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Abstract 

In this paper, we introduce linear and nonlinear con- 
sensus protocols for networks of dynamic agents that 
allow the agents to agree in a distributed and cooper- 
ative fashion. We consider the cases of networks with 
communication time-delays and channels that have fil- 
tering effects. We find a tight upper bound on the 
maximum fixed time-delay that can be tolerated in the 
network. It turns out that the connectivity of the net- 
work is the key in reaching a consensus. The case of 
agreement with hounded inputs is considered by ana- 
lyzing the convergence of a class of nonlinear protocols. 
A Lyapunov function is introduced that quantifies rhe 
total disagreement among the nodes of a network. Sim- 
ulation results are provided for agreement in networks 
with communication time-delays and constrained in- 
puts. 

1 Introduction 

An important problem that appears frequently in the 
context of coordination of multi-vehicle/multi-agent 
systems is the group agreement or consensus problem. 
Multi-agent systems have appeared broadly in several 
applications including formation flight of unmanned air 
vehicles (UAVs), clusters of satellites, self-organization, 
automated highway systems, and congestion control in 
communication networks. 

The aforementioned applications justify the impor- 
tance of design and analysis of consensus protocols to 
address agreement problems among communicating dy- 
namic agents in a network. Such dynamic agents might 
or might not represent physical systems (or vehicles). 
In case where these dynamic agents are physical mod- 
els, the input constraints for such systems have to be 

in algebraic graph theory [2], and special cases of con- 
sensus problems were realized. In that work, all the ve- 
hicles have linear dyuamics and the network has ideal 
links (i.e. the transfer function of the links is 1). In 
addition, certain Nyquist plots were useful in stability 
analysis for a multi-vehicle formation stabilization in 
Fax et al.. A more appropriate alternative to forma- 
tion stabilization is to represent formations as rigid and 
unfoldable graphs/structures (71. 

In this work, we do make use of a standard multivari- 
able frequency domain analysis for convergence of lin- 
ear consensus protocols. Two main contributions of 
this paper are to consider networks with time-delay and 
dynamic systems with hounded inputs. In [ 5 ] ,  graph 
Laplacians appear in the context of attitude alignment 
of multiple spacecraft (i.e. a special agreement prob- 
lem). An informal algorithm on attitude alignment for 
flocking of flying dynamic agents in a 3-D space was 
first introduced by Reynolds in 1987 without a conver- 
gence proof 181. In [3], the authors made an attempt 
to prove the convergence of a modified version of the 
Reynolds attitude alignment algorithm for integrator- 
type dynamic agents in R2. The key assumption in 
their proof is that in average with a high probability 
the graph remains connected in time. 

The outline of the paper is as follows. Some hack- 
ground on algebraic graph theory is given in Section 
2. Linear protocols are presented in Section 3. The 
analysis for the case of networks with non-ideal links 
is discussed in Section 4. Nonlinear protocols are pre- 
sented in Section 5. The simulation results are pre- 
sented in Section 6. Finally, concluding remarks are 
made in Section 7. 

2 Preliminaries: Algebraic Graph Theory 
taken into account. This naturally leads us to the de- 
sign and analysis of nonlinear consensus protocols. 

Consensus problem make sense in the context of dis- 
tributed systems [4] and have a long history in the field 
of Computer Science. Iii [1], the importance of the re- 
lation between graph Laplacian, a well-known matrix 

Let E = ( V ,  &) denote a graph with the set of vertices 
V and the set of edges E. Each node is labeled by 
ui E V ,  or i E Z := { 1 , .  . . , n}. Each edge is denoted 
by e = (vi, v j )  or e = ij We refer to v; and uj as 
the tail and head of the edge (u;,vj), respectively. We 
assume all the graphs in this paper are undirected. The 
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orientation of the graph is a choice of heads and tails 
for each undirected edge. The set of edges of a fix 
orientation of the graph is denoted by &o. Thus, E, 
contains one and only one of the two edges i j , j i  E E .  
Let n = IVI and m = 1&J. The set of neighbors of node 
i is denoted by Ni = { j  : ij E &}. The degree of node 
U ;  is the number of its neighbors 1N;I and is denoted by 
deg(u,). The degree ma tex  is an n x n matrix defined 
as A = A(G) = {Aij} where 

Let A denote the adjacency matrix of 4. The the Lapla- 
cian of graph G is defined by 

L = A - A  (2) 

An important feature of L is that all the row sums 
of L are zero and thus eo = (1,1,. . . , l )T E W" is an 
eigenvector of L associated with the eigenvalue X = 0. 
There is an alternate way of defining the Laplacian ma- 
trix which is very beneficial for us. Fix an orientation 
of the graph and let &, = {e l , e z , .  . . ,em}.  Define the 
incidence matrix which is an n x m matrix as C = [ G ~ ]  
where 

Cik := { -1 if v; is the tail of the edge eh, (3) 

The Laplacian matrix satisfies the property L = CCT. 
It  is a well-known fact that this property holds re- 
gardless of the choice of the orientation of o 121. Let 
zi denote a scalar real value assigned to  U;. Then, 
I = (zI,. . . ,z,)~ denotes the state of the graph G. 
We define the Laplacian potential of the graph as fol- 
lows 

+1 

0 ,otherwise. 

if ui is the head of the edge ek, 

(4) 
1 
2 

Q p ( x )  = - 2 L x  

From the new definition of the graph Laplacian, the fol- 
lowing property of the Laplacian potential of the graph 
follows: 

Lemma 1. (Laplacian potential) The Laplacian poten- 
tial of a graph is positive semi-definite and satisfies the 
following identity: 

Moreover, given a connected graph, Q p ( x )  = 0 if and 
only if xi  = xj,Qi,j. 

Definition 1. (agreement) Let xi  denote the value of 
node vi for all i E Z. We say nodes ui and v j  agree if 
and only if xi  = z j .  Similarly, we say they disagree if 
and only if xi  # x3. 

According to Lemma 1, the Laplacian potential of the 
graph G is a measure of total disagreement among all 
nodes. If a t  least two neighboring nodes of G disagree, 
then q ~ ( x )  > 0. As a result, minimizing Q p ( x )  is 
equivalent to  reaching a consensus. We formalize this 
idea in the rest of the paper. 
Definition 2 .  (consensus) Let the value of all nodes x 
be the solution of the following differential equation: 

s = f (z), z(0) = xo E R" (6) 

In addition, let x : R" 4 R be a multi-input single- 
output operation on x = ( x l , .  . . , x , ) ~  that generates 
a decision-value y = ~ ( x ) .  We say all the nodes of 
the graph have reached consensus w.r.t. x in finite 
time T > 0 if and only if all the nodes agree and 
x;(T)  = x(z(O)),Vi E I .  Similarly, let z = z* be 
a globally/locally asymptotically stable equilibrium of 
(6). We say all the nodes of the graph with initial values 
zy have globally/locally asymptotically reached consen- 
sus regarding x if and only if zf = x(x(O)) ,Vi  E Z 
Example 1. Some of the common examples of the op- 
eration x are given in the following: 

1 
x ( x )  = Awe(z)  = - E:=, xi  n 
x ( x )  = M a z ( z )  = max{x l . x z , .  . . , x n }  
x ( z )  = Min(z)  = min{x l .xz , .  . . ,x,} 

(7) 

The corresponding consensus of these operations are re- 
ferred to as the average-consensus, the mu-consensus, 
and the min-consensus, respectively. This suggests a 
general name of X-consensus for an agreement prob- 
lem regarding the operation x .  

According to Lemma 1, the Laplacian potential of the 
graph G is a measure of total disagreement among all 
nodes. If a t  least two neighboring nodes of 4 disagree, 
then 'X"p(x) > 0. As a result, minimizing ap(x)  is 
equivalent to  reaching a consensus. This the key in the 
design of a consensus protocol. 

Lemma 2. (connectivity and graph Laplacian [Z]) As- 
sume graph 4 has c connected components, then 

r a n k ( l )  = rank(C) = n - c. (8) 

Particularly, for a connected graph with c = 1, Proof. The positive semi-definiteness is due to  
zTLs = x T C C T x  = IICTzlIz. In addition, if rank(L) = n  '. 
CijEco(x, - zj)' = 0, then for all edges i j  E &o, 

zj -xi = 0. If the graph is connected, then the values 
of all nodes must be equal. The opposite statement is 
trivial, i.e. if the values of all nodes are equal, then 
*p(z) = 0. 0 

Based on Lemma 2, the algebraic multiplicity of the 
zero eigenvalue of L is 1, if and only if the graph is 
connected. In addition, for an undirected graph, all 
the other eigenvalues of G are positive and real. 
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3 Linear Consensus Protocols 

In this section, we present two linear consensus proto- 
cols for networks of integrators both with and without 
communication time-delays. 

Theorem 1. Let '2 be a connected graph and suppose 
each.node of S applies the following distributed linear 
QTOtoCOl 

Then, the vector of the value of the nodes x is the solu- 
tion of a gradient system associated with the Laplacian 
potential a ~ ( x ) ,  i.e. 

f = -Lx = -oaf+), z(0) E Rn (10) 

In  addition, all the nodes of the graph globally asymp- 
totically reach an average-consensus, i.e. let x' = 
limtd+,x(t), thenxf =z1; = Ave(z(O)),Vi,j,i # j .  

Proof. Let z' be an equilibrium of the system f = 
-Lz. Then Lz' = 0 and thus x* is the eigenvector 
of the Laplacian L associated with the zero eigenvalue 
A1 = 0. On the other hand, we have 

1 
2 

a&*) = -(x')TLx' = 0 

and from connectivity of B it follows that zt = x; = 
a,Vi,j, i.e. x* = (a ,..., a)T,a E R. Notice that 
XI"=, ui = 0. Thus, 3T' = Ave(z) is an invariant quan- 
tity, i.e. 4 = 0. This implies Ave(z*) = Ave(z(0)). 
But Ave(z') = a, therefore xf = Ave(s(0) for all 
the nodes i E 1. Observe that all the eigenvalues of 
-L are negative, except for the single zero eigenvalue. 
Thus, any solution of the system asymptotically con- 
verges to a point x* in the eigenspace associated with 
A1 = 0. This implies that an average-consensus is glob- 

0 

Remark 1. It turns out that the planar version of 
Reynolds algorithm is the same as the linear protocol in 
(9). This relies on two assumptions: i) the edges of the 
graph are determined according to the closest spatial 
neighbors of each agent, and ii) the graph Laplacian 
remains invariant during flocking. 

An elementary method to analyze the convergence of 
the protocol given in Theorem 1 is to  use the Laplace 
transform of f = -Lx as follows. We have X ( s )  = 
Go(s)z(O) where Co(s) is a multi-input multi-output 
(MIMO) transfer function given by 

ally asymptotically reached by all the nodes. 

Go(s) = (SI, + L)-'. (11) 

Here, the subscript 0 in Go(s) implies zero communi- 
cation time-delay. 

Note. Throughout the paper, we use usual notation 
in the Laplace (or frequency) domain, i.e. X ( s )  and 
X ( j w )  are the Laplace transform and the Fourier trans- 
form of the signal x( t ) ,  respectively. 

A sufficient condition that the aforementioned protocol 
converges is that all the  poles of G(s) have to be on the 
LHP except for an isolated pole at zero. 

The following result gives a non-conservative bound on 
the communication delay between two nodes of the 
network such that still an average-consensus can be 
reached. 

Theorem 2. Suppose that each node vi of a connected 
graph B receives the information (i.e. xj) from its 
neighboring nodes after a fixed delay T > 0 and applies 
the following linear protocol 

U,(t) = ( Z j ( t  - T )  - Xi(t - T ) )  (12) 
j € N ,  

Then, the the value of .the nodes is the solution of the 
following linear delay di&Tential equation: 

x = -Lx(t - r ) ,  z(0) E Rn (13) 
In  addition, all the nodes of the graph globally asymp- 
totically reach an average-consensus if and only if ei- 
ther of the following two equivalent conditions are sat- 
isfied: 

7r 
i) T E ( 0 , ~ ' )  with T' = -,A, = AmaZ(L), 

ii) The Nyquist plot of r(s) = eCTs/s has a zero 
2A, 

encirclement around - 1 / X k , M  > 1 .  

Moreover, for r = T* the system has a globally asymp- 
totically stable oscillatory solution with the frequency 
w = A,. 

Proof. See the proof of Theorem 2 in [Si. U 

4 Linear  Protocols for Networks wi th  
Non-ideal Links 

In general, the characteristic of each link can be r e p  
resented by a stable transfer function h(s). This can 
represent a time-delay, a Pade approximation of a time- 
delay (an all-pass filter), or possibly the distortion or 
filtering effects in a communication link. Assume all 
the links have the same characteristic h(s) and let 
X,(s) denote the filtered output of the link with an 
input X,(s), i.e. ?,(t) := h(t) 1 x,(t). Then, the con- 
sensus protocol for this network with non-ideal links 
(h(s) # 1) can be expressed as 

oi(t) = ( i j ( t )  - ?;(t)), Vi E Z (14) 
I C N .  
1.1.- 
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where is the special case of a time-delay with h(s)  = 
e-rs reduces to (12). Clearly, Cy=, ui(t)  = 0,Vt 2 0 
and 1: = Ave(z) is an invariant quantity. Thus, if the 
protocol in (14) converges, the decision-value for all the 
agents is Ave(z(0)) regardless of the choice of H ( s ) .  

overall input of each node remains bounded. This nat- 
urally leads to design and analysis of nonlinear consen- 
sus protocols. First, we introduce the notion of action 
graphs as a general design tool for nonlinear consensus 
protocols. 

After performing a frequency domain analysis similar 
to the one presented in the proof of Theorem 2, one Let (v, E )  be a graph with the set of vertices v and 
obtains X ( s )  = G(s)z(O) with G(s) = (SI, + h(s)L)-' 
and Z(s)  := SI, + h ( s ) L  that leads to the following 
Nyquist convergence criterion for the protocol in (14): 

(15) 

the set of edges E .  An action graph, denoted by 
= (v,E,@), is a graph (V,&) augmented with a set 

O f  action functions CJ with elements $pu : R + R that 
are associated with the edges e,> = (..,U>) E E of the 
graph. Throughout this paper, we assume that an ac- 
tion function $(z) satisfies the following properties: 

1 
- + r(s) = 0, k > 1 
x k  

with r(s) = h ( s ) / s .  In other words, if the net encir- 
clement of the Nyquist plot of r(s) around -I/&, k > 
1 is zero, then (14) globally asymptotically converges. 
This result has a striking similarity to a result in [l], 
despite the fact that the agents have a different dy- 
namics than the ones used in 111. The nature of this 
similarity is due to the fact that analyzing the stability 
of any linear system with delay can be addressed us- 
ing Laplace transforms and will reduce to a frequency 
domain analysis. 

In the most general form, let h i j ( s )  = h j i ( s )  denote 
the characteristic of the link that connects node-i and 
node-j. Define the adjacency matrix in the Laplace 
domain, A ( s )  as a matrix with elements hi j ( s )  when 
there is a an edge i j  and zero where there are no edges. 
The degree matria: in the Laplace domain is a diagonal 
matrix A(s) with the iith element given by 

A;,(.) := 1 h, j (s) .  (16) 
j € N s  

We define the Laplacian of the network in the Laplace 
domain as L ( s )  = A(s) - A(s) .  Then, G(s) = (SI, + 
L(s))-' is the main MIMO transfer function of inter- 
est satisfying X ( s )  = G(s)z(O). In general, if all the 
h; j ( s ) ,  the stability of G(s) = (SI, + L(s))-' can be 
directly checked by finding all of its poles. In the spe- 
cial case with hij (s)  = h ( s )  for hi j ( s )  $ 0, we obtain 
L(s)  = h ( s ) L  and thus G(s) = (SI, + h(s)L)-'. The 
benefit of defining a general Laplacian matrix L ( s )  in 
the Laplace domain is that one can analyze linear pro- 
tocols for more realistic communication networks where 
the time-delay of all the links are not necessarily equal. 

5 Action Graphs and Nonlinear Protocols 

The problem of attitude alignment for robots and 
spacecraft is a special case of the consensus problem. 
For these physical systems, it is not reasonable to as- 
sume that their attitude can change by an unbounded 
value, i.e. the input torque is bounded. This suggests 
development of consensus protocols that guarantee the 

i) $(z) is continuous and locally Lipschitz, 

ii) $(z) = 0 @ z = 0, 

iii) $(-x) = -$(x),Vx E W, 

iv) (x - Y) ($ ( z )  - $ ( Y ) )  > 0,Vz # Y .  

Let I&(I) = J:&j(s)ds, then &(z) associated with 
eij E E is called the edge cost. Define the set of edge 
costs as SJ = : (vi,.,) E E } .  Then L; = (V ,&,Q)  is 
called a cost graph. 
Remark 2. Clearly, corresponding to any action graph 
with measurable action functions, there exists a cost 
graph. The opposite holds provided that each cost in 
is a continuously differential convex function with a 
global minimum at  1: = 0. 

In the special case where all the edge action functions 
are equal to 4, we use the notation B = (V, E ,  4) to r e p  
resent the action graph and call it a uniaction graph. 
The main focus of this paper is the application of uni- 
action graphs in providing consensus protocols and al- 
gorithms for a network of dynamic systems. 

Consider a dynamic graph in which each node is a dy- 
namic system 

x; = f(x;,ua), i E z (17) 

For now, we assume each node is an integrator, i.e. 
x; = u;,vz E z. 
Theorem 3. (Consensus with Nonlinear Protocol) 
Consider a dynamic action graph L; = (V ,E,@) with 
integrator nodes and suppose that (V,  E )  is  a connected 
graph. Assume that all the edge actions are symmetric 
(& = $j;) and each node applies the following input 

where N; = { j  E : i j  E E } .  Then, there exists a 
common decision-value x* = Aue(x(0) )  given b y  that 
is  reached globally asymptotically b y  every node in the 
action graph. 
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Proof. Let a = Ave(x) and notice tha t  due to  
Cy='=,u, = 0, a is an invariant quantity, i.e. d. = 0 
and m(t) = Ave(z(O)),  for all t 2 0. We can write z as 

x = a l + 6  (19) 

where 1 = (1,. . . , l)T and 6 is called the disagreement 
vector. Notice that E,& = 0 and f = 8, thus the 
disagreement vector satisfies the following disagreement 
dynamics 

: & = + i j ( ~ j  - d,), i = 1 , .  . . , n (20) 
j€Ni 

due to  xj - x i  = 63 - J i ,  for all i , j .  Defining the group 
disagreement function as 

V(6)  = 1 l ~ I l 2 ,  (21) 

we get 

V ( 6 )  = 2Ci=1 CjEN, J i 4 i j ( d j  -hi) 
C<i , j )EE  &$ij(Jj - 6,) + 6j+ j i (& i  - 63) 
- C(,,j)(6j - 6i)$ij(6j - 6,) 5 0. 

(22) 
Notice that V ( 6 )  = 0 implies 6, = 6, for a11 the edges 
(i,j) E E .  Since the graph is connected, we have 6i = 6 j  

for all z,j E 1. By definition of 6, E, 6, = 0 thus 6, = 0 
for all i .  In other words, 6 # 0 implies V ( 6 )  < 0 and 
therefore the group disagreement function V(6) is a 
valid Lyapunov function for the disagreement dynam- 
ics. As a result, 6 = 0 is globally asymptotically stable 
for (ZO), i.e. z ( t )  i a1 as t -+ +cc and average- 

0 
Remark 3. Due to  symmetry of action functions and 
property iii), the following identity holds 

consensus is globally asymptotically achieved. 

bji(6i - dj )  = -+ij(6j - 6,) 
. .  

In lack of the symmetry of action functions, one can 

4 5 6 
( 4  

1 3 5 7 9  
(b) 

Figure 1: Undirected graphs used for consensus problems: 
a) 8. and b) Ga. 

for T = 0,0.5~,,,,~,,, = n/ZX,,,(B,) = 0.266 for a 
zeremean random set of initial conditions. Clearly, the 
agreement is achieved for the cases with T < r,,, in 
Figures 4(a) and (b). For the case with T = T , , , ~ ~ ,  syn- 
chronous oscillations are demonstrated in Figure 4(c). 
A third-order Pade approximation is used to model the 
time-delay as a finite-order LTI system. 

i o  

,I.. .. .... ..... I ..... . ... : .... ......... .... :..I 

and replace the action functions in protocol (Al)  with 
their symmetric counterparts and still the same result 
holds. 

protocol on B, 

7 Conclusions 

In this paper, we introduced linear and nonlinear con- 
sensus protocols for a network of dynamic agents with 
undirected information flow that solves an average- 
consensus problem in a distributed way. We discussed 
how the convergence analysis is done for the cases 
where the characteristic function of the comrnunica- 
tion links are not equal to 1. This includes links with 
time-delay and possibly distortion and filtering effects. 
We used standard tools from multivariable control and 
linear control theory such a s  Nyquist plots to analyze 
the convergence properties of the linear protocols. For 
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6 Simulat ion Resul t s  

We consider solving average-consensus problem for 
graphs Ga and G b  shown in Figure 1. Figures 2 and 
3 show the simulation results for the nonlinear consen- 
sus protocol for a network with information flow G b .  
Apparently, agreement is achieved with bounded in- 
puts. Figure 4 shows the state trajectories of n = 10 
nodes for a network with comnlunication time-delay T 



- ,  - I 
2 4 6 8 

Time (sec) 

Figure 3: Bounded input for agreement with nonlinear 
protocol on G. 

the analysis of the nonlinear protocols, we introduced 
the notion of action graphs and constructed disagree- 
ment costs that are minimized by nonlinear consensus 
protocols in a distributed way. Simulation results were 
presented that are consistent with our theoretical re- 
sults. 
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Figure 4: Consensus problem with communication time- 
delay on Gb in Figure 1:  (a] T = 0, (h) r = 
0.5~,,,, and ( c )  T = T ~ ~ ~ .  
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