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Abstract. About one-third of North America is forested. These forests are of incalculable
value to human society in terms of harvested resources and ecosystem services and are
sensitive to disturbance regimes. Epidemics of forest insects and diseases are the dominant
sources of disturbance to North American forests. Here we review current understanding of
climatic effects on the abundance of forest insects and diseases in North America, and of the
ecological and socioeconomic impacts of biotic disturbances. We identified 27 insects (6
nonindigenous) and 22 diseases (9 nonindigenous) that are notable agents of disturbance in
North American forests. The distribution and abundance of forest insects and pathogens
respond rapidly to climatic variation due to their physiological sensitivity to temperature, high
mobility, short generation times, and high reproductive potential. Additionally, climate affects
tree defenses, tree tolerance, and community interactions involving enemies, competitors, and
mutualists of insects and diseases. Recent research affirms the importance of milder winters,
warmer growing seasons, and changes in moisture availability to the occurrence of biotic
disturbances. Predictions from the first U.S. National Climate Assessment of expansions in
forest disturbances from climate change have been upheld, in some cases more rapidly and
dramatically than expected. Clear examples are offered by recent epidemics of spruce beetles in
Alaska, mountain pine beetle in high-elevation five-needle pine forests of the Rocky
Mountains, and southern pine beetle in the New Jersey Pinelands. Pathogens are less studied
with respect to climate, but some are facilitated by warmer and wetter summer conditions.

Changes in biotic disturbances have broad consequences for forest ecosystems and the
services they provide to society. Climatic effects on forest insect and disease outbreaks may
foster further changes in climate by influencing the exchange of carbon, water, and energy
between forests and the atmosphere. Climate-induced changes in forest productivity and
disturbance create opportunities as well as vulnerabilities (e.g., increases in productivity in
many areas, and probably decreases in disturbance risks in some areas). There is a critical need
to better understand and predict the interactions among climate, forest productivity, forest
disturbance, and the socioeconomic relations between forests and people.

Key words: atmospheric drivers; bark beetles; defoliators; economic impact; ecosystem interactions;
forest health management; greenhouses gases; outbreak; pathogens.

INTRODUCTION

All forests are products of their disturbance regimes.

Biotic disturbances from outbreaks of insects and

diseases are globally important agents of change in

forest landscapes (Dale et al. 2001, Seppälä et al. 2009).

Organisms that kill or damage trees play key roles in

forest dynamics and composition, wildlife and biodiver-

sity, and in biophysical and biogeochemical processes,

including carbon sequestration and water cycling

(Veblen et al. 1991, Adams et al. 2010, Boon 2011,

Hicke et al. 2012a). However, changes in the location,

severity, and form of biotic disturbance can alter forest

ecosystems relative to historical norms and disrupt

interactions between people and forests. This will be

especially true if tree-killing insects and diseases

promote destabilizing positive feedbacks with other

sources of forest disturbances (e.g., wildfires, drought,

biological invasions, and human conversion of forested

land to other uses; Jenkins et al. 2008, Adams et al. 2010,

Simard et al. 2011). Understanding how these distur-

bances will change in the future as a result of various

drivers, including climate change, is therefore critical for

anticipating effects and adapting to them.

It is one of the oldest theories in ecology that climate

affects insects and diseases (e.g., Anonymous 1665), and

recognition of contemporary climate change has moti-

vated a surge of scientific inquiry into climatic effects on

the extent and severity of forest disturbances by insects

and diseases (Fig. 1; reviewed by Ayres and Lombardero

2000, Volney and Fleming 2000, Dale et al. 2001, Boland

et al. 2004, La Porta et al. 2008, Dukes et al. 2009,

Sturrock et al. 2011, Klapwijk et al. 2012). Multiple

reviews have been written describing the general effects

of climatic variation on the physiology, distribution, and
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ecology of insects (or terrestrial poikilotherms in

general; Bale 2002, Deutsch et al. 2008, Bale and

Hayward 2010, Bentz et al. 2010, Bradshaw and

Holzapfel 2010, Kingsolver et al. 2011, Huey et al.

2012, Klapwijk et al. 2012), as well as pathogens

(Coakley et al. 1999, Harvell 2002, Desprez-Loustau et

al. 2006, Sturrock et al. 2011). The reviews that focus

specifically on climate change effects on biotic distur-

bances within forests typically either consider only one

group of disturbance agents (Volney and Fleming 2000,

Bentz et al. 2010, Sturrock et al. 2011, Klapwijk et al.

2012) or a limited geographical area (Boland et al. 2004,

Dukes et al. 2009). The first National Climate Assess-

ment in 2000 (published in Ayres and Lombardero 2000)

considered climate change effects on insects and

pathogens across the United States and projected

changes in forest disturbance (sometimes increases),

especially from insects because of their high physiolog-

ical sensitivity to climate, short generation times, high

mobility, and explosive reproductive potential. These

projections have been upheld; in some cases, more

rapidly and dramatically than anticipated a decade ago.

Here, we built upon the review from the first National

Climate Assessment (Ayres and Lombardero 2000) by

synthesizing the recent primary literature related to the

effects of climate on the most important forest insects

and diseases in North American forests. We evaluated

the explicit role of climate on the occurrence of historical

and recent outbreaks to identify the climate metrics that

are most frequently associated with biotic disturbances.

We highlight three case studies that provide clear

examples of the effects of climate change on biotic

disturbance agents. We discuss the socioeconomic and

ecological consequences of these disturbances under

climate change and identify key needs for improving

forest health management in a changing climate.

CLIMATE AND BIOTIC DISTURBANCES OF FORESTS:

GENERAL PRINCIPLES

Climate and atmospheric changes associated with

increasing greenhouse gases can influence biotic distur-

bances of forests via three general mechanisms: (1)

effects on the physiology of insects and pathogens that

cause changes in their abundance and distribution, (2)

effects on tree defenses and tolerance, and (3) effects on

interactions between disturbance agents and their own

enemies, competitors, and mutualists (Fig. 2, Table 1).

Increasing temperatures can increase the risks of forest

disturbance by reducing winter mortality of insects (e.g.,

Régnière and Bentz 2007, Tran et al. 2007, Paradis et al.

2008, Safranyik et al. 2010) and by increasing the

development rate of insects and pathogens during the

growing season (Gillooly et al. 2002, Harvell 2002, Bentz

et al. 2010, Mitton and Ferrenberg 2012). Further effects

via temperature changes can arise from changes in

phenology of leaf maturation vs. insect feeding (Thom-

son and Benton 2007, Jepsen et al. 2011) or life cycle

synchrony of bark beetles, which depend on mass attack

to overwhelm tree defenses (Friedenberg et al. 2007,

Bentz et al. 2010).

There is a broad set of atmospheric drivers that can

affect tree defenses against, and tolerance to, herbivores

and pathogens (Table 1; Ayres 1993, Bidart-Bouzat and

Kliebenstein 2008, Lindroth 2010, Sturrock et al. 2011).

Deficiencies of water or mineral nutrients and increases

in CO2 and input of inorganic N into the terrestrial N

cycle can increase or decrease tree defenses, partly

depending on the severity of the deficiency, the

dominant biochemical pathways for secondary plant

metabolism, and whether defenses are constitutive or

inducible (Herms and Mattson 1992, Lombardero et al.

2000, Throop and Lerdau 2004, Lindroth 2010). In

FIG. 1. Annual number of refereed articles published worldwide on forest biotic disturbances that address the role of climate as
a driver of disturbance. The search criteria were: (climate OR temperature) AND forest AND (insect OR pathogen OR disease).
Search results were refined further into the subject areas: environmental sciences and ecology (data source: Web of Knowledge,
Thomson Reuters, Philadelphia, Pennsylvania, USA).
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addition, tree mortality from severe drought may permit

an increase in bark beetles that then become abundant

enough to successfully attack healthy trees (Shaw et al.

2005, Greenwood and Weisberg 2008, Raffa et al. 2008).

Population dynamics of forest insects respond to

numerical interactions between herbivores and their

enemies (Dwyer et al. 2004), and it should be expected

that these interactions are sensitive to temperature

FIG. 2. A schematic of the general pathways by which atmospheric changes associated with increasing greenhouse gases can
influence forest disturbance from insects and diseases.

TABLE 1. Summary of biological and ecological processes affecting population dynamics of biotic disturbance agents that are
mediated by climate.

Biological or ecological process
and atmospheric driver Outcome Selected references

Developmental rate/population growth

Temperature change in abundance Gillooly et al. (2002), Harvell et al. (2002), Powell and
Bentz (2009)

Multi-trophic interactions

Temperature mutualisms Six and Bentz (2007), Evans et al. (2011)
CO2 and temperature natural enemies Hodkinson (2005), Berggren et al. (2009), Lindroth (2010),

Klapwijk et al. (2012)
Temperature synchrony with host Volney and Fleming (2007), Jepsen et al. (2011)

Seasonality

Temperature voltinism and synchrony
of conspecific emergence

Powell et al. (2001), Hicke et al. (2006), Friedenberg et al.
(2007), Bentz et al. (2010)

Sporulation

Precipitation host infection Hansen et al. (2000), Hardham (2005), Sturrock et al.
(2011)

Host susceptibility

CO2 tree defense Chakraborty et al. (2000), Lindroth (2010), Sturrock et al.
(2011)

N deposition tree defense Herms and Mattson (1992), Jones et al (2004), Throop
and Lerdau (2004), Throop et al. (2004)

O3 tree defense Jones et al (2004), Lindroth (2010)
Precipitation tree defense Breshears et al. (2005), Berg et al. (2006)
Temperature tree defense Berg et al. (2006), Worrall et al. (2010b)

Winter survival

Temperature geographical range shift Harvell et al. (2002), Régnière and Bentz (2007), Tran et
al. (2007), Paradis et al. (2008), Sturrock et al. (2011)
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(Berggren et al. 2009, Klapwijk et al. 2012), but

empirical studies are rare (Wilson 1974, Siegert et al.

2009). Similarly, for the many forest insects that involve

mutualisms with fungi (e.g., Dendroctonus spp.), it is

likely that outbreak dynamics will be sensitive to

climatic effects on the mutualism, but studies are limited

(Lombardero et al. 2003, Hofstetter et al. 2007, Six and

Bentz 2007, Evans et al. 2011).

Effects of climate on forest insect and pathogen

population dynamics

Despite our broad knowledge of climate effects on

insect and pathogen demography, we still lack capacity

to predict outbreaks under climate change. To address

this knowledge gap we reviewed the primary literature to

determine the most important climate metrics associated

with historical outbreaks of the insects and pathogens

presented in Tables 2 and 3. Our synthesis included

studies that tested for: (1) spatial or temporal coinci-

dence or correlation of outbreak/disease symptoms with

climate event or trend (e.g., Greenbank 1963, Breshears

et al. 2005, Barrett et al. 2012) and/or (2) concordance of

population fluctuations with process-based models of

physiologically explicit mechanisms linking climate and

population dynamics (e.g., Tran et al. 2007, Powell and

Bentz 2009). We identified 79 studies from 1950 to 2012

that satisfied the criteria; three of the 79 studies

evaluated climate effects on more than one insect species

and most (66% or 52) of the studies were focused on

insects rather than pathogens. In each study we assessed

the importance of up to three climate metrics that can

have demonstrable effects on biotic agent demography

and are projected to change from historical levels as a

result of anthropogenic climate change: (1) winter

temperatures, (2) growing-season temperatures, and (3)

changes in moisture availability. Climate metrics were

scored in each study as important when there was a

significant statistical relationship between the metric and

disturbance event (temporal or spatial) or when

predictions from climate-driven mechanistic models

coincided strongly with disturbance agent abundance.

Climate effects on outbreaks have been studied for 13

of the 27 insects listed in Table 2 and for 12 of the 22

pathogen/decline cases in Table 3. The majority of insect

species that have been studied are native to North

America (10 of 13 species) and skewed heavily towards

bark beetles and defoliators within the genera Dendroc-

tonus and Choristoneura, respectively (Fig. 3A). All three

climate metrics that we evaluated have been reported to

contribute to forest insect outbreaks, and a role for

climate was identified in most studies and for all three

feeding guilds that we recognized (Fig. 4A). Cold winter

temperatures have been commonly associated with the

termination of outbreaks or the location of northern

distributional limits (Fig. 4B). Changes in growing-

season temperatures and moisture availability can also

affect outbreaks (Fig. 4B). Increased population growth

was associated with warming year-round temperatures,

which affects voltinism and can synchronize cohort

emergence (e.g., Friedenberg et al. 2007, 2008, Powell

and Bentz 2009). Drought from warming summer

temperatures and decreased precipitation facilitated

insect outbreaks (Berg et al. 2006, Raffa et al. 2008).

Climate effects on disease and decline dynamics in

forests are not as well studied as for insects (Figs. 3B,

5A); there is evidence that winter temperatures, growing-

season temperatures, and moisture availability can be

important (Fig. 5B). Both increased and decreased

moisture availability influenced pathogens, whereas

most insect outbreaks are associated with water deficits.

Sudden aspen decline was associated with warm, dry

conditions, whereas epidemics of foliar, vascular, and

root pathogens (e.g., Dothistroma needle blight, Swiss

needle cast, sudden oak death, and Armillaria root rot)

were linked to warm summers and increasing precipita-

tion (Fig. 5B). Mild winters influence disease incidence

of Swiss needle cast by permitting mycelial growth in

poleward regions (Manter et al. 2005, Zhao et al. 2011).

Bark beetles

The first National Climate Assessment identified bark

beetles as a group of high-impact forest insects for which

we should anticipate strong and relatively rapid

responses to climate change (Ayres and Lombardero

2000). However, it underestimated the scale of impacts

that would occur in the subsequent decade, particularly

for bark beetles in the genus Dendroctonus. Mountain

pine beetle (D. ponderosae Hopkins) is the most

important disturbance agent of pines in the western

United States, and is responsible for the largest recorded

bark beetle epidemic, which continues now with major

outbreaks ongoing from Colorado to British Columbia

(see Case Study 1. Mountain pine beetle . . . , and Fig. 6).

Southern pine beetle (D. frontalis Zimmermann) is the

analogue in the highly productive pine forests of the

southeastern United States (see Case Study 2. Range

expansion of . . . , and Fig. 7). Spruce beetle (D. rufipennis

Kirby) has recently killed trees across 1 Mha of forest in

Alaska (Werner et al. 2006), with broad consequences

for forest structure and function (see Case Study 3.

Spruce beetle . . . , and Fig. 8; and see also the Special

issue of Forest Ecology and Management 227(3), 2006).

In the early 2000s, severe drought coupled with bark

beetle outbreaks (primarily Ips spp.) killed trees of

several conifer species in the Southwest (Negron et al.

2009, Ganey and Vojta 2011) across 1.2 Mha (Breshears

et al. 2005). Damage from bark beetles was prominent in

arguments for the Healthy Forests Restoration Act of

2003 (available online),4 contributed to a North Amer-

ican Free Trade Agreement (NAFTA) softwood lumber

dispute between the United States and Canada (Krauss

2005), and is a recognizable source of important changes

4 www.gpo.gov/fdsys/pkg/BILLS-108hr1904enr/pdf/
BILLS-108hr1904enr.pdf
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in carbon flux (see Impacts of insect and disease

outbreaks on landscapes and ecosystems).

All of these bark beetles are native to North America,

have population dynamics that are innately irruptive

(from endogenous positive feedbacks), and have been

exerting strong effects on American forests for millennia

(Brunelle et al. 2008). However, it is now clear that the

large extent and expanding distribution of recent

outbreaks have been permitted or exacerbated by

increasing temperatures during the last decades (Fig. 4;

Logan and Powell 2001, Breshears et al. 2005, Berg et al.

2006, Raffa et al. 2008, Sherriff et al. 2011). Mountain

and southern pine beetles are attacking hosts farther

north and at higher elevations than historic norms

(Safranyik and Carroll 2006, Tran et al. 2007, Logan et

al. 2010). Greater impacts on forest ecosystems should

be anticipated from these range expansions into areas

with novel and naı̈ve hosts (Cudmore et al. 2010).

Dendroctonus mexicanus Hopkins, previously known

only from Mexico, has been recently discovered in the

southwestern United States (Moser et al. 2005). This is

only one of several species of aggressive Mexican bark

beetles that may expand into U.S. forests with continued

warming trends (Bentz et al. 2010). We can anticipate

that climate change will continue to reshape the patterns

of bark beetle outbreaks in American forests, with

outbreak tendencies increasing for some species in some

regions and decreasing in others (Hicke et al. 2006,

Bentz et al. 2010, Littell et al. 2010, Evangelista et al.

2011). Conversely, the unprecedented absence of south-

ern pine beetle activity since the late 1990s in Louisiana

and east Texas may be related to climatic warming

(Friedenberg et al. 2008).

Defoliating insects

Five groups of defoliating insects comprise another

notable class of biotic disturbances in American forests

(Table 2). Current outbreaks of western spruce bud-

worm (Choristoneura occidentalis Freeman) have al-

ready involved 1–2 Mha and are continuing (USDA

Forest Service Aerial Detection Survey data; USDA

Forest Service 2010). Eastern boreal forests have been

similarly affected by many cycles of eastern spruce

budworm (C. fumiferana [Clemens]) outbreaks (Candau

and Fleming 2005). Other important defoliators include

tussock moths, tent caterpillars, gypsy moths, and jack

pine budworm (Table 2). Many of the most important

defoliating insects are indigenous to American forests

(gypsy moth being a notable exception) and have

cyclical outbreak dynamics involving predators, para-

sitoids, and pathogens (Dwyer et al. 2004), but climatic

effects on these predator–prey interactions remain

largely unstudied (Fig. 4; Klapwijk et al. 2012). In

general, it is less clear than with the bark beetles how

climatic patterns influence the frequency, extent, and

geographic distribution of defoliators in American

forests. Our best examples come from studies of spruce

budworm that indicate that historical outbreaks com-

monly followed a period of warm, dry summers every 30

to 40 years depending on stand maturity (Fig. 4;

Greenbank 1963, Swetnam and Lynch 1993, Campbell

et al. 2006). Predictions suggest that defoliation by the

eastern spruce budworm, C. fumiferana, will expand

north and develop different spatiotemporal patterns

across forests in Ontario (Candau and Fleming 2011).

Climatic effects are likely on overwinter survival (Ives

1973, Williams and Liebhold 1995a, but see Reynolds et

al. 2007), drought stress of host trees (Williams and

Liebhold 1995b, Ryerson et al. 2003, Campbell et al.

2006), and phenological synchronization of larval

emergence and bud break (Thomson et al. 1984,

Thomson and Benton 2007). Considerable uncertainty

remains about future responses of defoliators to climate

change (Dukes et al. 2009, Rodenhouse et al. 2009).

Plant diseases

We identified 22 taxa of plant diseases that are

presently notable agents of disturbance in North

American forests and candidates for consequential

responses to climate change (Table 3). This list includes

one case of disease-related decline (sudden aspen

decline) where climatic variation and a complex of

biotic agents (insects and/or microbes) have been

associated with patterns of tree mortality (Edmonds et

al. 2000, Marchetti et al. 2011, Anderegg et al. 2012). We

excluded declines where the tree mortality was not

evidently from biotic agents.

Climatic effects on diseases have been less studied

than forest insects, but it can be expected that the

severity of at least some of these diseases will be either

directly affected by climatic influences on sporulation

and infection and/or indirectly by changing tree

susceptibility to infection (Sturrock et al. 2011). For

diseases that involve associations with insects (e.g.,

beech bark disease, oak wilt, Dutch elm disease, black

stain root diseases, laurel wilt, thousand cankers disease,

and pitch canker), climatic effects on the animal

associates (e.g., range expansion and population growth

of insect vectors) may be important. Examples of

diseases where there is some understanding of climatic

effects include Swiss needle cast, which is caused by a

foliar pathogen (Phaeocryptopus gaeumannii) and reduc-

es growth rates of Douglas-fir in the Pacific Northwest.

Projections of winter warming and higher spring

precipitation suggest a likely increase in Swiss needle

cast distribution and severity (Stone et al. 2008). The

susceptibility of alder to a cankering disease is related to

the phenology of the plant, the pathogen, and water

availability (Grulke 2011, Rohrs-Richey et al. 2011).

Substantial future mortality of aspen forests that are

near the aridity limit for this species is expected to occur

with continuing climate change due to sudden aspen

decline (Rehfeldt et al. 2009). Outbreaks of some

virulent invasive pathogens such as sudden oak death

caused by Phytophthora ramorum are sensitive to climate

November 2013 445CLIMATE CHANGE AND FOREST DISTURBANCE

R
E
V
IE
W
S



TABLE 2. Insects that are notable agents of biological disturbance in North American forests and therefore candidates for
consequential changes to disturbance regimes as a result of climate change.

Cases Herbivore Hosts

References

General references Studies related to climate�

Defoliation by
gypsy moths and
tussock moths

Lymantria dispar,�
Orgyia spp.

Quercus spp., many
other broad-
leaved trees and
conifers

Leuschner et al. (1996), Mason
(1996), Jones et al. (1998),
Bjørnstad et al. (2010)

Miller et al. (1989; T),§ Williams
and Liebhold (1995; P,T),§
Lindroth et al. (1997, 2002;
CO2), Hale et al. (2005; P),
Osier and Lindroth (2006;
CO2), Robinet et al. (2007;
T), Siegert et al. (2009; P,T)

Defoliation by
budworms

Acleris spp.,
Choristoneura
fumiferana, C.
occidentalis, C.
pinus

Abies spp., Pseudo-
tsuga spp., Picea
spp., Pinus spp.

McNamee (1979), Royama
(1984), Berryman (1986),
Campbell (1989), Fleming
and Volney (1995), Fleming
(1996), Fleming and Candau
(1998), Fleming et al.
(2000), Volney and Fleming
(2000, 2007)

Wellington et al. (1950; P,T),§
Greenbank (1956, 1963; T),§
Silver (1960; P,T),§ Pilon and
Blais (1961; P,T),§ Wilson
(1974; T), Blais (1981; T),§
Lucuik (1984; P,T),
Reichenbach and Stairs
(1984a, b; T), Thomson et al.
(1984; P,T),§ Swetnam and
Lynch (1993; P,T),§ Williams
and Liebhold (1995; P,T),§
Régnière and Duval (1998; T),
Weber et al. (1999; T),
Ryerson et al. (2003; P),§
Candau and Fleming (2005,
2011; P,T),§ Campbell et al.
(2006; P,T),§ Thomson and
Benton (2007; T),§ Gray
(2008; P,T),§ Rauchfuss et al.
(2009; P,T)§

Defoliation by
gracillariid leaf
miners

Micrurapteryx
salicifoliella,
Phyllocnistis
populiella

Populus tremu-
loides. Salix spp.

Condrashoff (1964), Furniss et
al. (2001), Wagner et al.
(2008), Morton and Pereya
(2011)

Wagner et al. (2012; T)

Defoliation by
loopers

Enypia griseata,
Lambdina,
Nepytia spp.

Abies spp.,
Pseudotsuga spp.,
Picea spp., Pinus
spp., Thuja spp.

Munroe (1963), Edwards
(1964), Rindge (1967), Klein
and Minnoch (1971), Otvos
et al. (1979), Stevens et al.
(1983), MacLean and Ebert
(1999), Butt et al. (2010),
Iqbal et al. (2011)

Rochefort et al. (2011; T),
Delisle et al. (2012; T)

Defoliation by tent
caterpillars

Malacosoma spp. Prunus spp.,
Populus spp.,
Betula spp.,
Nyssa spp., other
broadleaved trees

Rejmánek et al. (1987),
Roland (1993, 2005), Myers
(2000), Volney and Fleming
(2000), Charbonneau et al.
(2012)

Ives (1973; T),§ Wilson (1974;
T), Lindroth et al. (1993;
CO2), Daniel and Myers
(1995; T),§ Roland et al.
(1998; T),§ Frid and Myers
(2002; T), Holton et al. (2003;
CO2), McClure et al. (2011;
T), Fitzgerald et al. (2012; T)

Infestations by
Asian
longhorned
beetle

Anoplophora
glabripennis�

Acer spp, Ulmus
spp., Populus
spp.

Cavey et al. (1998), Dodds
and Orwig (2011)

Peterson and Scachetti-Pereira
(2004; T), Keena (2006; T),
Keena and Moore (2010; T)

Infestations by
bronze birch,
gold spotted oak,
and emerald ash
borers

Agrilus anxius, A.
auroguttatus, and
A. planipennis�

Betula spp.,
Quercus spp.,
and Fraxinus
spp., respectively

Balch and Prebble (1940),
Cappaert et al. (2005),
Kovacs et al. (2010, 2011b),
Coleman and Seybold
(2011), Coleman et al.
(2011), Nielsen et al. (2011),
Flower et al. (2012)

Akers and Nielsen (1984; T),§
Jones et al. (1993; P,T),
Crosthwaite et al. (2011; T),
Sobek et al. (2011; T), Sobek-
Swant et al. 2011; T)

Infestations by
Douglas-fir
beetle

Dendroctonus
pseudotsugae

Pseudotsuga
menziesii

Hadley and Veblen (1993),
Paulson (1995), Ross and
Solheim (1997), Negron
(1998), Negron et al. (2001),
Dodds et al. (2006)

Ryan (1959; T), Powers et al.
(1999; P)§
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TABLE 2. Continued.

Cases Herbivore Hosts

References

General references Studies related to climate�

Infestations by
mountain pine
beetle

Dendroctonus
ponderosae

Pinus spp. Wilson et al. (1998), Safranyik
and Carroll (2006), Kurz et
al. (2008), Logan and
Powell (2009), Cudmore et
al. (2010)

Thomson and Shrimpton (1984;
P,T),§ Safranyik and Linton
(1998; T), Bentz et al. (1991;
T), Logan and Bentz (1999;
T), Powell et al. (2000; T),
Williams and Liebhold (2002;
P, T),§ Stahl et al. (2006; T),
Campbell et al. (2007; P,T),
Régnière and Bentz (2007;
T),§ Aukema et al. (2008; T),§
Raffa et al. (2008; P,T),§
Fauria and Johnson (2009;
P,T),§ Powell and Bentz
(2009; T),§ Bentz et al. (2010;
P,T), Evangelista et al. (2011;
T), Jewett et al. (2011; P,T),
Sambaraju et al. (2011; T),§
Lester and Irwin (2012; T),
Mitton and Ferrenberg (2012;
T), Chapman et al. (2012;
P,T),§ Preisler et al. (2012;
P,T)§

Infestations by pine
engraver beetles

Ips spp. Pinus spp. Schenk and Benjamin (1969),
Klepzig et al. (1995), Raffa
et al. (1998)

Lombardero et al. (2000; T),
Breshears et al. (2005; P,T),§
Gaylord et al. (2008; T),
Raffa et al. (2008; T),§
Evangelista et al. (2011; T)

Infestations by
southern pine
beetle

Dendroctonus
frontalis

Pinus spp., chiefly
southern pine

Reeve et al. (1995), McNulty
et al. (1997), Klepzig et al.
(2004), Økland et al. (2005)

Turchin et al. (1991; P,T),§
Ungerer et al. (1999; T),
Lombardero et al. (2000; T),
Williams and Liebhold (2002;
P, T),§ Hofstetter et al. (2007;
T), Tran et al. (2007; T),§
Friedenberg et al. (2007, 2008;
T),§ Gaylord et al. (2008; T),
Waring et al. (2009; T),§
Duehl et al. (2011; P,T),§
Evans et al. (2011; T)

Infestations by
spruce aphid

Elatobium
abietinum�

Picea spp. Parry (1969), Day (1984),
Lynch (2004)

Powell (1974; T), Powell and
Parry (1976; T),§ Day et al.
(2010; T)§

Infestations by
spruce beetle

Dendroctonus
rufipennis

Picea spp. Økland et al. (2005), Allen et
al. (2006), DeRose and
Long (2007)

Dyer (1969; T), Hansen et al.
(2001; T), Berg et al. (2006;
T),§ Hebertson and Jenkins
(2008; P,T),§ Raffa et al.
(2008; P),§ Bentz et al. (2010;
T), Hansen et al. (2011; T),
Sheriff et al. (2011; P,T),§
DeRose and Long (2012; T)§

Infestations by
western pine
beetle

Dendroctonus
brevicomis

Pinus spp., chiefly
P. ponderosa

Liebhold et al. (1986) Miller (1931; T), Keen and
Furniss (1937; T), Gaylord et
al. (2008; T), Evangelista et
al. (2011; T)

Infestations by
white pine weevil

Pissodes strobi Pinus spp., Picea
spp.

Bellocq and Smith (1995),
Lavallee et al. (1996),
Woods et al. (2010), Ostry
et al. (2010)

Sullivan (1961; T)

Infestations by
woolly adelgids

Adelges piceae,�
A. tsugae�

Abies fraseri, A.
balsamea, Tsuga
spp.

McClure (1989, 1991),
Rabenold et al. (1998),
Smith and Nicholas (2000),
Mitchell and Buffam (2001)

Amman (1968; T), Parker et al.
(1998, 1999; T), Butin et al.
(2005; T), Evans and Gregoire
(2007; T),§ Paradis et al.
(2008; T),§ Trotter and
Shields (2009; T),§ Fitzpatrick
et al. (2012; T)§

Note: The table is updated from Ayres and Lombardero (2000).
� Letters with references denote studies considering the effects of carbon dioxide (CO2), precipitation (P), or temperature (T).
� Nonindigenous to North America.
§ Studies evaluating the link between winter temperatures, seasonal temperatures, and/or moisture availability on the occurrence

and/or severity of biotic disturbances due to insects.
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TABLE 3. Pathogens, parasites, and declines that are notable agents of disturbance in North American forests and therefore
candidates for consequential changes to disturbance regimes as a result of climate change.

Cases
Pathogen/
parasite Hosts

References

General references Studies related to climate�

Alder canker Valsa melanodiscus Alnus spp. Trummer (2006), Worrall
(2009), Grulke (2011),
Stanosz et al. (2011)

Ruess et al. (2009; T),§ Rohrs-
Richey et al. (2011; P,T),
Worrall et al. (2010a; T)

Annosum root
rot

Heterobasidion
annosum

Most conifers.
Some broad-
leaved trees.

Stanosz and Guthmiller
(1995), Meadows and
Hodges (1996), Pearce
(1996)

Boland et al. (2004), Witzell et
al. (2011; T)

Anthracnose leaf
disease

Discula destructiva,
Glomerella
cingulata,
Colletotrichum
gloeosporioides,
others

Quercus spp.,
Fraxinus spp.,
Platanus spp.,
Cornus spp.

Britton (1993), Dudt and
Shure (1993), Stanosz
(1993), McEwan et al.
(2000), Holzmueller et al.
(2006)

Britton et al. (1997; P),
Chakraborty et al. (2000;
CO2)

Armillaria root
rot

Armillaria spp. Broadleaved trees
and conifers,
e.g., Acer spp.,
Quercus spp.,
Picea spp.

Mwangi et al. (1990), Entry et
al. (1991), Smith et al.
(1994), Rizzo et al. (1995),
Wargo (1996)

Clinton et al. (1993; P),§ Dukes
et al. (2009), Sturrock et al.
(2011)

Beech bark
disease

Neonectria spp. (and
associated scale
insects Cryptococcus
fagisuga� and
Xylococculus
betulae)

Fagus grandifolia Shigo (1972), Houston (1998),
Busby and Cantham (2011),
Garnas et al. (2011a)

Dukes et al. (2009), Garnas et
al. (2011b; P,T),§ Kasson and
Livingston (2012; P,T)§

Butternut canker Sirococcus
clavigignenti-
juglandacearuma�

Juglans cinerea Harrison et al. (1998), Fleming
et al. (2000), Broders et al.
(2001, 2012), Clark et al.
(2008)

Chestnut blight Cryphonectria
parasitica�

Castanea dentata McKeen (1995), Taylor et al.
(1998)

Dothistroma
needle blight

Dothistroma septo-
sporum and D. pini

Many conifers,
Pinus spp.

Pfister et al. (2000), Bradshaw
(2004), Welsh et al. (2009)

Gadgil (1974, 1977; P,T),
Woods et al. (2005; P,T),§
Watt et al. (2009, 2011; P,T),
Sturrock et al. (2011), Dvorak
et al. (2012; P,T)

Dutch elm
disease

Ophiostoma novoulmi�
(and associated
bark beetles
Hylurgopinus
rufipes and Scolytus
multistriatus�)

Ulmus spp. Holmes (1980), Fleming et al.
(2000)

Sutherland et al. (1997; T),§
Boland et al. (2004)

Dwarf mistletoe Arceuthobium spp. Pinus spp., Tsuga
spp.

Bennetts et al. (1996), Synder
et al. (1996), Kipfmueller
and Baker (1998)

Brandt et al. (2004; T), Stanton
(2007; P,T), Cullings and
Hanely (2010), Barrett et al.
(2012; P,T)§

Fusiform rust Cronartium quercuum Pinus spp., chiefly
southern pine

Walkinshaw and Barnett
(1995), Doudrick et al.
(1996), Nelson et al. (1996)

Runion et al. (2010; CO2)

Laurel wilt Raffaelea lauricola�
(and associated
bark beetle
Xyleborus
glabratus�)

Lauraceae Fraedrich et al. (2008),
Harrington et al. (2011)

Koch and Smith (2008; T)

Oak wilt disease Ceratocystis
fagacearum

Quercus spp. Appel (1995), Nair (1996),
McDonald et al. (1998),
Juzwik et al. (2008, 2011),
Haight et al. (2011)

Houston and Kuntz (1960; T),
Lewis (1981, 1985; T), Tainter
(1986; T), Boland et al. (2004)

Phytophthora
root disease

Phytophthora
cinnamomi�

Quercus spp.,
Castanea spp.,
Abies spp.

Zentmyer (1980), Brasier
(1996), Robin et al. (2001),
Hardham (2005), Griffin et
al. (2009)

Zentmyer et al. (1979; T),
Benson (1982; T), Marçais et
al. (1996; T),§ Bergot et al.
(2004; T)

Pitch canker Gibberella circinata
(anamorph
Fusarium
circinatum)

Pinus spp. Gordon et al. (1996, 1998),
Storer et al. (1997)

Inman (2005; T), Inman et al.
(2008; T), Ganley et al. (2009;
P,T), Runion et al. (2010;
CO2), Watt et al. (2011; P,T)
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(Sturrock et al. 2011), while others such as beech bark

disease seem not to be (Garnas et al. 2011b).

Nonnative insects and pathogens

On a global scale, biological invasions by nonindige-

nous species may be at least as important as climate

change as threats to the sustainability of forest ecosys-

tems and the goods and services that they provide

(Seppälä et al. 2009). This pattern is evident in the United

States, where invasive insects and pathogens are becom-

ing an increasingly important component of forest

disturbance (see Tables 2 and 3). The United States

spends billions of dollars annually to control and mitigate

the impacts of invasive forest insects and pathogens (Dale

et al. 2001, USDA Forest Service 2010). Of 27 taxa of

insects and 22 disease agents highlighted in Tables 2 and

3, six and nine, respectively, are nonindigenous to North

America. Gypsy moths, woolly adelgids, beech bark

disease, chestnut blight, and Dutch elm disease are

prominent among the long-established invasive species

that have had broad and sometimes permanent effects on

American forests (Ellison et al. 2005, Lovett et al. 2006).

This list has grown in the last decade with the addition of

emerald ash borer, sudden oak death, Dothistroma

needle blight, laurel wilt, and Scleroderris canker (Tables

2 and 3). Climate warming, shifts in precipitation, and

other alterations associated with climate change can alter

forest vulnerability to at least some of these disturbance

agents (Paradis et al. 2008, Sturrock et al. 2011). For

example, the geographic range and incidence of Dothis-

troma needle blight, which reduces growth of many

conifers by causing premature needle defoliation, may

TABLE 3. Continued.

Cases
Pathogen/
parasite Hosts

References

General references Studies related to climate�

Procera, black
stain, and
other Lepto-
graphium root
diseases

Leptographium spp. Many conifers, e.g.,
Pinus spp

Harrington and Cobb (1983),
Klepzig et al. (1996), Jacobi
et al. (2008)

Scleroderris
canker

Gremmeniella
abietina� (¼
Sclerroderris
lagerbergii and
Ascocalyx
abietina)(anamorph
Brunchorstia pinea)

Conifers Hamelin et al. (1993),
Laflamme (2005)

Donaubauer (1972), Marosy et
al. (1989; T), Venier and
Hopkin (1998; P,T),§ Coakley
et al. (1999), Boland et al.
(2004)

Sudden aspen
decline

unknown Populus tremuloides Hogg and Schwarz (1999),
Rehfeldt et al. (2009),
Huang and Anderegg (2012)

Hogg et al. (2002, 2005),§ Hogg
(2008; P,T),§ Worrall et al.
(2008, 2010b; P,T),§
Michaelian et al. (2011; P),§
Hanna and Kulakowski
(2012; P)§

Sudden oak
death

Phytophthora
ramorum�

Quercus spp.,
Lithocarpus spp.

Monahan and Koenig (2006),
Dodd et al. (2008), Vaclavik
et al. (2010), Kovacs et al.
(2011a, c), Spaulding and
Rieske (2011)

Venette and Cohen (2006; P,T),
Cushman and Meentemeyer
(2008; P,T),§ Davis et al.
(2010; P,T)

Swiss needle cast Phaeocryptopus
gaeumannii

Pseudotsuga
menziesii

Hood (1982), Hansen et al.
(2000), Kimberley et al.
(2011), Shaw et al. (2011)

Rosso and Hansen (2003; P,T),§
Manter et al. (2005; P,T),§
Stone et al. (2007, 2008;
P,T),§ Watt et al. (2010;
P,T),§ Zhao et al. (2011; P,T)§

Thousand
cankers
disease

Geosmithia morbida
(and associated
bark beetle
Pityophthorous
juglandis)

Juglans spp. Cranshaw (2011), Grant et al.
(2011), Hadziabdic et al.
(2011), Kolarik et al. (2011),
Seybold et al. (2012)

White pine
blister rust

Cronartium ribicola� Five-needle pines,
e.g., Pinus
strobus, P.
albicaulis

Hunt and Meagher (1989),
Keane et al. (1990), Kinloch
(2003), Six and Adams
(2007), Loo (2009), Field et
al. (2012)

Van Arsdel (1972; P,T),§
Campbell and Antos (2000;
P,T),§ White et al. (2002;
P,T),§ Sturrock et al. (2011),
Millar et al. (2012; P,T),§
Dunlap (2012; P,T)§

Note: The table is updated from Ayres and Lombardero (2000).
� Letters with references denote studies considering the effects of carbon dioxide (CO2), precipitation (P), or temperature (T).
� Nonindigenous to North America.
§ Studies evaluating the link between winter temperatures, seasonal temperatures, and/or moisture availability on the occurrence

and/or severity of biotic disturbances due to pathogens, parasites, or declines.
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shift with changing precipitation patterns (Woods et al.

2010).

The underlying cause of biological invasions is

propagule pressure from global transport, not climate

change. However, climate change is strongly connected

to management of risks from continuing invasions.

Increasing temperatures are generally expanding the

geographic zones where potential invasive species could

survive and reproduce if they arrive, for example, at

ports of entry on the Eastern Seaboard of North

America and in the Great Lakes Waterway. The specter

of global, climate-driven increases in invasion risks has

prompted discussion of consequential changes in inter-

national trade restrictions to manage associated phyto-

sanitation risks (World Trade Organization, Geneva,

Switzerland; information available online).5

Emerging forest insects and pathogens

Outbreaks of lesser known forest insects have recently

occurred in U.S. forests (Table 2). Aspen leaf miner,

Phyllocnistis populiella Chambers, which reduces longev-

ity of aspen leaves, has damaged 2.5 Mha of trembling

aspen in Alaska since 1996 (Wagner et al. 2008). In two

major river drainages in Alaska, hundreds of thousands

of acres of willows (Salix) were damaged during two

outbreaks of the leafblotch miner (Micrurapteryx salici-

foliella [Chambers]) in the 1990s (Furniss et al. 2001).

Further, defoliation of thousands of acres of spruce–fir

forest by Janet’s looper (Nepytia janetae Rindge) in the

White and Pinaleño mountain ranges in the southwestern

United States appeared to weaken trees and increase their

vulnerability to attack by opportunistic bark beetles (A.

Lynch, personal communication). These are examples of

native insects that were not previously known to display

FIG. 3. (A) Frequency of studies evaluating the role of climate on forest disturbance from 1950 to 2012 (grouped by insect
genera within feeding guild). (B) Frequency of studies evaluating the role of climate on forest disturbance by pathogens and declines
from 1970 to 2012. Abbreviations are: BBD, beech bark disease; SOD, sudden oak death; and WPBR, white pine blister rust.

5 www.standardsfacility.org/en/TAClimateChange.htm
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FIG. 4. (A) Frequency of studies evaluating the role of climate on forest disturbance among insect feeding guilds, and (B)
frequency of taxa from these studies whose demography and population dynamics are demonstrably sensitive to climate.

FIG. 5. (A) Frequency of studies evaluating the role of climate on forest disturbance by pathogens and declines, and (B)
frequency of taxa from these studies whose demography and population dynamics are demonstrably sensitive to climate.
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irruptive behavior or cause notable forest disturbances.

Limited capacity to anticipate disturbances from previ-

ously innocuous native forest insects or pathogens in the

face of climate change is a major concern to forest health

and monitoring.

CASE STUDIES ILLUSTRATING RECENT CHANGES

Here we provide case studies of three insects whose

recent outbreaks have been influenced by climate

change. These examples exhibit the strongest evidence

linking climate change to biotic disturbance.

Case Study 1. Mountain pine beetle (Dendroctonus

ponderosae) and five-needle pines

Five-needle pines, including whitebark (Pinus albicau-

lis Engelm.), limber (P. flexilis E. James), and bristle-

cone (P. aristata Engelm.) pines, play key roles in forest

ecosystems of the western United States. As a result of

FIG. 6. (A) Area affected (red) by mortality in stands of Pinus albicaulis (whitebark), P. flexilis (limber), and P. aristata
(bristlecone) pines in 1997–2010 as detected by aerial surveys conducted by the USDA Forest Service in the western United States.
Affected areas include a mix of dead and live trees. Gray shading indicates locations of forest. (B) Affected area of five-needle pines.
(C) The photo shows whitebark pine mortality in 2004 in Yellowstone National Park, USA. Credits: Polly Buotte, University of
Idaho, Moscow, Idaho, USA (map); and Jeffrey Hicke (photo).
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recent warming trends, these conifers are being subjected

to dramatic increases in mortality from mountain pine

beetles. Aerial surveys indicated that 1 Mha of forest

were affected by five-needle pine mortality during 1997–

2010 (Fig. 6). Higher temperatures influence winter

survival, development rate, and synchronization of

attacks by beetles (Bentz et al. 2010, Logan et al.

2010) and drier conditions can influence susceptibility of

host trees (Perkins and Swetnam 1996).

Similar epidemics occurred in the 1930s (Perkins and

Swetnam 1996), but several differences exist between the

pine mortality then and today. Most importantly, a

cooler period followed the 1930s outbreaks (Logan and

Powell 2001), but the current warming trend has

persisted for several decades and is projected to continue

(Hicke et al. 2006, Littell et al. 2010, Logan et al. 2010).

Given the climate trajectory, the strong ties between

temperature and beetle epidemics, and the extensive

mortality that has already occurred in some areas such

as the Greater Yellowstone Ecosystem, we can antici-

pate continuing losses of these forests and the ecosystem

services that they provide (Logan et al. 2010). For

example, the recent decision of the United States Court

of Appeals to re-list grizzly bears as an endangered

species in the Greater Yellowstone area cited the

expectation of increasing loss of food resources for

bears due to climatic release of mountain pine beetle into

whitebark pine forests (Greater Yellowstone Coalition vs.

Wyoming 2011 case 09-36100 [ninth circuit], U.S. Court

of Appeals).

Case Study 2. Range expansion of the southern pine beetle

(Dendroctonus frontalis) into the New Jersey Pinelands

The southern pine beetle (Fig. 7) is the most

destructive herbivore in the productive forests of the

southeastern United States (Pye et al. 2011). The

northern distribution limits of southern pine beetle are

constrained by the occurrence of lethal winter temper-

atures (Ungerer et al. 1999). The first National Climate

Assessment (Ayres and Lombardero 2000) projected an

expansion of the northern distribution limits by about

175 km given a scenario in which minimum annual

temperature increased by 38C. In fact, minimum winter

temperatures in the eastern United States have already

increased by more than that (.48C in the last 50 years in

New Jersey; Fig. 7), which has permitted an epidemic of

southern pine beetle in the New Jersey Pinelands about

200 km north of forests that have historically experi-

FIG. 7. The most cold-tolerant life stages of southern pine beetles (Dendroctonus frontalis Zimmermann [SPB]) die when winter
air temperatures drop below about �188C. A subcontinental pattern of warmer winters has eliminated a climatic barrier to
occupancy of the New Jersey Pinelands (USA) by the beetle and permitted an epidemic that is presently growing and expanding
northward. Yellow–red bars show southern pine beetle mortality (50–90%). Temperature data are from NOAA’s National Climate
Data Center (http://www.ncdc.noaa.gov).
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enced such epidemics (Tran et al. 2007). The New Jersey

Pinelands is a National Reserve and international

Biosphere Reserve. It is the largest forest on the Eastern

Seaboard, is within 100 miles of 50 million people, and

lies above the enormous Kirkwood-Cohansey aquifer

that serves many of those people. Given the natural

population dynamics of southern pine beetles and the

continued absence of lethal winter temperatures, the

Pinelands has entered a new phase where southern pine

beetles will be influencing all aspects of forest ecology

and management.

Case Study 3. Spruce beetle (Dendroctonus rufipennis)

and western spruce (Picea spp.)

Spruce beetle attacks several species of spruce

throughout the boreal forests of North America. Like

many bark beetles, spruce beetles are affected by climate

through multiple pathways (Schmid and Frye 1977,

Werner et al. 2006, Hebertson and Jenkins 2008). Spruce

beetles typically have a two-year life cycle, but may

complete their life cycles in one year during warmer

summers (Hansen et al. 2001, Hansen and Bentz 2003).

Spruce is at greater risk from spruce beetle when beetles

produce one generation per year (Hansen et al. 2011)

and when warmer and drier conditions increase tree

stress and susceptibility to spruce beetle attack (Berg et

al. 2006, Hebertson and Jenkins 2008, DeRose and Long

2012).

Dendrochronological studies (tree-ring analysis) and

historical reports indicate that many spruce beetle

outbreaks have occurred in Alaska over the past 250

years and are commonly associated with warm, dry

conditions (Berg et al. 2006, Sherriff et al. 2011). An

epidemic of spruce beetle outbreaks in southern Alaska

during the 1990s exceeded the extent of outbreaks

during the previous 70 years (Fig. 8; Berg et al. 2006,

Werner et al. 2006, Sherriff et al. 2011). Multiple years

of very warm summers during the 1990s permitted

higher beetle winter survival and production of uni-

voltine broods, and stressed host trees that were of

suitable age to support beetle outbreaks (Berg et al.

2006, Werner et al. 2006). The extensive tree mortality in

the 1990s may foreshadow future outbreaks given the

expectations of continued warming (Berg et al. 2006).

Indeed, a model describing the influence of future

climate change on life cycle duration of spruce beetles

predicts enhanced probability of outbreaks throughout

the range of spruce in North America (Bentz et al. 2010).

IMPACTS OF INSECT AND DISEASE OUTBREAKS

ON LANDSCAPES AND ECOSYSTEMS

Through their impacts on tree growth and mortality,

insects and diseases have broad effects on landscapes

and ecosystems, and some of these effects are changing

due to climate change. By virtue of their host

preferences, these disturbance agents typically alter tree

species composition within stands and can change forest

types (e.g., from conifers to hardwoods). In forests of

western North America, outbreaks of spruce and

mountain pine beetles kill their respective hosts and

shift stands toward subalpine fir (Veblen et al. 1991,

Collins et al. 2011). Given the strong link between recent

temperatures and epidemics by these beetles and the

climate trajectory (Berg et al. 2006, Logan et al. 2010),

we can anticipate similar impacts by these species to

occur into the future. Forests of the southeastern United

States infested by southern pine beetle have shifted

towards landscapes with regenerating stands of younger

trees (Ylioja et al. 2005, Tchakerian and Couslon 2011).

Beech bark disease has almost eliminated large-diameter

beech trees, dramatically shifting the age structure

towards saplings (Garnas et al. 2011a). Mature elms

(Ulmus spp.) have been similarly culled from American

(and European) landscapes by Dutch elm disease

(Holmes 1980). Nonnative chestnut blight and white

pine blister rust have effectively eliminated their host

tree species from large tracts of their historical ranges

(McKeen 1995, Kinloch 2003, Lovett et al. 2006).

Emerald ash borer, sudden oak death, butternut canker,

and laurel wilt appear to now be in the early stages of

greatly reducing their host populations (Tables 2 and 3).

Wildlife habitat and biodiversity are altered by forest

insects and diseases, especially those that kill trees

(Chan-McLeod 2006). Altered food supply, such as

increases in insects and/or reductions in foliage, can

affect multiple trophic levels (Chan-McLeod 2006,

Drever et al. 2009). Other populations can be affected

positively or negatively depending on the species, time

since disturbance, surviving vegetation, ecosystem type,

and spatial extent of outbreak (Chan-McLeod 2006). In

the short term, the increase in standing dead trees

(snags) creates favorable habitat for cavity nesting birds

and mammals (Mitchell and Preisler 1998, Logan and

Powell 2001, Bonnot et al. 2009, Edworthy et al. 2011).

In the longer term, because tree mortality shifts forests

toward younger stands of smaller trees, species that

depend on mature forests will tend to lose habitat; this is

made worse because mature forests have already been

disproportionately diminished by human land use

patterns (Ellison et al. 2005, Foley et al. 2005).

Elemental cycling and hydrologic processes are

influenced by maturity and community composition of

forest ecosystems and are therefore modified by biotic

disturbances (Lovett et al. 2006). Reduced tree growth

leads to reduced transpiration (Hadley et al. 2008) and

increased soil moisture (Clow et al. 2011). Following

outbreaks that cause widespread tree mortality, stream-

flow increases, the annual hydrograph advances, and

low flows increase (Bethlahmy 1974, Potts 1984). At the

same time, snow accumulation increases and snowmelt

is more rapid following needledrop because loss of

canopy will decrease interception of snow by the canopy

(leading to reduced sublimation and redistribution of

snow) and increase solar radiation to the forest floor

(Boon 2011, Pugh and Small 2011). Effects of biotic

disturbance on nutrient cycling in forests are possible
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anytime that species composition is changed because

processes that affect N storage (i.e., sequestration in

vegetative biomass or retention in soils) change during

forest succession (Ellison et al. 2005, Lovett et al. 2006,

Knoepp et al. 2011). Stand recovery and biogeochemical

cycling following bark beetle attack affect and are

affected by N availability (Edburg et al. 2011). Forests

afflicted with beech bark disease have experienced an

increase in litter decomposition, a decrease in soil C:N

ratio, and an increase in extractable nitrate in the soil

and nitrate in soil solution (Lovett et al. 2010). In

hemlock stands infested with woolly adelgids, litter N

increased and N mineralization accelerated even before

tree mortality (Stadler et al. 2006, Orwig et al. 2008).

Defoliation also tends to alter N pools and fluxes within

forests (Lovett et al. 2002). Changes in nutrient cycling,

and in particular N cycling, from biotic disturbances

that stress or kill canopy trees can influence trajectories

of forest dynamics with long-lasting effects on produc-

tivity, biodiversity, and elemental cycling (Lovett et al.

2004, Edburg et al. 2011). For example, bark beetles

have immediate effects on N uptake by trees (More-

house et al. 2008) and affect ecosystem-scale N cycling

during an outbreak. We can anticipate that outbreaks

will commonly produce persistent changes in the

feedbacks that connect biotic communities and elemen-

tal cycling (Edburg et al. 2012).

Growing evidence indicates that insect and disease

outbreaks in forests can increase carbon efflux from

forest ecosystems and therefore create a potential

positive feedback to climate change (Kurz et al. 2008,

Clark et al. 2010, Hicke et al. 2012a). Temperate forests

are important carbon sinks for human CO2 emissions

(Schimel et al. 2001), and recurrent forest disturbances

counteract climate change mitigation strategies (Hicke et

al. 2012a). The net carbon flux (i.e., whether a forest

stand is a carbon source or a sink) can be strongly

negative (C source) immediately following a severe

mortality event (Clark et al. 2010), and impacted regions

can remain a carbon source for decades (Kurz et al.

2008, Stinson et al. 2011). However, the magnitude and

duration of modifications to carbon fluxes vary greatly

and depend on the type of damage, number of trees

affected, response of the surviving vegetation, and time

since attack (Hicke et al. 2012a).

FIG. 8. Cumulative area of spruce (Picea spp.) affected (red) by the spruce beetle, Dendroctonus rufipennis, from 1989 to 2010
on Kenai Peninsula, Alaska (USA), documented during aerial surveys conducted by the USDA Forest Service. Green shading
indicates all spruce forest types (data source: USFS FIA Library, Arlington, Virginia, USA; http://fia.fs.fed.us/library/maps).
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Potential biogeophysical effects from stand-scale tree

mortality include (1) increased surface albedo that

governs absorption of solar radiation, (2) decreased

transpiration that influences water cycling, and (3)

decreased surface roughness that affects atmospheric

drag (Bonan 2008). In spite of their importance as

potential feedbacks to the atmospheric system (Rander-

son et al. 2006, Adams et al. 2010, Rotenberg and Yakir

2010), little is known about how these processes have

been altered by insect and disease outbreaks. O’Halloran

et al. (2012) estimated that the cooling associated with

increased albedo exceeded the warming associated with

increased atmospheric CO2 in the first 14 years following

beetle attack. Increases in surface albedo were especially

pronounced in winter when mortality-induced needle

loss exposed more of the highly reflective snow surface.

ECONOMIC IMPACTS

Forest damage from insects and pathogens has

substantial socioeconomic costs (Dale et al. 2001) and

analyses of the economic impacts of biotic disturbances

have tended to focus on invasive forest insects (Aukema

et al. 2011). The full valuation of impacts from biotic

disturbances remains a challenge due to nonmarket costs

and accounting for long-term losses (Holmes et al. 2010,

Aukema et al. 2011, Kovacs et al. 2011b, c). For

example, epidemics of the southern pine beetle frequent-

ly generate a surplus of timber and pulp that initially

reduces timber prices, but over the longer term causes

timber prices to increase because of a decrease in timber

supply (Pye et al. 2011).

Valuation of forest resources is further complicated

by the difficulty in quantifying nonmarket values such as

ecosystem services (e.g., water regulation and supply,

soil conservation, recreation, aesthetic values, biodiver-

sity, and C sequestration; Holmes et al. 2010). Regions

with dead and dying trees have reduced aesthetic value

(Sheppard and Picard 2006), and there can be enhanced

perceptions of wildfire risk and other infrastructure

damage, and increased conflict regarding community

responses and vulnerability (Flint 2006, Parkins and

MacKendrick 2007). Hedonic modeling of impacts to

property value offers a promising general tactic for

valuation of nonmarketable forest costs where declines

in housing prices in areas of outbreaks presumably

reflect the collective decline in perceived quality of life

(Holmes et al. 2010, Kovacs et al. 2010, Price et al.

2010).

Many estimates of direct costs of biotic disturbances

are available. Killed trees represent a loss of income

from timber production and can cause economic

impacts in outbreak areas and beyond (Abbott et al.

2009). Even a simple accounting of direct losses to

timber value from a single insect species can reveal costs

that exceed $1 billion (all dollars are shown in US$)

within 10 states over a period of 28 years (Pye et al.

2011). The costs to remove and replace trees across 25

states that were killed by the emerald ash borer exceed

$10 billion (Kovacs et al. 2010, 2011b). Aukema et al.

(2011) estimated that, in the United States, wood- and

phloem-boring insects induce costs of about $1.7 billion

annually in local government expenditures and ;$830

million in lost residential property values.

There are other socioeconomic costs that are generally

unaccounted for because we lack the data and/or

analytical tools to do so (Pye et al. 2011). These include

opportunity costs. What is the cost of underinvestment

in a forest region where climatic changes are reducing

impacts from forest insects and diseases? We also lack

capacity to estimate the cost of changing risks from

changing patterns of forest disturbance. What would be

the cost of insuring against the collapse of forest-based

taxes that support local schools in North Carolina,

disruptions of hydrology in the Kirkwood-Cohansey

aquifer of the New Jersey Pinelands, or the lost revenues

of resorts in Colorado with spoiled viewscapes?

INTERACTIONS WITH OTHER DISTURBANCE AGENTS

Fire and biotic disturbances interact in several ways.

Fires can reduce stand susceptibility to insect attack

(e.g., Shore et al. 2000) or increase populations of insects

and pathogens by increasing a food resource (Parker et

al. 2006). Insect-killed trees influence fuels and therefore

fire behavior, which depends on the number of attacked

trees within a stand and time since outbreak (Ayres and

Lombardero 2000, Jenkins et al. 2008, Simard et al.

2011, Hicke et al. 2012b). It has been assumed that forest

fires generally promote bark beetle outbreaks and vice

versa (e.g., Holsten et al. 1995, Ayres and Lombardero

2000, Edmonds et al. 2000, Jenkins et al. 2008).

However, new data indicate that (1) beetle outbreaks

may not increase wildfire risks (Kulakowski and Jarvis

2011, Simard et al. 2011), (2) fire-induced increases in

tree defenses may mitigate future bark beetle risks

(Lombardero and Ayres 2011), and (3) fire-beetle

interactions are frequently contingent on seasonal

timing (Perrakis and Agee 2006, Vega et al. 2011).

Soil water deficits (droughts), which arise from

reduced precipitation and/or increased temperatures,

are becoming more common in some regions with

climate change (Adams et al. 2009, Seppälä et al. 2009).

Severe droughts can cause significant plant mortality by

themselves (McDowell et al. 2011, Michaelian et al.

2011, Peng et al. 2011), but frequently act in concert

with biotic agents. In the western Unites States and the

Italian Alps, extreme drought stress appears to increase

forest susceptibility to bark beetle epidemics and

diseases (Raffa et al. 2008, Bentz et al. 2010, Williams

et al. 2010, Sturrock et al. 2011, Marini et al. 2012).

Historically, it has been thought that water limitations

that reduce tree growth also reduce tree defenses, but

now theory and data suggest that the opposite is often

true (Herms and Mattson 1992, Reeve et al. 1995,

Lombardero et al. 2000, Hale et al. 2005, Gaylord et al.

2007). The hypothesis that drought stress tends to

increase constitutive plants defenses and decrease
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inducible plant defenses may permit predictions of

which herbivores and pathogens will be affected in

which direction by drought stress.

IMPLICATIONS FOR FOREST MANAGEMENT

There is diverse support for general causal linkages

between climate change and biotic forest disturbance in

North America that matter for ecological processes and

socioeconomics (Box 1). Geographic shifts in climate

and disturbance place forests at risk even under the

unrealistic scenario that there is no net increase in

disturbance frequencies averaged across the broader

region. Greater regional impacts are expected partly

because the rate of tree mortality can greatly exceed the

recruitment rate (Allen et al. 2010). Climate change

increases the likelihood that forest stands will be

exposed to a different and less suitable climate than

that under which the current stands matured (e.g., Piao

et al. 2008, Breshears et al. 2009), leading to more stands

that are susceptible to insects and diseases (Bentz et al.

2009, Sturrock et al. 2011). These changes tend to reduce

the extent of mature forests and can adversely affect

ecosystem services provided to society. There is a broad

need for increased capacity to predict future patterns of

biotic disturbances and integrate this knowledge with

forest ecosystem science and the socioeconomics of

human land use.

Changing climates also introduce practical problems

for forest management because they create geographic

mismatches between disturbance types and management

expertise. For example, suppression management of the

southern pine beetle epidemic in New Jersey requires

extrapolating knowledge that was developed in different

forest types and is further complicated because there is

an administrative boundary of the USDA Forest Service

that lies between the Northeast Region (Region 9) and

Southeast Region (Region 8). The Southeast Region

holds great institutional expertise in bark beetle man-

agement, whereas expertise in the Northeast Region lies

in managing different forest health risks. Efficient

coordination and technology transfer among regional

forest resource managers is a step toward minimizing

risks, shortening response times, and improving efficacy

of management responses to forest disturbance as they

continue to shift in the future.

From many perspectives, a key attribute of forested

landscapes is the regional composition of forest stands

of different maturity (Magnani et al. 2007, Kurz et al.

2008, Luyssaert et al. 2008, Thompson et al. 2009,

Hansen et al. 2010, Latta et al. 2010). Climate warming

and increases in CO2 are tending to increase forest

maturation rates in many regions of the United States

and the rest of the world (Anderson et al. 2006,

Boisvenue and Running 2006, Salzer et al. 2009,

McMahon et al. 2010, Wang et al. 2011). Conversely,

forest maturation rates are projected to decline in many

ecosystems that are already arid (e.g., southwestern

United States and intermountain regions; Boisvenue and

Running 2006, Chen et al. 2010). The relative frequency

of stands of different maturity reflects a dynamic

balance between tree maturation rates and stand

disturbance frequencies (Lines et al. 2010, Littell et al.

2010). Anticipating, mitigating, and adapting to con-

tinuing changes in biotic disturbance regimes calls for

improved capacity to model forest maturation amidst

insect and disease dynamics as a function of climate and

land use. The development and refinement of these

models is frequently data limited. There has been great

BOX 1. Summary of observed and anticipated effects of climate change on biotic forest disturbances

and key areas to improve prediction, management, and mitigation of those impacts.

Key concepts

1) Epidemics of forest insects and diseases exceed other sources of disturbance to North American forests.

2) Insect populations are highly responsive to climate change due to their physiological sensitivity to

temperature, high mobility, short generation times, and explosive reproductive potential. Pathogens

and declines are also strongly influenced by climate change due to their sensitivity to temperature and

moisture.

3) Previous predictions of expansions in biotic disturbances in forests as a result of climate change are

being upheld even more rapidly and dramatically than expected. This is particularly evident with pine

bark beetles.

4) Changes in biotic disturbance regimes have broad consequences for forest ecosystems and the services

they provide to society.

5) Climatic effects on forest insect and disease outbreaks may beget further changes in climate by

influencing the exchange of carbon, water, and energy between forests and the atmosphere.

6) Climate-induced changes in forest productivity and disturbance create opportunities as well as

vulnerabilities (e.g., increases in productivity in many areas, and probably decreases in some

disturbance risks in some areas).

7) There is a need to understand and predict the interactions among climate, forest productivity, forest

disturbance, and the socioeconomic relations between forests and people.
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progress since the first National Climate Assessment in

improving insect and disease monitoring and the

dissemination of monitoring data to forest managers,

scientists, and the public (e.g., see USDA Forest Service

information available online).6 However, we still lack the

technical ability to effectively monitor many of the

disturbance agents listed in Tables 2 and 3, especially in

forest types east of the Great Plains, where tree species

diversity is high and species-specific impacts are difficult

to detect by aerial detection or remote sensing.

Increases in forest productivity and/or decreases in

biotic disturbance create opportunities for increases in

the extent of forests and many of the services they

provide (e.g., timber and pulpwood production, water

regulation and supply, recreation, aesthetic values, and

C sequestration), whereas the opposite patterns promote

corresponding vulnerabilities. Public education, govern-

ment policy, economic analysis, and informed decision-

making on public land are among the tools for

promoting opportunities provided in the first case and

shielding against risks created in the second case (Glück

et al. 2009). Without the efficient development and

deployment of suitable new tactics for managing

emerging biotic disturbances, we can anticipate that

the extent of mature forests will decline even faster in

regions of increasing insect and disease outbreaks

because sensible land use decisions will disfavor future

investments in forests. Without the development and

transfer of suitable new knowledge, we should not

anticipate that there will be compensatory land use

responses in regions of decreasing biotic disturbance.

CONCLUSIONS

There are currently about 40 taxa of insects and

diseases that are major sources of forest disturbance in

North American forests. Some of these organisms are

already responding to recent climatic trends with

changes in their distribution and abundance that are

altering forest disturbance regimes at regional and

continental scales. We can anticipate continuing changes

in the nature, extent, and spatial patterning of forest

disturbances, with broad consequences for the ecology

and socioeconomics of American forests. There are now

process-based models that link climate to tree mortality

by biotic disturbances and relate these disturbances to

ecosystem properties. However, significant knowledge

gaps remain regarding the influence of climate on biotic

disturbance agents and the effects of forest disturbance

on ecosystems (Box 1). The direct effects of climate on

insect outbreaks are better understood compared to

diseases. Indirect effects of climate on insects and disease

(e.g., via changes in tree defenses or on interactions

between insects and pathogens and their natural

enemies) may be at least as important in determining

the emerging new patterns of forest disturbance, but we

generally lack mechanistic models that have been tested

against observations. As the frequency and geographic

distributions of outbreaks shift, communication among

regional forest resource managers will become increas-

ingly important as will the development of general

scientific theory to inform the management of situations

for which there are no historical analogues. Perhaps the

most valuable attainable goal in the short term is to

further improve the collection, dissemination, and

integration of data on biotic disturbance regimes and

their consequences for interactions among forests,

people, and climate.
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