
Consequences of population models for the
dynamics of food chains

B.W. Kooi *, M.P. Boer, S.A.L.M. Kooijman

Faculty of Biology, Free University, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands

Received 11 February 1998; received in revised form 21 July 1998

Abstract

A class of bioenergetic ecological models is studied for the dynamics of food chains

with a nutrient at the base. A constant in¯ux rate of the nutrient and a constant e�ux

rate for all trophic levels is assumed. Starting point is a simple model where prey is

converted into predator with a ®xed e�ciency. This model is extended by the intro-

duction of maintenance and energy reserves at all trophic levels, with two state variables

for each trophic level, biomass and reserve energy. Then the dynamics of each popu-

lation are described by two ordinary di�erential equations. For all models the bifur-

cation diagram for the bi-trophic food chain is simple. There are three important

regions; a region where the predator goes to extinction, a region where there is a stable

equilibrium and a region where a stable limit cycle exists. Bifurcation diagrams for tri-

trophic food chains are more complicated. Flip bifurcation curves mark regions where

complex dynamic behaviour (higher periodic limit cycles as well as chaotic attractors)

can occur. We show numerically that Shil'nikov homoclinic orbits to saddle-focus

equilibria exists. The codimension 1 continuations of these orbits form a `skeleton' for a

cascade of ¯ip and tangent bifurcations. The bifurcation analysis facilitates the study of

the consequences of the population model for the dynamic behaviour of a food chain.

Although the predicted transient dynamics of a food chain may depend sensitively on

the underlying model for the populations, the global picture of the bifurcation diagram

for the di�erent models is about the same. Ó 1998 Elsevier Science Inc. All rights

reserved.
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1. Introduction

A commonly used model for ecosystems is the Rosenzweig±MacArthur
model [1]. This model di�ers from the classical Lotka±Volterra model in that a
linear functional response is replaced by the Holling type II functional re-
sponse. The modelled ecosystem might consist of plants, herbivore and car-
nivores, for instance phytoplankton, zooplankton and ®sh, where carnivores
consume herbivores and herbivores consume plants. The dynamic behaviour of
the Rosenzweig±MacArthur model has been studied extensively in the litera-
ture. Rosenzweig and MacArthur gave a graphical representation of the
qualitative aspects of the dynamics of a general type of a bi-trophic [2] and a
tri-trophic food chain [3]. Gragnani and Rinaldi dealt with persistence and also
stability conditions for equilibria were discussed. The abundance of the top
predator in these food chains under various environmental conditions, espe-
cially enrichment of the nutrient, has been studied in [1,4]. In [5] a resource,
consumer and predator model, derived from a bioenergetic model but math-
ematically equivalent with the Rosenzweig±MacArthur model, was presented
and analysed. The parameters of this model were derived in [6] from allometric
and energetic relations. McCann and Yodzis also exploited zero isoclines or
null-surfaces for the study of the dynamics of this tri-trophic food chain. In
[5,7±10] bifurcation analysis is applied to the Rosenzweig±MacArthur model.
Various types of complex dynamics, including chaotic behaviour, were found.

The lowest level in the Rosenzweig±MacArthur model is self-reproducing
with logistic growth. This implies hidden assumptions about the nutrient
availability. In the bioenergetic food chain models discussed in the present
paper, non-reproducing nutrients at the base are modelled explicitly. These
models obey mass conservation laws and will be called mass-balance models.
These models can be formulated for various environmental conditions. In this
paper a continuous ¯ow culture with constant in¯ux of nutrients and constant
dilution rate for all trophic levels is assumed. These homogeneous environ-
mental conditions hold for wastewater treatments plants, but also for the
chemostat, a laboratory arrangement commonly employed in the study of the
growth kinetics of microbial cell populations. The chemostat experiments can
also be carried out in order to mimic the interactions going on in a lake or in a
marine environment [11].

The Monod model [12] is classical in the dynamics of populations consisting
of unicellular microorganisms which propagate by binary ®ssion. In that model
food is ingested at a rate given by the Holling type II functional response. A
®xed portion of the ingested food is used for growth.

In a variant of the Monod model, the Monod±Herbert or Marr±Pirt model
[13], ingested food is not only used for growth but also for maintenance. The
maintenance costs are proportional to the biomass of the population. In an
other variant of the Monod model, Droop [14,15] introduced the concept of
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cell nutrient quota in a model for phytoplankton growth. Ingested food is
converted into internal reserves, while growth depends on the amount of re-
serves. These reserves impose a kind of inertia on the response to changing
food conditions. In [15] the global stability of the Droop equations with a
single species in the chemostat has been investigated mathematically.

The Dynamic Energy Budget (DEBDEB) model proposed by Kooijman [16] also
takes both maintenance costs and energy reserves into account. In the former
respect the DEBDEB model is similar to the Marr±Pirt model and in the latter it
resembles the Droop model. Besides the biomass the density of the energy
reserves is also presented as a state variable. For species which propagate by
binary ®ssion a population dynamic model has been derived from the dynamics
of the individuals in [17]. For species with complex physiology or with a
number of life stages (egg, embryo, juvenile or adult) the connection between
the individual level and the population level is much more involved [18]. The
variables which describe the state of the population are weighted averages of
those of the individuals that make up the population. In those cases the
mathematical description of the dynamics of the population with a set of or-
dinary instead of partial di�erential equations may be rather crude. The same
applies, however, to all unstructured population models, including the logistic
growth model, the Lotka±Volterra model and the Rosenzweig±MacArthur
model.

Cunningham and Nisbet [19,20] studied the dynamic behaviour of a bi-
trophic microbial food chain consisting of substrate, bacterium and ciliate in a
chemostat. They used the Marr±Pirt model and showed that the introduction
of maintenance has a stabilizing e�ect, especially for low dilution rates. In [21]
and [22] the complex dynamics of a forced bi-trophic microbial food chain in a
chemostat with forcing in the form of a periodic in¯ux of substrate has been
discussed.

The periodically forced Rosenzweig±MacArthur model besides that of the
mass-balance model is studied in [11]. They concluded that all basic modes of
behaviour of the two best studied predator-prey models (the Rosenzweig±
MacArthur and the mass-balance model) can be explained by means of a single
bifurcation diagram in which quasi-periodicity, phase locking, periodic dou-
bling and chaotic dynamical behaviour are indicated.

We will analyse the consequences of four di�erent models for the population
level on the long-term dynamic behaviour of an autonomous food chain:
Monod, Marr±Pirt, Droop and DEBDEB. These models are formulated in Sec-
tion 2. The bifurcation diagrams with the dilution rate and concentration of
the substrate in the in¯ux as free parameters are presented and discussed in
Section 3.1. The results were obtained with di�erent general-purpose bifurca-
tion computer software packages, AUTOAUTO [23,24] and LOCBIFLOCBIF[25]. In Section 3.2
the consequences of the introduction of maintenance on the dynamic behav-
iour of the food chain for small dilution rates are studied. For the Droop
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model a subcritical ¯ip bifurcation occurs in a very small region of the bifur-
cation parameter space. This phenomenon is studied in Section 3.3.

A homoclinic Shil'nikov bifurcation in the biologically interesting region of
the parameter space for all models except the Monod model, is described in
Section 4. This type of global bifurcation is discussed for instance in [26±28].
The homoclinic bifurcations were calculated with the packages HOMOMCONTONT

[29], implemented in AUTOAUTO [24]. Other types of global bifurcations for the
Marr±Pirt model were already described in [30]. Global bifurcations form a
skeleton for the period doubling of which a cascade leads to chaotic dynamics.

2. Description of the models

This section presents the DEBDEB model and the Marr±Pirt model, whereas the
Droop model and the Monod model are obtained as special cases; see also
Table 1. Let x0(t) denote the density of the resource (nutrient, substrate).
Furthermore, let xi(t), i� 1, 2, 3 denote biomass densities of prey, predator and
top predator, respectively, and ei(t), i� 1, 2, 3 denote scaled reserve densities. A
scaled energy density is de®ned as the energy density divided by the maximum
energy density, which is assumed to be a species speci®c parameter. Thus the
subindex indicates the population level, where index i� 0 denotes the non-vi-
able resource level. When two population levels are involved in the de®nition of
a parameter, two sub-indices will be used. For instance, fiÿ1;i denotes the scaled
Holling type II functional response with saturation constant kiÿ1;i given by

fiÿ1;i � xiÿ1

kiÿ1;i � xiÿ1

; i � 1; 2; 3 �1�
and this models feeding of the i-population on the (iÿ 1)-population.

The DEBDEB model reads

dx0

dt
� �xr ÿ x0�Dÿ I0;1f0;1x1; �2a�

dxi

dt
� xi

miÿ1;iei ÿ migi

ei � gi
ÿ Dxi ÿ Ii;i�1fi;i�1xi�1; i � 1; 2; �2b�

Table 1

Classi®cation of the di�erent population models

Reserves No Yes

gi � 1; miÿ1;i � 1 while miÿ1;i=gi � liÿ1;i

Maintenance

No, mi� 0 Monod Droop

Yes Marr±Pirt DEB
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dx3

dt
� x3

m2;3e3 ÿ m3g3

e3 � g3

ÿ Dx3; �2c�
dei

dt
� miÿ1;i�fiÿ1;i ÿ ei�; i � 1; 2; 3: �2d�

The last term at the right-hand sides of Eq. (2a) and Eq. (2b) represents the
depletion rate due to predation proportional to the predator biomass density
xi. Here Iiÿ1;i is the maximum ingestion rate. This ingestion rate is attained
when fiÿ1;i ! 1 that is, when there is abundant food.

The ®rst terms at the right-hand sides of system (2a±2d) are growth terms
proportional to biomass density xi. Finally there are terms representing the
e�ux Dxi, i� 1, 2, 3 for all trophic levels. For the top predator this is the only
source of depletion. Eq. (2d) is a constitutive relationship which states that the
energy reserve density dynamics follows food dynamics via a ®rst order pro-
cess, where the constant of proportionality is the energy conductance rate miÿ1;i.
When there are no costs for maintenance, system (2a±2d), reduces to the
Droop model [14]. However, this model is now used for other organisms than
phytoplankton as well, for instance zooplankton with a complicated life cycle.
For a complete description of the model and the biological meaning of the
parameters the reader is referred to [16] as well as Table 2.

Without reserves the model is equivalent to the Marr±Pirt model [31]. This
model reads

Table 2

Parameters and state variables; t� time, m� biomass, v� volume of the reactor. The subindex

denotes the trophic level, i� 0 substrate, i� 1 bacteria, i� 2 ciliate and i� 3 carnivore. Some pa-

rameters, for instance the saturation constants kiÿ1;i, have double sub-indexes to emphasize that

these quantities depend on two levels

Parameter Dimension Units Interpretation

D tÿ1 hÿ1 Dilution rate

ei ± ± Scaled energy reserve density

fiÿ1;i ± ± Scaled functional response

gi ± ± Energy investment ratio, / costs for growth

Iiÿ1;i tÿ1 hÿ1 Maximum food uptake rate

kiÿ1;i m vÿ1 mg dmÿ3 Saturation constant

mi tÿ1 hÿ1 Maintenance rate coe�cient

t t h Time

T0 t h Period of the limit cycles

x0 m vÿ1 mg dmÿ3 Substrate density

xi m vÿ1 mg dmÿ3 Biomass density

xr m vÿ1 mg dmÿ3 Substrate concentration in reservoir

yiÿ1;i ± ± Maximum yield

liÿ1;i tÿ1 hÿ1 Maximum population growth rate

miÿ1;i tÿ1 hÿ1 Energy conductance, / assimilation rate
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dx0

dt
� �xr ÿ x0�Dÿ I0;1f0;1x1 ; �3a�

dx1

dt
� l0;1f0;1x1 ÿ D1x1 ÿ I1;2f1;2x2; �3b�

dx2

dt
� l1;2f1;2x2 ÿ D2x2 ÿ I2;3f2;3x3; �3c�

dx3

dt
� l2;3f2;3x3 ÿ D3x3; �3d�

where Di, is the depletion rate. In our case we will assume that depletion is due
to two e�ects, namely Di � D� mi, where D is the rate at which all trophic
levels are exported and mi the maintenance rate coe�cient and/or the natural
death or harvesting rate. The link with the DEBDEB model, system (2a±2d), is
obvious when we require gi !1 and miÿ1;i !1 while miÿ1;i=gi � liÿ1;i, where
liÿ1;i is the maximum growth rate at the ith trophic level, while fiÿ1;i�t� � ei�t�
for i � 1; 2; 3. The system (3a±3d) resembles the Rosenzweig±MacArthur
model often used to describe the dynamics of ecosystems.

When furthermore in system (3a±3d) mi � 0, i � 1; 2; 3 or D1 � D2 � D3

� D, the system becomes Monod's model [12]. In the Monod model there is no
maintenance nor natural death and a ®xed part of the ingested food (expressed
in mass or an equivalent amount of energy) is converted into biomass, at a
constant yield yiÿ1;i � liÿ1;i=Iiÿ1;i. As a consequence it is possible to decouple
the system (3a±3d) by introduction of the function

H�t� � y0;1y1;2y2;3�x0�t� ÿ xr� � y1;2y2;3x1�t� � y2;3x2�t� � x3�t�; t P 0: �4�
It is easy to show that

dH
dt
� ÿDH : �5�

The biological interpretation of the ÿDH term is the di�erence between the
in¯ux rate and the out¯ux rate of the total biomass expressed in the biomass of
the top predator. In [32] Eq. (5) is used to show that Monod's model is dis-
sipative and that the system converges asymptotically to the manifold H � 0
where the in¯ux rate and out¯ux rate of the total biomass are the same.

3. Bifurcation analysis

Bifurcation analysis gives information about the long-term dynamic be-
haviour of non-linear dynamic systems, that is the asymptotic stability of
equilibria, periodic orbits and chaotic attractors. The structural stability is
studied with respect to so-called free or bifurcation parameters, [26,28]. If an
attractor changes character or disappears completely under slight adjustment
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of a free parameter, the system is structurally unstable. The point in the
parameter space where this happens is called a bifurcation point. In Table 3 a
list of all bifurcation curves and points, and the scheme behind the notation is
given.

3.1. Description of the bifurcation diagrams

In this section we describe the (local) bifurcation diagrams of the four dif-
ferent models. The bifurcation parameters are the control parameters which
are set by the experimentalist: the dilution rate, D, and the concentration of
nutrients in the in¯ux, xr. In Table 4 the parameter setting is given for a
microbial food chain in the chemostat. All bifurcation curves associated with
equilibria were calculated with LOCBIFLOCBIF [25,28]. AUTOAUTO [23,24] was used for the
calculation of the curves associated with limit cycles. These computer programs
are implementations of continuation techniques which facilitate the study of
the change of the position of the bifurcation points due to a change of free
parameters. Starting at a point on a bifurcation curve, this curve is continued
while test functions which are indicative of higher codimension bifurcation
points are checked.

Table 3

List of all bifurcations, codimension-one curves and codimension-two points

Bifurcation Description

Codim-1 curves

TCe;i Transcritical bifurcation; Invasion by population i through boundary equilibrium.

TCc;i Transcritical bifurcation; Invasion by population i through boundary limit cycle.

H �i Hopf bifurcation: � � ÿ supercritical, � � � subcritical; i-trophic food chain

becomes unstable, origin of stable (supercritical) or unstable (subcritical) limit

cycle.

Te;i Tangent bifurcation; For equilibrium of i-trophic food chain.

Tc;i Tangent bifurcation; For limit cycle of i-trophic food chain.

F �j Flip bifurcation, j � 1; 2: � � ÿ supercritical, � � � subcritical; period doubling

of limit cycle of tri-trophic food chain.

G�e Homoclinic bifurcation; Shil'nikov global bifurcation for equilibrium of tri-

trophic food chain.

Codim-2 points

Mj Codimension-two bifurcation points, j � 1; 2; 3; Bifurcation of transcritical

bifurcations of tri-trophic food chain.

L Bautin bifurcation point; Transition from sub- to supercritical Hopf bifurcation

for tri-trophic food chain.

N Cusp bifurcation point; Bifurcation point for limit cycles of tri-trophic food chain.

Pj Codimension-two bifurcation points, j � 1; 2; Transition from sub- to supercrit-

ical ¯ip bifurcation for tri-trophic food chain.
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A realistic parameter value for the energy investment ratio of the prey is
g1 � 80. This implies that m0;1 � 40 hÿ1 for we have miÿ1;i � liÿ1;igi where
liÿ1;i � 0:5 hÿ1 (see Table 4). As a result system (2a±2d) is rather sti� due to
Eq. (2d), i� 1. In order to circumvent numerical problems with continuation,
we assumed that the dynamics of the reserves of the prey is quasi-static, that is
e1�t� � f0;1�t�. This reduces the dimension from seven to six. The biological
justi®cation is that the prey species tends to have a relatively small body size
and in [16] it is predicted that reserve turnover rate m increases with decreasing
body size. A high turnover rate implies a quasi-steady state.

In Fig. 1 we show the bifurcation diagram for a bi-trophic food chain cal-
culated with Monod's model. The curves TCe;1 and TCe;2 are transcritical bi-
furcation curves and Hÿ2 marks a supercritical Hopf bifurcation curve. There
are three important regions; a region where the predator goes to extinction
(left-hand side of TCe;2), a region with a stable equilibrium (at the right-hand
side of TCe;1 and at the left-hand side of Hÿ2 ) and a region where a stable limit
cycle exists (to the right of Hÿ2 ). The transition over the supercritical Hopf
bifurcation curve, Hÿ2 , due to an increase in the nutrient supply is associated
with the paradox of enrichment [2].

In the diagrams for a tri-trophic food chain there is an `organizing center',
namely the codimension 2 point M1. In Fig. 2 the transcritical curves TCe;3 and
TCc;3 for equilibria and limit cycles where x3 � 0, originating from M1 are
given. These transcritical curves are important with respect to the invasibility
of a top predator. On the transcritical bifurcation curves in points M2 and M3

tangent bifurcation curves originate for equilibria, Te;3 and limit cycles, Tc;3

respectively. The latter tangent bifurcation curve Tc;3 has a cusp bifurcation
point denoted by N . The bifurcation diagrams for all models have basically this
portrait (Figs. 3±6).

Table 4

Parameter set for bacterium-ciliate models, after Cunningham and Nisbet [19,20]. The values for

the new parameters mi (equal to 5% of the maximum growth rate liÿ1;i) and gi are also given. The

relationships Iiÿ1;i � liÿ1;i=yiÿ1;i and miÿ1;i � liÿ1;igi hold true for i � 1; 2; 3. The ranges for the

control parameters are 0 < D < l0;1 and 0 < xr 6 300 mg dmÿ3

Parameter Unit Values

i� 1 i� 2 i� 3

yiÿ1;i ± 0.4 0.6 0.6

liÿ1;i hÿ1 0.5 0.2 0.15

kiÿ1;i mg dmÿ3 8 9 10

Iiÿ1;i hÿ1 1.25 0.33 0.25

mi hÿ1 0.025 0.01 0.0075

gi ± 80.0 1.0 0.504

miÿ1;i hÿ1 40.0 0.2 0.0756
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The codimension 2 point, M1, is the intersection point of the supercritical
Hopf bifurcation curve Hÿ2 and the transcritical bifurcation curve for equilibria
TCe;3 (Fig. 3). Furthermore in this point M1 a subcritical Hopf bifurcation
curve, H�3 , originates. Without energy reserves (Monod and Marr±Pirt) the
curve TCc;3 intersects the Hopf bifurcation curve H�3 in point M1 (Figs. 3 and 4).

The bifurcation diagrams for the Droop and the DEBDEB model, di�er from that
of the Monod and Marr±Pirt model, respectively, in the vicinity of the codi-
mension 2 point M1 (Figs. 5 and 6). Namely, with reserves the Hopf bifurcation
curve starts supercritically, Hÿ32

, and becomes subcritical, H�3 , at the Bautin
bifurcation point L. Furthermore the curve TCc;3 now intersects the Hopf bi-
furcation curve Hÿ32

at a point apart from point M1. There is a tangent bifur-
cation curve for interior limit cycles which originates at the Bautin bifurcation
point L. This tangent bifurcation curve (not shown in the ®gures) is tangent to
the transcritical curve TCc;3 where it lies at the boundary of the state space
where x3�t� � 0. The dynamics in the region around point M1 are described in
more detail elsewhere [33].

Furthermore, with reserves there are two period-1! 2 ¯ip bifurcation
curves F1 and F2 which intersect each other as shown in Figs. 5 and 6. Observe

Fig. 1. Bifurcation diagram for Monod's model with two trophic levels: system (3a±3d). The bi-

furcation parameters are the dilution rate D [hÿ1] and the substrate concentration in reservoir xr

[mg dmÿ3]. Values assigned to physiological parameters are listed in Table 4. The curves TCe;1 and

TCe;2 are transcritical bifurcation curves and Hÿ2 marks a supercritical Hopf bifurcation curve. The

latter curve is associated with the paradox of enrichment.
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that the intersection points are not codimension 2 points. There is just coex-
istence of two stable limit cycles. Inside the region bounded by the Hopf
bifurcation curve, Hÿ3 , a cascade of period doubling leads to chaotic behaviour.
This holds for all models.

3.2. Comparison of the bifurcation diagrams

Comparison of the four diagrams (Figs. 3±6) reveals that for small dilution
rates the in¯uence of maintenance in the dynamic behaviour is signi®cant.
Without maintenance (Monod and Droop model) the codimension 1 curves
(transcritical TCe;1, TCe;2 and TCe;3 and the supercritical Hopf bifurcation
curves Hÿ2 and Hÿ3 ) approach the xr-axis, while with maintenance this axis is a
horizontal asymptote for these curves. Stated otherwise, in the ®rst two models
with D > 0, there is an interior equilibrium or an interior stable limit cycle for
the full-length food chain. For small D-values, the period of the periodic orbits
becomes very large and the state variables become very small over part of the

Fig. 2. Detail of the bifurcation diagrams around the organizing center M1 with only transcritical

and tangent bifurcation curves. TCe;3 marks a transcritical bifurcation and Te;3 marks a tangent

bifurcation curve both for equilibria. These curves originate in codimension 2 point M2. TCc;3 marks

a transcritical bifurcation with x3 � 0 and Tc;3 tangent bifurcation curve, both for limit cycles. These

both curves originate in the codimension 2 point M3. There is a cusp bifurcation point denoted by N
for the curve Tc;3.
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orbit. An important consequence is that the food chain can become partly
extinct during these periods due to stochastic ¯uctuations.

On the contrary, in the two models with maintenance (Marr±Pirt and DEBDEB

model) only the population at the lowest trophic level survives when D becomes
small. This shows that the introduction of maintenance, mathematically de-
scribed by the introduction of a term in the numerator for the growth rate
term, Eqs. (2b) and (2c) , is extremely important for small D values. From a
bifurcation analysis point of view the Marr±Pirt and DEBDEB models are derived
from the Monod and Droop models, respectively, by changing the three pa-
rameters mi; in our case only one parameter q � migi=miÿ1;i; i � 1; 2; 3. Com-
parison of Figs. 4 and 6 with the Figs. 3 and 5, respectively, shows that there is
a strong dependency with respect to q when q # 0. Although the dependency of
the right-hand sides of the ODEODEs with respect to q is smooth for q # 0, the
codimension 1 curves in the bifurcation diagram depend largely on q for very
small D values. Observe that with D � 0 the bifurcation diagram degenerates,
for the parameter xr is then redundant because there is no in¯ux of substrate.
So, only asymptotic behaviour, limD # 0, is relevant. For the models where

Fig. 3. Bifurcation diagram for Monod's model (system (3a±3d) with mi � 0 for i � 1; 2; 3). The

bifurcation parameters are the dilution rate D [hÿ1] and the substrate concentration in reservoir xr

[mg dmÿ3]. Dotted curves Hÿ2 , H�3 and Hÿ3 mark Hopf bifurcations. The curves TCe;1, TCe;2, TCe;3

mark transcritical bifurcation curves for equilibria and TCc;3 marks a transcritical bifurcation curve

for limit cycles. Curves Te;3 and Tc;3 mark tangent bifurcation curves for equilibria and limit cycles,

respectively. There is a period-1! 2 ¯ip bifurcation curve F1.
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q > 0 all populations except the lowest trophic level go extinct for in®nitesimal
small D, while for models with q � 0 the interior solutions at the left side of the
Hopf bifurcation lines Hÿ2 or Hÿ3 converge smoothly to an interior equilibrium
point or limit cycle.

This can be shown analytically for the transcritical bifurcation curve TCe;2 of
system (3a±3d) for the bi-trophic food chain as follows. On the transcritical
bifurcation curve we have

0 � �xr ÿ x0�Dÿ I0;1f0;1x1; �6a�
0 � l0;1f0;1 ÿ D1; �6b�
0 � l1;2f1;2 ÿ D2: �6c�

The ®rst two Eqs. (6a) and (6b) are just equilibrium equations for the bi-
trophic food chain and Eq. (6c) ®xes the transcritical bifurcation.

The explicit expression of xr as function of D becomes after some algebraic
manipulations

xr � �D� m1�k0;1

l0;1 ÿ Dÿ m1

� 1

D
I0;1�D� m1��D� m2�k1;2

l0;1�l1;2 ÿ Dÿ m2� : �7�

Fig. 4. Bifurcation diagram for the Marr±Pirt model (system (3a±3d)). The bifurcation parameters

are the dilution rate D [hÿ1] and the substrate concentration in reservoir xr [mg dmÿ3]. For an

explanation of the symbols see Fig. 3. The curve G�e marks a global homoclinic bifurcation to the

unstable equilibrium.
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This shows that

if m1 � m2 � 0 then lim
D#0

xr � 0; �8�
if m1 > 0;m2 > 0 then lim

D#0
xr � 1: �9�

The graph of the function xr�D� given by Eq. (7) is the transcritical bifurcation
curve TCe;2 in Figs. 3 and 4.

The ®rst term at the right-hand side describes the transcritical bifurcation
curve TCe;1. The dependency for D # 0 with respect to m1 is then smooth; the
curve TCe;1 terminates in xr � m1k0;1=�l0;1 ÿ m1�. However, with maintenance
we have for the biomass density x1 ! 0 if D # 0. Without maintenance costs the
single species remains in the chemostat also for in®nitesimal small dilution
rates.

Nisbet et al. [20], in studying the bi-trophic food chain, took the mainte-
nance of the lowest trophic level zero as in the Monod model; only mainte-
nance for the predator was introduced. The resulting bifurcation diagram
shows persistence (interior stable equilibrium) when D becomes in®nitesimally

Fig. 5. Two-parameter bifurcation diagram for the Droop model, (system (2a±2d) with mi � 0 for

i � 1; 2; 3). The bifurcation parameters are the dilution rate D [hÿ1] and the substrate concentration

in reservoir xr [mg dmÿ3]. For an explanation of the symbols see Fig. 3. Subcritical and supercritical

Hopf bifurcations, H�3 and Hÿ32
, respectively, are now distinguished. Point L is a Bautin bifurcation

point. There is an extra tangent bifurcation curve, Tc;32
, for limit cycles. This curve marks a region

with multiple limit cycles. There is also a period-1! 2 ¯ip bifurcation curve F2.
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small. Then the transcritical bifurcation curve TCe;2 terminates at the xr-axis as
it does in the Monod model (Fig. 3). This follows also from Eq. (7)

if m1 � 0;m2 > 0 then lim
D#0

xr � I0;1D2k1;2=�l0;1�l1;2 ÿ D2��:
�10�

Nevertheless, the Hopf bifurcation curve Hÿ2 bends to the xr-axis for xr !1,
as in the Marr±Pirt model (Fig. 4).

Invasion of a species is possible when its growth rate is larger then the de-
pletion rate. This yields an upperbound for the dilution rate where the food
chain can persist. At equilibrium where ei�t� � fiÿ1;i�t�, i � 1; 2; 3, the growth
rate term Miÿ1;i reads

Miÿ1;i � miÿ1;ifiÿ1;i ÿ migi

fiÿ1;i � gi
) Miÿ1;i

����
fiÿ1;i�1

� liÿ1;i ÿ mi

1=gi � 1
: �11�

The maximum attainable growth rate, i.e. the growth rate at abundant food
(fiÿ1;i � 1), is smaller than the maximum growth rate in the Monod model,
liÿ1;i, for two reasons, namely maintenance costs (term ÿmi < 0) and having
energy reserves (factor 1=�1=gi � 1� < 1). We took maintenance proportional
to the maximum growth rate, miÿ1;i=gi, for all trophic levels, so there is only one
extra parameter, denoted by q and de®ned by mi � qmiÿ1;i=gi. Because of the

Fig. 6. Bifurcation diagram for the DEBDEB model (system (2a±2d)). The bifurcation parameters are

the dilution rate D [hÿ1] and the substrate concentration in reservoir xr [mg dmÿ3]. For an expla-

nation of the symbols see Figs. 3 and 5.
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assumption that the maintenance rate coe�cient is mi � 0:05liÿ1;i, the maxi-
mum attainable growth rate diminishes by 5%. For the Marr±Pirt model
Eq. (7) shows that with D! l1;2 ÿ m2 or D! l0;1 ÿ m1 we have xr !1.

When the cost for growth is rather low the costs for reserve synthesis tend to
dominate. The investment ratio for the top predator has been set at g3 � 0:504
and therefore the maximum attainable growth rate is reduced by a factor of
about one third compared to the Monod model. Organisms with reserves can
sustain periods of starvation rather well but their maximum attainable growth
rate is much smaller. This reduction implies that in the (xr;D)-plane the full
food chain persists in a smaller region for the DEBDEB model than for the Monod
model.

3.3. Subcritical ¯ip bifurcation

In Fig. 7 a detail of the bifurcation diagram for the Droop model (Fig. 5) is
given. In this plot also ¯ip and tangent bifurcations with higher order peri-
odicity are shown. There now is a tangent bifurcation of period-2 limit cycles
denoted as Tc;33

. This tangent bifurcation is connected to a subcritical ¯ip

Fig. 7. Two-parameter bifurcation diagram for the Droop model (system (2a±2d) with mi � 0 for

i � 1; 2; 3). This ®gure is an expanded picture of Fig. 5. For an explanation of the symbols see

Fig. 3. Subcritical and supercritical ¯ip bifurcations, F �1 and F ÿ1 respectively, are now distinguished.

The points P1 and P2 are transition points from subcritical to supercritical for the ¯ip bifurcation

denoted by F1. Between these points there is a tangent bifurcation of period-2 limit cycles, Tc;33
.
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bifurcation. In order to study these bifurcations we consider now one-pa-
rameter diagrams. In these diagrams, for a ®xed xr, the peak values of the top
predator is shown as a function of the free parameter, the dilution rate D. The
system is integrated in time starting from perturbed equilibria (the equilibrium
value for the top predator was increased slightly). In case of multiple limit
cycles or chaotic attractors, the system starts from the attractor for slightly
di�erent values of D in a continuation process. In order to get rid of the
transients, integration is performed for a ®xed time without examination of the
results. From that point in time the top predator peak value is shown as a dot
in the diagram.

In Fig. 8 the long-term peak values for x3 are displayed, where xr � 140 mg
dmÿ3. For small D values the peak values of periodic orbits become very large.
With decreasing D the positive equilibrium becomes unstable and a stable limit
cycle originates at the supercritical Hopf bifurcation Hÿ3 (D � 0:03367 hÿ1).
Observe that only the peak values are plotted. This limit cycle is continued and

Fig. 8. One-parameter bifurcation diagram for the Droop model with peak (global and local)

values of top predator x3 [mg dmÿ3]. The bifurcation parameter is the dilution rate D [hÿ1]. The

concentration in the reservoir is xr � 140 mg dmÿ3. Solid curves give stable equilibrium values and

peak values of stable limit cycles. Dashed curves give unstable equilibrium values and (only global)

peak values of unstable limit cycles. At the top the rotated two-parameter bifurcation diagram,

Fig. 5, is plotted for 1156 xr 6 140 mg dmÿ3. Bifurcation points (the D values for intersection

points in two-parameter diagram (Figs. 5 and 7) of bifurcation curves with xr � 140 mg dmÿ3 line)

are indicated by vertical lines.
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becomes unstable at the tangent bifurcation Tc;32
with D � 0:02114 hÿ1. For

D � 0:02716 hÿ1 it becomes stable again and subsequently unstable at
D � 0:02672 hÿ1 at the ¯ip bifurcation F1. Finally it becomes stable again for
D � 0:01646 hÿ1 at the ¯ip bifurcation F1. This latter ¯ip bifurcation is sub-
critical (see also [28], page 110). This means that, for a small interval around
D � 0:0165 hÿ1, in addition to the period-1 stable limit cycle, there is an un-
stable and a stable period-2 limit cycle. An expanded picture of Fig. 8 for the
relevant D-values is shown in Fig. 9. These two period-2 limit cycles collide in
the tangent bifurcation Tc;33

and disappear at that point with decreasing D. In
the two-parameter bifurcation diagram (Fig. 9) there are two codimension 2
points, denoted as P1 and P2 at the ¯ip bifurcation curve F1 where the tangent
bifurcation Tc;33

originates. The ¯ip bifurcation F1 transits in these points from
subcritical, F �1 , to supercritical F ÿ1 and vice versa. This means that near these
points the di�erence between the peak values of the period-2 orbits increase
very fast with the transition over the ¯ip bifurcation curve.

Fig. 10 with xr � 150 mg dmÿ3 shows that the period-1 limit cycle origi-
nating at the Hopf bifurcation Hÿ3 which becomes unstable at the ¯ip bifur-
cation F2, is connected to the period-2 branch of the ¯ip bifurcation F1. Thus
for the continuation with increasing D there is a supercritical ¯ip bifurcation
where the period-1 limit cycle becomes unstable. With decreasing D for a

Fig. 9. One-parameter bifurcation diagram for the Droop model with peak (global and local)

values of top predator close to the subcritical ¯ip bifurcation F1. This ®gure is an expanded picture

of Fig. 8.
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period-1 limit cycle one Floquet multiplier becomes 1 at the bifurcation point.
This is, however, not a tangent bifurcation, as with xr � 140 mg dmÿ3 (Fig. 8),
but a pitchfork bifurcation for the second iterate of the unstable period-1 limit
cycle. Kuznetsov ([28], page 110) shows that a ¯ip bifurcation corresponds to a
pitchfork bifurcation for the second iterate of a map in the case of a discrete-
time system. Our case is associated with limit cycles of a continuous-time
system.

4. Shil'nikov bifurcation

In this section the Shil'nikov bifurcation is discussed for the models with
energy reserves, the Droop and DEBDEB model ®rst, and thereafter for the Marr±
Pirt model. It is a global bifurcation for the unstable saddle-focus equilibrium.
System (2a±2d) is seven-dimensional and the Jacobian matrix evaluated in the
unstable equilibrium has one pair of complex conjugated eigenvalues with
positive real parts while the other ®ve eigenvalues are negative in the region of

Fig. 10. One-parameter bifurcation diagram for the Droop model with peak (global and local)

values of top predator x3 [mg dmÿ3]. The bifurcation parameter is the dilution rate D [hÿ1]. The

concentration in the reservoir is xr � 150 mg dmÿ3. Solid curves give stable equilibrium values and

peak values of stable limit cycles. Dashed curves give unstable equilibrium values and (only global)

peak values of unstable limit cycles. At the top the rotated two-parameter bifurcation diagram,

Figs. 5 and 7, is plotted for 1256 xr 6 150 mg dmÿ3.
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the (xr;D)-plane bounded by the Hopf bifurcation curve Hÿ3 . Moreover, the
real eigenvalues have larger magnitude than the real parts of the complex
conjugated eigenvalues. In these Shil'nikov bifurcations the homoclinic orbit
spirals outward along the two-dimensional unstable manifold and approaches
the equilibrium along the one-dimensional stable manifold corresponding to
the leading negative eigenvalue closest to the imaginary axis (Fig. 11).

Fig. 11. (a) The homoclinic orbit for the Droop model with D � 0:0180hÿ1 and xr � 123:2867 mg

dmÿ3. (b) An expanded picture close to the saddle-focus equilibrium. The homoclinic orbit spirals

outward along the two-dimensional unstable manifold and approaches the equilibrium along the

one-dimensional stable manifold belonging to the leading negative eigenvalue.
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A one-parameter bifurcation diagram Fig. 12, where the period of the limit
cycles denoted by T0 is plotted against D with xr � 150 mg dmÿ3, illustrates
that there seems to be a Shil'nikov bifurcation. By continuation of the period-1
limit cycles with increasing D a speci®c route of periodic solutions with period
converging to in®nity emerges converging to a homoclinic orbit associated with
the saddle-focus equilibrium. At the homoclinic bifurcation the system has an
in®nite number of saddle limit cycles which originate each from a Smale
horseshoe ([28], page 203). The ®rst iterate limit cycle undergoes an in®nite
number of tangent bifurcations which become close to the homoclinic
bifurcation point. At the branches where stable limit cycles originate from the
tangent bifurcation, there are ¯ip bifurcations where the limit cycle becomes
unstable. These ¯ip bifurcations generate double-period cycles. In Fig. 12 one
second iterate is shown which also leads to a sequence of tangent and ¯ip bi-
furcations with convergence to the homoclinic orbit similar to the ®rst iterate.

The program HOMOMCONTONT being part of the AUTOAUTO package [24] is used for
continuation of the homoclinic solution in the two-dimensional (xr;D) pa-
rameter space. The theory is described in [29,34] and [28], page 467. As a
starting strategy we used the data obtained by continuation with D as free
parameter as describe above. That procedure, using AUTOAUTO, provides the data

Fig. 12. One-parameter bifurcation diagram for the Droop model. The period, T0 [h], is plotted as a

function of dilution rate D [hÿ1]. The concentration in the reservoir is xr � 150 mg dmÿ3. At the top

the rotated two-parameter bifurcation diagram, Fig. 5, is plotted for 1006 xr 6 150 mg dmÿ3.

Vertical lines indicate bifurcation points: the D values for intersection points in two-parameter

diagram (Figs. 5 and 7) of bifurcation curves with xr � 150 mg dmÿ3 line.
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for the limit cycle with very large periods (in our case 4000 h). The ®nal value
of D is used to calculate the unstable equilibrium state values and the number
of positive and negative eigenvalues at that point. The ®nal limit cycle is used
to calculate a better approximation for the homoclinic orbit.

One of the numerical approximations with the calculation of homoclinic
orbits is the truncation of the in®nite time-interval to a ®nite time interval
[ÿT ; T ] [29]. Using HOMOMCONTONT a better approximation for the homoclinic orbit
is obtained with T and D as the free parameters. The time interval T is in-
creased (in our case up to 20 000 h) while the equilibrium point is ®xed at the
approximative values. Finally this initial homoclinic orbit is continued in the
two-dimensional parameter space with D and xr as free parameters. The pa-
rameter T is now ®xed. The calculated curve, denoted by G�e , is shown in
Figs. 5 and 7 for the Droop model and in Fig. 6 for the DEBDEB model.

Careful examination of the homoclinic bifurcation curve G�e shows that
there are two homoclinic curves very close to each other and indistinguishable
in the two-parameter bifurcation diagrams. Hence, there is no codimension-
two point, the curve `turns' back similar to the ¯ip bifurcation F1 but with a
very large curvature.

Fig. 13 displays the one-parameter bifurcation diagram for the Droop
model where D and xr change simultaneously along the homoclinic bifurcation
curve G�e . Hence for all D values there is a homoclinic orbit for the saddle-focus
equilibrium. Near to the turn point, with D � 0:0180 hÿ1 and indicated by G�e ,
the local maxima during the chaotic orbits come very close to the equilibrium
value of the top predator. Thus in this region there is coexistence of the chaotic
attractor and a homoclinic orbit together with the associated stable limit cycles.
At the intersection of the curve G�e and curve Tc;32

there is a period-2 window,
that is the chaotic attractor is cut by a limit cycle and we have coexistence of a
period-2 stable limit cycle and a homoclinic orbit. When D is increased the
chaotic region terminates when the tangent bifurcation Tc;32

intersects the
chaotic attractor. When this tangent bifurcation is passed the homoclinic orbit
together with the associated stable limit cycles are the interior solutions.

In Fig. 13 also the maxima for the top predator are shown for D < 0:0180
hÿ1. The curve G�e is extended by a line starting at the extreme point calculated
with HOMOMCONTONT. By increasing the D along this line from the point denoted by
F1 which indicates the ®rst period doubling, a cascade of period doubling leads
to chaotic behaviour.

With the Marr±Pirt model we had to follow a di�erent starting strategy. We
were not able to continue a limit cycle where the period becomes very large. A
shooting method was used to ®nd a starting point. The fact that a homoclinic
orbit is ®xed by the position where a chaotic attractor touches the unstable
equilibrium was used. One-parameter plots for the Marr±Pirt model already
given in [30], which are similar to those given in the present paper, indicated
positions in the parameter space where a homoclinic orbit could exist. With
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HOMOMCONTONT the time interval T was increased yielding a homoclinic orbit. This
orbit was used with the continuation of the codimension 1 homoclinic bifur-
cation. The result is the curve G�e already shown in Fig. 4.

The homoclinic bifurcation curve was also calculated with a technique
similar to the one presented in [30] for the calculation and continuation of
global bifurcations. These global bifurcations are homoclinic orbits for the
unstable limit cycle which originates with the supercritical Hopf bifurcation H�3
and heteroclinic orbits between this cycle and the equilibrium. Both continu-
ation techniques gave almost the same results, although HOMOMCONTONT is a general
purpose program whereas the implementation of the method proposed in [30]
makes use of some special features of the four-dimensional system (3a±3d).

The Monod model, being the Marr±Pirt model with no maintenance
(mi � 0, i � 1; 2; 3) seems to have no homoclinic bifurcation curve in the region
of the parameter space considered here. This was shown as follows. Starting
with the Marr-Pirt model at the boundary of the parameter space, xr � 300 mg
dmÿ3, continuation with ®rst m3 and subsequently with m1 yielded a homo-
clinic orbit with m1 � m3 � 0 and m2 � 0:01 hÿ1. Continuation with m2 as one
of the free parameters revealed that this parameter continued to be positive.

Fig. 13. One-parameter bifurcation diagram for Droop model with peak (global and local) values

of the top predator. The bifurcation parameters, the dilution rate D [hÿ1] and the concentration in

reservoir is xr [mg dmÿ3] are adjusted in order that we follow the homoclinic curve G�e in Fig. 5.

Solid curves give stable equilibrium values and peak values of stable limit cycles. Dashed curves

give the unstable equilibrium values for x3 [mg dmÿ3].
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5. Discussion and conclusions

The global picture of the bifurcation diagrams of all models (Figs. 3±6) are
the same. Enrichment of the food chain leads for the bi-trophic food chain to
cyclic dynamic behaviour. For a tri-trophic food chain persistence is possible
only in a relatively small region of the control parameter space, while complex,
including chaotic, dynamic behaviour can occur. A codimension 2 point (de-
noted by M1) acts as the `organizing center' where the bifurcation points for the
tri-trophic food chain originate. We want to stress that for other parameter
values the bifurcation diagrams are di�erent from those presented in this paper
but the general picture will be about the same.

The extensions of the Monod model concern maintenance and energy re-
serves as is summarized in Table 1. The importance of these two quantities
follow from:

Maintenance: In¯uences strongly the dynamic behaviour for low dilution
rates. With maintenance all population except the prey are washed-out at small
dilution rates. Maintenance gives a somewhat smaller region of persistence of
the whole food chain.

Energy reserves: In¯uences the dynamic behaviour for large dilution rates
and gives coexistence of stable limit cycles. Energy reserves yield a much
smaller region in the bifurcation diagram where the tri-trophic food chain
persists.

Although the global picture of the bifurcation diagrams of all models re-
semble each other, there are considerable di�erences with respect to the precise
positions of the bifurcations curves. These can help to distinguish between
models when experimental data about the asymptotic behaviour are available.
Suppose that parameters are estimated from experimental short-term time-
course data for each model. Then, using these ®xed parameter values, points in
the bifurcation diagrams can be found where the models predict a pronounced
di�erent dynamical behaviour, for instance one model predicts wash-out of the
predator and another does not. Then with these parameter settings a number of
additional experiments can be performed. When for one model the predicted
long-term behaviour is also observed in contrast to that for the other models,
this model is best suited.

In a previous paper [35] we studied the dynamic behaviour of the system
when the scaled energy reserves density equals the scaled functional response
ei�t� � fiÿ1;i�t�, i � 1; 2; 3. This is justi®ed when the parameters miÿ1;i, i � 1; 2; 3
in (2d) are relatively large. In that way a reduction of the state space dimension
from seven to four is obtained by a singular perturbation argument. The as-
sumption that the reserves change quasi-statically has no in¯uence on the
transcritical bifurcations curves for the equilibria. Comparison of the bifur-
cation diagram, Fig. 6, with the diagram presented in [35] reveals that, with the
parameter values given in Table 4, the dynamics of the reserves themselves are
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important in the study of the long-term behaviour of limit cycles and more
complex dynamic behaviour. In conclusion, it is advisable to solve the full
system.

In [30] other global bifurcations for the Marr±Pirt model are described.
These global bifurcations are homoclinic as well as heteroclinic for an unstable
limit cycle. A discussion of these global bifurcations is beyond the scope of this
paper. In the present paper only global bifurcations to the unstable interior
equilibrium are considered.

The importance of the global bifurcations is the connection with chaotic
behaviour. Klebano� and Hastings [9] studied the normal form of a bifur-
cation point M1 in the Rosenzweig±MacArthur model. They associated the
origin of chaos with this bifurcation point. Kuznetsov and Rinaldi [10]
showed that chaos arises in a region far from M1 of the parameter space. This
is also the case for the four mass-balance models. Furthermore homoclinic
orbits of the Shil'nikov type were shown to be related to a strange attractor in
[5]. In [36] a singular perturbation analysis was used to prove that the
Rosenzweig±MacArthur model possesses a homoclinic bifurcation. In the
present paper it is shown numerically that for the mass-balance model a ho-
moclinic bifurcation for a saddle-focus equilibrium forms the skeleton of the
cascade of period doubling which leads to chaotic behaviour (see for instance
Fig. 7).
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