94 
SVM linear kernel 0.51 82 
SVM  RBF kernel 0.50 97 
Global model 0.47 94 

External validation 
 

Classification  Method BA Sn Sp Data coverage (%) 
 

Random forest 0.74 0.82 0.66 81 
SVM linear kernel 0.69 0.81 0.56 87 
SVM  RBF kernel 0.73 0.81 0.66 85 
Naïve Bayesian 0.64 0.60 0.68 80 
Global model 0.72 0.76 0.69 85 

Regression LD50  model (upper part) and classification model (bottom part). External validation is based on the Industrial 
set. BA = balanced  accuracy, Sn = sensitivity,  Sp = specificity. 

 
 

Model performances 
 

Table 3 reports performances of the generated models: regression LD50 model (top) and 
classification model (bottom). In addition, the  performances of  the  TEST  tool  are 
reported for LD50.  Individual machine learning algorithms performances are reported 
in Table 4. Overall, all the models scored a good prediction accuracy on the Industrial 
set, with RMSE values  ranging from 0.47 to 0.56 and BA values from 0.69 to 0.72. TEST 
showed a good data coverage, being able to predict the 90% of the Industrial set. 
However, its prediction accuracy is worse (0.61 RMSE).  The addition of new data is 
directly correlated to both an increase of prediction accuracy and data coverage. The 
latter increased from 58% for the NICEATM original model to 94% for the Global model 
(regression) and from 82 to 85% (classification models). This reflects that the NICEATM 
data are more comprehensive regarding GHS data. The contamination of models by 
chance correlations is limited as monitored by Y-scrambling: the maximum observed r2 

and BA metrics had very low values (r2 < 0.2 and BA <0.5). Overall, all the models are 
robust and well generalizable: performances in external validation are comparable to 
those in cross-validation and the data coverage reaches very high levels. 

 
 

Performances on blind set 
Finally, the last version of the model (built on all collected data, i.e. public + industrial) 
was challenged to predict a new list of 462 unique compounds made available after- 
wards. Of them, 224 had a precise estimation of LD50; while 347 had only the categorical 
statement.  Thus, both the regression and classification models were used. 

For confidentiality reasons, this dataset cannot be disclosed, and only some general 
information can be provided. It comprises quite heterogeneous chemical structures, 

 
 

Table 5. Performances of public and industrial data ensemble models on the blind set. 
Regression Classification 

Blind set r2
 

0.3 
BA = balanced  accuracy, Sn = sensitivity,  Sp = specificity. 
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from high molecular weight compounds such as long chain aliphatic surfactants and 
halogenated biphenyls to  much smaller ones such as  phenol derivates and simple 
amides. A good number of compounds are organofluorine derivatives. The molecular 
weight ranges from 41 to 1094 with an experimental pLD50 from −2.31 to 0.89 log unit. 
This dataset is mainly ‘non-toxic’, as almost 60% of the compounds are not classified 
under the GHS system  (i.e. LD50 > 2000 mg/kg). 

Performances for the regression model are similar to the previous external validation 
(RMSEblind  = 0.48 vs. RMSEext  = 0.47; Tables 3 and 5). In both instances, the prediction 
accuracy is better than the one estimated through cross-validation (RMSEcv  = 0.55). On 
the other hand, the classification model performed better (BAblind = 0.87 vs. BAext = 0.72, 
Tables 3 and 5). This is probably due to the unbalanced nature of the Blind set, as the 
majority of the compounds belong to GHS class 5. 

The Blind set r2  value may appear disappointing at first sight. However, it must be 
noticed that its pLD50 property range is considerably smaller than the Global model’s 
one (−4.57–4.21).  Figure 7 depicts experimental/predicted scatterplot of the Global 
model’s training set (evaluated in 3-fold CV) overlapped with the Blind set. As expected, 
the Blind set covers only a fraction of the entire property range: this explains the low 
determination coefficient value. 

 
 
 
 
 

 
 

Figure 7. Blind set scatterplot. Grey points represent the training set evaluated in 3-fold  CV; red and 
blue points indicate Blind set molecules outside and inside the AD, respectively. Blue dashed lines 
mark the ± 2 RMSEcv. limits. 
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Table 6. ColorAtom output. 
 

Diphenylphosphinyl  azide Chloropromurite TCDD 
CAS 4129-17-3 
LD50  = 240 mg/Kg 

CAS 5836-73-7 
LD50  = 1.0 mg/Kg 

CAS 1746-01-6 
LD50  = 0.02 mg/kg 

 
 
 
 

Colours refer to atomic contribution to the predicted value of the property  (i.e. pLD50  values). Red 
colour means that the atom contributes to decrease its value (lowering the toxicity); while blue 
means an increase of its value (i.e. increasing the toxicity). 

 
 

Model interpretation  with coloratom 
 

For in-depth structure-activity dependence analysis, Table 6 reports three molecules 
chosen as examples for the ColorAtom: diphenylphosphinyl  azide, chloropromurite and 
TCDD.  As expected, as  the compounds become more toxic, ‘blue-coloured’ atoms 
become dominant. For the first compound, the ‘triazo-’ substructure is the main driver 
for its correct prediction as  an acute toxic. Similarly, chloropromurite presents two 
functional groups which are associated with enhanced toxicity: the ‘diazo’ (CNN) and 
the ‘thiocyanate’ (SCN). Finally,  all the atoms of TCDD are represented  as promoters of 
toxicity. In these cases,  the colouration patterns are actually in agreement with the 
mechanistical interpretation of the analysed functional groups [32,33].  SI,  Section 3 
reports additional examples of  compounds with  the  same functional groups that 
showed the same colouration scheme. 

 
 
Discussion 

 
Among the QSAR tools for the estimation of the oral rat acute toxicity reported in Table 1, 
only one is freely available (TEST). The collaborative NICEATM workshop aimed at filling this 
gap, by proposing a set of new models which will be freely available [12], implemented in 
the open source platform OPERA [34]. On the Industrial set, the predictive power of the 
models (regression and classification) was found to be reasonably high, with RMSE values of 
0.47–0.56 and BA values of 0.69–0.71 (5 five classes) for the NICEATM and the Global models, 
respectively. Data coverage was quite unsatisfactory with the original NICEATM model  (58% 
on the Industrial set), but after the addition of new data from several databases (QSAR 
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Toolbox, TEST, ECHA)  it significantly improved: reaching 85 and 94% for the classification 
and the regression model, respectively. New data improved models’ predictive power as 
well, with the biggest improvement for the regression model, where the RMSE decreased 
from 0.56 to 0.47. Finally,  new models were built on the ensemble of public data and 
Industrial data. Cross-validation performances for the regression model were r2 = 0.78 and 
RMSE = 0.53; while for the classification model BA = 0.69. These models were also externally 
validated on the Blind set (Table 5), showing good prediction accuracy and data coverage: 
RMSE  = 0.47 with  92% inside AD (regression);  and BA = 0.87 with  93% inside AD 
(classification). 

GTM was employed to show positions of 109 ‘out-of-AD’ compounds (Table 3, bottom part) 
in the public data chemical space, which constitutes the training  sets of the models (Figure 8). 
As expected, the majority of them are located in the regions mainly populated by external set 
compounds (blue areas),  indicating that their chemotypes are quite unique and non- 
overlapping with those in the models’ training sets. For example, compound CAS 34762-90- 
8 presents the unique chemotype – N+BCl3. Some compounds are singletons far away from the 
occupied chemical space, such as CAS 24108–89,  a pigment characterized by a very complex 
and diverse chemical structure. On the other hand, there are some out-of-AD compounds 
projected in areas of the public data chemical space. This happens when the given molecule 
both shares several functional groups with the training set compound and contains new 
chemotype. For example, drometrizole trisiloxane (CAS 155633-54-8),   contains trisiloxane 

 
 
 

 
 

Figure 8. Tracking the out-of-AD compounds in the chemical space. Zones populated  by the training 
set and Industrial set compounds are highlighted  in colour. Black points represent the projections of 
109 out of AD compounds. 
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Figure 9. Venn diagrams comparing  individual  multi-class classification models performances in 
external validation on Industrial  set. Left and right diagrams correspond to correct and erroneous 
predictions, respectively. 

 
 

motif absent in the training set, and drometrizole motif present in several training set 
compounds. 

Performances of individual models for the multi-class classification in external validation on 
Industrial set are represented by means of Venn diagrams  (Figure 9). Comparison is performed 
for both the correct (left) and for erroneous (right) predictions. These results support the 
conclusion about the robustness of consensus model, since great majority of instances (238) 
were simultaneously correctly predicted by all four machine-learning algorithms. 

Our developed models follow the OECD principles [11]. The endpoint (LD50) is well 
defined. Goodness-of-fit, robustness and predictivity were evaluated using internal and 
external 3-fold Cross-Validation   (CV), Y-scrambling,   and external validation [35–37]. 
The AD of the models was defined using a fragment control assessment [24] together 
with a reliability scoring function. 

 
 

 
 

Figure 10. Continuous-LD50 and the GHS-classes distribution comparison. 
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Figure 10 depicts the relative frequency distribution for the continuous-LD50 and the GHS- 
classes for the full NICEATM dataset (training and evaluation set). It is interesting to notice that 
LD50 data is always more frequent than categorical assays for more toxic compounds, with the 
biggest difference (+15%) for the medium toxicity class (GHS class 4, i.e. 300–2000 mg/kg). On 
the other hand, for low toxicity values (GHS category  5, i.e. >2000 mg/kg,) categorical data 
becomes much more frequent. This is related to the current regulatory requirements: in case 
the substance shows high toxicity, it could be more advantageous for the registrant to have 
the precise LD50, in order to avoid a potential overestimation of the compound’s toxicity, 
leading to a less desirable GHS classification. On the other hand, when the substance is far from 
GHS thresholds, a looser toxicity estimation could be enough. This bias of the data is also 
reflected in the model’s learned rules: we noticed that the regression LD50 model tends to 
overestimate the toxicity of some very low toxic compounds.  Furthermore,  as mentioned in 
the introduction, current guidelines do not foresee anymore the precise estimation of LD50. 
Instead, the goal is to perform limit tests (OECD 420, 423, 425) for estimating the GHS 
categories, which allows the use of fewer animals. For this reason, new LD50 data is unlikely 
to be generated, and future in-silico models will have to be updated based on the new 
categorical data. 

 
 
Conclusions 

 
In this work we report predictive models of acute oral toxicity obtained in the context of 
the National Toxicology Programme Interagency Centre for the Evaluation of Alternative 
Toxicological Methods (NICEATM) workgroup [14,18]. 

The datasets including 11211 and 13680 compounds for ‘Global’ regression and classifica- 
tion models respectively, were collected from the publicly available sources. To our knowl- 
edge, these are the biggest datasets ever used for the modelling of oral acute toxicity in rodent. 

The models were obtained using ISIDA fragment descriptors [24] and support vector 
machine, random forest and naïve Bayes machine learning methods.  Compared to our 
contribution to the NICEATM project in this paper (i) a new classification model based on 
GHS toxicity categories was generated (ii) Global models were generated by collecting new 
data. 

The predictive performance of the models  was assessed on independent Industrial set 
provided by Solvay. It has been demonstrated that both regression and classification 
Global models obtained in this work (RMSE = 0.47 and BA = 0.72) perform better than 
the previously reported NICEATM models (RMSE = 0.56 and BA = 0.69). Moreover,  the 
Global models have much larger applicability domain: the  data coverage on  the 
Industrial set is 85% and 82% (classification) and 94% and 58% (regression) for Global 
and NICEATM models, respectively.  Finally, new models built on the ensemble of public 
data and Industrial dataset were validated on a set of 462 new structures provided by 
Solvay. This blind  test  proved  reasonably high  predictive power  of  the  models: 
RMSE = 0.48 and BA = 0.87 for regression and classification, respectively. 
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