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X-l inked hypophosphatemia (XLH) is the most common genetic form of

hypophosphatemic rickets and osteomalacia. In this disease, mutations in the PHEX

gene lead to elevated levels of the hormone fibroblast growth factor 23 (FGF23), resulting

in renal phosphate wasting and impaired skeletal and dental mineralization. Recently,

international guidelines for the diagnosis and treatment of this condition have been

published. However, more specific recommendations are needed to provide guidance

at the national level, considering resource availability and health economic aspects. A

national multidisciplinary group of Belgian experts convened to discuss translation of

international best available evidence into locally feasible consensus recommendations.

Patients with XLH may present to a wide array of primary, secondary and tertiary care

physicians, among whom awareness of the disease should be raised. XLH has a very

broad differential-diagnosis for which clinical features, biochemical and genetic testing in

centers of expertise are recommended. Optimal care requires a multidisciplinary

approach, guided by an expert in metabolic bone diseases and involving (according to

the individual patient’s needs) pediatric and adult medical specialties and paramedical

caregivers, including but not limited to general practitioners, dentists, radiologists and
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orthopedic surgeons. In children with severe or refractory symptoms, FGF23 inhibition

using burosumab may provide superior outcomes compared to conventional medical

therapy with phosphate supplements and active vitamin D analogues. Burosumab has

also demonstrated promising results in adults on certain clinical outcomes such as

pseudofractures. In summary, this work outlines recommendations for clinicians and

policymakers, with a vision for improving the diagnostic and therapeutic landscape for

XLH patients in Belgium.

Keywords: burosumab, fibroblast growth factor 23 (FGF23), osteomalacia, rickets, vitamin D, X-

linked hypophosphatemia

INTRODUCTION

X-linked hypophosphatemia (XLH) is the most common genetic
form of hypophosphatemic rickets and osteomalacia. Its

incidence has been estimated at 3.9-5 cases per 100.000 live

births, with no evidence of ethnic variation (1, 2). Belgium has an

annual birth rate of ± 117.800 (year 2018), ± 1.93 million

growing children (< 15 years) and 11.4 million total

population (2019 census) (3). Extrapolation of the ~1:20.000
incidence and prevalence would imply that this rare disease has

an incidence of less than 6 cases in newborns annually and a

prevalence of 97 and 475 cases in the pediatric and adolescent/

adult population, respectively. Other sources have reported

prevalences lower than 1:20.000 e.g. 1.4 per 100.000 in the

United Kingdom (4) to 1.7 per 100.000 in Norway (5). Possible

reasons include gaps in diagnosis and referral of XLH patients
from primary or secondary care to centers of expertise. This is

certainly the case also in Belgium, where only recently efforts

have been initiated to improve the care for patients suffering

from rare/orphan diseases (6).

The pathophysiology of XLH has been reviewed extensively

elsewhere (7, 8). In brief, mono-allelic mutations or
chromosomal derangements affecting the Phosphate Regulating

Endopeptidase Homolog, X-Linked (PHEX) gene on the X

chromosome lead to elevated levels of the hormone fibroblast

growth factor 23 (FGF23), resulting in renal phosphate wasting,

impaired 1a-hydroxylation of 25-hydroxyvitamin D [25(OH)D]

to the active hormone calcitriol (1,25-dihydroxyvitamin D [1,25

(OH)2D]) and consequently, chronic hypophosphatemia,
impaired skeletal mineralization and rickets (9). In children,

the corresponding clinical features may include delayed growth

and short stature, craniosynostosis and raised intracranial

pressure, deformities of weight-bearing limbs, muscle

weakness, gait abnormalities (10), tooth abscesses and

excessive dental caries (9, 11, 12).
Following growth plate closure, a part of adolescent and

young adult patients continue to experience debilitating

symptoms while others may experience a “honeymoon” phase

(similar to other metabolic bone diseases) with fewer

musculoskeletal problems (except dental manifestations).

During this phase, conventional therapy with phosphate

supplements and active vitamin D analogues is often stopped,
because subjective and skeletal benefits are thought to be

lacking (13). During adolescence, the psychological burden

increases (14), which may contribute to poor adherence and
lack of follow-up. The historic perception of therapeutic futility

in adults has probably contributed to the dearth of transitional

care programs between pediatric and adult specialty care for

XLH patients. Nevertheless, even adults with milder forms

usually develop symptoms in their third or fourth decade,

which may include bone and joint pain, fatigue, enthesopathy
(commonly involving the hips and anterior spinal ligament),

pseudofractures, dental complications and early osteoarthritis

(15). These complications ultimately cause chronic pain,

impaired mobility, loss of productivity and lower quality of

life (9, 15–20). Extraskeletal complications include hearing loss,

symptomatic Chiari malformations, arterial hypertension

[(possibly induced by oral phosphate supplements (21, 22)].
An increased prevalence of overweight and obesity has also

been observed in XLH (23). Recent data suggest that XLH may

be associated with increased risk of mortality in older adults,

but not in children (4). A recent population-based study also

reported an increased risk of depression and socioeconomic

deprivation (24).
Recently, international evidence-based guidelines for the

diagnosis and management of XLH have been published (13,

25). However, efforts are also required to translate the principles

outlined in these guidelines to more practical recommendations

at the national level, considering local elements such available

resources and health economic aspects (26). Towards this aim,
and as part of an interdisciplinary effort to improve the

diagnostic and therapeutic care pathway for XLH patients in

Belgium, a multi-stakeholder panel gathered to develop national

consensus recommendations.

METHODS

First, two in-person meetings were held between several of the

authors (ML, JS, NG, EB, CH, JLa, KH, EL and JV) to review the

available evidence, facilitate discussion and to propose diagnostic
and therapeutic criteria for Belgium. The international evidence-

based guidelines (13, 25) as well as recent randomized trials were

considered as the basis for practical recommendations applicable

to the Belgian context. Further input was sought from all other

co-authors through consecutive e-mail rounds. The writing
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panel is composed of national experts from all universities and

involves specialists in pediatric nephrology, endocrinology, adult

metabolic bone diseases, rheumatology, clinical genetics,

orthopedic surgery, clinical chemistry and physical medicine

and rehabilitation. Furthermore, a Belgian XLH patient who is

a founding member of the Belgian patient organization (XLH
Belgium) as well as of its French counterpart (RVRH-XLH)

participated. This work was co-authored by members of and

endorsed by the Belgian Society for Pediatric Nephrology, the

Belgian Society for Pediatric Endocrinology and Diabetes, the

Flemish Network on Rare Bone Diseases, the Belgian Bone Club,

the Royal Belgian Society of Laboratory Medicine and the Royal
Belgian Society of Physical and Rehabilitation Medicine.

RESULTS

Diagnosis
The diagnosis of XLH relies on the combination of clinical,
radiographic, biochemical and genetic features (25). More

specifically, this involves signs of rickets and/or osteomalacia

in association with hypophosphatemia and renal phosphate

wasting in the absence of vitamin D deficiency. The diagnosis

should be confirmed by genetic testing whenever possible.

The cl inical features include those common for
hypophosphatemic rickets, as outlined in the introduction i.e.

short stature, waddling gait, and leg bowing in growing children,

in addition to muscle weakness. Fatigue and chronic pain

become more prevalent in older children and particularly

adults. Growth delay usually becomes evident from 9-12

months of age in XLH children (27). Early diagnosis and

treatment is associated with better outcomes in children. Even
when plasma phosphate is measured, hypophosphatemia may be

overlooked due to lack of attention, misinterpretation of

reference values in children, or waxing and waning of

phosphatemia. In adults, signs of prior rickets during

childhood should be sought e.g. short stature and limb bowing,

although these may be absent in patients with milder phenotypes
or those having received appropriate treatment during

childhood. Some clinical features distinctive for this form of

hypophosphatemic rickets are dental abscesses and

enthesopathy, which may present to rheumatologists and are

sometimes mistaken for spondylarthropathies.

Hypophosphatemic rickets has a wide differential diagnosis

(Table 1). Although XLH is the most common genetic form,
both acquired and rarer inherited differential-diagnoses should

be considered. Neither clinical, biochemical, radiographic or

genetic examinations on their own can correctly distinguish

XLH from other conditions. Therefore, we recommend a

multimodal work-up of suspected XLH by an experienced

clinician to exclude other diseases. Bone biopsy is not routinely
recommended in XLH (13). Moreover, expertise in bone

histomorphometry is still scarcely available in Belgium (mainly

in collaboration with neighboring countries, although bone

histomorphometry recently became reimbursed through the

national health insurance).

Biochemical Work-Up and Differential Diagnosis
Figure 1 shows a practical flowchart outlining the differential-

diagnosis of hypophosphatemia in children or adults, according
to biochemical features. The clinical, radiographic, biochemical

and pathophysiological or genetic features of these causes are

discussed in detail in this section.

As with the approach to any electrolyte disorder, the first step

after careful history taking and clinical examination is to exclude

obvious causes such as dilution (e.g. by massive fluid resuscitation,
dialysis, plasmapheresis), spurious hypophosphatemia (from e.g.

drug interference like amphotericin B, interference by bilirubin

(28) or specific paraproteins), medication effects [e.g. excessive

phosphate binders , niacin (29)] or alcohol abuse.

Hypophosphatemia in alcoholics has a complex, multifactorial

and incompletely understood pathophysiology. These causes
should be considered first, since they can usually be diagnosed

without further work-up.

Distinguishing Acquired vs. Genetic and Acute vs. Chronic

Hypophosphatemia
Previously normal plasma phosphate levels suggest three

possibilities: an acquired chronic cause, an acquired acute causes

or a genetic, adult-onset cause. However, prior phosphate levels

are often unavailable. Elevated alkaline phosphatase (ALP) is also

indicative of chronic hypophosphatemia and consequent rickets/

osteomalacia. Hypophosphatemia in the absence of rickets should
raise suspicion for either an acute, transient cause (e.g. intracellular

shift from hyperventilation, refeeding, hungry bone syndrome) or

an acquired chronic cause such as alcohol abuse, tumor-induced

rickets/osteomalacia (TIR/TIO) or certain medications such as

tenofovir or frequent ferric carboxymaltose infusions (30).

Notably, some genetic forms of hypophosphatemia may have an
adult onset (notably, autosomal-dominant hypophosphatemic

rickets, see below), in which case signs of rickets may be absent.

Chronic hypophosphatemia is believed to play a central role

in the pathogenesis of almost all forms of rickets (31, 32). After

confirming chronic hypophosphatemia, the next step is to assess

phosphaturia i.e. whether hypophosphatemia is due to renal

phosphate wasting or not (see Biochemical Work-Up: Pre-
Analytic and Analytic Considerations below).

Once renal phosphate wasting has been confirmed, three

mechanisms of renal phosphate loss remain: (i) defective intrinsic

renal phosphate transport, (ii) parathyroid hormone (PTH)-

mediated (and/or vitamin D-mediated) hyperphosphaturia, or (iii)

FGF23-mediated causes.

Defective Intrinsic Renal Phosphate Reabsorption
The first category includes all causes of Fanconi syndrome i.e. a

more generalized low molecular weight solute wasting at the

proximal tubulus level. Low levels of uric acid and bicarbonate,

glucosuria, aminoaciduria and low molecular weight (tubular)

proteinuria should hint towards this category. At an older age,
there may be slowly progressive renal insufficiency. However,

some degree of renal tubular acidosis may be acquired during

long-standing XLH, particularly when associated with

nephrocalcinosis (33). The differential-diagnosis of Fanconi

syndrome itself is broad and includes (non-exhaustively)
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FIGURE 1 | Flowchart outlining the differential-diagnosis of chronic hypophosphatemia based on biochemical features. See text for abbreviations.

TABLE 1 | Differential diagnoses of X-linked hypophosphatemia (XLH).

Disease (gene) Biochemical Radiographic Clinical

XLH (PHEX) FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Dense bones, BMD↑,

pseudofractures,

enthesopathy

Rickets + dental abscesses, enthesopathy

Vitamin D-deficiency rickets

(nutritional, CYP2R1, CYP3A4)

25(OH)D↓, PTH↑, (Ca↓), (1,25(OH)2D↓),

calciuria↓, FGF23↓

Osteopenia, fractures Rickets (symptomatic hypocalcemia)

VDRR1A (CYP27B1) 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Osteopenia, fractures Rickets (symptomatic hypocalcemia)

Chronic renal insufficiency FGF23↑, PO3−
4 ↑, 1,25(OH)2D↓, (Ca↓), PTH↑,

calciuria↓

Unremarkable,

hyperparathyroidism

No rickets (unless nutritional)

Fanconi syndromes, renal

tubular acidosis

FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ +

metabolic acidosis, low urate, glucosuria,

amino-aciduria, some GFR↓

Rickets and/or osteomalacia Evidence of underlying disorders

Tumor-induced rickets/

osteomalacia

(FGF23↑), 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Rickets and/or osteomalacia No family history of rickets or osteomalacia

HHRH, NPHLOP1/2 (SLC34A3,

SLC34A1, SLC9A3R1)

FGF23↑, 1,25(OH)2D↑, (Ca=↑), PTH↓,

calciuria↑

Osteopenia, fractures Rickets and/or osteoporosis, prominent

nephrocalcinosis/nephrolithiasis

Jansen metaphyseal

chrondrodysplasia

FGF23↑, 1,25(OH)2D↑, (Ca=↑), PTH↓,

calciuria↑

Osteopenia, fractures Very short stature, more pronounced

skeletal dysplasia

ADHR (FGF23) Variably FGF23↑ associated with iron

deficiency

May be milder, no rickets in adult-onset forms

ARHR1 (DMP1) FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Dense vertebral bodies May present as sclerosing bone disease

ARHR2 (ENPP1) FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Generalized arterial

calcifications

Generalized arterial calcifications ±

multisystem manifestations

ARHR3, Raine syndrome

(FAM20C)

FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Dense bones, BMD↑,

pseudofractures,

enthesopathy

Cerebral calcifications; perilacunar

osteomalacia on bone biopsy; facial features

a-klotho (KL translocation) FGF23↑, a-klotho↑, (1,25(OH)2D↓), (Ca↓), PTH↑,

calciuria↓

Rickets Macrocephaly, prominent frontal bossing,

and dysplasia of the nasal bones, with

exaggerated midfacial protrusion

FD/MAS, linear sebaceous

nevus syndrome (post-zygotic

somatic mutations)

FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Focal bone lesions Café-au-lait spots or nevi; focal bone

lesions, jaw involvement

Osteoglophonic dysplasia

(FGFR1), opsismodysplasia

(INPPL1)

FGF23↑, 1,25(OH)2D↓, (Ca↓), PTH↑, calciuria↓ Severe bone dysplasias;

non-ossifying bone

lesions, hypo-/adontia

Very short stature; severe skeletal dysplasia

(SGK3) Unclear pattern Rickets Rickets

Bold, distinctive biochemical, radiographic, or clinical features allowing distinction from XLH. BMD, bone mineral density.
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mitochondrial respiratory chain diseases, metal intoxications,

Wilson’s disease, cystinosis, multiple myeloma [especially when

involving light chains (34)], Sjögren’s disease, medications like

ifosfamide or tenofovir, genetics forms of renal tubular acidose,

Dent’s disease and Lowe’s oculocerebrorenal syndrome (from

OCRL1 or CLCN5 mutations).
Some genetic conditions may rather selectively impair renal

phosphate reabsorption, including several undiagnosed diseases.

Recently, mutations in SGK3 (serum/glucocorticoid-regulated

kinase 3) were identified as a possible cause of autosomal-

dominant hypophosphatemic rickets (35), although further

study is needed to understand the underlying mechanisms.

Parathyroid Hormone-Mediated Hyperphosphaturia
The second category entails disorders of increased PTH or

impaired vitamin D actions. Recent evidence shows elevated

FGF23 in primary hyperparathyroidism (36–38). Both XLH and
primary hyperparathyroidism may feature hypophosphatemia,

renal stone formation, elevated PTH and FGF23 levels. Still,

primary hyperparathyroidism should be easily distinguished by

the presence of hypercalcemia, hypercalciuria, and high-normal

to elevated 1,25(OH)2D as well as by the absence of

rickety features.

Occasionally, it may be difficult to distinguish patients with
non-familial XLH (i.e. probands without other affected family

members) from children with nutritional, vitamin D-deficient-

or -resistant rickets. Low 25(OH)D levels are common in XLH

patients and should be corrected before the diagnosis is

confirmed. In patients refractory to 25(OH)D replenishment,

supervised supplementation may distinguish between poor
compliance vs. resistance due to inactivating CYP2R1

(recessive) or activating CYP3A4 (autosomal-dominant)

mutations (39).

Because FGF23 stimulates CYP24A1 and inhibits CYP27B1 (25-

hydroxyvitamin D3-1a-hydroxylase) expression in both renal and

extrarenal t i ssues (40) , FGF23-mediated forms of

hypophosphatemia are associated with low 1,25(OH)2D levels
(41), secondary hyperparathyroidism (42), and low-normal to

slightly decreased calcemia. However, 10-16.7% of adult XLH

patients may exhibit tertiary (hypercalcemic) hyper

parathyroidism, which is amenable to parathyroidectomy (42,

43). The levels of 1,25(OH)2D are also decreased in patients with

very severe 25(OH)D deficiency, those with chronic renal
insufficiency or in rare cases of CYP27B1 mutations (vitamin D-

resistant rickets type 1A). In the latter three situations, FGF23 levels

are low, high or unknown, respectively. Vitamin D-resistant rickets

due to inactivating vitamin D receptor mutations is exquisitely rare

and more easily distinguished from XLH due to elevated 1,25(OH)

2D levels and because almost all patients display alopecia.

Importantly, radiographic features prominently differ between
XLH and nutritional or vitamin D-related forms of rickets, with

dense bone cortices in XLH and radiolucent bones in vitamin D-

related rickets. Thus, X-ray imaging as well as genetic testing may

distinguish these disorders (see Table 1).

Hereditary hypophospatemic rickets with hypercalciuria

(HHRH) is a group of disorders featuring increased renal
sensitivity to PTH. Bi-allelic mutations in SLC34A3 cause

HHRH, while heterozygous mutations in SLC34A1 and

SLC9A3R1 cause the phenotypically similar hypophosphatemic

nephrolithiasis/osteoporosis syndromes (NPHLOP1 and

NPHLOP2, respectively). In all these conditions, patients may

have hypophosphatemia, elevated FGF23 levels and

nephrolithiasis/nephrocalcinosis (7). However, osteopenia/low
bone mineral density, hypercalciuria, high-normal to elevated

1,25(OH)2D and low PTH point to the diagnosis of HHRH/

NPHLOP. The same common and distinctive features apply to

the ultrarare skeletal dysplasia Jansen metaphyseal

chondrodysplasia, which is caused by activating PTH receptor

1 mutations (44). Additional clinical features in Jansen
metaphyseal chondrodysplasia patients include severe short

stature, brachycephaly, micrognathia, hypertelorism,

and clinodactyly.

Fibroblast Growth Factor 23-Mediated Renal Phosphate

Wasting
The third pathophysiological category involves FGF23-mediated

forms of hypophosphatemic rickets. After XLH, the second most

common genetic form of hypophosphatemic rickets is

autosomal-dominant hypophosphatemic rickets (ADHR).

Notably, it may be difficult to distinguish autosomal- and X-

linked dominant inheritance in certain families. ADHR is caused
by specific mutations in the FGF23 gene (mostly involving amino

acid residues R176 and R179), making the intact (biologically

active) hormone resistant to cleavage (45). Since iron deficiency

increases FGF23 expression, this gene-environment interaction

explains why adult-onset ADHR may be unmasked by iron

deficiency and may be cured with (oral) iron supplements
alone (46–50). Symptoms may wax and wane in parallel with

iron loss during e.g.menstruation or pregnancy. As noted above,

adults with ADHR may not have signs of rickets.

Ferric carboxymaltose (Injectafer®) infusions are a common

drug-induced cause of transient (and sometimes symptomatic)

hypophosphatemia, mostly in patients without chronic renal

insufficiency. While the clinical significance in patients
requiring sporadic infusions remains unknown, frequent

infusions are a potential cause of acquired hypophosphatemic

rickets and/or osteomalacia. The underlying mechanism involves

specific carbohydrate moieties in the carboxymaltose

apomolecule, which interfere with FGF23 cleavage. This

explains why other i.v. iron formulations do not cause
hypophosphatemia, and why intact (active) FGF23 increases

more than c-terminal FGF23 in ferric carboxymaltose-induced

hypophosphatemia (30, 51, 52). Interestingly, FGF23 may also be

increased in tenofovir-induced Fanconi syndrome (53), via yet

unknown mechanisms.

Autosomal-recessive forms of hypophosphatemic rickets

(ARHR) may be caused by mutations in dentin matrix protein
1 (DMP1, as in ARHR1) or ectonucleotide pyrophosphatase/

phosphodiesterase 1 (ENPP1, as in ARHR2). ARHR1 may

present as a sclerosing bone dysplasia with hyperostosis and

very dense vertebral bodies (54). DMP1 as well as PHEX are

highly expressed in osteocytes, although it remains unknown

how they alter the phosphate-FGF23 set point (55). ENPP1 is a
critical enzyme in the generation of the mineralization inhibitor
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pyrophosphate. Loss-of-function mutations in ENPP1 lead to

generalized arterial calcification of infancy (GACI). Many

children with ENPP1 mutations who survive GACI will go on

to develop ARHR2 (56, 57). The mechanism underlying raised

FGF23 (58) and hypophosphatemia in GACI/ARHR2 remains

incompletely understood. Extraskeletal features of GACI
including hearing loss (59), thrombocytopenia, neurologic,

cardiovascular, hepatic manifestations and hypoglycemia have

recently been described (60). Recently, a case of ARHR was

described with compound mutations in DMP1 and SPP1

(encoding osteopontin, another small integrin-binding ligand,

N-linked glycoprotein [SIBLING] protein family member) (61).
FGF23 effects on the kidney are mediated by its co-receptor

klotho. One case report described a balanced translocation

affecting the KL gene, resulting in elevated a–klotho levels and

hypophosphatemic rickets with elevated FGF23 (62).

FGF23 is believed to be cleaved at specific sites mainly by FURIN

(PCSK3) (63), which also cleaves PTH and several other substrates.
This cleavage is further regulated via phosphorylation by FAM20C

(family with sequence similarity 20, member C, also known as

DMP4; the gene mutated in Raine syndrome) and O-glycosylation

by GALNT3 (polypeptide N-acetylgalactosaminyltransferase 3)

(63–65). Raine syndrome (also called type 3 ARHR) was formerly

believed to be a lethal osteosclerotic bone dysplasia, although now

survivors into adulthood have been recognized (66–68). Clinical,
biochemical and radiographic features of Raine syndrome may be

very similar to sporadic XLH, but distinctive facial features, cerebral

calcifications and osteomalacia surrounding the osteocyte lacunae

on bone biopsy are a typical hallmark of this condition (69). In

contrast, recessive, loss-of-function GALNT3 mutations impair

FGF23 actions and thus, like in genetic or autoimmune FGF23
deficiency, lead to familial hyperphosphatemic tumoral calcinosis

syndrome (70, 71).

In non-familial childhood- or adult-onset cases of

hypophosphatemia, one must always bear in mind the possibility

of tumor-induced hypophosphatemic rickets (TIR, in growing

children) or TIO (72). In TIR and TIO, small mesenchymal

tumors secrete FGF23 and/or other phosphatonins such as matrix
extracellular phosphoglycoprotein (MEPE) (73). Thus, circulating

FGF23 is usually but not always raised in TIR/TIO. Typical clinical

features include chronic and progressive bone pain, muscle

weakness and low bone mineral density. Diagnosis of TIO and

TIR often remains extremely difficult, leading to extensive (and

sometimes unnecessary) diagnostic procedures, since tumors may
be too small for detection by conventional radiological methods (see

Imaging Studies below).

Hypophosphatemic rickets in several sclerosing bone, skin or

soft tissue disorders is believed to result from increased secretion

of FGF23 or related phosphaturic hormones by the aberrant cells

(74). Such may be the case in fibrous dysplasia/McCune-Albright

syndrome (FD/MAS, which are caused by post-zygotic, somatic
GNAS mutations) and Schimmelpenning-Feuerstein-Mims

syndrome (which both feature bone lesions and café-au-lait

spots), as well as in isolated linear nevus sebaceous syndrome

(the latter two caused by post-zygotic somatic KRAS, HRAS or

NRAS mutations). Finally, FGF23-mediated hypophosphatemia

has been reported in two ultrarare skeletal dysplasias:

osteoglophonic dysplasia (characterized by rhizomelic dwarfism,

craniosynostosis, impacted teeth, hypodontia or anodontia, and

multiple non-ossifying bone lesions) (75) and opsismodysplasia (a

rare spondylo(epi)chondrodysplasia characterized by delayed

skeletal maturation) (76).

Biochemical Work-Up: Pre-Analytic and Analytic

Considerations
The measurement of plasma calcium (preferably ionized if

feasible, or alternatively albumin-corrected), phosphate, ALP,

creatinine, PTH and 25(OH)D are part of the standard work-up
for any form of rickets or osteomalacia (77).

Alkaline Phosphatase
In the absence of liver disease, bone-specific ALP comprises

~90% of total ALP in children but only ~50% in adults (78, 79).
Therefore, bone-specific ALP has been recommended for the

monitoring of XLH in adults (25). Although bone-specific ALP is

available in Belgium, it is still rarely used. In children, age-

specific reference values should be used for correct interpretation

of these analyses (particularly for ALP and phosphate). During

the first months of life, plasma phosphate and ALP may be

normal in XLH. ALP has no significant diurnal variation and can
be used to monitor disease activity (taking age-specific changes

during growth into account), as well as adherence to therapy (see

Monitoring below).

Plasma and Urinary Phosphate
Since plasma phosphate fluctuates and is influenced by dietary

intake, the international gold standard to assess phosphaturia is

to determine the maximal tubular reabsorption of phosphorus
per glomerular filtration rate (TmP/GFR), ideally from a fasted,

second morning paired plasma and urine phosphate and

creatinine sample (or 2-hour fasted morning urine collection)

(80). Age-related reference ranges for TmP/GFR have been

published (81). Coincidentally, the lower limit of normal for

phosphate and TmP/GFR in children are numerically similar

(82). The fractional tubular resorption of phosphate (TRP) may
be within normal limits in children or adults with XLH. On the

other hand, hypophosphatemia with a TmP/GFR < 0.85 points

to a hyperphosphaturic mechanism. Other proposed

definitions of hyperphosphaturia include 24h phosphaturia >

100 mg or hypophosphatemia with a fractional excretion of

phosphate > 5%.
A 24h urine collection (or split 22h – 2h collection) may be

useful to identify hypercalciuria, which may point to other

diagnoses or excessive use of active vitamin D or calcium

supplements. There are various definitions of hypercalciuria,

either based on total excretion (> 200 to 250 mg/24h or 5.0 to

6.2 mmol/24h in adult women, > 250-300 mg/24h or 6.2 to 7.5

mg/24h in adult men (83), or > 4 mg/kg [0.1 mmol/kg] body
weight/day in children) or based on urinary calcium concentration

(> 200 mg/L) (84). Clearly, further work is needed to define

optimal calciuria cut-points in different populations. The calcium/

creatinine ratio allows to adjust for over- or undercollection in 24h

urine collections, and may be a more practical (although less
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sensitive) method to allow the use of spot urine samples in

children (85, 86). The addition of hydrochloric acid to the

collection ensures dissolution of calcium crystals, thus

preventing underestimation of calciuria (87).

1,25-Dihydroxyvitamin D
While the interpretation of calciuria and phosphaturia rely

mostly on correct sample collection and interpretation of

reference values, 1,25(OH)2D and FGF23 are more challenging

laboratory analyses. Levels of 1,25(OH)2D are higher during

childhood, and pediatric reference ranges have recently been
proposed (88). International efforts to harmonize measurement

of 1,25(OH)2D as well as PTH are underway (89).

Fibroblast Growth Factor 23
Like PTH, FGF23 is an unstable protein susceptible to decay in
several fragments. Similar to phosphate, FGF23 shows diurnal

variation; early-morning venous samples are recommended,

while fasting appears to have little influence on FGF23 (90).

Several FGF23 immunoassays are available: four methods for

intact FGF23 (from Immutopics, Kainos, DiaSorin and

Millipore) and one for c-terminal FGF23 (from Immutopics,
which measures both intact molecules and c-terminal

fragments). These methods differ not only in their marked use

(only DiaSorin is marked for use in diagnostics), cost and

compatibility with several automated laboratory platforms, but

also in their reference ranges and even in their units of

measurement (91, 92). First-generation assays required

collection in protease inhibitor-coated tubes, but storage of
samples on ice and immediate transport to the lab for prompt

centrifugation is nowadays sufficient (92, 93). C-terminal but not

intact FGF23 concentrations are much lower in serum than in

EDTA plasma samples (93, 94). In treated patients with an

unclear diagnosis, it is recommended to stop phosphate

supplements (for at least two weeks) before measuring FGF23,
because phosphate supplements may increase FGF23.

Burosumab therapy (see Burosumab below) may cause

analytical interference with certain FGF23 assays (95), but

FGF23 measurements are not recommended during the follow-

up of XLH patients (see Burosumab below). Thus,

standardization and harmonization of FGF23 assays remain

lacking, and results should always be interpreted cautiously.
Recently, within- and between-subject biological variability for

FGF23 have been published (96). Reference ranges are not

universally established: while c-terminal FGF23 concentrations

may be higher in children than in adults, they are rather similar

for intact FGF23 (82). In Belgium, measurements of FGF23 and

1,25(OH)2D are reimbursed only once per year when requested
by an internal medicine or pediatric specialist to evaluate

abnormal calcemia or phosphatemia.

Imaging Studies
A skeletal survey using conventional radiography is useful in the

work-up of XLH, to confirm rickets or distinguish it from other

skeletal dysplasias (see Table 1), and to look for complications

such as pseudofractures. X-rays of the knees or wrists are usually

sufficient to confirm rickets in children. In adults, X-rays

typically show enthesopathy, early spinal and extra-spinal

osteoarthritis and/or pseudofractures (which often go clinically

and biochemically undetected). However, radiation exposure

limits the use of radiography during follow-up, particularly in

children. In that regard, low-dose biplanar full-leg X-ray imaging

using the EOS® system may be useful (97). In children,
radiological signs of rickets in the hand, knees and lower limbs

include long bone deformities and abnormal growth plates with

widened and frayed metaphyses. Plain radiographs can confirm

suspected rickets or can be useful pre-operatively, while clinical

and biochemical evaluation (rather than routine repeated X-

rays) is more important during follow-up.
Rickets of any cause can be graded using the Rickets Severity

Scale (RSS), which has been validated in XLH (98). Higher RSS

values (indicating more severe rickets) are associated with more

severely impaired growth, walking ability, pain and physical

disability (98), making this not only a radiographic but also a

clinically relevant outcome. However, this score requires
significant expertise [as evidenced by its moderate intra- and

inter-rater reliability (98)] and is not yet widely available

in Belgium.

Renal ultrasound can be used without radiation harm, to

investigate the presence and/or severity of nephrocalcinosis and

nephrolithiasis, although this requires an experienced operator.

Panoramic dental X-rays may be required for stomatological
work-up. Magnetic resonance imaging of the skull base may be

indicated when there is concern for Chiari malformations (e.g.,

persistent headache, neurological or respiratory abnormalities)

or to identify calcifications in suspected Raine syndrome (X-ray

computed tomography may also be used in adults for the latter

purpose). Bone scintigraphy may show increased metaphyseal
uptake (99) in all forms of rickets and osteomalacia, which may

be mistaken for other conditions e.g. avascular necrosis, transient

migratory osteoporosis, etc. Routine technetium bone scans are

not recommended in XLH and only useful to identify focal bone

dysplasias such as FD/MAS.

Patients with XLH and several other sclerosing

hypophosphatemic diseases usually have elevated bone mineral
density Z- or T-scores on dual-energy X-ray absorptiometry

(DXA). However, this can usually be appreciated well enough

from available plain X-rays. Although low Z- or T-scores may

point to other diagnoses such as HHRH/NPHLOP or TIR/TIO,

DXA is not recommended in the work-up nor in the follow-up of

XLH. Bone ultrasound and high-resolution quantitative
computed tomography have also shown increased cortical and

trabecular bone mass in XLH patients, although these techniques

are still considered investigational (100) and not clinically useful.

Imaging plays a central role in the work-up of TIR/TIO, in

order to determine whether the tumor can be surgically resected

or requires alternative non-operative treatment. These tumors

are often small and elusive, but they commonly arise in the lower
limbs or head and neck area and may be located by whole-body

magnetic resonance imaging, octreotide single photon emission

computed tomography, positron emission tomography with
18
fluorodeoxyglucose or DOTATOC/DOTATATE tracer, and/

or by systemic venous sampling (101–103).
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Genetic Testing
When the clinical, biochemical and radiographic findings suggest

the diagnosis of XLH or another genetic disorder, genetic testing
is recommended, both to confirm the diagnosis as well as for

genetic counselling of the patient and his/her family members.

As the protean example of an X-linked dominant disorder,

XLH is inherited from father to daughter and from mother to

children of either sex. There is no convincing evidence that males

(who are X-chromosome hemizygous) are more severely affected
clinically or biochemically (13, 17, 104–107),. However, there

may be a tendency that, compared to girls and women, affected

boys and men may display more growth delay (5) as well as

greater dysmorphic features such as larger head circumference,

greater cranial height, shorter limbs and greater trunk length

(108–110).
Genetic testing by Sanger sequencing or next-generation

sequencing is readily available in several genetic centers in

Belgium for PHEX as well as for other skeletal dysplasia genes

using a whole-exome sequencing-based gene panel. Genetic

testing also examines the 3’ untranslated region in which

mutations associated with milder XLH phenotypes have been

reported (111–113). In general however, mutations can affect any
exon, without a clear genotype-phenotype correlation (114).

Up to 90% of patients clinically diagnosed with XLH will

show a PHEX mutation (115–117). False-negative testing may

occur in case of somatic mosaicism, large deletions, intronic and/

or splice site mutations (118, 119). Quantitative polymerase

chain reaction or multiplex ligation-dependent probe
amplification may be useful to identify such cases (120). Lower

diagnostic rates ~50% are obtained when applying PHEX

sequencing to any unexplained hypophosphatemic rickets

(121). Still, because it is the most common genetic form,

single-gene PHEX sequencing may be the appropriate first step

in FGF23-mediated hypophosphatemic rickets possibly due to

XLH (122).
Genetic counselling is recommended before obtaining genetic

testing, and afterwards to explain the results and implications.

Especially in young adults and those planning pregnancy,

counselling of the patient and his/her partner is warranted. If

the underlying genetic defect is known, patients have a choice

between natural conception or preimplantation genetic diagnosis
(18). A genetic diagnosis in offspring can be performed, usually

soon after birth.

A practical summary of the recommendations for the clinical,

biochemical, radiographic and genetic work-up for suspected XLH

in Belgium is shown in Table 2. These recommendations are

generally consistent with the recent international guidelines (25).

Multidisciplinary Care and Follow-Up
The recent international guidelines suggest follow-up of XLH

patients by multidisciplinary teams (25). Individualized goals

should be determined. Follow-up should focus on patient-

centered outcomes and improving quality of life, by detecting

and addressing complications early and monitoring compliance

with treatment. Attention should be paid to the impact of the
disease on other family members too.

We recommend that these multidisciplinary teams are

organized by an expert in metabolic bone diseases and involve

both pediatric and adult specialists, nurses, physiotherapists,

social workers, psychologists, dietitians and occupational

therapists (123). In Belgium, organization of multidisciplinary

care can be facilitated by means of conventions e.g. for children
with chronic kidney diseases or for metabolic diseases. The need

for a specific convention for patients (children and adults) with a

metabolic bone disease is stressed to finance these multi-

disciplinary teams. Currently, children with XLH are mostly

followed by pediatric endocrinologist and pediatric

nephrologists, whereas adults are mostly followed by metabolic
bone disease specialists and endocrinologists in Belgium.

We recommend the development of local protocols for

transitional care between pediatric and adult metabolic bone

disease specialists, as well as family-based outpatient clinics with

pediatric-adult collaboration. In our experience, affected parents

sometimes feel inappropriately guilty and/or neglect their own
health to focus on their affected children (124). Several specialties

should be available on a systematic or consulting basis including

dentists, orthodontists and maxillofacial surgeons, pediatric and

adult endocrinologists, nephrologists, rheumatologists,

orthopedic surgeons, neurosurgeons, radiologists, geneticists,

physical medicine and rehabilitation specialists, urologists,

otolaryngolostist, ophthalmologists (to perform fundoscopy)
etc. (Figure 2). Of note, since metabolic bone diseases is not a

recognized separate specialty in Belgium, the lead specialist may

differ by hospital. General practitioners in primary care play an

important role in primary recognition of the disease and general

follow-up e.g. with regards to compliance, extraskeletal

manifestations and co-morbidities such as arterial hypertension
or obesity, pain, side effects of treatment and psychosocial issues.

The follow-up interval should be individualized to the patient,

with more regular follow-up in young or growing children (on

average every 3 months) compared to adults (who may be

followed every 6 to 12 months, depending on their treatment,

symptoms and needs) (25). XLH patients should see their dentist

at least twice yearly. These intervals are however based on expert
opinion (25).

Clinical assessment including height, weight, inter-malleolar

and intercondylar distances, oral/dental and musculoskeletal

examination and blood pressure measurement should be

performed at every visit in children (see Table 2). Biochemical

and/or radiological investigations should be evaluated only when
clinically indicated.

In asymptomatic adult patients not receiving medical therapy,

there is little need for repeated biochemical or radiological testing

more than once a year. However, because vitamin D deficiency is

common in Belgium and even more common in XLH patients,

we recommend monitoring of 25(OH)D at least every twelve

months, especially during the winter time, regardless of whether
the patient receives medical treatment or not. ALP

measurements are a useful indicator of skeletal complications

such as progressive rickets/osteomalacia and/or pseudofractures,

and therefore should be considered for the monitoring of

patients not receiving medical therapy. In asymptomatic
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untreated patients, monitoring phosphate, 1,25(OH)2D or

FGF23 levels is not useful.

Treatment
Non-Pharmacological Measures
The overarching goals of treatment should be patient-centered
and focus on optimizing quality of life, mobility, pain and

minimizing school and work absenteeism. The need for early

treatment is stressed in children as it leads to better outcomes,

such as improved linear growth, fewer bone deformities and

better dental health. Patient education is essential at every visit,

particularly in rare diseases and in adolescents. We encourage

caregivers to provide patients with information about the

nascent XLH patient association in Belgium. Multidisciplinary
care should involve physiotherapists as well as psychological,

nutritional and social support. In children, it might be necessary

FIGURE 2 | Multidisciplinary care model centered on the XLH patient, with attention to local protocols and transition from pediatric to adult metabolic bone

specialist care.

TABLE 2 | Recommended diagnostic and monitoring tests for XLH in Belgium.

Clinical History (current illness, review of systems, medications, alcohol use, sleep disturbances, mobility)*†

Clinical examination including:

• height and growth velocity, signs or rickets (limb bowing, chest, …), intermalleolar and intercondylar distance*†

• dysmorphic features, head circumference and shape, craniosynostosis, signs of intracranial hypertension (fundoscopy if possibly symptomatic)*†

• weight and blood pressure (particularly in patients receiving phosphate supplements)*†

• dental examination, mobility, motor development and muscle function (6MWT)*†

• bone tenderness, joint range of motion, spine examination, entheses*†

• hearing assessment*†

• skin (naevi, café-au-lait spots)

Biochemical Recommended tests:

• plasma calcium (ionized or albumin-adjusted)*†, phosphate†, (bone-specific) ALP*†, creatinine*†

• PTH†, 25(OH)vitamin D*†, 1,25(OH)2D
‡

• 24h calciuria (or spot urine calcium/creatinine ratio)†

For differential-diagnostic purposes:

• TmP/GFR (preferably from early morning fasted urinary and plasma creatinine and phosphate)

• Bicarbonate, uric acid, glucosuria, amino-aciduria, low molecular mass proteinuria

Optional (interpret with caution):

• FGF23, intact or c-terminal

Radiological Recommended tests:

• Lower extremity and wrist X-ray (including bone age): baseline + repeat when clinically indicated, considering radiation exposure (consider skeletal

survey in adults, low-dose biplanar X-ray imaging)

• Renal ultrasound (baseline + repeat every 1-2 years during follow-up)*†

Not recommended in XLH:

• Bone densitometry (DXA)

Genetic Recommended for diagnosis:

• Genetic counselling

• PHEX single gene testing

• If negative or other genetic cause more likely: multi-gene panel

*Recommended for monitoring in patients not receiving medical therapy, every 3–6 months (children) to every 6–12 months (adults).
†Recommended for monitoring and dose adjustments in patients receiving medical therapy, every 1–3 months (children) to every 3–6 months (adults) (more frequent follow-up may be

recommended during the start-up phase of medical therapy).
‡Recommended for safety monitoring every 3–6 months in patients receiving burosumab therapy.
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to liaise with school physicians to exchange information about

e.g. growth and hearing problems, to ensure psychosocial

wellbeing, and to ensure that medication or therapist care can

be provided during school hours when necessary.

A healthy diet with sufficient nutritional calcium intake from

dairy products is recommended in XLH, in contrast to calcium
supplements, which are relatively contraindicated due to

increased risk of kidney stone formation (25). Smoking should

strongly be discouraged. Given the increased prevalence of

arterial hypertension, overweight, obesity and metabolic

syndrome in XLH, weight management and cardiovascular

prevention should be an integral part of care. Notably,
specialists should maintain a low index of suspicion for both

obstructive as well as central sleep apnea in at-risk subjects e.g.

those with Chiari malformations, those who are overweight or

obese, and those with arterial hypertension, fatigue or

sleep complaints.

Physical exercise has a myriad of health benefits and is strongly
recommended although no formal guidance in XLH exists.

Recommendations analogous to those in ankylosing spondylitis

and osteoarthritis can be considered (125–127). Children and

adults often display limited range of motion in the lower limbs and

spine, with consequent gait abnormalities (128). We recommend

that exercises and physiotherapy should aim to prevent or

improve muscle weakness, back and joint pain, stiffness and
limited mobility, by targeting muscle strength, core stability,

joint range and general mobility, e.g. by resistance exercise

training in combination with swimming, yoga, Pilates, dancing

etc. Participation in leisure or professional sport activities is

encouraged, with an emphasis on sports with lower risk of

trauma. Targeted rehabilitation is often necessary following
surgery and in case of enthesopathy or osteoarthritis. Given that

XLH is a rare metabolic and growth disorder causing significant

structural and functional musculoskeletal impairments, patients

may be eligible for increased reimbursement of physiotherapy [“E-

pathology list”, §L (129)]. In case of particularly disabling

symptoms and functional impairment, multidisciplinary

rehabilitation could be offered in general hospitals or
rehabilitation centers under the supervision of a specialist in

physical medicine and rehabilitation.

Analgesia
Chronic musculoskeletal pain is common in XLH adults and may

be caused intrinsically by hypophosphatemia and osteomalacia/

rickets (bone and muscle pain) and/or aggravated by (pseudo)
fractures, enthesopathy, osteoarthritis etc. Based on history and

clinical examinations, targeted imaging (using conventional X-ray

and ultrasound imaging, MRI or scintigraphy if necessary) should

always be considered to allow medical and/or surgical

management of the underlying cause. Paracetamol has limited if

any benefit, but may be considered for acute pain. Local and/or

systemic non-steroidal anti-inflammatory drugs (NSAIDs; with
gastroprotection if necessary) in combination with physical

therapy (aiming for a good balance between exercise and rest,

warmth or ice application, etc.) are considered first-line therapies.

Although NSAIDs have been theorized to reduce phosphaturia, a

randomized trial in children showed no improvement (130).

Tramadol and strong opioids may be required for more

advanced, otherwise untreatable musculoskeletal problems.

Glucocorticoids or colchicine are not recommended. Given

uncertainty regarding benefit and safety for calcific enthesopathy

in general and lack of data in XLH, we recommend against the use
of shockwave lithotripsy.

Phosphate and Active Vitamin D Analogs
The goal of medical treatment in children is to improve rickets,

reduce skeletal deformities and avoid the need for surgery,

improve height velocity and reduce bone pain (Figure 3). Early

treatment in children is associated with improved outcomes
(131). Although evidence was lacking previously, recent data

suggest that conventional therapy may also reduce the burden of

severe dental complications (132–135).

Conventional therapy in XLH consists of combination therapy

with phosphate and active vitamin D analogs (preferably

alfacalcidol, which has a wider therapeutic range and longer half-

life than calcitriol and is available in liquid form for children).
Phosphate supplements should not be prescribed without vitamin

D analogues, since phosphate alone promotes secondary

hyperparathyroidism and thereby renal phosphate wasting.

Conventional therapy is burdensome, since it requires

multiple daily oral doses. Phosphate supplements are

expensive, not reimbursed and generally cumbersome to obtain
in Belgium. Financial provisions are available however via so-

called “conventions” for tubulopathies in children or metabolic

diseases in adults. Alfacalcidol is cheap, reimbursed in Belgium

upon annual request by a specialist, but supply has occasionally

been interrupted by stock breaches. Phosphate salts may be given

in effervescent tablets imported from abroad, or in magistral

capsules. In young children phosphate salts are usually given in
several liquid formulations, such as galenic solutions (Joulie

potio or others), i.v. phosphate solutions given orally, or

commercial solutions. The choice of the formulation should be

based on patient preferences and not solely to the habits of the

prescriber. Side effects of oral phosphate include diarrhea,

abdominal pain, bloating and secondary hyperparathyroidism.
Spreading the dose throughout the day may alleviate side effects.

Some patients prefer to dissolve phosphate in a bottle of drinking

water, which facilitates spreading intake over the entire day and

may reduce side effects. Furthermore, the high sodium and/or

potassium load of phosphate supplements may predispose to

arterial hypertension and/or hyperkaliemia, respectively.
Phosphate complexes with calcium, therefore intake with milk

should be avoided.

In adults, a small (n=16) uncontrolled prospective study

reported reduced symptom scores following conventional

treatment in 87% of patients (136). A trial of conventional

treatment is therefore justified in symptomatic adults (137),

although in many cases, symptoms of fatigue, low back pain,
osteoarthritis, enthesopathy and spinal ligament calcifications

may dominate, which generally do not respond to conventional

therapy, nor does hearing loss (13). Furthermore, conventional

medical therapy is often unpleasant, burdensome (14), and
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costly, requires monitoring and may be associated with side

effects such as gastrointestinal symptoms, arterial hypertension

or nephrolithiasis/nephrocalcinosis. There is consensus however

that insufficiency fractures or pseudofractures, planned surgical
procedures are indications for medical therapy in adults, while

treatment may be considered in case of raised (bone) ALP and/or

bone pain (13).

Concomitant vitamin D deficiency should be corrected with

conventional vitamin D supplements e.g. cholecalciferol or

ergocalciferol (138). Supraphysiological doses of active vitamin D
analogs may be required to correct secondary hyperparathyroidism

(139), but excessive vitamin D doses should be avoided due to risks

of hypercalciuria, kidney stone formation and (rarely)

hypercalcemia. Conventional treatment regimens with phosphate

and vitaminD analogs improve intestinal phosphate absorption and

paradoxically stimulate further FGF23 increases. Phosphate may

exacerbate renal phosphate wasting (140) while active vitamin D
attenuates phosphaturia (141). Of note, monotherapy with active

vitamin D or CYP24A1 inhibition alone ameliorate rickets in

preclinical mouse models (41, 142, 143) and may reduce the risk

of secondary and tertiary hyperparathyroidism, supporting the use

of the lowest possible dose of phosphate and higher doses of active

vitamin D supplements.
In children, an initial dose of elemental phosphate between

20-40 (or 60) mg/kg body weight (0.7-1.3, up to 2.0 mmol/kg

initial dose) is suggested, given as frequently as possible e.g. 4-6

daily divided doses in children (13). Doses > 80 mg/kg are to be

avoided (25). Gradual titration may be used in the first weeks to

avoid sudden gastrointestinal upset (13). Less frequent dosing

e.g. 3-4 times daily may be used for maintenance or to improve
compliance in adolescents and adults. In children, initial doses of

alfacalcidol of 30-50 ng/kg (or calcitriol 20-30 ng/kg bodyweight)

are suggested, which can usually be given once daily (evening

dosage has been suggested) (25). Other active vitamin D analogs

are not available in Belgium. Lower doses per body weight are

recommended in adults. In general daily doses range between
750-1000 to 1600 mg of elementary phosphorus in 2-4 divided

doses, and 0.75-1.5 µg of alfacalcidol (or 0.5 – 0.75 µg of

calcitriol) (13, 25). However, dosage needs should always be

individualized, since some patients need much higher or lower

doses. With conventional therapy, phosphate dosages are not

given with a goal of normalizing phosphatemia (keeping it at or
above the lower limit is often not possible) but to improve

growth and other symptoms and to normalize ALP, while

avoiding secondary hyperparathyroidism and nephrocalcinosis

(144). Active vitamin D analogs should be titrated to maintain

PTH within the normal range but also to avoid hypercalcemia,

hypercalciuria and kidney stone formation.

Although hypophosphatemia may exacerbate during
pregnancy, the available evidence doesn’t clearly support a

need for medical treatment in pregnant XLH mothers, since

most will give birth uneventfully (145). Low phosphate levels in

breast milk of XLH mothers has been reported in case reports,

but adverse clinical outcomes have not been reported (146, 147).

Similarly, no adverse effects of FGF23 excess on prenatal fetal-
placental phosphate transport, breast milk phosphate

concentrations or skeletal prenatal development are seen in

mouse models (148, 149). Neonatal rickets is exceedingly rare,

and there is currently insufficient evidence to formally

recommend medical treatment for the sole indication of

maternal or offspring skeletal health (18). Still, there is no

international consensus on this topic (25). There is probably
overuse of caesarean sections in this population, for no good

reason (145).

FIGURE 3 | Response to conventional medical treatment with phosphate and active vitamin D supplements in XLH. (A) Clinical presentation at age 3 years. (B) One

year, (C) 2 years after initiation of conventional therapy.
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Burosumab
In 2018, the European Medicines Agency (EMA) granted

conditional market authorization to the fully humanized
monoclonal anti-FGF23 antibody burosumab [formerly

KRN23 (150)] for the treatment of XLH in children ≥ 1 year

of age with a growing skeleton and radiographic evidence of bone

disease (26). Late 2020, authorization was expanded for older

adolescents and adults with radiographic evidence of bone

disease, regardless of growth status.
In an open-label phase 2 trial, 52 children aged 5-12 years

with XLH were randomized to receive burosumab without other

conventional therapy, at a dose titrated to their phosphate level,

every 2 or 4 weeks. The more frequent dosing led to more stable

plasma phosphate concentrations, but the primary endpoint of

the radiographic Rickets Severity Score was reduced in both
groups (151). Most patients normalized their phosphate levels

and TmP/GFR, and ALP levels declined. Greater height

improvements were seen with the two-week dosing interval.

Physical ability ameliorated and pain decreased in both groups

(151). Another phase 2 trial confirmed the favorable efficacy and

safety profile of burosumab in children aged 1-4 years (152).

Importantly, in an active-controlled open-label phase 3 trial,
61 children aged 1-12 years were randomized to receive

conventional therapy or burosumab. Significantly greater

improvements in radiographic healing of rickets (primary

endpoint), growth, ALP and other biochemistries, lower-

extremity deformities and mobility were observed with

burosumab (153). Some patient-reported outcomes were
significantly improved e.g. pain interference and physical

health scores at week 40, although not for other outcomes or

later time points (154). Some hypersensitivity and injection site

reactions were noted in all trials, but there were no differences in

serious treatment-related adverse events. Unfortunately, clinical

trial data in adolescents remain lacking, despite the importance

of the pubertal growth spurt. Nevertheless, the revised EMA
market authorization would support continued use in

adolescents when clinically indicated.

These data show that burosumab has the potential of

improving clinical outcomes beyond current standard therapy.

Notably, since it reduces the underlying renal phosphate wasting,

burosumab has not been associated with complications of
conventional therapy like nephrocalcinosis or secondary/

tertiary hyperparathyroidism. However, burosumab is

considerably more expensive than conventional medical

therapy, and long-term outcomes as well as cost-effectiveness

analyses are pending. Burosumab gained reimbursement in

Belgium as of January 1st, 2021. Cost-sensitive criteria for use

of burosumab in children in Belgium, proposed by the authors
and approved by the competent authorities, are detailed in Table

3. Of note, these criteria still reflect the earlier EMA-approved

indication (restricted to children with growing skeletons) and

not the most recent version.

The EMA-approved dose in children is a 2-weekly s.c.

injection starting 0.8 mg/kg bodyweight, increased with 0.4
mg/kg dose increments (max. 2.0 mg/kg, cap at 90 mg dose) to

achieve fasting plasma phosphate concentrations in the low-

normal range for age. The average dose at this interval was 1.0

mg/kg in pediatric trials (25). Conventional treatment should be

discontinued. Monitoring of peak phosphate levels at day 7-11

after injection, or before dosing after a three month period to

achieve steady state is also suggested (25). In case of

hyperphosphatemia, dosing should be withheld. The dose may
need to be adjusted over time, but intervals for dose adjustment

of 1-2 months are suggested (25). Creatinine levels should also be

monitored, and treatment avoided in patients with incident renal

insufficiency due to the theoretical risk of hyperphosphatemia

and ectopic mineralization.

In adults, a phase 3 randomized trial (n=134) has compared
placebo to a fixed 1 mg/kg bodyweight burosumab dose every

four weeks. This normalized phosphatemia in almost 90% of

patients. At 24 weeks, a significant decrease in joint stiffness and

healing of active fractures was reported, with a safety profile

similar to placebo (155). During the 24-week extension phase, all

participants received open-label burosumab. Pseudofracture
healing was confirmed in the group that switched from

placebo to burosumab, and stiffness, pain and physical

functioning and performance on the six-minute walking test

improved significantly compared to baseline (156). Bone biopsies

showed significant improvement in all osteomalacia indices

(157). Thus, if approval is granted for use in adults by EMA

(as has been done by its U.S. FDA counterpart, with a maximal
dose of 90 mg), burosumab could represent an interesting

treatment option for adult XLH patients suffering persistent

bone and/or joint pain and disability, particularly from

(pseudo-)fractures, despite a trial of optimal conventional

therapy (25). Monitoring recommendations would be similar

as in children (25).

Adjunctive Medical Therapies
Growth hormone is an off-label, yet theoretically attractive

adjunctive therapy for XLH because it (transiently) increases

phosphatemia and 1,25(OH)2D, lowers PTH and increases TmP/

GFR, may improve height Z-scores without influencing body
disproportion (158, 159) and might improve muscle strength.

However, it doesn’t improve the underlying rickets and may

increase ALP and exacerbate skeletal deformities (160).

Moreover, it did not significantly improve adult height in long-

term follow-up of a randomized controlled open-label study

receiving conventional therapy (161). Clinical studies show that
growth hormone therapy is more effective in prepubertal than in

pubertal children (162). Although final height may be

compromised despite conventional therapy in up to 60% of

patients (163), extremely short children (Z-score ≤ -2.5) may

be more likely to benefit (13, 164). Optimal control of rickets,

PTH and ALP should be achieved before growth hormone

therapy is considered in children with XLH (25). In Belgium,
growth hormone therapy is not reimbursed for short stature

related to XLH, although it has been obtained via medical need

programs in the past (now no longer available).

Calcimimetics such as cinacalcet have been used to control

secondary and tertiary hyperparathyroidism in XLH (165, 166).

However, since they have been associated with severe side effects
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including hypocalcemia and QT-interval prolongation, their use

should be limited (25).
Thiazide diuretics reduce hypercalciuria and may halt the

progression of nephrocalcinosis in XLH (167). Thiazides should

therefore be considered in case of arterial hypertension.

However, adverse effects are common and require surveillance

including hypotension, hypokalemia, hyponatremia,

hypomagnesemia, hyperuricemia and increased insulin
resistance. In contrast to hydrochlorothiazide, dipyridamole,

which may reduce intrinsic renal phosphate leakage in some

conditions, appears ineffective in XLH (168). The use of

potassium citrate is not advised in XLH, because alkalinization

may increase urinary phosphate precipitation (25).

Recently, a preclinical study in growing Hypmice (the mouse

model of Phex mutations) found that sclerostin inhibition
increased phosphate and reduced FGF23 levels (169). Further

evaluation of the efficacy and safety anti-sclerostin antibodies in

the context of clinical trials is required. Other therapeutics

targeting the FGF23 pathway e.g. suppressing the upregulation

of osteopontin (170, 171) are also under development.

Inadvertent treatment with bisphosphonates or other
osteoporosis drugs, e.g. in case of misdiagnosis in patients with

fractures, may induce deterioration and adverse skeletal

effects (172).

Surgical Management
It is difficult to make firm evidence-based recommendations for

orthopedic management in XLH (25). We recommend that care

should be coordinated by an experienced orthopedic surgeon
specialized in pediatric metabolic bone diseases. Insoles are not

useful for pes planus in patients with varus or valgus knee

deformity (25). In general, persistent or progressive severe

deformity or disability despite ongoing optimal medical

therapy may be an indication for surgery (25). Guided growth

techniques by hemi-epiphysiodesis can be considered early as an

alternative to more invasive options such as osteotomy (173),
intramedullary nailing, external circular frames e.g. Ilizarov or

combined techniques (174–177). Bed rest should be avoided as

much as possible, and in those patients requiring it, careful

monitoring for hypercalciuria is needed, which may warrant

lowering of active vitamin D doses (25). Notably, medical

treatment for at least 12 months in children and three to six
months in adults, has been recommended before elective surgery,

TABLE 3 | Reimbursement criteria for burosumab in children in Belgium as of January 2021.

Starting criteria • Demographic criteria: Children 1 year of age and older and adolescents with growing skeletons

• Diagnostic criteria: With a diagnosis of X-linked hypophosphataemia

o Radiographic evidence of bone disease (rickets severity score ≥ 2)

o Biochemical criteria:

◾ Persistently low plasma phosphate (based on age-adjusted reference values) AND raised ALP (based on reference values for age)

o And confirmed by either genetic (or biochemical) criteria:

◾ genetic diagnosis with PHEX mutation or appropriate family linkage

◾ Or, in case of no identifiable genetic mutation, raised serum FGF23 concentration (> 30 pg/ml by Kainos assay, after discontinuation of

conventional therapy for at least two weeks)

• Following exclusion of all other causes of hypophosphatemia

• With at least one severe clinical symptom likely to improve with burosumab

o Lower limb bone deformity (genu varum or genu valgum)

o Growth delay (≤ 20th percentile for age and gender, according to national normative growth curves)

o Dental abscesses during the past year

o Chronic bone or muscle pain or joint stiffness

o Reduced mobility (delayed gross motor development, need for walking aids, abnormal gait)

o Presence of craniosynostosis

• Refractory to prior conventional medical therapy for at least 6 months, with complications of conventional medical therapy, or in

case of intolerance for conventional therapy

• Without renal insufficiency i.e. estimated glomerular filtration rate > 30 ml/min/1.73 m²

• Physician criterion: when prescribed at a university hospital by a pediatric nephrologist or endocrinologist, experienced in the treatment of XLH

and participating in the European XLH registry

Continuation

criteria

• Reevaluation every year in children 1-12 years and every 6 months in children ≥13 years; must meet all criteria below for

continuation

• Biochemical criteria:

o decrease in ALP compared to the initiation of treatment, AND

o increase of plasma phosphate level compared to treatment initiation to levels above the lower limit of normal for age, OR ≥ 30% increase; OR

increased renal tubular phosphate reabsorption to level > 0.84 mmol/L or ≥ 30% increase

• Radiographic criterion:

o Absolute decrease of the Rickets Severity Score of at least 1 point

• Improvement of at least one clinical symptom:

o Increased height Z-score

o Improvement in bone deformity (genu varum or genu valgum)

o Improvement in bone pain, joint stiffness or walking ability

• Evidence of continued growth (or potential): height gain of ≥ 2 cm in the last year, or radiographically open epiphyses

• Compliance with clinical follow-up at least every six months
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including dental implants (13, 25). Following surgery,

prescribing rehabilitation is strongly recommended.

Repeated craniotomies may be necessary in symptomatic

intracranial hypertension due to craniosynostosis (178).

Neurosurgery may also be required for symptomatic Chiari

malformation type 1, in which the cerebellar tonsils herniate
through the foramen magnum and may compress the lower

brainstem, upper spinal cord and/or cause syringomyelia (25).

Up to 59% of children showed complete or partial sagittal suture

fusion and 25% showed Chiari malformation type 1 in a recent

large retrospective cohort study, however, most patients were

asymptomatic (179). Rarely, symptomatic spinal enthesopathy
or ossification of the posterior longitudinal spinal ligament may

requir ing laminoplas ty , laminectomy or poster ior

decompression surgery (180–183).

Tertiary hyperparathyroidism with consequent hypercalcemia

is a complication of longstanding high-dose phosphate

supplements (184), although it has been noted in untreated
patients too (18). It may be improved by partial or (sub)total

parathyroidectomy, with or without ectopic parathyroid

reimplantation. Clinicians should be aware that parathyroidectomy

in these circumstances is usually followed by severe hungry bone

syndrome with symptomatic hypocalcemia, which may require

high doses of intravenous and oral calcium in combination with

active vitamin D supplements (43, 185).

Monitoring
In patients receiving medical therapy, monitoring and

adjustment of treatment doses should be based on

measurements of calcium and phosphate in plasma and urine,

creatinine, ALP and PTH at every visit (25). Notably, ALP may

transiently increase during healing of rickets or signal the

presence of pseudofractures. Increased ALP in otherwise well-

controlled hypophosphatemia may signify poor compliance e.g.

when patients improve their compliance shortly before clinic

visits. If secondary hyperparathyroidism is present, alfacalcidol

may be increased, phosphate doses decreased, or concomitant

vitamin D deficiency may require replenishment.

Renal ultrasound to detect nephrocalcinosis or nephrolithiasis
is recommended in medically treated XLH patients after one year

and then every 1-2 years. Improvement of radiological signs of

rickets can be seen after one year of treatment.

Patients receiving burosumab therapy may develop anti-drug

antibodies, which may be accompanied by declining plasma

phosphate levels and may require dosing increases when
associated with clinical deterioration. Measuring anti-drug

antibodies is not of clinical interest. The international

guidelines suggest to measure 1,25(OH)2D every 3 to 6 months

as a safety outcome in patients receiving burosumab therapy,

together with monitoring for hypercalciuria (25). In patients

receiving active vitamin D analogs and phosphate however,
monitoring of 1,25(OH)2D is not recommended, because

supraphysiological doses may be required to maintain PTH

and calciuria within the desired range. Measuring FGF23 is not

useful during follow-up of XLH patients, especially in patients

treated with burosumab which may cause analytical

interference (95).

DISCUSSION AND CONCLUSIONS

This consensus document provides a broad, detailed and

practical overview of clinical aspects of diagnosis and

management of XLH, which can guide specialists in Belgium.

Key findings and policy recommendations are summarized in
Table 4.

TABLE 4 | Summary of key policy recommendations.

Area Findings

Epidemiology • The estimated incidence of XLH in 1:20.000 or less live births, translates to less than six cases in newborns per year in Belgium, with a

prevalence of less than 97 and 475 cases in the pediatric and adult population, respectively.

• There remains a large gap in XLH diagnosis, treatment and follow-up in Belgium.

Diagnosis • XLH has a broad differential-diagnosis. A correct diagnosis relies on the integration of clinical, radiological, biochemical and genetic findings.

• We recommend a multimodal work-up of suspected XLH by an experienced clinician to exclude other diseases.

• Pre-analytical and analytical challenges in the interpretation of plasma phosphate, alkaline phosphatase (ALP), phosphaturia, calciuria, 1,25-

dihydroxyvitamin D and FGF23 should be taken into account.

Multidiscipinary

care and follow-

up

• We recommend referral to and follow-up by specialized multidisciplinary metabolic bone disease teams as well as protocols for transitional care

between pediatric and adult specialists, and family-based outpatient clinics with pediatric-adult collaboration whenever possible.

• We encourage caregivers to provide patients with information about the XLH patient association in Belgium.

Treatment • Early medical treatment in children is advised to achieve optimal height, reduce skeletal deformities and reduce or avoid the need for surgery, to

reduce musculoskeletal pain and to reduce dental complications.

• Conventional medical therapy is often unpleasant, burdensome, and requires frequent monitoring and may be associated with side effects such

as gastrointestinal symptoms, arterial hypertension or nephrolithiasis/nephrocalcinosis.

• In a randomized controlled trial, burosumab resulted in significantly greater improvements in radiographic healing of rickets, growth and ALP, due

to superior improvements in phosphatemia, TmP/GFR and 1,25-dihydroxyvitamin D compared to conventional medical treatment.

• There is consensus that insufficiency fractures or pseudofractures, planned surgical procedures are indications for medical therapy in adults,

while treatment may be considered in case of raised (bone) ALP and/or bone pain.

• Given recent European approval of burosumab for XLH in adults, it could represent an interesting treatment option for patients suffering

persistent bone and/or joint pain and disability, particularly from (pseudo-)fractures, despite a trial of optimal conventional therapy.

• We recommend that orthopedic care should be coordinated by an experienced surgeon specialized in rare metabolic bone diseases.
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Several key questions regarding XLH and other rare

metabolic bone diseases remain unanswered (186): What are

the best way to manage fatigue? What is the mechanism of pain?

How can psychosocial support for patients and their families best

be organized? How do rare metabolic bone diseases progress in

ageing? Why do people with the same genetic mutation have
different symptoms?

We recognize several limitations of these consensus

recommendations. Most recommendations presented here, are

based on expert opinion. We did not perform a systematic review

nor used a formal GRADE or Delphi approach. However, recent

international guidelines fulfill this need (25), and our
recommendations can be considered a national translation of

those guidelines. We believe national recommendations are

useful, because Belgian policymakers have only recently

initiated efforts to improve the care for patients with rare

diseases, and no formal centers of expertise are officially

recognized (currently, this task is delegated to all university
hospitals). An important limitation is that not all specialties

are represented among the authors. Specifically, a dentist or

maxillofacial surgeon was not currently involved in XLH care

pathways, highlighting the need to further liaise with other

specialties in the care of XLH patients in our country. The

Belgian burosumab reimbursement criteria as outlined in

Table 3 are quite strict and not necessarily evidence-based, but
they represent a consensus between several of the authors, within

the strict Belgian reimbursement context. In several neighboring

countries, burosumab is reimbursed when prescribed for

children or adults treated in centers of excellence. Ideally, this

would also preferable in Belgium. An alternative would be to use

the existing framework of so-called “college of expert physicians”

to peer-review reimbursement requests. Moreover, we chose not

to present separate guidelines for children and adults, since we

believe in an integrated, life course approach. Nevertheless, some
recommendations are not relevant for either children or adults.

Finally, several authors have a conflict of interest, although there

was no sponsor involvement in the development, writing or

publication of these guidelines. The authors would also like to

emphasize that these recommendations are not intended as a

substitute for expert clinical judgement.
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