
Phaeochromocytomas and paragangliomas (PPGLs) are 
catecholamine-secreting, neural-crest-derived tumours 
of the adrenal medulla and extra-adrenal sympathetic 
nervous system, respectively1,2. Paragangliomas can also 
arise from the parasympathetic nervous system; these 
tumours are usually located in the head and neck and 
typically do not secrete catecholamines3. Approximately 
50% of PPGLs are caused by a single driver germ line 
mutation, which means that these tumours are the most 
highly heritable tumours in humans1. Due to this high 
heritability, genetic testing has been recommended in 
all patients with PPGLs independent of a clear family 

history4. Another striking characteristic of PPGLs is their 
genetic heterogeneity. Over 15 different susceptibility 
genes have been implicated in familial cases; however, 
the susceptibility gene has not been identified in all cases, 
which indicates that this number will continue to grow in 
the near future1,2 (TABLE 1). As a result of this large number 
of driver genes, genetic diagnosis of PPGLs by traditional 
technologies, including PCR-based amplification followed 
by Sanger sequencing and multiplex ligation-dependent 
probe amplification (MLPA) for larger gene disruptions, 
is becoming impractical as they are laborious, costly and 
time consuming.
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Abstract | Phaeochromocytomas and paragangliomas (PPGLs) are neural-crest-derived tumours 
of the sympathetic or parasympathetic nervous system that are often inherited and are 
genetically heterogeneous. Genetic testing is recommended for patients with these tumours and 
for family members of patients with hereditary forms of PPGLs. Due to the large number of 
susceptibility genes implicated in the diagnosis of inherited PPGLs, next-generation sequencing 
(NGS) technology is ideally suited for carrying out genetic screening of these individuals. This 
Consensus Statement, formulated by a study group comprised of experts in the field, proposes 
specific recommendations for the use of diagnostic NGS in hereditary PPGLs. In brief, the study 
group recommends target gene panels for screening of germ line DNA, technical adaptations to 
address different modes of disease transmission, orthogonal validation of NGS findings, 
standardized classification of variant pathogenicity and uniform reporting of the findings. The 
use of supplementary assays, to aid in the interpretation of the results, and sequencing of tumour 
DNA, for identification of somatic mutations, is encouraged. In addition, the study group 
launches an initiative to develop a gene-centric curated database of PPGL variants, with annual 
re-evaluation of variants of unknown significance by an expert group for purposes of 
reclassification and clinical guidance.
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Genetic testing algorithms based on clinical features 
(that is, tumour localization, malignancy and syndromic 
characteristics), biochemical profile (that is, types of cat-
echolamines secreted by the tumour) or immunohisto-
chemistry pattern have been developed to aid prioritizing 
genetic testing of a single or a few PPGLs susceptibility 
genes5–9. Although this approach is helpful for patients 
in whom a pathogenic driver mutation is identified 
promptly, it can be cumbersome when this quick identifi-
cation does not happen, as the analysis must be extended 
to the remaining susceptibility genes. Notably, when var-
iants of unknown significance (VUS; variants for which 
the pathogenicity is not clear) are found in the initial test, 
expanded screening is required in an effort to identify a 
more plausible causative mutation10.

The technology that has become widely known as 
next-generation sequencing (NGS) was first introduced 
in 2005 (REF. 11). Using novel methods of sequencing by 
ligation or synthesis, NGS platforms enhanced the capa-
bility of genetic testing by many orders of magnitude. 
In the first decade of its use, NGS methodology was 
improved to increase throughput, accuracy and speed, 
while simultaneously reducing costs and experimen-
tal complexity. Currently available NGS platforms are 
powerful and flexible, and can be adapted easily to the 
analysis of a single gene region in thousands of samples, 
or for sequencing the entire genome of a single patient. 
The implementation of NGS has been a paradigm shift in 
genetics research and is now considered the gold stand-
ard for genetic diagnosis12,13. NGS has also been widely 
embraced by the fields of cancer and hereditary diseases. 
Therefore, inherited neoplasia, a group to which PPGLs 
belong, represent a particularly relevant class of disorders 
where the use of NGS for diagnostic purposes deserves 
special focus.

Recognizing the need to develop standards for broad 
implementation of NGS as a methodology for clinical 
diagnosis of hereditary PPGL, a Study Group compris-
ing international experts from the Pheochromocytoma 

and paraganglioma RESearch Support Organization 
(PRESSOR, R.A.T., P.L.M.D., A.-P.G.-R., N.B., M.R., 
A.C., D.E.B., T.D., R. C.-B., J.P.B., C.M.T., J.W., O.G., H.F., 
E.M., M.M., T.E., G.O.) and the PPGL working group of 
the European Network for the Study of Adrenal Tumors 
(ENS@T, A.-P.G.-R., N.B., M.R., A.C., J.P.B., C.M.T., J.W., 
O.G., H.F., E.M., M.M., T.E., G.O.) was formed to spear-
head discussions on the application of NGS for diagnostic 
genetic testing in PPGLs (NGSnPPGL).

Methods
The NGSnPPGL Study Group was comprised of 18 
experts in PPGLs from ten separate institutions rep-
resenting eight countries and included both clinicians 
who provide genetic counselling for their patients and 
basic researchers who design and perform the diagnos-
tic tests. All participants have adopted, and reported 
on, NGS-based technologies in their research and/or 
clinical practice14–26. Discussions took place via confer-
ence calls, e-mail communications and file exchanges 
and one plenary session (at the 14th ENS@T Scientific 
Meeting on November 20th, 2015, Munich, Germany). 
In these multiple exchanges, current practices and lit-
erature evidence were critically reviewed and a set of 
recommendations was developed to guide broad imple-
mentation of this methodology for the diagnosis of 
hereditary PPGLs. During these encounters, pertinent 
technical, ethical and reporting issues were addressed. 
This Consensus Statement summarizes the outcome of 
these discussions.

While many of the topics included in this Consensus 
Statement are common to other hereditary conditions 
and/or cancers, aspects unique to PPGLs were con-
sidered when making recommendations (BOX 1). As in 
many other fields, guidelines for NGS-based testing 
are continually evolving and the recommendations set 
out here will be subject to change as our knowledge 
advances. Therefore, the current guidelines are based 
on the evidence available in 2016.
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General ethical considerations
Specific written informed consent must be obtained from 
all patients following standards for diagnostic genetic 
testing established by certified and accredited diagnostic 
laboratories of individual countries27,28. Special consider-
ation is required when whole-exome sequencing (WES), 
whole-genome sequencing (WGS) or extended gene pan-
els (that is, not limited to PPGL susceptibility genes) are 
used. In these circumstances, patients should indicate if 
they wish to be informed of incidental findings. These 
findings represent significant genetic variants in a specific 
group of genes (unrelated to PPGLs) that are implicated 
in disorders that require medical action, such as those 
specified in recommendations by the American College 
of Medical Genetics and Genomics (ACMG)29.

Samples
The sample requirements for NGS are similar to those 
currently adopted for clinical diagnosis of PPGLs using 
Sanger sequencing. For the analysis of germ line variants 

in PPGLs susceptibility genes, laboratories should 
request blood (fresh (collected <7 days ago) or frozen) 
or a frozen leukocyte pellet. When a blood sample is not 
available, laboratories can accept buccal cells either as 
a cheek swab or in saliva obtained with specific collec-
tion kits containing preservatives30. DNA extraction and 
quality assessment should follow standard procedures 
established for conventional genetic testing29,31,32.

For the analysis of somatic variants in PPGLs sus-
ceptibility genes, laboratories should require fresh fro-
zen tumour fragments (50 mg of frozen tissue provides 
a sufficient amount of high-molecular weight DNA 
for sequencing). Alternatively, formalin-fixed paraffin 
embedded (FFPE) sections or other fixed tumour material 
(for example, maintained in alcohol) might also be accept-
able; however, the quality of DNA from these materials is 
variable and can be suboptimal33,34. DNA from the tumour 
should be processed and assessed for quality according to 
standard protocols29,31,32. Over the past few years, protocols 
for DNA, and even RNA, isolation from FFPE samples 
have considerably improved, and technical adaptations 
for handling potential artefacts generated from these 
materials have yielded increasingly reliable sequencing 
data, which has expanded the use of FFPE in clinical set-
tings35. Tumour tissue, when available, can provide val-
uable information that will aid interpretation of results 
from germ line samples. For example, identification of 
loss of heterozygosity (LOH) in a region where a potential 
pathogenic germ line mutation of a tumour suppressor 
gene is detected supports and reinforces the likelihood 
of pathogenicity. In patients with hereditary PPGLs, the 
tumour DNA is used exclusively for the purposes of sup-
plementing the diagnostic value of germ line variants of 
unclear pathogenic status (see additional details in a sub-
sequent section). To this end, the tumour sample could be 
analysed by either Sanger sequencing or specific targeted 
sequencing (single gene or exon); therefore, the tumour 
sample (frozen or FFPE) should be of sufficient amount 
and quality to provide reliable genotype results.

NGS-based platform and processing
After considering costs, turnaround time, autonomy 
of individual laboratories, assay flexibility, scalability, 
bioinformatics needs, data storage and data interpre-
tation, a consensus was achieved by the Study Group 
that targeted NGS is currently the favoured method for 
genetic diagnosis of PPGLs. Specific recommendations 
for implementing this method are as follows.

Approach. Amplicon-based targeted sequencing was the 
approach preferred by the Study Group, as this approach 
has been adopted and successfully optimized by the 
majority of the group members in their own laborato-
ries. However, no objections were raised regarding the 
use of the hybridization-captured NGS method.

Depth coverage. The minimum recommended sequence 
depth coverage was 100x for each sample from blood 
or saliva. Higher coverages (200x or higher) might 
be required for detection of mosaic variants in blood 
or saliva.

Table 1 | Genes involved in PPGL pathogenesis

Gene Frequency of mutations detected 
in PPGLs (mutation type)

Refs

ATRX <5% (S) 96,98

BRAF <2% (S) 15,45

CDKN2A <2% (S) 96

EGLN1/PHD2 <1% (G or S)* 99,100

EPAS1 6–12% (M or S) 19,43,52,77

FGFR1 ~1% (S) 14

FH 1–2% (G) 24,43,101

H3F3A <2% (M)* 14

HRAS 7–8% (S) 43,102

IDH2 <0.5% (S) 103

KIF1B <5% (G or S) 18,104,105

KMT2D <2% (G or S)* 106

MAX 1–2% (G or S) 107

MDH2 <2% (G)* 108

MERTK <2% (G)* 14

MET <2% (G) or <2–10% (S)* 14,96

NF1 3% (G) or 20–25% (S) 109,110

RET 5–6% (G or S) 44,111

SDHA <1% (G or S) 112

SDHAF2 <1% 113

SDHB 8–10% (G) 43,111

SDHC 1–2% (G) 43,47,111

SDHD 5–7% (G) 43,111

TMEM127 1–2% (G) 43,114

TP53 <5% (S) 96

VHL 7–10% (G or S) 43,111

The numbers shown here are in part based on data generated by the TCGA (The Cancer Genome 
Atlas) Research Network for Pheochromocytoma and Paraganglioma (unpublished data, publicly 
available through cBioPortal). G, germ line; S, somatic; M, mosaic; PPGLs, phaeochromocytomas 
and/or paragangliomas. *Frequency based on one or two clinical cases.
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In‑laboratory validation. Sensitivity and specificity 
of the developed NGS assay should be established by 
individual groups based on data obtained from a set of 
samples carrying known mutations (identified by Sanger 
sequencing). This positive control group should include 
samples spanning a comprehensive set of mutations 
(point mutations and indels) and origins (germ line, 
mosaic and somatic). The Study Group also suggested 
that samples positive for rare mutations, which might 
not be available to every laboratory in their positive 
control set, could be shared among multiple laboratories 
to enable the development of more uniform and com-
prehensive ‘calibration sets’. Distribution of such DNA 
materials in an anonymized manner would be subject 
to sample availability, approval of the institutions’ ethics 
committees and material transfer agreement arrange-
ments. Importantly, it is recommended that a set of nor-
mal reference samples of matching ethnic background is 
also sequenced using the same NGS platform to deter-
mine false positive rates of the assay and to establish the 
frequency of common and private or population-specific 
polymorphisms.

Limitations. Special attention should be given to lim-
itations of NGS methods for sequencing and detection 
of variants in specific regions of the genome, includ-
ing homopolymer repeats, indels, AT-rich regions and 
GC-rich regions36. Some NGS techniques, such as Ion 
Torrent (Life Technologies/ThermoFisher, Waltham, 
Massachusetts, USA), rely on single-nucleotide additions 
and can have a high error rate for indel detection (1%)37. 
Illumina platforms have high sensitivity (0.1%); however, 
false-positive errors have also been reported37,38. AT-rich 
regions and GC-rich regions are well known to be prob-
lematic in conventional PCR and Sanger sequencing38. 
These areas can also be challenging for capture by target 

and WES probes and, therefore, tend to be underrepre-
sented by NGS. If regions of low coverage are noticed, 
complementary assays should be designed using a differ-
ent method (for example, Sanger sequencing) to achieve 
the desired minimal coverage of the target region. Off-
target sequencing (unwanted regions) might occur in 
genomic regions with low sequence complexity, which 
can be removed by filtering during sequencing analysis.

Confirmation. Given the reasons outlined in the previous 
section, the detection of a variation or mutation in a new 
sample should be confirmed using an orthogonal method, 
such as Sanger sequencing, real-time PCR geno typing or 
a distinct NGS-based assay. As in conventional genetic 
testing, whenever possible, confirmation of the NGS-
identified variant in a separate aliquot of the patient’s 
DNA (ideally obtained from an independent blood or 
saliva sample) is highly recommended. However, the 
Study Group recognizes that this practice is not universally 
adopted by diagnostic laboratories.

Whole‑exome sequencing. The Study Group chose 
WES as the preferred method for investigational genetic 
analysis for PPGLs, with the research purpose of dis-
covering the primary mutation when none is found 
among the PPGLs susceptibility genes. WES coverage 
can vary greatly but a mean coverage of 50x or higher 
was recommended for identification of germ line var-
iants. With decreasing costs of NGS methodology, the 
ability to sequence at progressively higher depth with-
out added budgetary burden makes this coverage goal 
easily attainable.

Quality control. Efficient capture of exons and adjacent 
regions, quality of sequencing and error rates are influ-
enced by the reagents and kits used in library prepa-
ration and exome capture, as well as by the chemicals 
and equipment used for sequencing38. For laboratories 
that adopt commercial NGS services or institutional 
core facilities for processing their samples, it is critical 
to ensure that every step of the protocol is performed 
following strict quality control standards, using relia-
ble reagents and sequencers with low error rates. The 
Study Group recommends establishing a bioinformatics 
pipeline in which at least two algorithms are used for 
sequence alignment with the goal of enhancing both the 
sensitivity and specificity of sequence calls12.

Other considerations. Low-coverage WES is not suitable 
for clinical sequencing. WES should be considered for 
patients with PPGLs who have no germ line mutations in 
the genes analysed by targeted NGS, also referred to as a 
‘negative PPGL’. However, before labelling a sample ‘neg-
ative’ it is imperative to establish a comprehensive analy-
sis of all known PPGLs susceptibility genes. This analysis 
should not only include sequence evaluation of coding 
regions and exon–intron boundaries of target genes, but 
also large indels or gene rearrangements. These grosser 
defects, which have been reported in the VHL, SDH 
and MAX genes39–42, might not be identifiable by WES 
performed at average depth of coverage. Instead, other 

Box 1 | Features unique to PPGLs

Hereditary Mendelian diseases are caused by one driver mutation inherited in an 
autosomal dominant or recessive manner. This feature is relevant because the finding of 
a single unquestionably pathogenic mutation will define the proband’s diagnosis and 
should trigger testing of the specific mutation in at‑risk family members. Approximately 
50% of phaeochromocytomas and paragangliomas (PPGLs), a rate higher than any 
other human neoplasia, are caused by an autosomal dominantly inherited mutation 
detectable in the germ line1,2.

Mosaic transmission, in addition to classic germ line transmission, of PPGLs can also 
occur. The EPAS1 gene was found to be somatically mutated in PPGLs and in patients 
who had an association between these tumours and polycythaemia and/or, rarely, 
duodenal somatostatinomas19,75–77. Further studies have demonstrated that these 
mutations can be mosaic, and are occasionally detected in non‑tumorous tissue at a low 
frequency78. Detection of these low‑representation alleles requires the use of highly 
sensitive techniques such as NGS. Therefore, the Study Group suggests inclusion of 
EPAS1 in the group of genes mutated at the germ line level.

The extent to which mosaicism occurs in PPGLs has not been systematically examined 
across all known susceptibility genes. Both NF1 and VHL, which are established PPGL 
susceptibility genes, have been detected as mosaic, post‑zygotic mutations in 
neurofibromatosis type 1 or von Hippel–Lindau syndrome; however, this finding has not 
been described in the specific setting of PPGLs79,80. In 2015, mosaic mutations leading to 
a syndrome involving PPGL and giant cell tumours of bone were reported in association 
with the H3F3A gene14. Therefore, mosaic transmission might occur more frequently in 
PPGLs than hitherto appreciated.
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methods that are well-established for detection of these 
genetic lesions, such as MLPA, quantitative multiplex 
PCR or other genome-wide copy number analysis assays, 
can be performed43,44. Alternatively, targeted NGS panels 
can be designed to optimize detection of larger deletions, 
insertions or rearrangements, as reported in hereditary 
breast cancer diagnostic panels45. Finally, the existence of 
epimutations, such as those detected in the promoter of 
the SDHC gene should also be considered in cases where 
no mutations are detected46,47. Specific attention to the 
mode of inheritance and the existence of mosaicism are 
briefly discussed in BOX 1.

Targeted NGS PPGLs gene panels
With the important advances in our understanding of the 
genetics of PPGLs that have occurred in the past decade, 
a large number of genes have been implicated in suscep-
tibility to PPGLs, which are also known as ‘driver’ genes 
(TABLE 1). Some of these driver genes are only mutated at 
the germ line level, while others can be mutated either 
at the germ line or somatic level. A third group of driver 
genes are only mutated somatically1,2,48. The relative 
frequency of overall mutations and specific germ line 
and/ or somatic events for each of these genes varies 
(TABLE 1). Although accumulated evidence regarding the 
role of some of these susceptibility genes is fairly exten-
sive, as expected, the discoveries from the past few years 
have not yet been fully validated clinically, genetically 
or functionally.

An extensive discussion on the requirements for 
determining a bona fide ‘driver status’ of the PPGLs sus-
ceptibility genes is beyond the scope of this Consensus 
Statement. Therefore, to harmonize the current evidence 
available for each gene we have applied general concepts 
of tumour predisposition genes49 and the ‘review status’ 
established by ClinVar, the public archive of reports of 

the relationships among human variations and pheno-
types curated by the National Center for Biotechnology 
Information (NCBI). ClinVar uses a five-level rank of 
evidence to establish variant pathogenicity that was sug-
gested by the American College of Medical Genetics and 
Genomics50,51 (TABLE 2). In this Consensus Statement, we 
adopted a modified version of ClinVar’s ‘gold star’ scale 
to create three PPGLs panel types based on the current 
evidence of involvement of these genes in PPGLs suscep-
tibility at the germ line (the basic premise for hereditary 
PPGLs screening) and somatic level. On the basis of the 
current literature, we propose the development of three 
sets of gene panels for the diagnosis of PPGLs (TABLE 3). 
TABLE 4 lists the genes that belong to each panel type, and 
summarizes the current level of evidence of their patho-
genic driver status. Importantly, as our knowledge of the 
genetics of PPGLs evolves, re-evaluation of this list and 
reclassification of susceptibility genes will be warranted.

Basic panel. The basic panel includes genes with the 
highest level of evidence for their involvement in the 
pathogenesis of PPGLs and that are mutated at the germ 
line level. These genes have been extensively validated 
in the literature and are predominantly associated with 
familial disease or syndromic features.

Extended panel. The extended panel includes all ‘basic 
panel’ genes, along with other candidate susceptibility 
genes that are mutated at the germ line level and are 
found at a low frequency (<1% of hereditary PPGLs) 
but that have been proven to be functionally rele-
vant. This panel also includes genes that can contain 
mutations with mosaic transmission and that might 
occasionally also be detected in non-tumour tissue, 
including blood or saliva (for example, EPAS1, also 
known as HIF2A).

Table 2 | Modified ClinVar review status adapted for this Consensus Statement on PPGLs driver genes

Original ClinVar classification Modified classification

Number of 
gold stars

Description and review status Evidence 
level

Specific applicability to PPGLs

None No submitter provided an interpretation with 
assertion criteria (no assertion criteria provided), or no 
interpretation was provided (no assertion provided)

0 N/A

One One submitter provided an interpretation with 
assertion criteria (criteria provided, single submitter) 
or multiple submitters provided assertion criteria 
but there are conflicting interpretations, in which 
case the independent values are enumerated for 
clinical significance (criteria provided, conflicting 
interpretations)

1 Single source (one published 
report)

Two Two or more submitters providing assertion criteria 
provided the same interpretation (criteria provided, 
multiple submitters, no conflicts)

2 Two or more sources without 
functional validation

Three Reviewed by expert panel 3 Two or more sources with some 
functional validation

Four Practice guideline 4 Established evidence from: clinical, 
genetic, computational prediction, 
functional evidence and/or 
analysis of population frequency

N/A, not applicable; PPGLs, phaeochromocytomas and/or paragangliomas.
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Comprehensive panel. The comprehensive panel 
includes all ‘extended panel’ genes, genes found to be 
exclusively mutated at the somatic level and recently 
identified genes mutated at the germ line and/or somatic 
levels for which the evidence is still limited due to the 
low number of events. The comprehensive panel can be 
used for blood, saliva and tumour tissue analysis.

The target area
The suggested targeted panels should encompass coding 
exons and intron boundaries of the targeted genes. At this 
stage, the Study Group opted to exclude deep intronic, 
promoter and intergenic regions from the panel design, 
as the pathogenic relevance of variants detected in these 
genomic areas is of unclear diagnostic value. In addition, 
special caution should be taken when designing primers 
that target areas of homology to pseudogenes or other 
partially homologous sequences, which can confound 
variant interpretation. Furthermore, the inclusion of 
just the hotspot exons of two PPGLs oncogenes, EPAS1 
(exons 9 and 12) and RET (exons 8, 10, 11 and 13–16), 
instead of the entire coding region, was favoured for gene 
panels given the highly selective mutation distribution 
of these oncogenes2,15,43,52. However, these settings might 
need to be re-evaluated as the field evolves53.

Other sequencing methods
WGS is the most comprehensive method for muta-
tion analysis, as it can be used to assess nearly all types 
of genetic disruptions (including large deletions and 
insertions) of the entire coding and noncoding regions 
of PPGLs susceptibility genes without amplification bias 
introduced by PCR. The main barriers for using WGS in 
clinical diagnostics are the high cost, the need for expert 
bioinformatics support to perform the analysis and the 
necessity for a multidisciplinary expert group to help with 
variant interpretation (see subsequent section on variant 
reporting). However, the technological advances in the 
past few years indicate that soon some of these issues 
will no longer be impediments. The sequencing of the 
entire human genome for less than US$1,000 is finally 
possible with the launch of new sequencers focused on 
population-scale and production-scale genomics, such 
as Illumina X10 (REF. 54). In addition, automated bioin-
formatics analyses with cloud-based shared free software 
have been developed and continue to be implemented by 
many leading institutions in the field of advanced genom-
ics and biocomputing55. These shared spaces will enable 
the analysis of whole genomes without the requirement 
for individual institutional acquisition of super computers 
or rental of computer clusters.

Another NGS method that generates information on 
nucleotide variation is the sequencing of the entire collec-
tion of mRNA molecules (RNA-seq), which yields both 
expression profile and mutational status. Using RNA-seq 
could be considered when a fresh frozen tumour sample is 
available. A possible limitation of this technique is the dif-
ficulty in identifying mutations that lead to decreased or 
absent transcription or very unstable mRNA of the target 
gene. RNA-seq has been performed in only a small num-
ber of PPGLs14,26. Although not tested for all known driver 
genes for PPGLs, at least in one report, truncating germ 
line mutations in SDHB and SDHD and a missense germ 
line mutation in VHL were promptly detected with evi-
dence of LOH, and later validated by Sanger sequencing14, 
which supports the efficacy of RNA-based sequencing 
for screening of susceptibility mutations. RNA-seq might 
also enable detection of fusion transcripts that cannot be 
identified by WES26. However, given the added technical 
and material source challenges, the Study Group rec-
ommends that DNA is the preferred source of material 
for mutation screening of PPGLs susceptibility genes in 
routine practice.

Somatic variants
Studies published over the past 5 years have demon-
strated that somatic mutations frequently occur in 
PPGLs (TABLE 1). These mutations are only detected 
in the tumour DNA and not in germ line DNA, and, 
therefore, they do not have implications for heritabil-
ity of the disease. Detection of a PPGL-related somatic 
mutation in the tumour of a germ line ‘negative PPGL’ 
suggests sporadic disease, and, consequently, averts the 
need for screening the patient’s relatives. Moreover, 
identification of a somatic mutation provides insights 
into tumour biology, and might guide targeted thera-
pies, especially in patients with metastatic disease (when 
treatment options are limited)56–59. The Study Group 
recommends that the analysis of somatic mutations in 
PPGLs be carried out whenever possible. Genes targeted 
at the somatic level are indicated in TABLE 1. These genes 
should be included in panels in which both germ line 
and tumour analyses are performed. The number of clin-
ical trials available for patients with non-operable and/or 
metastatic PPGLs is currently small (ClinicalTrials.gov; 
search for active PPGL trials), so expanding our knowl-
edge of potential targets can have a broad effect on ther-
apeutic choices for these patients (see Supplementary 
information S1 (table)).

Additional clinical trials based on therapies that tar-
get specific molecular findings are expected to be devel-
oped in the near future. Moreover, new discoveries 

Table 3 | Target panel versions based on ClinVar gold star variant evidence level

Panel type Gene list Sample type*

Basic Evidence level 3 and 4 for germ line mutations Blood

Extended Evidence level 2 for germ line mutations (rare) Blood

Comprehensive All somatic mutations and all levels of evidence Blood and tumour

*Buccal cells can be used as a source of germ line DNA when blood is not available.
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focused on personalized drug therapies for PPGLs are 
anticipated to guide the development of more research 
trials. In this context, the NGSnPPGL Study Group 
recommends the analysis of somatic mutations in all 
metastatic PPGLs, as mutations in ‘druggable’ genes 
might be identified, which could help guide therapeu-
tic choices and/or select patients for genetics-based 
clinical trials.

Data reporting
A written report of the genetic test results has to be 
clear, concise, understandable by non-experts and in 
full compliance with general recommendations for 
reporting results of diagnostic genetic testing60,61. The 
results report should include administrative informa-
tion, such as name and full contact details of the labo-
ratory performing the analysis, date, name and address 
of the referring physician and signature of the labora-
tory specialist who validated and interpreted the results. 

Patient identification should include patient name (or 
unique identifier, as in the case of some referral diag-
nostic laboratories), date of birth, sex and, ideally, eth-
nicity. Sample details, such as tested material type, date 
of sample collection and arrival at the laboratory and 
unique sample identification number should also be 
part of the report.

Other sample information, including histological 
confirmation of PPGLs diagnosis, tumour location, 
tumour number, occurrence of metastasis, age at first 
diagnosis, hormonal phenotype, family pedigree with 
clinical information and personal and/or familial his-
tory of other diseases or clinical manifestations con-
sistent with syndromic forms of PPGLs or any familial 
history of other associated tumours or diseases can 
add valuable information to the interpretation of the 
results. In addition, results from immunohistochem-
istry analysis of tumour sections, if available, can also 
be relevant.

Table 4 | Gene panels of PPGLs based on current evidence

Gene Review status* Targeted panel‡ Gene target area

FH 3 Basic All coding exon–intron boundaries

MAX 4 Basic All coding exon–intron boundaries

NF1 4 Basic All coding exon–intron boundaries

RET 4 Basic Exons 8, 10, 11, 13–16

SDHA 3 Basic All coding exon–intron boundaries

SDHB 4 Basic All coding exon–intron boundaries

SDHC 4 Basic All coding exon–intron boundaries

SDHD 4 Basic All coding exon–intron boundaries

TMEM127 4 Basic All coding exon–intron boundaries

VHL 4 Basic All coding exon–intron boundaries

EGLN1/PHD2 2 Extended All coding exon–intron boundaries

EPAS1 4 Extended Exons 9, 12

KIF1B 2 Extended All coding exon–intron boundaries

MET 2 Extended All coding exon–intron boundaries

SDHAF2 2 Extended All coding exon–intron boundaries

ATRX 2 Comprehensive All coding exon–intron boundaries

BRAF 1 Comprehensive All coding exon–intron boundaries

CDKN2A 1 Comprehensive All coding exon–intron boundaries

EGLN2/PHD1 1 Comprehensive All coding exon–intron boundaries

FGFR1 2 Comprehensive Exons 11, 13

H3F3A 1 Comprehensive All coding exon–intron boundaries

HRAS 4 Comprehensive All coding exon–intron boundaries

IDH2 1 Comprehensive All coding exon–intron boundaries

KMT2D 1 Comprehensive All coding exon–intron boundaries

MDH2 1 Comprehensive All coding exon–intron boundaries

MERTK 1 Comprehensive All coding exon–intron boundaries

TP53 2 Comprehensive All coding exon–intron boundaries

PPGLs, phaeochromocytomas and/or paragangliomas. *Based on ClinVar, related to TABLE 2. ‡Related to TABLE 3.
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A summary of technical information should be 
included, encompassing a list of targeted genes, the 
sequencing platform used, any appropriate kits (for 
example, library generation and capture), the mean 
sequence coverage achieved for the target genes (includ-
ing areas of low coverage, if any) and the bioinformatics 
pipeline (alignment and annotation software used). The 
test results, their interpretation and technical limitations 
(that is, whether the test is capable, or not, of detecting 
specific variants such as mosaic mutations or copy num-
ber changes) must be specified. Importantly, test results 
and variant interpretation should be consistent across 
laboratories to avoid variability that could affect clinical 
decision-making.

The results report should mention whether the find-
ings were confirmed by another method, and whether 
Sanger sequencing was used to fill gaps of poorly cov-
ered regions. These reports should also state whether 
MLPA or other methods have been performed to detect 
large rearrangements. Examples of effective NGS-based 
reports are included in the reference list60,61.

Variant classification
The International Agency for Research on Cancer 
(IARC)62 has classified genetic variants into five cate-
gories (class 5: ‘pathogenic’; class 4: ‘likely pathogenic’; 
class 3: ‘VUS’; class 2: ‘likely not pathogenic’; and class 1: 
‘not pathogenic’), and this system has been adopted by 
most laboratories61,63. The five-category system is the 
most comprehensive classification system for molecu-
lar geneticists and research experts; however, the Study 
Group recognizes that a simplified classification in three 
categories only (‘pathogenic’, ‘VUS’ and ‘benign’) can be 
considered for reports to physicians and for genetic coun-
selling purposes, as this distinction is usually adequate for 
clinical decision-making.

The objective of gathering the information detailed 
in this section is to integrate all available evidence of 
pathogenicity or non-pathogenicity from the different 
criteria listed here to reach a conclusion on the status of 
the detected variants.

For variants identified in genes associated with 
PPGLs, the Study Group proposes a simplified frame-
work (FIG.  1) that should provide an objective and 
reproducible classification for the majority of identi-
fied variants. Recognizing that some variants will have 
more complex requirements for classification, the Study 
Group recommends following the rules proposed by 
Richard and colleagues, which combine multiple criteria 
for classifying variants63. Variant classification requires 
the combination of several criteria, which are described 
in the following paragraphs63,64.

Criterion 1: the type of mutation. Whether or not it is 
likely to result in a null variant should be considered. For 
example, nonsense, frameshift or canonical splice sites 
(positions ±1 or ±2 bp) that result in frameshift of the cod-
ing sequence, mutations that affect the initiation codon, 
or those that lead to single exon or multi-exon deletion 
are generally considered null mutations, although this 
concept is proving to have some notable exceptions65.

Criterion 2: the variant frequency in large population 
databases. These databases include dbSNP, Exome 
Aggregation Consortium (ExAC), Exome Variant 
Server and 1000 Genomes. Of note, these databases do 
not include only healthy individuals and, therefore, can 
contain some pathogenic variants. This feature is par-
ticularly relevant in the case of low-penetrance alleles, 
such as SDHB mutations, and their association with 
malignant PPGLs66. Thus, the simple presence of a VUS 
in any of these databases does not invalidate their poten-
tial pathogenic role in PPGLs. In addition, these data-
bases are not independent datasets, so some redundancy 
exists. Local, population-specific reference datasets 
(such as the Spanish National database67), if existent, can 
be informative as they help uncover population-based 
VUS frequency bias.

Criterion 3: the variant description in disease or 
gene‑specific databases. These databases include 
ClinVar, the Human Gene Mutation Database, Leiden 
Open source Variation Database and in-house data-
bases. These sources provide various levels of anno-
tation of variants, including in many cases the clinical 
context in which they were described. Of note, not all 
variants from these databases have been systematically 
curated or are described with the most updated nomen-
clature. Therefore, pathogenicity of variants cannot be 
assumed solely by its presence in any of these databases 
(please see additional details later in the article).

Criterion 4: previous reporting of the variant in the 
literature. Variants reported as pathogenic or possibly 
pathogenic with limited evidence in a single patient, or 
a small number of patients, must be carefully evaluated 
before being considered a PPGL-predisposing mutation, 
as they could be rare or private polymorphisms.

Criterion 5: whether the variant was previously func‑
tionally evaluated. This analysis should determine 
whether the variant is pathogenic or not. Importantly, 
establishing the functional effect of a variation must 
involve rigorous standards. For example, certain var-
iations in downstream effectors might not necessarily 
reflect pathogenicity and should not be used as the sole 
criterion to classify a variant68,69.

Criterion 6: in silico predictions. These predictions focus 
on the pathogenicity of missense or splice site variants. 
The Study Group recommends using multiple predic-
tion software packages (including SIFT, PolyPhen2 and 
MutationTaster for missense mutations or MaxEntScan, 
Splice Site Finder Like and NNSplice for splice predic-
tion), all of which are freely available, or commercial soft-
ware integrating multiple sources such as Alamut Visual. 
The results generated by these prediction programmes 
can help interpretation, but should not be taken as the 
sole or final determinant of pathogenicity of a variant.

Criterion 7: co‑occurrence of pathogenic variants. The 
co-occurrence can either be in the same gene or in another 
susceptibility gene. On the basis of the general premise 
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of mutual exclusivity of driver mutations in PPGLs1, the 
detection, in the same individual, of a known pathogenic 
variant either in the same gene or in other PPGL genes 
essentially excludes pathogenicity of the unknown variant.

Criterion 8: analysis of co‑segregation of the disease 
in families. The presence of the same variant in other 

affected relatives supports pathogenicity of the variant. 
However, more importantly, the lack of co-segregation 
(for example, at least one affected relative without the 
variant) excludes its role as the susceptibility mutation 
in that family. Absence of the candidate variant in unaf-
fected relatives can also be helpful to ascribe a role for a 
candidate variant in families.

Figure 1 | Framework for variant interpretation of phaeochromocytomas and/or paragangliomas (PPGLs) 
susceptibility genes into five classes based on the likelihood of pathogenicity. The classification relies on multiple 
criteria listed in each box and further detailed in the text. AF, allele frequency; TSG, tumour suppressor gene. 
*See TABLE 5 for additional details.

Nature Reviews | Endocrinology

PPGL variant

• Frequency in population and disease databases
• Review of literature
• Type of variant
• Co-segregation with the disease
• Co-occurrence with known pathogenic variant
• In silico predictions
• Results of functional or supplemental studies*

• AF > 1% in control groups or

Not pathogenic (class 1)
Do not use for predictive
testing in relatives

Likely not pathogenic  
(class 2)
Do not use for predictive
testing in relatives

Insufficient evidence to
classify or contradictory
criteria

Variant of unknown
significance (class 3)
Do not use for predictive
testing in relatives

Likely pathogenic 
(class 4)
Use for predictive testing
in relatives

Pathogenic (class 5)
Use for predictive testing
in relatives

• Present in control groups with
 no co-segregation with the
 disease or

• AF = 0.01–1% and functional
 evidence for non-pathogenicity

• Missense variant with ≥3
 in silico predictions in favour of
 the variant being benign or

• Intronic or silent variant with
 no predicted splice impact or

• Co-occurrence with pathogenic
 variant or

• Functional evidence for
 non-pathogenicity

• Null variant in a PPGL TSG with
 no material available for
 functional study or

• Missense variant with ≥3
 in silico predictions in favour of
 pathogenicity and functional
 study supportive of a damaging
 effect or

• Intronic or silent variant with
 predicted splice impact by
 in silico analysis and functional
 study supportive of a damaging
 effect or

• For mutations in PPGL genes
 predisposing to a syndromic
 disease, clinical presentation
 highly specific for the disease

• Variant reported in literature
 with strong evidence of
 pathogenicity or

• Null variant in a PPGL TSG with
 functional evidence for
 pathogenicity
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Criterion 9: concordance with phenotype. Concordance 
with phenotype is especially relevant in susceptibility 
genes for established syndromes, such as neurofibroma-
tosis type 1, von Hippel–Lindau disease or multiple 
endocrine neoplasia type 2, for which other clinical 
manifestations generally coexist with PPGL (BOX 2). 
Given the diversity of PPGL susceptibility genes and 
associated subphenotypes, the Study Group recom-
mends that the referring physicians provide detailed 
phenotypic information to assist the laboratory in 
analysing and interpreting the results of testing. This 
information could help to prioritize variants for further 
consideration61. An example of this situation is the RET 
gene, in which the identification of an unquestionable 
pathogenic mutation has clear clinical implications 
(for example, thyroidectomy to prevent the develop-
ment of the associated, highly penetrant medullary 
carcinoma of the thyroid). By contrast, detection of 
RET VUS should not trigger indiscriminate screening 
of relatives69.

Variant reporting
Reports should provide a list of variants with clini-
cal interest only. Gene name, zygosity status, cDNA 
nomenclature and protein nomenclature must be clearly 
defined and follow Human Genome Organization 
(HUGO) criteria70 (see later).

The Study Group recommends that variants clas-
sified as not pathogenic (class 1) or likely not patho-
genic (class 2) should not be reported, as the report of 
a common SNP or silent variant can generate anxiety 
for patients and relatives. In addition, reports should 
clearly distinguish known pathogenic (class 5) or likely 
pathogenic (class 4) variants from VUS (class 3).

Whether and how to report VUS can be laboratory- 
dependent but physicians should be aware of the policies 
about reporting VUS61,62. When multiple variants that 
might be clinically important are identified (for example, 

class 4 variants), they should be prioritized according 
to their relevance to the patient’s phenotype. For exam-
ple, in a patient with a syndromic clinical presentation 
suggesting von Hippel–Lindau disease, if NGS iden-
tifies a VUS in the VHL gene and a second VUS in 
another gene associated with PPGL, the VHL variant is 
more likely than the second variant to be disease-caus-
ing and, therefore, should be emphasized. A compre-
hensive review of interpretation of VUS of the RET 
gene has discussed this challenge69.

Nomenclature
The gene names used in reports should adhere to the 
approved HUGO Gene Nomenclature61. The reference 
nucleotide and protein sequence accession number (and 
version number) should be indicated.

The Human Genome Variation Society (HGVS) 
nomenclature is currently the standard worldwide and 
is recommended for variant reporting71. Unambiguous 
naming of the variants is critical for the patient’s 
medical records as well as for the pre-symptomatic 
genetic testing that could be offered to the patient’s 
relatives. Indeed, screening for the mutation in a fam-
ily generally comprises Sanger sequencing that exclu-
sively targets the mutation identified in the proband. 
Misleading mutation nomenclature could lead to 
the amplification and sequencing of a different gene 
region and return a false negative result in relatives. 
Correct nomenclature is also critical for unambiguous 
registration of the data in human variation databases 
and for accurate searches for a previous description of 
any identified variant.

Interpretation
The interpretation section of the report should clearly 
state whether any identified variant is likely to be 
responsible for the patient’s PPGL development and 
should also include the evidence that supports the 

Box 2 | PPGLs-associated syndromes, other associations and shared susceptibility

Phaeochromocytomas and paragangliomas (PPGLs) have been reported as part of well‑established hereditary 
syndromes, including multiple endocrine neoplasia type 2A and 2B (RET), von Hippel–Lindau syndrome (VHL), 
neurofibromatosis type 1 (NF1) and familial paraganglioma syndromes, type 1 (SDHD), 2 (SDHAF2), 3 (SDHC), 4 (SDHB) 
and 5 (SDHA)1,2,48.

Gastrointestinal stromal tumours can associate with paragangliomas due to germ line SDH mutations (Stratakis–
Carney dyad)81,82. EPAS1 mosaic mutations have been detected in patients with multiple paragangliomas, duodenal 
somatostatinomas and polycythaemia80,83. Pituitary adenomas were reported in patients with PPGLs in familial 
settings in which an SDH mutation was detected84,85. Germ line FH mutations have been described in patients with 
phaeochromocytomas and uterine leiomyomas14,20,24, and, in the past year histone gene mutations (H3F3A) were 
found in a new syndrome of multiple paragangliomas and giant cell tumour of bone, which implicates chromatin 
remodelling defects in PPGL tumorigenesis and susceptibility14.

The growing link between susceptibility to renal carcinomas and PPGLs is worth highlighting. An increasing 
number of genes can be responsible for development of both tumour types individually or in association, which 
suggests a closer connection than previously appreciated86–89. In addition to VHL, SDH90,91, FH92 and TMEM127 
(REFS 93,94), genes can also be mutated in renal carcinomas either with or without co‑occurrence of PPGL. The 
MET gene, previously known to cause hereditary papillary renal cancer95, was also found to be mutated in 
PPGLs14,96. Finally, somatic mutations in chromatin remodelling genes are recurrently detected in renal carcinomas 
and PPGLs14,96–98.

Further associations between PPGLs and other conditions might be detected in the future. Their rare occurrence 
makes it challenging to establish a causative link, but those infrequent associations can offer invaluable insights 
into the biology of these tumours and possible paths to their development.
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variant classification. The report should list addi-
tional studies, if available, that could be performed to 
assist in further clarifying the variant classification. 
Supplemental material (such as the frozen tumour 
sample, FFPE tumour block or slides and/or RNA 
samples) required for these additional studies should 
be requested from the referring physician. Similarly, 
the participation of family members for segregation 
analysis should be requested, if appropriate. Finally, 

the report should mention whether a pre-symptomatic 
genetic test can be offered to first-degree relatives 
or not.

VUS and tools for classification
The interpretation of VUS is challenging and in general 
these variants should not be used for clinical management 
of patients and families. VUS can be classified based on 
multiple parameters (described in a previous section)69.

Table 5 | Supplementary and/or functional tests available for PPGL genes

Type of material 
required

Test description Expected results Target gene Target 
mutation type

Evidence 
level of test*

Refs

Tumour or 
leukocyte RNA

cDNA sequencing Identification of 
aberrant RNA 
transcript

All PPGLs 
susceptibility genes

Splice 
mutations

B 108,114

Tumour DNA Sequencing, MLPA, SNP 
array or microsatellite 
markers study (for copy 
number analysis)

Identification of 
LOH (by deletion or 
somatic mutation 
of the contralateral 
allele)

PPGLs tumour 
suppressor genes

All B 105,107, 
110,111

Methylation analysis Identification of 
methylation of the 
contralateral allele

PPGLs tumour 
suppressor genes

All B 21

Frozen tumour 
tissue

SDH enzymatic activity 
measurement

Loss of SDH enzymatic 
activity

SDH All A 115

Fumarase enzymatic 
activity measurement

Loss of fumarase 
enzymatic activity

FH All A 20

Succinate concentration Accumulation of 
succinate

SDH All B 20

Fumarate concentration Accumulation of 
fumarate

FH All B 20

Metabolome profiling 
by HRMAS NMR 
spectroscopy

Accumulation of 
succinate

SDH All C 124

FFPE tumour 
tissue section

SDHB/SDHD IHC SDHB negative or 
SDHD positive IHC

SDH All A 5,116–118

SDHA IHC SDHA negative IHC SDHA All A 112,117,119

MAX IHC MAX negative IHC MAX Truncating 
mutations

B 22

2-SC IHC 2-SC positive IHC FH All B 101

In vitro assay PC12 rat 
phaeochromocytoma 
cell-based luciferase 
reporter assay 
(mutagenesis)

Alteration of MAX 
regulatory effects on 
MYC

MAX Missense C 120

Endomembrane 
localization or subcellular 
distribution of expressed 
mutant constructs by 
confocal microscopy

Intracellular 
distribution of 
TMEM127 mutant

TMEM127 Missense C 94,114,121

SDH cellular distribution Loss of SDH 
mitochondrial 
localization

SDH All C 122

In vivo assay In vivo succinate detection 
by magnetic resonance 
spectroscopy

Accumulation of 
succinate in vivo

SDH All C 123

FFPE, formalin-fixed and paraffin-embedded; IHC, immunohistochemistry; LOH, loss of heterozygosity; MLPA, multiplex ligation-dependent probe amplification; 
PPGLs, phaeochromocytomas and/or paragangliomas; RT-PCR, reverse-transcriptase PCR; SDH, succinate dehydrogenase; 2-SC, succinyl-cysteine, SNP, single 
nucleotide polymorphism. *Evidence level of test: A, widely used, with strong functional accuracy, and independently validated by multiple laboratories; B, 
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Additional tests and functional studies, listed in 
TABLE 5, can be performed to assess the pathogenicity of 
variants. These tests require different types of biological 
material and have distinct degrees of complexity and 
accuracy. When a VUS is identified in a PPGL tumour 
suppressor gene, the demonstration of tumour LOH, 
either by deletion or additional somatic mutation, is a 
strong argument supporting its pathogenicity, accord-
ing to the Knudson ‘two-hit’ hypothesis72. However, it is 
important to note that the accuracy of the LOH analysis 
might be dependent on the marker or primer that was 
used. In addition, the frequency of somatic deletion 
of the region of interest can vary considerably (that is, 
chromosome 1p LOH, which spans the SDHB gene 
locus, is frequent in PPGLs but chromosome 5p LOH, 
which comprises the SDHA locus, is not). Thus, results 
of LOH analyses have to be interpreted with caution.

Molecular geneticists and researchers of the Study 
Group agreed on sharing data and protocols of func-
tional assays previously developed in their respective 
laboratories or institutions, as well as on providing spe-
cialized technical assistance for newly identified var-
iations that can aid in their classification. As distinct 
assays have been developed and optimized by individual 
laboratories, sharing of these protocols and controls will 
occur on a case-by-case basis, according to the specific 
variant and gene involved.

An international PPGL variant database
Public gene-specific databases already exist for var-
ious genes that predispose to PPGLs (BOX 3). The 
Study Group emphasizes the importance of multi- 
institutional, internationally shared efforts to com-
pile resources of genomic and clinical data, as well 
as publicly accessible deposition of novel variants 
(for example, ClinVar and Decipher). In the interest 
of economy of scale and technology development, 
the Study Group recommends adopting the existing 
gene-centred database integrated in the framework of 

Box 3 | Available PPGL-related variant databases

• NF1; https://grenada.lumc.nl/LOVD2/mendelian_genes/home.
php?select_db = NF1

• VHL; http://www.umd.be/VHL/

• RET; http://www.arup.utah.edu/database/men2/men2_welcome.php

• SDHA; http://databases.lovd.nl/shared/genes/SDHA

• SDHB; http://databases.lovd.nl/shared/genes/SDHB

• SDHC; http://databases.lovd.nl/shared/genes/SDHC

• SDHD; http://databases.lovd.nl/shared/genes/SDHD

• SDHAF2; http://databases.lovd.nl/shared/genes/SDHAF2

• FH; http://databases.lovd.nl/shared/genes/FH

• MAX; https://grenada.lumc.nl/LOVD2/shared1/home.php?select_db = MAX

• TMEM127; http://databases.lovd.nl/shared/genes/TMEM127

• EPAS1; https://grenada.lumc.nl/LOVD2/mendelian_genes/home.
php?select_db = EPAS1

• EGLN1; https://grenada.lumc.nl/LOVD2/mendelian_genes/home.
php?select_db = EGLN1

PPGL, phaeochromocytoma and paraganglioma.

the Leiden Open-source Variation Database (LOVD) 
system73 rather than creating a disease-specific database. 
Accurate classification of variants requires databases 
specifically curated by a panel of PPGLs experts who 
span the range of expertise for each gene and associated 
functional studies. As recommended by the IARC, a con-
sensus opinion on variant pathogenicity validated by a 
panel of experts should be established before making the 
report available62,74.

To that end, the Study Group launched an initi-
ative to establish gene-oriented groups of experts 
(including both basic researchers and clinicians) 
from multiple institutions worldwide to submit and 
review variants. During the 14th ENS@T Scientific 
Meeting on November 20th, 2015, Munich, Germany, 
the Study Group launched the first pilot of the PPGL 
Database Project, which focused on the SDHB gene. 
The objectives of this project are, firstly, to collect 
standardized genomic and clinical data for each sub-
mitted SDHB variant. Secondly, to review manually 
each variant and combine multiple lines of evidence 
for classification. Requests for additional information 
or supplementary functional analyses will be made 
when necessary. Thirdly, to develop standardized, 
transparent and consensus criteria for variant classi-
fication. Fourthly, to conclusively assign each variant 
to one of the existing classes (1–5; FIG. 1). Fifthly, to 
update and re-evaluate the variant list annually (see 
subsequent section).

Re-evaluation of VUS
This re-evaluation process will take place during ENS@T 
or PRESSOR face-to-face meetings or conference calls. 
These meetings will also address other details pertinent 
to the structure and configuration of the LOVD data-
bases. A summary of the proposed database algorithm 
is shown in FIG. 1.

During the annual update of the PPGL Database 
Project, undefined variants (also known as class 2 or 
class 3 variants, which are not usable for predictive 
testing in relatives) could be assigned to the patho-
genic or disease-causing mutation group (usable for 
predictive testing), on the basis of new evidence from 
the literature or functional assays. In that situation, 
information about variant re-classification will be 
disseminated to all Study Group participants. These 
professionals, in turn, should advise the referring phy-
sicians of the new classification status, when applica-
ble. A summary of a suggested flow-chart for genetic 
testing is depicted in FIG. 2. More rarely, change in sta-
tus of class 1 or class 5 mutations will also trigger a 
similar process.

Conclusions
Advances in sequencing technologies within the past 
few years led a majority of genetics laboratories to adopt 
NGS as the new gold standard for routine diagnosis. 
NGS is especially pertinent for diseases with broad 
genetic heterogeneity, as is the case with hereditary 
PPGLs. Considering the technological challenges inher-
ent to NGS methodology, PPGL experts emphasize the 
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