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Consensus of hybrid multi-agent systems with

malicious nodes
Yilun Shang

Abstract—This brief investigates resilient consensus problems
of hybrid multi-agent systems containing both continuous-time
dynamical agents and discrete-time dynamical agents. A hybrid
censoring strategy is developed to reach resilient consensus for
cooperative agents in the directed networks in which some Byzan-
tine agents are present. The number, location, and dynamics of
Byzantine agents are assumed to be unavailable to the cooperative
agents. Sufficient conditions based on network robustness are
established when the number of Byzantine agents is locally
bounded. They are further extended to cope with resilient scaled
hybrid consensus where dictated ratios instead of a common value
can be reached. Numerical examples are presented to illustrate
the theoretical results.

Index Terms—Resilient; hybrid multi-agent system; continuous
time; discrete time; scaled consensus.

I. INTRODUCTION

Cooperative control of multi-agent systems has copious

applications and has attracted considerable attention from

many fields including system engineering, computer science,

and sociology [1], [2]. A key research topic of multi-agent

systems is reaching consensus, where the states of agents in

the network reach an agreement based on distributed interac-

tion in continuous-time or discrete-time. Advanced research

themes such as convergence rate, control scheme, faulty tol-

erance, communication delay, and system uncertainty, have

been intensively investigated in the recent years; see e.g. the

comprehensive surveys [3]–[5] and references therein.

Until recently consensus problems have only been studied in

networks composed of entirely discrete-time agents or entirely

continuous-time agents. Nevertheless, complicated networked

systems are oftentimes hybrid showing both discrete-time and

continuous-time characteristics [6]–[8]. Robots with discrete-

time dynamics, for example, are integrated into the collective

behavior of a group of continuous-time cockroaches for mod-

ifying their shelter location selections [9]. Three consensus

protocols are introduced in [10] to deal with consensus in

first-order hybrid multi-agent systems. Sufficient and neces-

sary conditions for consensus are characterized. The results

are further extended in [11] to second-order consensus of

hybrid multi-agent systems. In [12], consensus analysis is built

upon a game-theoretic approach to regulating the interaction

between discrete-time and continuous-time agents. Switched

multi-agent systems [13], [14] containing continuous-time and

discrete-time subsystems alternately have also been explored.
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All results mentioned above concern consensus without fault

tolerance ability and all agents in the network are assumed to

be cooperative. However, in the real world, cyber physical

attacks and malicious agents are not uncommon, which make

the system vulnerable and undermine the consensus behavior

[15], [16]. In this paper, we aim to study resilient consensus

against malicious agents in hybrid multi-agent systems mod-

eled by directed networks.

The main contribution of this brief is summarized as

follows. First, we define the resilient consensus problem

with multiple agents governed by both continuous-time and

discrete-time control laws, and put forward the hybrid resilient

consensus strategy. This strategy extends the Weighted-Mean-

Subsequence-Reduced (W-MSR) algorithms by simultane-

ously accommodating both continuous-time and discrete-time

dynamical systems. So far W-MSR has only been applicable

for discrete-time [17], [18], continuous-time [19], [20], and

switched [21] fault-tolerant consensus. Second, based upon

the concept of graph robustness [17], sufficient conditions are

established to enable cooperative agents to reach consensus

in spite of the misbehavior of locally bounded Byzantine

agents. The concurrency of continuous-time and discrete-time

agents entails novel treatment of the convergence analysis

(c.f. Remark 2). As a consequence, unlike [17], the positive

lower bound for the weights of communication link is no

longer required. Third, resilient scaled consensus is explored

in hybrid systems as a further generalization. Scaled consensus

has been proposed in [22] as a novel framework for controlling

states such that any prescribed ratios between different agents

can be achieved. We show that scaled consensus can be

achieved not only between a pair of discrete- or continuous-

time agents but also between a discrete-time agent and a

continuous-time agent.

The rest of the brief is organized as follows. In Section 2, we

present some preliminaries and formulate the hybrid system

model with malicious nodes. The main results are provided in

Section 3 with numerical simulations worked out in Section

4. Finally, the conclusion is drawn in Section 5.

II. PRELIMINARIES

A. Graph theory

Let N and R be the sets of nonnegative integers and real

numbers, respectively. Let G = (V, E) be a directed graph

of order n, where V = {v1, · · · , vn} is the node set and

E ⊆ V × V is the directed edge set. Interaction between

nodes (or agents) is characterized by graph G, which we split

into two parts: C for cooperative nodes and B for Byzantine
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nodes such that V = C ∪ B. The number and identities of

Byzantine nodes are in general not available to cooperative

nodes, which aim to reach a common decision. An edge of

G starting from vi ending at vj is denoted by (vi, vj) ∈ E .

The neighborhood of vi consisting of all edges leading to vi

is signified by Ni = {vj ∈ V : (vj , vi) ∈ E}. A directed path

between a pair of distinct nodes vi and vj is a finite array

of edges (vi, vi1), (vi1 , vi2), · · · , (vil
, vj). The graph G has a

directed spanning tree with root vℓ ∈ V if there is a directed

path from vℓ to every other node in V . For S ⊆ V , if there

is vi ∈ S satisfying |Ni\S| ≥ r for some r ∈ N, then S
is called r-reachable [17]. G is said to be r-robust if for any

pair of nonempty and mutually exclusive subsets in V , one of

these two sets is r-reachable. The following results is shown

in [17].

Lemma 1.Given s, r ∈ N and s < r. Suppose that H is

obtained by deleting up to s incoming edges of every node in

an r-robust directed graph G. Then H is (r − s)-robust. In

addition, G being a 1-robust directed graph is equivalent to G
having a directed spanning tree.

B. System model

Recall that hybrid multi-agent system contains both

continuous-time and discrete-time agents. Let VC =
{v1, · · · , vm} and VD = {vm+1, · · · , vn} represent the groups

of continuous-time and discrete-time agents, respectively. The

state of the agent vi at time t ≥ 0 if it has continuous-time

dynamics (or at time k ∈ N if it has discrete-time dynamics)

is denoted by xi(t) ∈ R (or xi(k) ∈ R).

Definition 1. (resilient consensus for hybrid systems) We

say that the cooperative nodes achieve resilient consensus if for

any initial conditions {xi(0)}vi∈V , we have limk→∞ xi(k) −
xj(k) = 0 for vi, vj ∈ C and limt→∞ xi(t) − xj(t) = 0 for

vi, vj ∈ C ∩ VC .

For k ∈ N, the dynamics of a continuous-time cooperative

node vi ∈ C ∩ VC is described by

ẋi(t) =ϕC
i

(

{xi
j(t) : vj ∈ (Ni ∪ {vi}) ∩ VC}

∪ {xi
j(k) : vj ∈ Ni ∩ VD}

)

, t ∈ [k, k + 1) (1)

and the dynamics of a discrete-time cooperate node vi ∈ C ∩
VD is described by

xi(k + 1) = ϕD
i

(

{xi
j(k) : vj ∈ Ni ∪ {vi}}

)

, (2)

where ϕC(·) and ϕD(·) define the state evolution of coopera-

tive node vi, xi
j(t) is the state value transmitted from node vj

to node vi at time t, and xi
j(t) = xj(t) for vj ∈ C. For ease of

notation, for vi ∈ VD we will conveniently set xi(t) := xi(k)
for t ∈ [k, k + 1) throughout the paper. Namely, we assume

that the information passed from a cooperative vi ∈ VD to its

neighbor during [k, k + 1) is invariably equal to xi(k).
Malicious nodes can exert different individual control laws

that are unavailable to the cooperative ones. In particular, the

Byzantine nodes are defined as follows.

Definition 2. (Byzantine node) vi ∈ B∩VC (or vi ∈ B∩VD,

respectively) is called Byzantine if it exerts a different control

law ϕ̃C
i (or ϕ̃D

i , respectively), or at some time t > 0 not all

of its neighbors receive the same value from it.

Byzantine nodes are oftentimes thought to be the worst

attackers [18], [20], [21], who possess a perfect knowledge

of the entire network and are capable of transmitting faulty

information within their neighborhoods via point-to-point

communication or broadcasting. We naturally assume that the

number of Byzantine nodes in G is constrained in some way.

In particular, given R ∈ N, for each vi ∈ C we assume

|Ni ∩ B| ≤ R, which is referred to as R-locally bounded

model [19], [20] in the literature.

C. Hybrid R-censoring strategy

In order for cooperative nodes to reach consensus, we

design the following purely distributed censoring strategy

generalizing the well-known W-MSR algorithm [17], [18].

Fix R ∈ N. For any k ∈ N, cooperative node vi ∈ C∩VC at

t ∈ [k, k+1) receives the information {xi
j(t)} of its neighbors,

and arranges {xi
j(t)}vj∈Ni

in an decreasing order (recall that

xi
j(t) = xi

j(k) for vj ∈ VD). The highest R values which are

higher than xi(t) in this ordered list are discarded (if there

exist fewer than R such values, all of them are discarded).

The analogous censoring procedure is adopted to the lowest R
values. The values (or equivalently, their corresponding nodes)

that are deleted by vi at time t is signified by a set Ri(t).
vi ∈ C ∩ VC changes its state using the following ϕC

i (·) in

(1):

ẋi(t) =
∑

vj∈[(Ni∪{vi})\Ri(t)]∩VC

ϕij(x
i
j(t), xi(t))

+
∑

vj∈[Ni\Ri(t)]∩VD

ϕij(x
i
j(k), xi(t)), t ∈ [k, k + 1), (3)

where the function ϕij : R
2 → R satisfies (C1) ϕij is locally

Lipschitz continuous, (C2) ϕij(x, y) = 0 ⇔ x = y, and (C3)

ϕij(x, y)(x− y) > 0 for x 6= y. In a similar way, cooperative

node vi ∈ C ∩VD at time k receives the information {xi
j(k)}

of its neighbors, and arranges {xi
j(k)}vj∈Ni

in an decreasing

order. The highest R values that are higher than xi(t) in the

above ordered list are discarded (if there are fewer than R
such values, all these values are discarded). The analogous

censoring procedure is adopted to the lowest R values. The

nodes that are deleted by vi at time k is signified by Ri(k).
vi ∈ C ∩ VD updates its state using the following ϕD

i (·) in

(2):

xi(k + 1) =
∑

vj∈(Ni∪{vi})\Ri(k)

wij(k)xi
j(k), (4)

where wij(k) represents non-negative weight on edge

(vj , vi) ∈ E satisfying (D1) wij(t) = 0 if vj 6∈ Ni ∪ {vi},

and (D2)
∑

vj∈(Ni∪{vi})\Ri(k) wij(k) = 1.

Remark 1. For discrete-time dynamics (4), a positive lower

bound for wij(k) is no longer needed as we will apply different

techniques from those in [17], [21]. A uniform choice for

wij(k) is wij(k) = (|Ni|+ 1− |Ri(k)|)−1 for all k ∈ N. Re-

garding continuous-time dynamics (3), ϕij(x, y) = aij(x−y)
with aij > 0 being the adjacency weights of the network is

canonical in the literature of consensus problems [3], [4]. We

call the above algorithm as hybrid R-censoring strategy.
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III. MAIN RESULTS

we in this section investigate the consensus of hybrid sys-

tem (1)-(4) with malicious nodes characterized by R-locally

bounded model. The highest and lowest states of all coopera-

tive nodes are defined, respectively, as M(t) := maxvi∈C xi(t)
and m(t) := minvi∈C xi(t) for t ≥ 0. Note that these

definitions are valid for both continuous- and discrete-time

agents as per our notation.

Theorem 1. Consider a directed graph G = (V, E), in which

cooperative nodes adopt the hybrid R-censoring strategy. In

R-locally bounded model, for vi ∈ C ∩ VC , we have xi(t) ∈
[m(0),M(0)] for t ≥ 0; for vi ∈ C∩VD, we have xi(k+1) ∈
[m(k),M(k)] for k ∈ N.

Proof. For vi ∈ C ∩ VD, it is clear from (4) that

xi(k + 1) is in the form of a convex combination of

{xi
j(k)}vj∈(Ni∪{vi})\Ri(k), each of which sits in the range

[m(k),M(k)] in R-locally bounded model when hybrid

R-censoring strategy is invoked. Hence, xi(k + 1) ∈
[m(k),M(k)] for k ∈ N.

For vi ∈ C ∩ VC , we only prove the upper bound xi(t) ≤
M(0) and the lower bound follows with similar arguments. If

the upper bound does not hold, there exists t∗ ∈ [k∗, k∗ + 1)
and t∗ < t for some k∗ ∈ N such that (i) xj(t

′) ≤ M(0) for

all t′ ≤ t∗ and vj ∈ C and (ii) xi(t
∗) = M(0) and ẋi(t

∗) > 0.

It follows from (3) that

0 < ẋi(t
∗) =

∑

vj∈[(Ni∪{vi})\Ri(t∗)]∩VC

ϕij(x
i
j(t

∗), xi(t
∗))

+
∑

vj∈[Ni\Ri(t∗)]∩VD

ϕij(x
i
j(k

∗), xi(t
∗)). (5)

Recall that there cannot be R + 1 Byzantine nodes in

any cooperative node’s neighborhood. Under the hybrid R-

censoring strategy, xi(t
∗) = M(0) ≥ xi

j(t
∗) for vj ∈

[(Ni ∪ {vi})\Ri(t
∗)] ∩ VC . On the other hand, xi

j(k
∗) =

xi
j(t

∗) ≤ M(0) = xi(t
∗) for vj ∈ [Ni\Ri(t

∗)] ∩ VD. In

the light of (C2) and (C3), we arrive at that the right-hand

side of (5) is at most zero. This contradicts with ẋi(t
∗) > 0,

and hence concludes the proof. ✷

From Theorem 1, it can be seen that both sequences

{m(k)}k∈N and {M(k)}k∈N are monotonic and bounded. The

network topology G is essentially dynamic due to the censor-

ing strategy implemented. We make the following assumption

on the rate of change, i.e., the dwell time.

Assumption 1. Signify by {τl}l∈N the array of time instances

where Ri(t) varies for some i. There exists τ > 0 satisfying

|τl+1 − τl| ≥ τ .

Theorem 2. Consider a directed graph G = (V, E), in which

cooperative nodes adopt the hybrid R-censoring strategy. In

R-locally bounded model, resilient consensus is reached if G
is (2R + 1)-robust and Assumption 1 holds.

Proof. For any t > 0, without loss of generality we assume t ∈
[k, k+1) for some k ∈ N. Denote by Φ(t) = M(t)−m(t) the

difference between the two extreme states of cooperative nodes

and Φ(t) is non-negative. Given a function ϕ(t) : R → R, its

Dini derivative is defined as D+ϕ(t) = lim suph→0+(ϕ(t +
h)−ϕ(t))/h. Furthermore, define VM (t) := {vi ∈ C : xi(t) =
M(t)} and Vm(t) := {vi ∈ C : xi(t) = m(t)}.

If VM (t) ∩ VC 6= ∅, we define the index iM satisfying

ẋiM
(t) = maxvi∈VM (t)∩VC ẋi(t). By the basic property of

Dini derivative [23], the Dini derivative of M(t) taken with

respect to the trajectory of (3) follows

D+M(t) = ẋiM
(t) =

∑

vj∈[(NiM
∪{viM

})\RiM
(t)]∩VC

ϕiM j(x
iM

j (t), xiM
(t))

+
∑

vj∈[NiM
\RiM

(t)]∩VD

ϕiM j(x
iM

j (k), xiM
(t)). (6)

We obtain xiM
(t) ≥ xiM

j (t) when vj ∈ VC in the first term on

the right-hand side of (6); xiM
(t) ≥ xiM

j (t) = xiM

j (k) when

vj ∈ VD in the second term on the right-hand side of (6). By

the assumption (C3), we know that D+M(t) ≤ 0. Similarly, if

Vm(t) ∩ VC 6= ∅, we define the index im satisfying ẋim
(t) =

maxvi∈Vm(t)∩VC ẋi(t). Therefore, the Dini derivative of m(t)
taken with respect to the trajectory of (3) follows

D+m(t) = ẋim
(t) =

∑

vj∈[(Nim∪{vim})\Rim (t)]∩VC

ϕimj(x
im

j (t), xim
(t))

+
∑

vj∈[Nim\Rim (t)]∩VD

ϕimj(x
im

j (k), xim
(t)). (7)

A similar analysis as above leads to D+m(t) ≥ 0. If VM (t)∩
VC = ∅, we define the node viM

to be any one in the set VM (t)
and D+M(t) = ẋiM

(t) = 0 when t 6= k by the property of

Dini derivative [23]. If Vm(t) ∩ VC = ∅, we likewise define

the node vim
to be any one in the set Vm(t) and D+m(t) =

ẋim
(t) = 0 when t 6= k. Combining the above discussion, we

have D+Φ(t) = D+M(t) − D+m(t) ≤ 0 for t ∈ (k, k + 1).

From the comments below Theorem 1, we know that m(k)
and M(k) change monotonically and both are bounded. We

define

ρm := lim
k→∞

m(k) ≤ ρM := lim
k→∞

M(k). (8)

Therefore, limk→∞ D+Φ(k) = 0. Next, we will show

limt→∞ D+Φ(t) = 0. Assume the contrary, that this does not

hold. There exist ε0 > 0, δ0 > 0, and a sequence of {sp}p∈N

such that (i) sp → ∞ as p → ∞ and (ii) D+Φ(sp) ≤ −ε0

and |sp+1 − sp| > δ0 for p ∈ N.

Consider any range I satisfying I∩N = ∅ and I∩{τl}l∈N =
∅, where {τl}l∈N are given in Assumption 1. Note that D+Φ(t)
is continuous in I and ẋi(t) is bounded for any vi ∈ C (by

condition (C1) if vi ∈ C ∩VC , and ẋi(t) = 0 for t ∈ I if vi ∈
C ∩ VD). Therefore, D+Φ(t) is uniformly continuous within

I . There exists δ1 > 0 such that for any pair of time points

t1, t2 ∈ I and |t1 − t2| < δ1, |D+Φ(t1) − D+Φ(t2)| < ε0/2
holds. It follows from Assumption 1 that there is δ2 ∈ (0, δ1)
satisfying for any p ∈ N, the interval [sp − δ2, sp + δ2] is a

subset of a range I delineated above. For t ∈ [sp − δ2, sp +
δ2], we estimate that D+Φ(t) = −|D+Φ(sp) − (D+Φ(sp) −
D+Φ(t))| ≤ −(|D+Φ(sp)| − |D+Φ(sp) − D+Φ(t)|) ≤ − ε0

2 .

We choose 0 < δ < δ2 satisfying that the intervals {[sp −
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δ, sp + δ]}p∈N are mutually exclusive. Drawing on the fact

that D+Φ(t) ≤ 0, we have

∫ ∞

0

D+Φ(t)dt ≤ − lim
N→∞

N
∑

p=1

∫ sp+δ

sp−δ

ε0

2
dt = −∞. (9)

This contradicts with the non-negativity of Φ(t). Hence, we

proved limt→∞ D+Φ(t) = 0 by the method of contradiction.

From the discussion in the beginning of the proof, we know

for any t ≥ 0, D+M(t) is non-positive and D+m(t) is non-

negative. In view of (8), limt→∞ M(t) = limt→∞ xiM
(t) =

ρM and limt→∞ m(t) = limt→∞ xim
(t) = ρm. Assume that

ρM > ρm, and we will prove this is not the case. Recall

that G is (2R + 1)-robust, and the interaction topology in the

hybrid multi-agent system contains a directed spanning tree at

any time under the hybrid R-censoring strategy by Lemma 1.

There exist some time T > 0 and ε > 0 satisfying xiM
(t) >

ρM −ε > ρm +ε > xim
(t) for t ≥ T . Under our assumptions

and the hybrid R-censoring strategy, we have the following

observation.

(i) If viM
∈ VC , then limt→∞ ẋiM

(t) = 0,

which means limt→∞ xiM

j (t) − xiM
(t) = 0

for vj ∈ [(NiM
∪ {viM

})\RiM
(t)] ∩ VC and

limt→∞,t∈[k,k+1) xiM

j (k) − xiM
(t) = 0 for

vj ∈ [NiM
\RiM

(t)] ∩ VD;

(ii) If viM
∈ VD, then limk→∞ xiM

(k) = ρM , which means

limk→∞ xiM

j (k) = ρM for vj ∈ (NiM
∪{viM

})\RiM
(k);

(iii) If vim
∈ VC , then limt→∞ ẋim

(t) = 0,

which means limt→∞ xim

j (t) − xim
(t) = 0

for vj ∈ [(Nim
∪ {vim

})\Rim
(t)] ∩ VC and

limt→∞,t∈[k,k+1) xim

j (k) − xim
(t) = 0 for

vj ∈ [Nim
\Rim

(t)] ∩ VD;

(iv) If vim
∈ VD, then limk→∞ xim

(k) = ρm, which means

limk→∞ xim

j (k) = ρm for vj ∈ (Nim
∪ {vim

})\Rim
(k).

Since G is finite, there is time T ′ ≥ T such that there are two

direction paths in the interaction network at T ′ one starting

from the root vertex vℓ ending at viM
the other starting from

vℓ ending at vim
. Moreover, xℓ(T

′) > ρM − ε and xℓ(T
′) <

ρm + ε. This is impossible. Hence, we derive that ρM = ρm,

which means the consensus has been achieved. ✷

Remark 2. Due to the concurrency of both continuous-

time and discrete-time dynamical agents, a discrete-time agent

may have both continuous-time and discrete-time neighbors,

which can be cooperative and/or Byzantine. A continuous-

time Byzantine node can not be well kept in check when

only discrete time steps are examined as in [17], while the

information flow of a discrete-time Byzantine node is not

differentiable. These obstacles have been worked around by

our proposed algorithm and mathematical analysis.

Given real number γi 6= 0 for every agent vi ∈ G, we define

hybrid resilient scaled consensus as below.

Definition 3. (resilient scaled consensus for hybrid sys-

tems) Given (γ1, · · · , γn), the cooperative nodes are said to

achieve resilient scaled consensus if for any initial conditions

{xi(0)}vi∈V , we have limk→∞ γixi(k) − γjxj(k) = 0 for

vi, vj ∈ C and limt→∞ γixi(t) − γjxj(t) = 0 for vi, vj ∈
C ∩ VC .

Scaled consensus has numerous applications in real life

ranging from water distribution systems to compartmental

mass-action systems [22]. Based upon the hybrid R-censoring

strategy described in Section II.C, we consider a modified hy-

brid scaled R-censoring strategy, which sorts {γjx
i
j(t)}vj∈Ni

for each cooperative node vi, compares with γjxi(t), and

replaces the control laws (3) and (4), respectively, with

ẋi(t) = sgn(γi)
∑

vj∈[(Ni∪{vi})\Ri(t)]∩VC

ϕij(γjx
i
j(t), γixi(t))

+ γi

∑

vj∈[Ni\Ri(t)]∩VD

ϕij(γjx
i
j(k), γixi(t)), (10)

and

xi(k + 1) = sgn(γi)
∑

vj∈(Ni∪{vi})\Ri(k)

wij(k)γjx
i
j(k), (11)

with sgn(·) indicating the signum function, ϕij satisfying the

same conditions (C1)-(C3), wij(k) satisfying again (D1) and

(D2’)
∑

vj∈(Ni∪{vi})\Ri(k) |γi|wij(k) = 1.

The following theorem can be shown as Theorem 2 follow-

ing the similar arguments (hence omitted here) by resetting

M(t) := maxvi∈C γixi(t) and m(t) := minvi∈C γixi(t).
Theorem 3. Consider a directed graph G = (V, E), in

which cooperative nodes adopt the hybrid scaled R-censoring

strategy. Given (γ1, · · · , γn). In R-locally bounded model,

resilient scaled consensus is reached if G is (2R + 1)-robust

and Assumption 1 holds.

Remark 3. Theorem 3 generalizes Theorem 2 in the sense

that the restriction γ1 = γ2 = · · · = γn = 1 is lifted. This

provides desired flexibility especially in hybrid systems since

autonomous robots, for example, are allowed to have different

or even opposite tasks from natural critters in a group [9].

Fig. 1. 3-robust graph G having VC
= {v1, v2, v3} and VD

= {v4, v5, v6}.

IV. SIMULATIONS

In this section, we consider a directed graph G = (V, E)
with VC = {v1, v2, v3} and VD = {v4, v5, v6}; see Fig. 1.

It is direct to check that G is 3-robust. We choose the initial

configuration of the agents as x1(0) = 3, x2(0) = 2, x3(0) =
−1, x4(0) = 0, x5(0) = 1, x6(0) = −2.

Example 1. We choose C = {v1, · · · , v5} and B = {v6}.

v6 is the only Byzantine node follows the discrete-time dy-

namics x6(k +1) = x6(k)+ ln(k)/20. Every continuous-time

cooperative node vi ∈ C adopts ϕij(x, y) = 0.1 · (x − y)
in (3) and discrete-time cooperative nodes take wij(k) =
(|Ni| + 1 − |Ri(k)|)−1

for vj ∈ (Ni∪{vi})\Ri(k) in (4). By

using the hybrid 1-censoring strategy, the evolution of agents’
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states are shown in Fig. 2(a). We observe that all cooperative

agents converge despite the malicious behavior of v6 as one

would expect according to Theorem 2. In the inset of Fig. 2(a),

the malicious node v6 succeeds when the protocol without

censoring is performed.

Example 2. In this example, we choose C = {v2, · · · , v6}
and B = {v1}. v1 is the only Byzantine node follows the

continuous-time dynamics ẋ1(t) = x1(t)/5. The cooperative

nodes follow the same protocols as in Example 1. We ob-

serve from Fig. 2(b) that resilient hybrid consensus has been

achieved asymptotically in line with Theorem 2. Similarly, in

the inset of Fig. 2(b), we see that the states of other nodes are

led by the malicious node v1 when the censoring mechanism

is absent.
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Fig. 2. States of the agents over network G, where (a) v6 is the Byzantine
node and (b) v1 is the Byzantine node, with censoring (main panels) and
without censoring (insets).

V. CONCLUSION

In this brief, resilience consensus problems are studied for

systems composing of multiple dynamical agents governed by

both continuous-time and discrete-time control laws. We frame

hybrid R-censoring strategies to withstand possible Byzantine

nodes enabling cooperative nodes to reach consensus when

malicious behaviors are bounded in neighborhoods of cooper-

ative nodes. The designed strategy is purely distributed and

has low complexity. It is further generalized to deal with

resilient scaled hybrid consensus where dictated ratios instead

of a common state can be achieved. Sufficient conditions

are established to solves resilient scaled hybrid consensus

problems. For future work, it would be desirable to consider

the effect of time delay and event-triggered consensus [5] in

hybrid multi-agent systems.
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