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Adaptive Consensus Output Regulation
of A Class of Heterogeneous Nonlinear

Systems

Zhengtao Ding

Abstract—This paper deals with consensus output regulation of a class
of nonlinear systems which consist of network-connected subsystems with
unknown parameters. The subsystems may have different dynamics with
uncertainties, and be subject to the disturbances generated from an
exosystem. Only some subsystems have access to the desired output, which
is also formulated as an output of the exosystem, following the standard
formulation of output regulation of nonlinear systems. The proposed
design makes use of some latest results on Laplacian matrices, and a
new design of the internal model, which is based on known functions
of with unknown constant parameters. Adaptive backstepping design
techniques are integrated with the consensus control design to tackle
the nonlinearity and unknown constant parameters in the system, and
unknown functions relating to the state of the exosystem. The proposed
control inputs and adaptive laws are fully decentralized, and ensure the
asymptotic convergence to zero of the regulation errors.

Index Terms—Consensus control, Output regulation, Nonlinear sys-
tems, Internal model, Output feedback

I. INTRODUCTION

Consensus control deals with the control design for the same ob-
jectives for the subsystems with the same or similar dynamics which
are connected together by a network. The research on consensus
control has been motivated by applications in formation control of
robots and vehicles etc, and has attracted significant attention from
the researchers in the control circle in the recent years. One important
step in consensus control design is to explore the results on Laplacian
matrices in graph theory for connections of the subsystems. For
linear systems, typical consensus control designs for homogeneous
subsystem dynamics have been presented [1], [2], [3] where the
properties of the Laplacian matrices play an important part. There
are considerable results published for heterogeneous linear systems
and results for nonlinear systems [4], [5], [6], [7], [8], [9], [10],
[11]. Compared with the results in the linear systems, the results
for nonlinear systems are often more restrictive in the subsystem
dynamics and the network connections.

When there are uncertainties in a system, adaptive control strategies
would be naturally considered. One challenge in adaptive control
design for consensus control is the decentralization of the adaptive
laws [12]. In the robust adaptive consensus control shown in [13],
[14], the adaptive laws are decentralized, with the influence of the
uncertainties of the adjacent subsystems being treated as bounded
disturbances, and the resultant consensus control errors are kept
bounded instead of the convergence to zero due to the robust adaptive
control treatment. Decentralized adaptive laws have been proposed
for first-order nonlinear systems in [12]. In this paper, we will deal
with adaptive control design for high order nonlinear systems under
disturbances generated from an exosystem. All the subsystems are
required to track a desired trajectory, which is also a function of
the state of the exosystem. Not every subsystem has the access
of the desired trajectory. The other subsystems will achieve output
regulation through the network connections. Tracking a trajectory
and rejecting a disturbance simultaneously are normally formulated
as an output regulation problem [15]. A key issue in the solution
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of output regulation problem is the design of an internal model
which generates the designed feedforward input signal. This is a
difficulty in consensus output regulation, again due to the requirement
of decentralized implementation of the internal models. Our approach
to the internal model design is based on the fact the the exosystem
states can be factored as the product of a vector of known sinusoidal
functions and a constant vector, inspired by the properties of linear
exosystems in output regulation [16], [17] and disturbance estimation
and rejection [18]. The constant vector depends on the initial state
of the exosystem. Adaptive control techniques can then be used to
estimate the unknown constant vector. For the consensus control part,
we explore the result that the Laplacian matrix of an irreducible
network can be make positive definite by adding an positive constant
in any of the diagonal elements. With this result, we propose a
solution to adaptive output regulation problem using block adaptive
backstepping design. Our solution ensures that all the subsystems
converge to a common output. An example is included to demonstrate
the proposed control design with the simulation results shown.

II. PROBLEM STATEMENT

In this paper, we consider a set of N subsystems connected by
an undirected network. The dynamics of each of subsystems are
described by, for i = 1, . . . , N ,

ẋi1 = xi2

ẋi2 = xi3
...

ẋin = φTi (xi)θi + φ0i(w) + ui (1)

where xi = [xi1, . . . , xin]T ∈ Rn is the state variable for the ith
subsystem with xi1 as the output of the subsystem, and ui ∈ R is
the input, φTi : Rn → Rpi is a continuous function, θi ∈ Rpi is an
unknown constant vector, φ0i : Rn → R is a polynomial, w ∈ Rs is
the disturbance generated by an exosystem

ẇ = Sw (2)

with S ∈ Rs×s being a known matrix.
The connections between the subsystems are specified by an

undirected graph G which consists of a set of vertices denoted by
V and a set of edges denoted by denoted by E . A vertex represents
a subsystem, and each edge represents a connection. Associated
with the graph, its adjacency matrix A with elements aij denotes
the connections such that aij = 1 if there is a connection from
subsystem j to subsystem i, and aij = 0 otherwise. Since the
connection is undirected, we have A = AT . Let D = diag{di}
with di =

∑N
j=1 aij . The Laplacian matrix is commonly defined as

L = D −A.
The control objective is to design a control input to ensure that the

outputs of all the subsystems converge to the same function, i.e.,

lim
t→∞

(xi1 − xj1) = 0 (3)

for i, j = 1, . . . , N , and furthermore, for i = 1, . . . , N

lim
t→∞

(xi1 − r(w)) = 0 (4)

where r : Rs → R is a polynomial. Not all the subsystems have
the access to the function value of r(w). We use a diagonal matrix
B to denote the access to r(w) in the way that if bii = 1, the ith
subsystem has access to the value of r(w) for the control design. At
least one subsystem has the access. The subsystems which do not
have access to the tracking signal rely on the network connections to
achieve the consensus tracking.
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We make a couple of assumptions about the dynamics of the
exosystem and the connections between the subsystems.

Assumption 1. The eigenvalues S are distinct and on the imaginary
axis.

Assumption 2. The adjacent matrix A is irreducible.
Remark 1. In the formulation of an output regulation problem, the
tracking trajectories and the disturbances are commonly assumed
to be functions of the state that is generated by an exosystem. In
such a formulation, disturbance rejection and output tracking can be
treated together in a unified way. Assumption 1 on the eigenvalues
of the exosystem dynamics is common in the formulation of output
regulation, as the stable modes in the exosystem do not have an
impact asymptotically. From a practical point of view, any periodic
signal designed for the tracking trajectory can be approximated by
sinusoidal functions with different frequencies, and those sinusoidal
functions can be formulated as the state variables of the exosystem
under Assumption 1. /

Remark 2. The adjacent matrix is irreducible if there exists a
connection between any two subsystems. /

III. PRELIMINARY RESULTS

Consider the tracking error of a subsystem. Let

x̄i1 = xi1 − r(w)

Its derivative is given by

˙̄xi1 =
d

dt
x̄i1 = xi2 − LSwr(w) := x̄i2

where LSwr(w) denotes the Lie derivative of r(w) along Sw.
Similarly, we define

x̄ij =
dj−1

dtj−1
x̄i1

for j = 2, . . . , n. We can obtain that

˙̄xin = φTi (xi)θi + ui − vi

where

vi = −φ0i(w) + Ln−1
Sw r(w).

In output regulation, we often refer vi as the desired feedforward
term. For the control design to ensure the asymptotic tracking of
r(w) and rejection of the disturbance term φ0i(w), the control input
for the subsystem must contain the desired feedforward term. If the
variables xij for j = 1, . . . , n, and w are available, the control design
given by

ui =

n∑
j=1

−λj x̄ij + vi

where λi are positive real coefficients such that the polynomial sn+
λ1s

n−1 + . . .+ λn is Hurwitz.
The challenge in the consensus output regulation is that w is

is not available for the control design, and r(w) is only available
to a subset of the subsystems, not to all the subsystems. For the
tracking signal r(w), the subsystems that do not have access to r(w)
directly can obtain necessary information via the connections with
other subsystems when the subsystems are limited to the first order.
For high-order subsystems, we need the information of Lj−1

Sw r(w) for
j = 1, . . . , n and φ0i(w). The following lemma provides a possibility
to solve the problem with adaptive control techniques.

Lemma 1: For the state w generated from the exosystem (2), any
polynomial of w can be expressed as a product of known time-varying

vector and a vector with unknown constant parameters that depend
on the initial state w(0), in particular,

LSwr(w) = ψT (t)ϑ00,

φ0i(w) = ψT0i(t)ϑ0i for i = 1, . . . , N

where ψ(t) and ψ0j(t) are known functions, and ϑ00 and ϑ0i are
unknown constant vectors with their dimensions depending on the
exosystem and the nonlinear function r(w) and φ0i(w). Furthermore,
for the function ψ(t), its derivative is given by

dψ(t)

dt
= Sψψ(t), (5)

where Sψ is a diagonal matrix, with elements being frequencies of
the signals in ψ(t).

Proof: For the exosystem, its state variables are sinusoidal
functions with the frequencies depending on the eigenvalues, and
the coefficients depending on the initial state. The results shown
in Lemma 1 can then established by following similar procedures
shown in [17], [18]. Since ψ(t) is a vector of sinusoidal functions,
its derivative can be expressed as as in (5).

Note that

LjSwr(w) = ψT (t)Sjψϑ00,

for j = 1, . . . , n− 1, based on the result shown in (5).
We have another useful result for the Laplacian matrix.
Lemma 2: If the adjacency matrix A is irreducible, and the non-

negative diagonal matrix B has at least one positive diagonal element,
the matrix (L+B) is positive definite.

The proof of this lemma can be found in [19].
Let us denote

χj = [x1j , x2j , . . . , xNj ]
T (6)

for j = 1, . . . , n. and the consensus regulation error

e = (L+B)(χ1 − 1 r(w)) (7)

where 1 ∈ RN is a vector with all the elements 1. Based on the
definition of L, we have L1 = 1. Since (L + B) is invertible, the
control objective (4) is equivalent to limt→∞ e = 0. It is worth noting
that

e = Lχ1 +B(χ1 − 1 r(w)) (8)

which implies that

ei =

N∑
j=1

aij(xi1 − xj1) + bii(xi1 − r(w)) (9)

for i = 1, . . . , N . Clearly, ei is available to the control design for the
ith subsystem. For the notational convenience, we denote Q = L+B.

IV. CONSENSUS REGULATION FOR 1ST-ORDER SUBSYSTEMS

Consider the control design for a system with 1st-order subsystems.
In this case, we can write the subsystem dynamics as

xi1 = φTi (xi1)θi + φ0i(w) + ui

for i = 1, . . . , N . Based on the result shown in Lemma 1, we have
for, i = 1, . . . , N ,

xi1 = φTi (xi1)θi + ψ0i(t)
Tϑ0i + ui.

Design the control input, for i = 1, . . . , N ,

ui = −cei − φTi θ̂i − ψT0iϑ̂0i (10)
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where θ̂i and ϑ̂0i are the estimates of θi and ϑ0i respectively, and c
is a positive real design constant. The resultant dynamics of xi are
given by

ẋi1 = −cei + φTi θ̃i + ψT0iϑ̃0i (11)

where θ̃i = θi − θ̂i and ϑ̃0i = ϑ0i − ϑ̂0i. In this paper we will
use â as an estimate of an unknown vector a, and ã = a − â to
denote the estimation error. The adaptive laws are designed as, for
i = 1, . . . , N ,

˙̂
θi = Γθiφi(xi)ei, (12)

˙̂
ϑ0i = Γ0iψ0i(t)ei, (13)

where Γθi and Γ0i are positive definite matrices with proper dimen-
sions. Note that the control inputs shown in (10) and the adaptive
laws in (12) and (13) are fully decentralized, as they only use the
local information available to the ith subsystem.

Lemma 3: The decentralized control inputs and adaptive laws
solve the adaptive consensus regulation problem in the sense that
the regulation error e converges to zero asymptotically.

Proof: Denote

Φ = diag{φ1, φ2, . . . , φN},
θ = [ θ1 θ2 . . . θN ]T ,

Ψ0 = diag{ψ01, ψ02, . . . , ψ0N},
ϑ0 = [ ϑ01 ϑ02 . . . ϑ0N ]T ,

and

u = [u1, . . . , uN ]T . (14)

The dynamics of the consensus regulation error are obtained as

ė = Q(ΦT θ + ΨT
0 ϑ0 + u) (15)

and the control input can then be expressed as

u = −ce− ΦT θ̂ −ΨT ϑ̂0 (16)

and the adaptive laws as

˙̂
θ = ΓθΦe, (17)

˙̂
ϑ0 = Γ0Ψe, (18)

where Γθ = diag{Γθi} and Γ0 = diag{Γ0i}.
The resultant regulation error dynamics are given by

ė = Q(−ce+ ΦT θ̃ + ΨT
0 ϑ̃0). (19)

Consider a Lyapunov function candidate

V = eTQ−1e+ θ̃TΓ−1θ̃ + ϑ̃TΓ−1
0 ϑ̃. (20)

From (19), we have

V̇ = −ceT e+ 2eTΦT θ̃ + 2eTΨT
0 ϑ̃0

−2
˙̂
θ
T

Γ−1θ̃ − 2
˙̂
ϑ
T

Γ−1
0 ϑ̃

= −ceT e.

Following the standard procedures for analysing adaptive control
systems, we can conclude the boundedness of all the variables and
limt→∞ e = 0.

V. CONSENSUS REGULATION OF HIGH-ORDER SYSTEMS

Using the notations introduced in the earlier sections, we can write
the system dynamics as

χ̇1 = χ2

...

χ̇n−1 = χn

χ̇n = ΦT θ + ΨT
0 ϑ0 + u. (21)

The dynamics of the consensus regulation error e are then obtained
as

ė = Q(χ2 − 1ψTϑ00). (22)

If the derivatives of r(w) up to nth order are available to the control
design, a full-state feedback control design can be easily carried out
to ensure the converge to zero of the consensus output regulation
error. Due to the unknown derivatives of the tracking errors, adaptive
backstepping can be used to carry out the control design. For the
backstepping design, we introduce a number of notations,

z1 = e,

zj = χj − αj−1, for j = 2, . . . , n,

where αi ∈ RN are stabilising functions obtained in backstepping
design. The key point in this adaptive backstepping design is to ensure
that the control and adaptive laws can be decentralized.

The dynamics of z1 can be obtained as

ż1 = Q(z2 + α1 − 1ψTϑ00). (23)

Design α1 as

α1 = −c1z1 + ΨT ϑ̂ (24)

where c1 is a positive constant, Ψ = IN ⊗ ψ and ϑ̂ is an estimate
of 1⊗ ϑ00 with ⊗ denoting the Kronecker product of matrices. It is
noted that there are N copies of estimates of ϑ00 in ϑ̂, and indeed, we
can denote ϑ̂ = [ϑ̂T1 , . . . , ϑ̂

T
N ]T . The multiple copies ϑ̂i are for the

decentralized implementation of the adaptive laws. For the notational
convenience, we denote ϑ = 1 ⊗ ϑ00. The resultant dynamics of z
are obtained as

ż1 = Q(−c1z1 + z2 −ΨT ϑ̃). (25)

The adaptive law for ϑ̂ is designed through tuning functions to avoid
multiple estimations of ϑ in adaptive backstepping [20]. The tuning
functions for subsystems in the first step, τ1i, are designed as

τ1i = −z1iΓiψ (26)

for i = 1, . . . , N , where Γi is a positive definite matrix with a proper
dimension. We put the tuning functions for subsystems together to
have

τ1 = −ΓΨz1 (27)

where Γ = diag{Γi}. In the subsequent design, we will use cj and
τj for j = 2, . . . , n to denote positive design parameters and tuning
functions respectively.

In the second step, the dynamics of z2 are obtained as

ż2 = χ3 + c1ė−ΨTSΨϑ̂−ΨT ˙̂
ϑ

= z3 + α2 + c1Q(χ2 −ΨTϑ)

−ΨTSΨϑ̂−ΨT ˙̂
ϑ (28)
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where SΨ = IN ⊗ Sψ . We design α2 as

α2 = −z1 − c2z2 − c1Q(χ2 −ΨT ϑ̂)

+ΨTSΨϑ̂+ ΨT τ2. (29)

The resultant dynamics of z2 are obtained as

ż2 = −z1 − c2z2 + z3 − c1QΨT ϑ̃−ΨT (
˙̂
ϑ− τ2). (30)

The tuning function τ2 is designed as

τ2 = −Γ(Ψz1 + c1ΨQz2) (31)

In the subsequent step, we have, for j = 3, . . . , n−1, the dynamics
of zj are obtained as

żj = χj+1 −
∂αj−1

∂e
Q(χ2 −ΨTϑ)

−
j−1∑
k=2

∂αj−1

∂χk
χk+1 −

∂αj−1

∂ϑ̂

˙̂
ϑ

−∂αj−1

∂Ψ
SΨΨ. (32)

We design αj as

αj = −zj−1 − cjzj +
∂αj−1

∂e
Q(χ2 −ΨT ϑ̂j)

+

j−1∑
k=2

∂αj−1

∂χk
χk+1 +

∂αj−1

∂ϑ̂
τj +

∂αj−1

∂Ψ
SΨΨ

+

j−1∑
k=2

∂αj−1

∂e
QΨTΓ

(
∂αk−1

∂ϑ̂

)T
zk. (33)

The resultant dynamics of zj are obtained as

żj = −zj−1 − cjzj + zj+1

+
∂αj−1

∂e
QΨT ϑ̃− ∂αj−1

∂ϑ̂
(
˙̂
ϑ− τj)

+

j−1∑
k=2

∂αj−1

∂e
QΨTΓ

(
∂αk−1

∂ϑ̂

)T
zk. (34)

The tuning function τj is designed as

τj = ΓΨQ

j∑
k=1

(
∂αk−1

∂e

)T
zk (35)

where we set ∂α0
∂e

= −Q−1 for the notational convenience.
In the final step, we have

żn = u+ ΦT θ + ΨT
0 ϑ0 −

∂αn−1

∂e
Q(χ2 −ΨTϑ)

−
j−1∑
k=2

∂αn−1

∂χk
χk+1 −

∂αn−1

∂ϑ̂
τn −

∂αn−1

∂Ψ
SΨΨ. (36)

We design u as

u = −zn−1 − cnzn +
∂αn−1

∂e
Q(χ2 −ΨT ϑ̂j)

+

n−1∑
k=2

∂αn−1

∂χk
χk+1 +

n−1∑
k=2

∂αn−1

∂ϑ̂k

˙̂
ϑk

+
∂αn−1

∂Ψ
SΨΨ +

n−1∑
k=2

∂αn−1

∂e
QΨTΓ

(
∂αk−1

∂ϑ̂

)T
zk

−ΦT θ̂ −ΨT
0 ϑ̂0. (37)

The resultant dynamics of zn are obtained as

żn = −zn−1 − cnzn +
∂αn−1

∂e
QΨT ϑ̃

+

n−1∑
k=2

∂αn−1

∂e
QΨTΓ

(
∂αk−1

∂ϑ̂

)T
zk

+ΦT θ̃ + ΨT
0 ϑ̃0. (38)

The adaptive laws for θ̂, ϑ̂ and ϑ̂0 are designed as

˙̂
θ = ΓθΦzn, (39)

˙̂
ϑ = τn := ΓΨQ

n∑
k=1

(
∂αk−1

∂e

)T
zk, (40)

˙̂
ϑ0 = Γ0Ψzn. (41)

For the proposed adaptive backstepping, we have the following
theorem.

Theorem 4: For the network-connected nonlinear system (1) under
Assumptions 1 and 2, the adaptive controller that consists of the
control input (37) and the adaptive laws (39), (40), and (41) ensures
the solution of the consensus output regulation problem in the sense
that limt→∞ e(t) = 0. Furthermore, the proposed control input and
adaptive laws are decentralized.

Proof: Consider a Lyapunov function candidate

V = zT1 Q
−1z1 +

N∑
i=2

zTj zj + θ̃TΓ−1
θ θ̃

+ϑ̃TΓ−1ϑ̃+ ϑ̃T0 Γ−1
0 ϑ̃0.

From the dynamics of zj for j = 1 . . . , n shown in (25), (30), (34)
and (38), and the adaptive laws (39), (40), and (41), it can be obtained
that

V̇ = −
n∑
j=1

cjz
T
j zj .

Hence from the standard adaptive control analysis, we can conclude
that all the variables are bounded and we have limt→∞ zj(t) = 0,
for j = 1, . . . , n, which implies limt→∞ e(t) = 0, as e = z1.

The decentralized implementation can be shown by the fact that
all the matrices involved in the adaptive backstepping are diagonal or
block diagonal matrices, expect the matrix Q. The variables involved
with Q can be obtained using the network connections between
neighbourhood subsystems. Therefore, the control input and adaptive
laws are decentralized.

VI. EXAMPLE

Consider a system with 5 subsystems described by

ẋ11 = x12, ẋ12 = x11x12θ1 + w2 + u1,

ẋ21 = x22, ẋ22 = x2
2θ2 + w2 + u2,

ẋ31 = x32, ẋ32 = x2
31θ3 + w2 + u3,

ẋ41 = x42, ẋ42 = x41x42θ4 + w3
1 + u4,

ẋ51 = x52, ẋ52 = x2
52θ5 + w3

1 + u5 (42)

with [
ẇ1

ẇ2

]
=

[
0 ω
−ω 0

] [
w1

w2

]
where ω is a known positive constant.
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The desired trajectory r(w) = w1. The adjacency matrix is given
by

A =


0 1 1 0 1
1 0 1 1 0
1 1 0 1 0
0 1 1 0 1
1 0 0 1 0


and the B matrix is given by B = diag{0 1 0 0 0} and therefore

Q =


3 1 1 0 1
1 4 1 1 0
1 1 3 1 0
0 1 1 3 1
1 0 0 1 2

 .
The system (42) is in the format of (1), and it can be checked

that the system satisfies Assumptions 1 and 2. For r = w1, we
have r = ψTϑ00 with ψ = [sin(ωt), cos(ωt)]T and ϑ00 ∈ R2

being an unknown constant vector. Note that the unknown constant
vector only depends on the initial condition w(0). Similarly for
φ01(w) = φ02(w) = φ03(w) = w2, we have ψ01 = ψ02 = ψ03 =
[sin(ωt), cos(ωt)]T and ϑ0i for i = 1, 2, 3 are unknown constant
vectors in R2. It can be shown that for φ04 = φ05 = w3

1 , we have
ψ04 = ψ05 = [sin(ωt), cos(ωt), sin(3ωt), cos(3ωt)]T and ϑ04

and ϑ05 are unknown constant vectors in R4.
The control design follows the procedures proposed in the previous

section. The control input and the adaptive laws are designed as, for
i = 1, . . . , 5,

ui = −z1i − c2z2i − c1Q(i)(xi2 − ψT ϑ̂i)

+ψTSψϑ̂i + ψT
˙̂
ϑi − φiθ̂i − ψT0iϑ̂0i (43)

and
˙̂
θi = Γθiφiz2i, (44)
˙̂
ϑi = Γi(−ψz1i − c1ψQ(i)z2), (45)
˙̂
ϑ0i = Γ0iΨz2i, (46)

where Sψ = diag{ω, ω} and Q(i) denotes the ith row of Q. It can be
seen that the control inputs and the adaptive laws are decentralized.

The simulation study has been carried out, and the results for the
subsystem outputs are shown in Figure 1 and the control inputs in
Figure 2. For the simulation results shown in Figures 1 and 2, we
used ω = 1, c1 = c2 = 5, Γθi = 10000I , Γi = I and Γ0i = 10I
for i = 1, . . . , 5.

VII. CONCLUSIONS

We have proposed a control design based on block adaptive
backstepping design for consensus output regulation of a class
heterogeneous nonlinear systems with uncertainties. The success of
the proposed design depends on the exploitation of the properties of
linear exosystems for nonlinear dynamic systems and the property
of Laplacian matrices. Block adaptive backstepping has been used
to deal with the high relative degrees in subsystems. The proposed
control inputs and adaptive laws are decentralized and they are
implemented in each subsystems locally. An example has been used
to demonstrate the proposed design, with good simulation results.
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