GONSEQUENCES OF FASTER ALIGNMENT OF SEQUENCES

FASTER ALGORITHMS?

Some classic problems on sequences have $\tilde{O}(n)$ algorithms:
\checkmark Exact Pattern Matching
\checkmark Pattern Matching with don't cares
\checkmark Longest Common Substring

While other classic problems don't have $O\left(n^{2-\varepsilon}\right)$ algorithms:
$>$ Local Alignment
> Edit Distance
Longest Common Subsequence (LCS) Isn't quadratic time efficient enough?

LOCAL ALIGNMENT

$O\left(n^{2}\right)$ is not that efficient...

Input: Two (DNA) sequences of length n.

AGCCCGTCTACGTCCAACCCGCGAAAGTATA

 AAACGTGACGAGAGAGAGAACCCATIACGAAOutput: The optimal alignment of two substrings.

$$
\begin{array}{llllllllll}
\text { C } & \text { C } & \text { G } & - & \text { T } & \text { C T A A Cl } & \text { C } \\
\text { C } & \text { C } & \text { C } & \text { A } & \text { T } & - & \text { T } & \text { A } & \text { C } & \text { G } \\
+1 & +1 & -0.5 & -1+1 & -1 & +1 & +1 & +1+1=+4.5
\end{array}
$$

	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}	-
\mathbf{A}	+1	-1.4	-1.8	-0.7	-1
\mathbf{C}	-1.4	+1	-0.5	-1	-1
\mathbf{G}	-1.8	-0.5	+1	-1.9	-1
\mathbf{T}	-0.7	-1	-1.9	+1	-1
-	-1	-1	-1	-1	$-\infty$

Solved daily on huge sequences: $n=3 \cdot 10^{9}$ for the human genome.
Algorithms:
Smith-Waterman dynamic programming $O\left(n^{2}\right)$. Compression tricks $O\left(\frac{n^{2}}{\log n}\right)$.

LOCAL ALIGNMENT

When $\mathrm{n}=3 \cdot 10^{9}, O\left(n^{2} / \log n\right)$ is too slow! In practice? Heuristics.

Most cited paper in the 90s:
BLAST: Basic Local Alignment Search Tool A heuristic algorithm for Local Alignment.

Can we find an $O(n \log n)$ algorithm?? (that would probably be efficient...)

How about $O\left(n^{1.5}\right)$ or even $O\left(n^{1.8}\right)$?

Today: Theoretical evidence that the answer is "no"!

HARDNESS FOR EASY PROBLEMS

How can we prove that a problem requires $\sim n^{2}$ time?

Prove NP-Hardness?

Unconditional Lower bounds ?

Lower bounds for classes of algorithms ?
$O\left(n^{4}\right)$ vs $O(n \log n) ?$

No superlinear bounds

Not a complete answer.

IDEA: REDUCTIONS

Theorem: Problem X is NP-hard
X is in P
Every NP-complete problem is in P

Conclusion: X is probably not in P ...

OUR APPROACH

A surprising algorithm for problem Y

Unexpected breakthroughs in different areas

Conclusion: Such algorithm is unlikely...
A refined version of NP-hardness...

MAIN RESULT

"Theorem":

If Local Alignment can be solved in $n^{1.99}$ time, then:
> 3-SUM can be solved in $n^{1.99}$ time!
Refuting the 3-SUM conjecture
$>$ CNF-SAT can be solved in 1.99^{n} time!
$>$ Max-4-Clique can be solved in $n^{3.99}$ time!

3SUM

Most famous example of this approach

Input: A list of n numbers

Output: Are there 3 numbers that sum to 0 ?

Trivial: $O\left(n^{3}\right)$, Simple: $O\left(n^{2}\right)$, Best: $O\left(n^{2} / \log ^{2} n\right)$

[STOC 10': Patrascu] The 3SUM Conjecture: 3SUM cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time for any $\varepsilon>0$.

[Gajentaan - Overmars 95°] and many others:
> A long list of 3SUM-hard problems.

3SUM-HARD PROBLEMS

The 3SUM Conjecture:

 3SUM cannot be solved in $O\left(n^{2-\varepsilon}\right)$ time for any $\varepsilon>0$.The 3SUM conjecture implies the following lower bounds:
[C.G. 95': Gajentaan - Oevrmars]
> 3-Points-On-A-Line requires $n^{2-o(1)}$ time.
[SODA 01': Barequet - Har Peled]
> Polygon Containment requires $n^{2-o(1)}$ time.
[STOC 10': Patrascu] and [STOC 09': Vassilevska - Williams]
$>$ Zero-Triangle requires $n^{3-o(1)}$ time.
[ICALP 13': A. -- Lewi]
$>$ Zero-4-Path requires $n^{3-o(1)}$ time.
[ICALP 14': Amir - Chan -- Lewenstein - Lewenstein]
$>$ A lower bound for Jumbled Pattern Matching.

Graph
Algorithms

Stringology

MAIN RESULT

"Theorem":

If Local Alignment can be solved in $n^{1.99}$ time, then:
> 3-SUM can be solved in $n^{1.99}$ time!
Refuting the 3-SUM conjecture
\rightarrow CNF-SAT can be solved in 1.99^{n} time!
Refuting the Strong Exponential Time Hypothesis (SETH)
$>$ Max-4-Clique can be solved in $n^{3.99}$ time!

THE STRONG EXPONENTIAL TIME HYPOTHESIS

Very useful for proving lower bounds...

CNF-SAT: Given a CNF formula on n variables and m clauses, is it satisfiable?

```
[01': Impagliazzo - Paturi -- Zane]
The Strong Exponential Time Hypothesis (SETH):
    "CNF-SAT cannot be solved in (2-\varepsilon\mp@subsup{)}{}{n}\mathrm{ poly (m) time."}
```

There are faster algorithms for k-SAT but they become $\sim 2^{n}$ as k grows.

SETH HARDNESS

The Strong Exponential Time Hypothesis (SETH):

"CNF-SAT cannot be solved in $2^{(1-\varepsilon) n}$ poly (m) time."

Theorem(s): The SETH implies the following lower bounds:

[SODA 10': Patrascu -- Williams]
$>$ k-Dominating-Set requires $n^{k-o(1)}$ time.
[STOC 13': Roditty - Vassilevska Williams]
$>\mathrm{A}\left(\frac{3}{2}-\varepsilon\right)$-approximation for the diameter requires $(\mathrm{mn})^{1-o(1)}$ time.
[FOCS 14': A. - Vassilevska Williams]
$>$ Dynamic Reachability requires $m^{1-o(1)}$ amortized update time.
[FOCS 14': Bringmann]
$>$ Computing the Frechet distance requires $n^{2-o(1)}$ time.

MAIN RESULT

"Theorem":

If Local Alignment can be solved in $n^{1.99}$ time, then:
>3-SUM can be solved in $n^{1.99}$ time!
Refuting the 3-SUM conjecture

Computational

 Geometry> CNF-SAT can be solved in 1.99^{n} time!
Refuting the Strong Exponential Time Hypothesis (SETH)
Satisfiability
Algorithms

Graph Algorithms

Bottom line: Local Alignment probably requires $\sim n^{2}$ to solve optimally, and we should settle for heuristics in practice...

PLAN

- Motivation
- Main Results
- Other Results
- Proof examples:
- CNF-SAT to LCS*
- Sketch: 3-SUM to Local Alignment
- Open problems

MORE RESULTS

The conjectures imply tight lower bounds for:
> Edit Distance with gap penalties
> Normalized LCS
> Multiple Local Alignment
> Partial Match

> LCS*

The simplest problem that requires $n^{2-o(1)}$ time?

LCS*

The Longest Common Substring with don't cares problem (LCS*) Input: Two string of length n, containing don't care characters *.

$$
\begin{aligned}
& \text { S }=\text { RESEARCH_P*P*RS_ARE_*OOL } \\
& \mathrm{T}=\mathrm{GO}^{*} \text { GLE_SE*R*H_S_U*EFUL }
\end{aligned}
$$

Output: The longest common substring.

Theorem: The SETH implies that LCS* on binary strings requires $n^{2-o(1)}$ time!

CNF-SAT TO LCS*

Theorem: The SETH implies that LCS* on binary strings requires $n^{2-o(1)}$ time!

Proof: $O\left(n^{2-\varepsilon}\right)$ alg for LCS* $=>2^{\left(1-\frac{\varepsilon}{2}\right) n}$ alg for CNF-SAT
Given a CNF formula with m clauses

$$
\varphi\left(x_{1}, \ldots, x_{n}\right)=\left(\neg x_{1} \vee x_{17} \vee \cdots \vee x_{10}\right) \wedge \cdots \wedge\left(x_{2} \vee x_{5} \vee x_{21}\right)
$$

Split the variables and enumerate over partial assignments

$$
\begin{array}{lr}
U_{1}=\left\{x_{1}, \ldots, x_{n / 2}\right\} & U_{2}=\left\{x_{n / 2+1}, \ldots, x_{n}\right\} \\
\alpha=\left(\begin{array}{c}
x_{1}=T \\
x_{2}=F \\
\vdots \\
x_{n / 2}=T
\end{array}\right) & \beta=\left(\begin{array}{c}
x_{n / 2+1}=F \\
x_{n / 2+2}=F \\
\vdots \\
x_{n}=T
\end{array}\right)
\end{array}
$$

There are $N=2^{n / 2}$ such α^{\prime} s and β^{\prime} s
Goal of alg: find a pair such that $(\alpha \cdot \beta)$ sat φ.

CNF-SAT TO LCS*

Theorem: The SETH implies that LCS* on binary strings requires $n^{2-o(1)}$ time!

Proof: $O\left(n^{2-\varepsilon}\right)$ alg for LCS* $=>2^{\left(1-\frac{\varepsilon}{2}\right) n}$ alg for CNF-SAT φ is satisfiable $\Leftrightarrow \exists \alpha, \beta: \forall C_{i}:(\alpha \cdot \beta)$ sat C_{i}

Idea: construct strings S, T of length $\sim\left(2^{n / 2} m\right)$ such that

$$
\operatorname{LCS}^{*}(S, T)=m \Leftrightarrow \exists \alpha, \beta: \forall C_{i}:(\alpha \cdot \beta) \text { sat } C_{i}
$$

Done: we get a $\left(2^{n / 2} m\right)^{2-\varepsilon}=2^{\left(1-\frac{\varepsilon}{2}\right) n}$ poly (m) alg for CNF-SAT

CNF-SAT TO LCS*

Theorem: The SETH implies that LCS* on binary strings requires $n^{2-o(1)}$ time!

Proof: Construct strings S, T of length $O\left(2^{n / 2} m\right)$ such that

$$
\operatorname{LCS}^{*}(S, T)=m \Leftrightarrow \exists \alpha, \beta: \forall C_{i}:(\alpha \cdot \beta) \text { sat } C_{i}
$$

Define strings of length m :

$$
\left.\begin{array}{cc}
T_{\alpha}=\left[\begin{array}{lcccc}
0 & * & * & 0 & *
\end{array} \cdots\right. & 0
\end{array}\right] \quad S_{\beta}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 & \cdots
\end{array}\right]
$$

Then: $\quad \mathrm{T}_{\alpha} \equiv S_{\beta} \Leftrightarrow \forall C_{i}:(\alpha \cdot \beta)$ sat C_{i}
Construct S,T in $O\left(2^{n / 2} m\right)$ time:

$$
\begin{aligned}
& T=\left[\cdots T_{\alpha 1} \cdots\right] \$\left[\cdots T_{\alpha 2} \cdots\right] \$ \cdots \$\left[\cdots T_{\alpha N} \cdots\right] \\
& S=\left[\cdots S_{\beta 1} \cdots\right] \#\left[\cdots S_{\beta 2} \cdots\right] \# \cdots \#\left[\cdots S_{\beta N} \cdots\right]
\end{aligned}
$$

3-SUM TO LOCAL ALIGNMENT

3-SUM on n numbers

-15	-6	33	$x \in\left[\pm n^{3}\right]$	-30	7	\cdots	107

$$
|\Sigma| \sim n^{3} ? \quad \text { [ESA 14': A. - Lewi - Williams] }
$$

$n^{o(1)}$ instances of 3 -Vector-SUM on n vectors

		$v_{x}=\left(x_{1}, \ldots, x_{d}\right)$	\cdots	

$$
\begin{aligned}
& |\Sigma| \sim \log n \quad x_{i} \in[\pm \log n] \text { and } d=0\left(\frac{\log n}{\log \log n}\right) \\
& \exists v_{a}, v_{b}, v_{c}: v_{a}+v_{b}+v_{c}=(0, \ldots, 0) \text { ? }
\end{aligned}
$$

泣 $\mid \sim n^{\varepsilon} \log n$

Define substrings of length d : $S_{x}=\left[\ldots,{ }^{\prime}\left(h(x), x_{i}\right)^{\prime}, \ldots\right]$
\sum contains pairs

$$
\left(h(x), x_{i}\right)
$$

3-SUM TO LOCAL ALIGNMENT

Define substrings of length d : $S_{x}=\left[\ldots,{ }^{\prime}\left(h(x), x_{i}\right)^{\prime}, \ldots\right]$

Σ contains pairs
$\left(h(x), x_{i}\right)$

Our scoring matrix enforces that:

$$
\left(h(x), x_{i}\right) \text { and }\left(h(y), y_{i}\right) \text { will "match" iff: }
$$

$$
x_{i}+y_{i}+z_{i}=0 \text { where } z \text { is determined by } h(x), h(y)
$$

CONCLUSION

The reductions explain the lack of progress and prove that new ideas are required for faster algorithms

0
"An opportunity to solve many famous open problems while working on your favorite problem!"

- Subquadratic Edit Distance?
- Subquadratic LCS?
- Subcubic Protein Folding?
- Subcubic Tree Edit Distance?

