
CONSEQUENCES OF FASTER
ALIGNMENT OF SEQUENCES

AMIR ABBOUD STANFORD

VIRGINIA VASSILEVSKA WILLIAMS STANFORD

OREN WEIMANN UNIVERSITY OF HAIFA

Thursday, July 10th, 2014

FASTER ALGORITHMS?

 Local Alignment

 Edit Distance

 Longest Common Subsequence (LCS)

While other classic problems don’t have 𝑂(𝑛2 − 𝜀) algorithms:

Some classic problems on sequences have 𝑂 (𝑛) algorithms:

 Exact Pattern Matching

 Pattern Matching with don’t cares

 Longest Common Substring

Isn’t quadratic time efficient enough?

LOCAL ALIGNMENT 𝑂 𝑛2 is not that efficient…

Input: Two (DNA) sequences of length 𝑛.

Solved daily on huge sequences: 𝑛 = 3 ∙ 109 for the human genome.

AGCCCGTCTACGTGCAACCGGGGAAAGTATA

AAACGTGACGAGAGAGAGAACCCATTACGAA

AGCCCGTCTACGTGCAACCGGGGAAAGTATA

AAACGTGACGAGAGAGAGAACCCATTACGAA

A C G T –

A +1 -1.4 -1.8 -0.7 -1

C -1.4 +1 -0.5 -1 -1

G -1.8 -0.5 +1 -1.9 -1

T -0.7 -1 -1.9 +1 -1

- -1 -1 -1 -1 -∞

C C G – T C T A C G

C C C A T – T A C G

+1 +1 -0.5 -1 +1 -1 +1 +1 +1 +1 = +4.5

Output: The optimal alignment of two substrings.

Algorithms:

Smith-Waterman dynamic programming 𝑂 𝑛2 .

Compression tricks 𝑂 𝑛2log 𝑛 .

LOCAL ALIGNMENT

When n = 3 ∙ 109, 𝑂(𝑛2/ log 𝑛) is too slow!

Most cited paper in the 90s:

BLAST: Basic Local Alignment Search Tool

A heuristic algorithm for Local Alignment.

Can we find an 𝑂 𝑛 log 𝑛 algorithm??

(that would probably be efficient…)

How about 𝑂(𝑛1.5) or even 𝑂(𝑛1.8)?

Today: Theoretical evidence that the answer is “no”!

In practice? Heuristics.

HARDNESS FOR EASY PROBLEMS

How can we prove that a problem requires ~𝑛2 time?

Prove NP-Hardness?

Unconditional Lower bounds ?

Lower bounds for classes of algorithms ?

𝑶(𝒏𝟒) vs 𝑶(𝒏 𝒍𝒐𝒈𝒏) ?

No superlinear bounds

Not a complete answer.

IDEA: REDUCTIONS

A surprising

algorithm for

problem Y

Unexpected breakthroughs

 in different areas

Conclusion: Such algorithm is unlikely…

A refined version of NP-hardness…

Theorem: Problem X is NP-hard

X is in P
Every NP-complete

problem is in P

Conclusion: X is probably not in P…

OUR APPROACH

“Theorem”:

If Local Alignment can be solved in 𝑛1.99 time, then:

MAIN RESULT

 CNF-SAT can be solved in 1.99𝑛 time!

 3-SUM can be solved in 𝑛1.99 time!
Refuting the 3-SUM conjecture

 Max-4-Clique can be solved in 𝑛3.99 time!

Input: A list of n numbers

3SUM

-15 -6 33 8 1 -21 4 -30 7 … 107

Output: Are there 3 numbers that sum to 0?

Trivial: 𝑂 𝑛3 , Simple: 𝑂 𝑛2 , Best: 𝑂(𝑛2/ log2 𝑛)

[STOC 10’: Patrascu] The 3SUM Conjecture:

3SUM cannot be solved in 𝑂(𝑛2−ε) time for any ε > 0.
[Gajentaan – Overmars 95’] and many others:

 A long list of 3SUM-hard problems.

Most famous example of this approach

The 3SUM conjecture implies the following lower bounds:

[ICALP 14’: Amir – Chan -- Lewenstein – Lewenstein]

 A lower bound for Jumbled Pattern Matching.

3SUM-HARD PROBLEMS
The 3SUM Conjecture:

3SUM cannot be solved in 𝑂(𝑛2−ε) time for any ε > 0.
[C.G. 95’: Gajentaan -- Oevrmars]

 3-Points-On-A-Line requires 𝑛2−𝑜(1) time.

[SODA 01’: Barequet – Har Peled]

 Polygon Containment requires 𝑛2−𝑜(1) time.

[STOC 10’: Patrascu] and [STOC 09’: Vassilevska – Williams]

 Zero-Triangle requires 𝑛3−𝑜(1) time.

[ICALP 13’: A. -- Lewi]

 Zero-4-Path requires 𝑛3−𝑜(1) time.

Computational

Geometry

Graph

Algorithms

Stringology

“Theorem”:

If Local Alignment can be solved in 𝑛1.99 time, then:

MAIN RESULT

 CNF-SAT can be solved in 1.99𝑛 time!

Refuting the Strong Exponential Time Hypothesis (SETH)

 3-SUM can be solved in 𝑛1.99 time!
Refuting the 3-SUM conjecture

 Max-4-Clique can be solved in 𝑛3.99 time!

THE STRONG EXPONENTIAL TIME
HYPOTHESIS

Very useful for proving lower bounds…

[01’: Impagliazzo – Paturi -- Zane]

The Strong Exponential Time Hypothesis (SETH):

“CNF-SAT cannot be solved in (2 − 𝜀)𝑛 𝑝𝑜𝑙𝑦(𝑚) time.”

There are faster algorithms for k-SAT

but they become ~2𝑛 as k grows.

CNF-SAT: Given a CNF formula on 𝑛 variables and 𝑚 clauses, is it

satisfiable?

Theorem(s): The SETH implies the following lower bounds:

SETH HARDNESS

[SODA 10’: Patrascu -- Williams]

 k-Dominating-Set requires 𝑛𝑘−𝑜(1) time.

 [STOC 13’: Roditty – Vassilevska Williams]

 A
32 − ε -approximation for the diameter requires (𝑚𝑛)1−𝑜(1) time.

[FOCS 14’: A. – Vassilevska Williams]

 Dynamic Reachability requires 𝑚1−𝑜(1) amortized update time.

The Strong Exponential Time Hypothesis (SETH):

“CNF-SAT cannot be solved in 2 1−𝜀 𝑛 𝑝𝑜𝑙𝑦(𝑚) time.”

[FOCS 14’: Bringmann]

 Computing the Frechet distance requires 𝑛2−𝑜(1) time.

“Theorem”:

If Local Alignment can be solved in 𝑛1.99 time, then:

MAIN RESULT

 CNF-SAT can be solved in 1.99𝑛 time!

Refuting the Strong Exponential Time Hypothesis (SETH)

 3-SUM can be solved in 𝑛1.99 time!
Refuting the 3-SUM conjecture

 Max-4-Clique can be solved in 𝑛3.99 time!
A longstanding open problem

Bottom line: Local Alignment probably requires ~𝑛2 to solve optimally,

 and we should settle for heuristics in practice…

Satisfiability

Algorithms

Computational

Geometry

Graph

Algorithms

PLAN

• Motivation

• Main Results

• Other Results

• Proof examples:

• CNF-SAT to LCS*

• Sketch: 3-SUM to Local Alignment

• Open problems

MORE RESULTS

Edit Distance with gap penalties

Normalized LCS

Multiple Local Alignment

Partial Match

The conjectures imply tight lower bounds for:

The simplest problem that requires 𝑛2−𝑜(1) time?

 LCS*

LCS*

Theorem: The SETH implies that LCS* on binary

strings requires 𝑛2−𝑜(1) time!

The Longest Common Substring with don’t cares problem (LCS*)

Input: Two string of length 𝑛, containing don’t care characters *.

S = RESEARCH_P*P*RS_ARE_*OOL

T = GO*GLE_SE*R*H_IS_U*EFUL

Output: The longest common substring.

CNF-SAT TO LCS*
Theorem: The SETH implies that LCS* on binary strings requires 𝑛2−𝑜(1) time!

Proof: 𝑂(𝑛2−𝜀) alg for LCS* => 2 1− 𝜀2 𝑛
 alg for CNF-SAT

Given a CNF formula with 𝑚 clauses

 𝜑 𝑥1, … , 𝑥𝑛 = ¬𝑥1 ∨ 𝑥17 ∨ ∙∙∙ ∨ 𝑥10 ∧ ∙∙∙ ∧ (𝑥2 ∨ 𝑥5 ∨ 𝑥21) 𝑪𝟏 𝑪𝒎 ∙ ∙ ∙
Split the variables and enumerate over partial assignments 𝑈1 = 𝑥1, … , 𝑥𝑛 2 𝑈2 = 𝑥𝑛 2 +1, … , 𝑥𝑛

𝛼 = 𝑥1 = 𝑇𝑥2 = 𝐹⋮𝑥𝑛/2 = 𝑇 𝛽 = 𝑥𝑛 2 +1 = 𝐹𝑥𝑛 2 +2 = 𝐹⋮𝑥𝑛 = 𝑇

There are 𝑁 = 2𝑛/2 such 𝛼’s and 𝛽’s

Goal of alg: find a pair such that (𝛼 ∙ 𝛽) sat 𝜑.

CNF-SAT TO LCS*
Theorem: The SETH implies that LCS* on binary strings requires 𝑛2−𝑜(1) time!

Proof: 𝑂(𝑛2−𝜀) alg for LCS* => 2 1− 𝜀2 𝑛
 alg for CNF-SAT 𝜑 is satisfiable ⟺ ∃𝛼, 𝛽 ∶ ∀𝐶𝑖 ∶ 𝛼 ∙ 𝛽 sat 𝐶𝑖

Idea: construct strings 𝑆, 𝑇 of length ~(2𝑛/2𝑚) such that

LCS* 𝑆, 𝑇 = 𝑚 ⟺ ∃𝛼, 𝛽 ∶ ∀𝐶𝑖 ∶ 𝛼 ∙ 𝛽 sat 𝐶𝑖
Done: we get a 2𝑛 2 𝑚 2−𝜀 = 2 1− 𝜀2 𝑛𝑝𝑜𝑙𝑦(𝑚) alg for CNF-SAT

𝑇 = ⋯ 𝑇𝛼1 ⋯ $ ⋯𝑇𝛼2 ⋯ $ ⋯ $ ⋯𝑇𝛼𝑁 ⋯ 𝑆 = ⋯ 𝑆𝛽1 ⋯ ⋕ ⋯𝑆𝛽2 ⋯ ⋕ ⋯ ⋕ ⋯𝑆𝛽𝑁 ⋯

CNF-SAT TO LCS*
Theorem: The SETH implies that LCS* on binary strings requires 𝑛2−𝑜(1) time!

Proof: Construct strings 𝑆, 𝑇 of length 𝑂(2𝑛/2𝑚) such that

LCS* 𝑆, 𝑇 = 𝑚 ⟺ ∃𝛼, 𝛽 ∶ ∀𝐶𝑖 ∶ 𝛼 ∙ 𝛽 sat 𝐶𝑖
𝑇𝛼 = 0 ∗ ∗ 0 ∗ ⋯ 0 𝑇𝛼[𝑖] = ∗ 𝛼 sat 𝐶𝑖0 otherwise

𝑆𝛽 = 0 0 1 0 1 ⋯ 0 𝑆𝛽[𝑖] = 0 𝛽 sat 𝐶𝑖1 otherwise

Then: Tα ≡ 𝑆𝛽 ⟺ ∀𝐶𝑖 ∶ 𝛼 ∙ 𝛽 sat 𝐶𝑖

Define strings of length 𝑚:

Construct S,T in 𝑂(2𝑛 2 𝑚) time:

∎

3-SUM TO LOCAL ALIGNMENT

-15 -6 33 𝒙 ∈ ± 𝒏𝟑 -30 7 … 107

3-SUM on 𝑛 numbers

𝒗𝒙 = (𝒙𝟏, … , 𝒙𝒅) …

𝑛𝑜(1) instances of 3-Vector-SUM on 𝑛 vectors

[ESA 14’: A. – Lewi – Williams]

𝑥𝑖 ∈ ± log 𝑛 and 𝑑 = 𝑂 log 𝑛log log 𝑛 ∃𝑣𝑎, 𝑣𝑏, 𝑣𝑐 : 𝑣𝑎 + 𝑣𝑏 + 𝑣𝑐 = 0,… , 0 ?

Hashing…

Define substrings of length 𝑑:

 𝑆𝑥 = [… , ′ ℎ 𝑥 , 𝑥𝑖 ′ , …] Σ contains pairs (ℎ 𝑥 , 𝑥𝑖)

Σ ~ 𝑛3?

Σ ~ log 𝑛

Σ ~𝑛𝜀 log 𝑛

3-SUM TO LOCAL ALIGNMENT

Define substrings of length 𝑑:

 𝑆𝑥 = [… , ′ ℎ 𝑥 , 𝑥𝑖 ′ , …] Σ contains pairs (ℎ 𝑥 , 𝑥𝑖)

(ℎ 𝑥 , 𝑥𝑖) and (ℎ 𝑦 , 𝑦𝑖) will “match” iff:
 𝑥𝑖 + 𝑦𝑖 + 𝑧𝑖 = 0 where 𝑧 is determined by ℎ 𝑥 , ℎ(𝑦)

Our scoring matrix enforces that:

CONCLUSION

• Subquadratic Edit Distance?

• Subquadratic LCS?

• Subcubic Protein Folding?

• Subcubic Tree Edit Distance?

Thank You!

Questions?

“An opportunity to solve many famous open problems

 while working on your favorite problem!”

The reductions explain the lack of progress

and prove that new ideas are required for faster algorithms

