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RESEARCH ARTICLE

Consequences of severe habitat
fragmentation on density, genetics, and
spatial capture-recapture analysis of a small
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K. Scheick3, J. Walter McCown3, John J. Cox1

1 Department of Forestry, University of Kentucky, Lexington, Kentucky, United States of America,
2 Department of Fish andWildlife Conservation, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia, United States of America, 3 Fish andWildlife Research Institute, Florida Fish and
Wildlife Conservation Commission, Gainesville, Florida, United States of America

☯ These authors contributed equally to this work.
¤a Current address: NewMexico Department of Game and Fish, Santa Fe, NewMexico, United States of
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¤b Current address: The Nature Conservancy, Swanton, Ohio, United States of America
¤c Current address: Nelson ByrdWoltz Landscape Architects, Charlottesville, Virginia, United States of

America
* smmurp2@uky.edu

Abstract

Loss and fragmentation of natural habitats caused by human land uses have subdivided

several formerly contiguous large carnivore populations into multiple small and often iso-

lated subpopulations, which can reduce genetic variation and lead to precipitous population

declines. Substantial habitat loss and fragmentation from urban development and agricul-

ture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black

bears (Ursus americanus floridanus) to prolonged isolation; increasing human land develop-

ment is projected to cause� 50% loss of remaining natural habitats occupied by the HGS in

coming decades. We conducted a noninvasive genetic spatial capture-recapture study to

quantitatively describe the degree of contemporary habitat fragmentation and investigate

the consequences of habitat fragmentation on population density and genetics of the HGS.

Remaining natural habitats sustaining the HGS were significantly more fragmented and

patchier than those supporting Florida’s largest black bear subpopulation. Genetic diversity

was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both

of which remained unchanged over a period spanning one bear generation despite evidence

of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest

reported for black bears, was significantly female-biased, and corresponded to a subpopula-

tion size of 98 bears in available habitat. Conserving remaining natural habitats in the area

occupied by the small, genetically depauperate HGS, possibly through conservation ease-

ments and government land acquisition, is likely the most important immediate step to

ensuring continued persistence of bears in this area. Our study also provides evidence that

preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat
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across fragmented landscapes poses a challenge to estimating density-habitat covariate

relationships using spatial capture-recapture models. Because habitat fragmentation and

loss are likely to increase in severity globally, further investigation of the influence of habitat

fragmentation and detector placement on estimation of this relationship is warranted.

Introduction

Primarily driven by anthropogenic activities, including expansion of urban development, agri-

culture, and transportation infrastructure, the loss and fragmentation of indigenous habitats

have subdivided several previously contiguous large carnivore populations into multiple small

and often isolated subpopulations [1–3]. Small populations are more vulnerable to genetic,

demographic, and environmental stochasticity than their larger counterparts, which can result

in heightened susceptibility to deleterious genetics effects (e.g., increased genetic drift and

inbreeding depression) and cause precipitous population declines [4–6]. Immigration is

needed for natural genetic and demographic rescue from these effects [7, 8], but such rescues

are less likely to occur in areas where habitat loss and fragmentation have been severe [9].

Although the American black bear (Ursus americanus) is one of the most widely distributed

large carnivores in North America, the species occupies a fraction of historical range in the

southeastern United States [10, 11]. Within the Southeastern Coastal Plain, habitat loss and

fragmentation have extirpated black bears from many areas and subdivided a once large,

regional bear population into� 13 individual subpopulations, many of which are small or iso-

lated [11–14]. Seven subpopulations of the Florida black bear (Ursus americanus floridanus)

subspecies are disjunctly distributed throughout the state of Florida, USA [15]. Indices sug-

gested the Highlands-Glades subpopulation (HGS) in south-central Florida was the second

smallest (N� 150–200 bears [15]) among those 7 subpopulations, and an early 2000s genetic

structure analysis indicated the HGS was isolated [12]. The HGS is the closest (~40 km) sub-

population to the southernmost Big Cypress subpopulation of Florida black bears, which faces

potential threats of rising sea levels and increasing urban development [16]. Five other subpop-

ulations occur� 120 km north of the HGS, with large urban areas and an extensive road net-

work, including the greater Orlando metropolitan area and Interstate-4 corridor, likely serving

as formidable impediments to demographic and genetic connectivity with the HGS [12, 15].

Furthermore, lands supporting the HGS are predicted to lose� 50% of remaining native habi-

tats over the next 50 years [17], rendering the HGS deserving of higher conservation priority

in one of the most biodiverse areas of North America [18]. Despite the potential for demo-

graphic and genetic consequences to worsen in the HGS from continued isolation caused by

additional habitat loss, intensive monitoring has not occurred and little is known about this

subpopulation [15].

Black bears are vagile habitat-generalists that are capable of long-range movements to over-

come habitat fragmentation and other anthropogenic and natural landscape barriers [19].

Black bears also have considerable dietary plasticity and often exploit human-sourced foods if

habitat availability is reduced [20], which can positively influence bear population vital rates

[21]. Therefore, the species not only exhibits some resiliency to habitat fragmentation, but can

thrive in mildly developed exurban areas [22]. The black bear is also iteroparous (i.e., overlap-

ping generations), a reproductive strategy that can slow the development of deleterious genet-

ics effects associated with isolation of small populations if sufficient habitat is available to

support population growth [23]. Such ecological and biological elasticity has caused difficulty

Consequences fragmentation density genetics spatial capture-recapture bears
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in research aimed at quantifying the demographic and genetic consequences of habitat frag-

mentation on black bear populations [12, 24, 25].

Density is an invaluable demographic parameter because it can be compared across wildlife

populations of varying abundance and geographic distribution to provide insight into eco-

logical relationships and associated conservation implications [26]. Spatial capture-recapture

models directly estimate population density based on the spatial distribution of detections,

estimating the probability of detection as a function of distance between detectors and animal

activity centers (i.e., centroid of the space that an individual occupies [27–29]). Recent exten-

sions to spatial capture-recapture models, including the incorporation of habitat and landscape

covariates in the density model (i.e., spatially inhomogeneous density), can improve estimate

accuracy and provide information about salient ecological relationships [22, 30–35]. The use

of these models to quantify wildlife population density-habitat relationships and inform land-

scape connectivity is expected to increase in the future as fragmentation and loss of native hab-

itats intensifies in many regions of the world [36].

Given the lack of critical ecological information for the conservation of HGS black bears

and the threat of impending habitat fragmentation and loss, we used noninvasive genetic sam-

pling in a multi-year spatial capture-recapture study to evaluate the consequences of habitat

fragmentation on density and population genetics of this subpopulation. Our primary objec-

tives were to: 1) quantify the degree of habitat fragmentation for lands supporting the HGS; 2)

estimate HGS density and abundance to provide critical baseline estimates for conservation;

and 3) investigate temporal changes in genetic diversity and effective population size of the

HGS. We hypothesized that: 1) habitat fragmentation would be more severe than that of an

area supporting Florida’s largest black bear subpopulation; 2) population density of the HGS

would be low and abundance would be smaller than previously presumed via indices; and 3)

genetic diversity and effective population size of the HGS would remain relatively constant

over time.

Materials andmethods

Study area

The study area was located in south-central Florida, USA, approximately midway between the

Atlantic Ocean and the Gulf of Mexico (Fig 1). The climate was humid sub-tropical with hot,

wet summers and mild, dry winters. Average annual precipitation was 136 cm and average

annual temperature was 21.2˚C [37]. The study area was located at the southern terminus of

the endangered Lake Wales Ridge ecosystem, with an average elevation of 47 m above sea level

[38]. Numerous freshwater insular lakes were scattered throughout the study area; the largest

was Lake Istokpoga (112.07 km2). Sandy, nutrient-poor soils support multiple xeric upland

habitat communities, including federally endangered scrub [39], scrubby flatwoods, and sand-

hills. Margins of the Lake Wales Ridge and surrounding lands are a mosaic of mesic and hydric

habitats that include pine (Pinus sp.) flatwoods, hardwood hammocks, and dry prairies, and

bayheads, freshwater marshes, and bald cypress (Taxodium distichum) swamps, respectively

[38]. The study area was bisected by U.S. Highway 27, a major thoroughfare running North–

South the entire length of Florida. Agriculture was the dominant land cover type in the area,

primarily plantations of citrus monocultures and cattle ranches. Human population density

averaged 21 people/km2, and the largest city was Sebring (10,331 people [40]).

Sampling

We collected black bear hair from barbed-wire hair traps [41] in an 8-occasion, 3-session cap-

ture-recapture study during 2010–2012. We used a trap spacing of 4.0 km × 4.0 km (16.0-km2

Consequences fragmentation density genetics spatial capture-recapture bears

PLOSONE | https://doi.org/10.1371/journal.pone.0181849 July 24, 2017 3 / 20

https://doi.org/10.1371/journal.pone.0181849


Fig 1. Locations of 46 sampling cells in south-central Florida, USA, in which a single, baited barbed-wire hair trap was
placed in each cell to collect black bear hair for estimating density and population genetics of the Highlands-Glades
subpopulation of Florida black bears (2010–2012).

https://doi.org/10.1371/journal.pone.0181849.g001
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area/trap), which corresponded to 2 traps per estimated average annual HGS female bear

home range size (32.17 km2 [42]), and established a 2,016 km2 sampling grid comprised of 126

contiguous sampling cells using ArcMap 10.3 (ESRI, Redlands, California, USA). However, we

only placed hair traps in sampling cells for which� 20% of the cell’s area was comprised of

natural cover (i.e., black bear habitat [15]); this resulted in a single, baited hair trap in each of

46 sampling cells (36.5% of cells; Fig 1). We did not construct traps within citrus groves, which

are human-created monocultures that provide traversing cover for bears, but are not consid-

ered primary or secondary habitat and do not offer a primary food for bears [43–45]. We con-

structed all traps using 2 wires placed at 25 and 50 cm above the ground; both were wrapped

around 3–5 trees to create an approximately 25-m2 enclosure. We baited hair traps with pas-

tries and raspberry scent lure, hung from a string approximately 2 m above the ground in the

center of the trap. We checked and re-baited traps for a total of 8, 7-day sampling occasions,

which occurred in blocks of 2 consecutive occasions followed by a 7-day break, during May–

October of each year. We did not move traps between sampling occasions, but we did move

traps between sessions (i.e., years). We treated each barb as an individual sample and removed

hairs using tweezers that were sterilized between sample collections using flame from a lighter.

We stored hair samples in individually labeled paper coin envelopes and used a flame to steril-

ize barbs after sample collections to eliminate spurious captures.

We also acquired a dataset of HGS black bear hair samples that were collected during

2004–2005 from live-captures, mortalities, and opportunistic noninvasive methods (e.g., from

barbed-wire fencerows). These samples were representative of the HGS-specific cohort that

was used to characterize genetic structure of all 7 Florida black bear subpopulations [12], but

were not the identical samples used in that study. We used these samples to investigate tempo-

ral changes in population genetics parameters that are important to conservation of small pop-

ulations (e.g., genetic diversity and effective population size [25, 46, 47]).

All sampling methods were approved by a University of Kentucky Institutional Animal

Care and Use Committee (Protocol #00626A2003) and occurred under an approved Florida

Fish andWildlife Conservation Commission Scientific Research Permit (#LSSC-10-00112A).

No threatened or endangered species were involved in this study. Sampling on privately

owned lands, including those for which conservation easements were established, occurred

with explicit permission from individual landowners. The Nature Conservancy issued permis-

sion for sampling on all lands managed under the institution’s authority; Florida Park Service

granted permission for sampling at Highlands Hammock State Park; United States Air Force

issued permission for sampling at Avon Park Air Force Range; United States Fish andWildlife

Service issued permission for sampling at Lake Wales Ridge National Wildlife Refuge; and

Florida Fish andWildlife Conservation Commission granted permission for sampling at Fish-

eating Creek Wildlife Management Area, and Lake Wales Ridge and Platt BranchWildlife and

Environmental Areas.

Laboratory analyses

All collected hair samples were sent to Wildlife Genetics International (Nelson, British Colum-

bia, Canada) for DNA extraction and amplification using the standard protocols described by

Paetkau [48]. For financial reasons, we subsampled each year’s collected samples in the 2010–

2012 data, but not the 2004–2005 data, by selecting one sample per trap per occasion for geno-

typing during each occasion. This subsampling protocol results in nominal estimate bias

(< 2.50%) and adequate confidence interval coverage (� 0.96) of true population density if

population sizes are small (� 500 individuals) and spatially fixed-density spatial capture-recap-

ture models are used [31]. To perform the subsampling, laboratory personnel randomized the

Consequences fragmentation density genetics spatial capture-recapture bears
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samples collected from each trap during each occasion (i.e., trap-occasion) and selected the

first sample from each trap containing� 20 underfur hairs or� 5 guard hair roots for geno-

typing, repeating this process for each trap-occasion. If no samples within a trap-occasion met

this threshold, laboratory personnel chose the next best available sample using a minimum

quality threshold of 5 underfur hairs or 1 guard hair root. Standard protocols were used for

DNA extraction [48], a sex marker was used to determine sex of each individual, and the fol-

lowing 12 microsatellite markers were used to identify individuals [49]: G1A, G1D, G10B,

G10C, G10H, G10J, G10L, G10M, G10P, G10X, MU50, and MU59. To minimize genotyping

error and reduce the chances of inflating the number of individuals because of this error, the

methods described by Paetkau [48] were used.

Population genetics

We used MICRO-CHECKER v2.2.3 [50] to test for genotyping errors, including scoring

errors, allelic dropout, and null alleles. We estimated probability of identity (PI), or the proba-

bility that 2 individuals have the same genotype, and probability of siblings (PISibs), or the

probability that 2 individuals are related [51], using GENEALEX v6.5 [52]. We tested for

Hardy-Weinberg equilibrium between genotypes and quantified linkage disequilibrium with

P-values adjusted using Bonferroni correction [53] in GENEPOP v4.6 [54]. We estimated alle-

lic richness (AR) via rarefaction to account for sample size discrepancies, expected (HE) and

observed (HO) heterozygosity, and inbreeding coefficient (FIS) using the R software [55] pack-

age diveRsity [56]. We calculated 95% confidence intervals using 1,000 bootstrap iterations

and considered non-overlapping confidence intervals between parameter estimates for the 2

sampling periods as significantly different.

We followed the methods described byWaples et al. [57] to estimate the effective number

of breeders (NB; i.e., the number of individuals that reproductively contributed to the popula-

tion) using the linkage disequilibrium method in NEESTIMATOR v2.01 [58], with a minimum

allele frequency of 0.05. We corrected for bias in NB caused by the overlapping generations of

bears and estimated effective population size (NE) using the adjustment formulas developed by

Waples et al. [57]. These formulas reduce estimate bias to� 5% for iteroparous species by

incorporating 2 life history traits that explain the majority of variation in NE [57, 59, 60]: age at

sexual maturity (α; i.e., primiparity) and adult life span (AL). For example, early sexual matu-

rity, long life span, and constant fecundity with age tend to produce NB/NE ratios> 1, whereas

delayed maturity, short life span, and variable fecundity with age produce ratios< 1 [57]. The

incorporation of AL results in estimates that correspond to the ages at which a species is repro-

ductively active, because juveniles are not effective breeders and thus, cannot contribute to NB.

We used α = 4 years, based on the average age of primiparity for Florida black bears [61], and

a maximum age of 24 years [15] to calculate AL of 21 years (i.e., AL = maximum age–α + 1).

We corrected 95% confidence intervals of NB and NE by applying the same adjustment formu-

las to the lower and upper bounds.

To search for evidence of a genetic bottleneck, we evaluated departure from mutation-drift

equilibrium using BOTTLENECK v1.2.02 [62]. We used a stepwise mutation model (SMM)

and a two-phase model (TPM) that incorporated 30% of multi-step mutations to account for

uncertainties in the mutation process [25, 63]. We performed 10,000 replications and assessed

for a bottleneck using a Wilcoxon sign-rank test [64–66]. We performed factorial correspon-

dence analysis using GENETIX v4.05 [67] to identify genetic substructure (i.e.,> 1 genetic

cluster) within the HGS as an indicator of incoming gene flow (i.e., immigration). Factorial

correspondence analysis uses multivariate categorical data to identify structural relationships

without requiring prior information, such as the presumed potential number of genetic

Consequences fragmentation density genetics spatial capture-recapture bears
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clusters [68]. This method was well-suited for our data because the lack of genetics information

for the other 6 Florida black bear subpopulations during 2010–2012 precluded more extensive

analyses of genetic structure and migration [69]. We created a 2-dimensional plot to reflect the

correspondence between individuals and allele combinations, estimated the total inertia (i.e.,

overall variation) present among individuals, and investigated potential immigration based on

deviations from identified genetic clusters [70, 71].

Demographics

We fit spatial capture-recapture models using maximum likelihood implemented in the R

package secr [72] to estimate population density (D). We used a binomial observation model

with a half-normal detection function, and modeled hair traps as proximity detectors because

an individual could be detected at multiple traps during a single occasion [29, 73]. Simulations

demonstrated that modeling traps as proximity detectors was appropriate for the subsampling

protocol that we used [31]. We used the suggest.buffer function in the secr package to identify

the appropriate state space, or the distance around traps within which all individuals that

could have potentially been detected were included [29].

We created a habitat covariate that we modeled on D to attempt to improve estimate accu-

racy by predicting D to covariate values where traps did not exist [22, 30, 34]. Using 2011

National Land Cover Database data with 30-m resolution [74] and ArcMap 10.3, we reclassi-

fied deciduous, evergreen, and mixed forests, woody and emergent herbaceous wetlands, and

shrub-scrub as natural cover; and developed, barren land, grassland, pasture-hay, and culti-

vated crops as non-natural cover. We then created a percent natural cover covariate (Pnat)

using the Geomorphometry and Gradient Metrics Toolbox v2.0 [75] to smooth the reclassified

raster and calculate percent cover within each 30-m raster cell using a moving circular window

with a 3.20-km radius, which corresponded to the radius of estimated average annual female

home range size [42, 76].

We developed a set of a priori sex-specific models that included expected sources of varia-

tion in detection function parameters based on previous black bear hair trapping studies in the

eastern and southeastern United States that also used spatial capture-recapture models for

analysis of multi-session sampling data [31, 76–78]. To account for individual heterogeneity in

detection probability, we considered 2-class finite mixtures (h2) on the probability of detection

at the activity center of an individual (g0 [79, 80]); we did not use individual covariates [81]

because individual-based ancillary data for hair samples did not exist. Because we baited hair

traps, we included a trap specific-behavioral response (bk) on g0 in all models [31, 82]. We

fixed (~1) the spatial scale of the detection function (σ) and fixed D, allowed D to vary among

sessions (i.e., years [Y]) as a factor, or allowed D to vary with Pnat following a log-linear

relationship.

We evaluated models with Akaike’s Information Criterion corrected for small sample size

(AICc) and produced sex-specific estimates of D, g0, and σ [83]. We considered all models� 2

ΔAICc competitive, reverting to the most parsimonious model for parameter estimation if fit

of competing models was not an improvement over the top model [84]. To investigate if male

to female sex ratios differed significantly, we evaluated deviation from 1:1 based on the absence

of 95% confidence interval overlap of sex-specific D estimates. We derived abundance (N)

from D as the expected number of individuals within available natural cover in the state space

[85]. We produced total population D and N by adding sex-specific estimates and obtaining

the combined variances, assuming independence [86]. We only produced estimates for natural

cover within the state space because negligible occurrence data for bears on lands outside of

the state space precluded informed extrapolation.
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Habitat fragmentation

We used FRAGSTATS v4.2.1.603 [87] to evaluate habitat fragmentation (i.e., contagion)

within the state space and estimate percent land area that was natural cover, patch density, and

mean patch size [88]; contagion ranges from 0 to 100%, with 0 indicating maximal fragmenta-

tion. We used the natural versus non-natural cover raster (see Demographics subsection) and

defined natural patches using the eight neighbor rule [87]. We compared the resulting values

to those produced by Hostetler et al. [89] for the Ocala-St. Johns subpopulation of Florida

black bears. This provides an informative comparison because the Ocala-St. Johns subpopula-

tion is relatively large [78] and is sustained almost entirely by large blocks of federally managed

forested lands [15], whereas the HGS inhabits mostly privately owned lands that are vulnerable

to anthropogenic development [90, 91].

Results

Population genetics

During 2004–2005, 72 black bear hair samples were collected, 51 (71%) of which assigned to

34 (17M:17F) individuals; 21 (29%) samples failed genotyping. We collected 1,484 samples

during the 2010–2012 capture-recapture hair trapping; 455 (31%) samples were selected for

genotyping via our subsampling protocol, but 159 of those failed during analysis. From the

remaining 296 (20%) samples, we identified 74 (33M:41F) unique individuals; 11 (4M:7F)

individuals were also present in the 2004–2005 data. Annual detections were 33 (10M:23F), 33

(14M:19F), and 48 (22M:26F) bears during 2010, 2011, and 2012, respectively.

Scoring errors and allelic dropout were not present in the 2004–2005 data, but evidence of

a null allele was detected at locus G10M. In contrast, we found no evidence of scoring errors,

allelic dropout, or null alleles in the 2010–2012 data. Probability of identity (PI) was 1.0−5

and 8.2−7 for the 2004–2005 and 2010–2012 data, respectively, and PISibs was 4.1
−3 and 1.5−3,

respectively. The criteria for HWE were met in both datasets (2004–2005: w2
22
= 35.09, P = 0.04;

2010–2012: w2
24
= 33.87, P = 0.09) following Bonferroni correction (α< 0.002). Non-random

association of alleles was detected at 11% and 8% of 66 pairwise comparisons in the 2004–2005

and 2010–2012 data, respectively, after applying Bonferroni correction (α< 0.0007). Because

no consistent patterns of null alleles, HWE deviation, or linkage disequilibrium were present

at identical loci between the 2 datasets, we did not exclude any loci from analyses [92].

We did not find significant differences in population genetics parameter estimates between

the 2 time periods (Table 1). All measures of genetic diversity (AR,HE, andHO) and effective

sizes (NB and NE) were low, but no evidence of inbreeding (FIS) was detected. A genetic bottle-

neck was not supported in the 2004–2005 data (SMM: P = 0.88; TPM: P = 0.06), but we did

find weak support in the 2010–2012 data (SMM: P = 0.92; TPM: P = 0.03). Factorial correspon-

dence analysis indicated that 37.29% and 22.34% of inertia existed among individuals in the

2004–2005 and 2010–2012 data, respectively. No substructuring was present in the HGS

Table 1. Temporal comparison of genetics parameter estimates for the Highlands-Glades subpopulation of Florida black bears in south-central
Florida, USA, based on 12microsatellite markers. We estimated allelic richness (AR), observed heterozygosity (HO), expected heterozygosity (HE), effec-
tive number of breeders (NB), effective population size (NE), and inbreeding coefficient (FIS) from 12 microsatellites for bears sampled during 2004–2005 and
2010–2012. Confidence intervals (95%) are presented in parentheses and n corresponds to sample size.

Period n Parameter

AR HO HE NB NE FIS

2004–2005 34 3.02 (2.44–3.61) 0.39 (0.28–0.50) 0.42 (0.30–0.54) 7 (4–11) 14 (8–24) 0.07 (–0.03–0.17)

2010–2012 74 3.57 (3.06–4.08) 0.50 (0.41–0.60) 0.49 (0.40–0.58) 12 (9–16) 25 (19–33) –0.02 (–0.08–0.04)

https://doi.org/10.1371/journal.pone.0181849.t001
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during either period, but 2 and 4 potential immigrants were detected during 2004–2005 and

2010–2012, respectively (Fig 2).

Demographic estimates

The optimal buffer distance around trap locations was 12 km with 1-km point spacing, which

we used as the state space. There were 2 competing (� 2 ΔAICc) models for females, both of

which included D spatially varying by the Pnat covariate (Table 2). Four models were compet-

ing for males; the second-ranked model suggested D varied among years, the third-ranked

model included D varying by the Pnat covariate, and the first and fourth-ranked models both

indicated spatially homogenous (i.e., fixed) D.

Spatially inhomogeneous Dmodels produced negative coefficient estimates for Pnat (i.e.,

density decreased with increasing percent cover; Table 3). Upon further inspection, we discov-

ered that the locations of posterior modes of activity centers estimated by homogenous Dmod-

els were on the periphery of the trap array in medium to high percent cover (� 40%; Fig 3).

In contrast, several posterior modes of activity centers estimated by the inhomogeneous D

models were shifted further away from the trap array and into low percent cover (< 0.20),

which led to relatively large changes in the covariate values associated with those locations.

Fig 2. Two-dimensional plot depicting the correspondence between individuals and allele combinations for Florida black bears in the
Highlands-Glades subpopulation of south-central Florida, USA.We estimated inertia (overall variation) detected during 2004–2005 and 2010–
2012 from factorial correspondence analysis. Potential immigrants identified are indicated by asterisks (*).

https://doi.org/10.1371/journal.pone.0181849.g002
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This was consistent with a negative D-covariate relationship, but also indicated misspecifica-

tion of other components of the model that could push some activity centers to non-habitat.

Because of this uncertainty and possible ecologically implausible D-covariate relationship, we

removed the inhomogeneous Dmodels from further consideration (see Discussion for further

commentary).

Among the remaining models, the highest ranked spatially homogenous Dmodel for each

sex included bk on g0 and fixed σ, which we produced estimates from. The combined popula-

tion Dwas 0.054 bear/km2 (95% CI = 0.041–0.067), which was significantly female-biased and

corresponded to N of 98 (95% CI = 75–122) total bears in available habitat (Table 4). The spa-

tial scale of the detection function (σ) was approximately 3 times larger for males, whereas g0
was 5 times higher for females (Table 4).

Habitat fragmentation

Fragmentation metrics revealed that the 1,827.09 km2 of natural cover (i.e., bear habitat)

within the state space was severely fragmented with a patchier distribution than lands

Table 2. Spatial capture-recapturemodels for estimating density of female andmale Florida black bears in the Highlands-Glades subpopulation
of south-central Florida, USA (2010–2012). Wemodeled percent natural cover (Pnat) as a habitat covariate on density (D), allowedD to vary among ses-
sions (Y), or fixed (~1)D. Wemodeled a trap-specific behavioral response (bk) and 2-class finite mixtures (h2) on the probability of detection at the activity cen-
ter of an individual (g0), and fixed the spatial scale of the detection function (σ). Model selection was based on� 2 ΔAICc, which is the relative difference
between AICc (Akaike’s Information Criterion corrected for small sample size) of the model and the highest ranked model. Weight (wi) and log-likelihood
(logLik) are presented for each model.

Model # Parameters AICc ΔAICc wi logLik

Females

D(~Pnat) g0(~bk) σ(~1) 5 1077.21 0.00 0.69 –533.12

D(~Pnat) g0(~bk + h2) σ(~1) 7 1078.83 1.62 0.31 –531.48

D(~1) g0(~bk) σ(~1) 4 1088.20 10.99 0.00 –539.78

D(~1) g0(~bk + h2) σ(~1) 6 1089.14 11.93 0.00 –537.88

D(~Y) g0(~bk) σ(~1) 6 1091.85 14.64 0.00 –539.23

D(~Y) g0(~bk + h2) σ(~1) 8 1093.10 15.89 0.00 –537.33

Males

D(~1) g0(~bk) σ(~1) 4 898.26 0.00 0.30 –444.64

D(~Y) g0(~bk) σ(~1) 6 898.65 0.39 0.25 –442.25

D(~Pnat) g0(~bk) σ(~1) 5 899.23 0.97 0.18 –443.86

D(~1) g0(~bk + h2) σ(~1) 6 899.93 1.67 0.13 –442.89

D(~Y) g0(~bk + h2) σ(~1) 8 900.88 2.62 0.08 –440.49

D(~Pnat) g0(~bk + h2) σ(~1) 7 901.47 3.22 0.06 –442.26

https://doi.org/10.1371/journal.pone.0181849.t002

Table 3. Spatial capture-recapturemodel coefficient estimates (β) from the top spatially inhomogeneous density model for male and female Flor-
ida black bears in the Highlands-Glades subpopulation of south-central Florida, USA (2010–2012). Model structure included density (D) varying with
percent natural cover (Pnat), a trap-specific behavioral response (bk) on the probability of detection at the activity center of an individual (g0), and fixed spatial
scale of the detection function (σ). Estimate standard errors (SE) and lower (LCL) and upper (UCL) 95% confidence limits are presented.

Parameter Females Males

β SE LCL UCL β SE LCL UCL

D –7.24 0.36 –7.96 –6.53 –8.92 0.50 –9.89 –7.95

D~Pnat –2.58 0.76 –4.07 –1.10 –1.37 1.17 –3.66 0.93

g0 –1.87 0.34 –2.54 –1.19 –3.49 0.29 –4.05 –2.93

g0~bk 1.52 0.36 0.81 2.22 2.12 0.34 1.46 2.79

σ 7.85 0.10 7.65 8.05 8.97 0.11 8.75 9.18

https://doi.org/10.1371/journal.pone.0181849.t003
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supporting the larger Ocala-St. Johns subpopulation of Florida black bears (Table 5). Percent

land area that was natural habitat and mean patch size were lower and patch density higher

than lands occupied by the Ocala-St. Johns subpopulation. Contagion was considerably lower

Fig 3. Sex-specific posterior modes of activity centers estimated by spatially inhomogeneous and homogenous density spatial capture-
recapture models relative to percent natural cover for Florida black bears in the Highlands-Glades subpopulation of south-central Florida,
USA (2010–2012). Posterior modes from inhomogeneous (varies by percent natural cover) and homogenous density models are indicated by red and
black circles, respectively. Locational shifts for each posterior mode betweenmodels are denoted by solid black lines, and crosses (×) represent the 46
hair traps that were established. Locations where only a red circle is visible without a solid black connector line indicates a black circle is at the same
location. Percent natural cover within the state space is the background color gradient from white (low%) to dark green (high %).

https://doi.org/10.1371/journal.pone.0181849.g003

Table 4. Sex-specific spatial capture-recapturemodel parameter estimates for the Highlands-Glades subpopulation of Florida black bears in
south-central Florida, USA (2010–2012). We estimated the following parameters, averaged over 3 years of sampling: the probability of detection at the
activity center of an individual (g0), the spatial scale of the detection function (σ [km]), and density (D [bear/km2]). We derived abundance (N) fromD and confi-
dence intervals (95%) are presented in parentheses.

Parameter Males Females Highlands-Glades

g0 0.025 (0.013–0.047) 0.126 (0.076–0.203)

σ 8.098 (6.146–10.672) 2.626 (2.166–3.184)

D 0.015 (0.010–0.022) 0.039 (0.028–0.052) 0.054 (0.041–0.067)

N 27 (18–40) 71 (51–95) 98 (75–122)

https://doi.org/10.1371/journal.pone.0181849.t004
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than that for the Ocala-St. Johns subpopulation, indicating patches of natural cover in the area

occupied by the HGS were disaggregated and more dispersed.

Discussion

Habitat fragmentation and loss can isolate wildlife populations and have severe consequences

on their demographics and genetics, but those effects can be difficult to identify in wide-rang-

ing large carnivores that have long generation times, such as bears. We collected genetics data

via noninvasive sampling from Florida black bears in a subpopulation that was previously

identified as being isolated and presumed to be small as a result of habitat fragmentation and

loss. Estimates of genetic diversity for the HGS (Table 1) remain significantly lower than esti-

mates for large black bear populations that resided in relatively contiguous habitats (e.g.,HE>

0.70; AR> 6.00 [25, 92–94]), and were comparable to populations that suffered isolation-

induced bottlenecks [24, 25, 49, 95, 96]. Although a sample size discrepancy existed between

the 2 periods for which we estimated genetics parameters, simulations demonstrated thatHE is

unaffected by differing sample sizes, as is AR if estimated via rarefaction as we did [97]. We

found weak support for a genetic bottleneck in the HGS, but detection power from highly vari-

able microsatellites is typically poor (� 0.27) if samples are collected� 10 generations after a

bottleneck occurs [63]. Indeed, habitat loss to agriculture and urban development in south-

central Florida began escalating during the 1920s [91], suggesting the bottleneck may have

occurred nearly a century prior to our study, or approximately 15 generations based on the

average generation time of black bears (~6.3 years [98, 99]).

Although one migrant per generation has been adopted as a general rule for preventing

genetic deterioration in wild populations [100],� 3 migrants are typically needed to increase

variation and positively influence population fitness, particularly if the NE/N ratio is� 0.2

[101]. For example, Seal and Lacy [102] predicted that 8 mountain lions from Texas, USA

(Puma concolor stanleyana) would need to be introduced to the genetically degraded Florida

panther (Puma concolor coryi) population to increase genetic diversity by 20% [103, 104].

Effective population size (NE) and FIS, both of which are indicators of genetic fitness [47], were

unchanged in the HGS between sampling periods despite the identification of 3–4 potential,

although unconfirmed, immigrants in the 2010–2012 data (Table 1; Fig 2). Given that the

duration between sampling periods encompassed one complete black bear generation, and

considering the NE/N ratio for the HGS (0.25), 3 migrants per generation may be the mini-

mum necessary to prevent the loss of, but not increase, genetic variation in the HGS.

Obtaining reliable, accurate estimates of population abundance and density is fundamental

for informing conservation of genetically depauperate wildlife populations. We considered

spatially inhomogeneous density (D) spatial capture-recapture models that allowed D to vary

with habitat covariate values to attempt to improve estimate accuracy in the portions of the

state space where we did not place traps [30]. Although models that included the percent natu-

ral cover covariate (Pnat) were the most parsimonious for female bears and were among com-

peting models for males (Table 2), coefficient estimates for the D-Pnat relationship were

Table 5. Habitat fragmentationmetrics estimated for natural habitats supporting the Highlands-Glades and Ocala-St. Johns subpopulations of
Florida black bears. We estimated percent land area that was natural habitat (% HLA), patch density (PD; patches/km2), mean patch size (MPS; km2), and
contagion (Contag; %) for lands occupied by the HGS, and compared to values produced by Hostetler et al. [89] for lands occupied by the comparatively larger
Ocala-St. Johns subpopulation.

Subpopulation % HLA PD MPS Contag

Highlands-Glades 47.74 2.97 0.34 32.54

Ocala-St. Johns 89.30 0.15 5.80 92.00

https://doi.org/10.1371/journal.pone.0181849.t005
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negative and predicted that Dwas highest in areas with the lowest percentages of natural cover

(< 20%; Table 3). Sollmann et al. [33] found a similar inverse relationship between black bear

population D and percent cover using spatial capture-recapture models with resource selection

functions; however, the lowest percent cover in that study was 62%, whereas a substantial por-

tion of lands in the HGS study area had 0% natural cover (Fig 3). Although black bears are

habitat generalists that can be synanthropic in areas of low anthropogenic development along

the wildland-urban interface (i.e., exurban areas [22]), that cities or large expanses of open

ranchlands present in the study area could solely support or be preferentially selected by an

entire bear population as suggested by the inhomogeneous Dmodels is unlikely. Corn (Zea

mays) dispensed at remote wildlife feeders by white-tailed deer (Odocoileus virginianus) hunt-

ers in areas of high quality natural cover was the dominant human-sourced food item in the

diet of HGS bears across all seasons, whereas garbage comprised< 1% of consumed foods

[45]. Furthermore, few radio-monitored HGS bears frequented urban developments [42, 43],

collectively indicating that most HGS bears are probably not residing in areas of low or no nat-

ural cover.

The black bear populations of interest in other studies that evaluated spatially inhomoge-

neous Dmodels inhabited landscapes comprised of relatively contiguous habitats [22, 31, 34].

The HGS, however, resides in habitat that is severely fragmented and has a considerably higher

patch density and smaller mean patch size than lands supporting Florida’s largest black bear

subpopulation (Table 4 [89]), which occupies the greatest expanse of protected areas among all

7 subpopulations [15]. The locations of many posterior modes of activity centers estimated by

the top spatially homogenous Dmodels were on the periphery of the trap array, which is also

where Pnat began declining; however, the spatially inhomogeneous Dmodels moved several

of those posterior modes to areas of low percent cover (< 20%; Fig 3). Even slight model mis-

specification, such as the presence of individual heterogeneity in g0 or σ [105], can incorrectly

place activity centers further away from traps, which may mimic a negative D-covariate rela-

tionship in severely fragmented landscapes where traps are only placed in moderate to high

quality habitat.

The combination of severe habitat fragmentation and hair traps being placed only in areas

of moderate to high percent natural cover may have rendered the spatially inhomogeneous D

models unable to accommodate other model misspecification. For example, misspecification

of the functional form of the D-covariate relationship or not including important covariates

[33, 34], neither of which could we investigate because of low power and the absence of traps

in areas presumed to be poor bear habitat. Indeed, natural cover is unlikely to comprehensively

describe suitable black bear habitat, as other covariates, such as distance to roads and human

population densities, can also influence bear space use [22, 106, 107]. Natural cover does, how-

ever, provide an informative generalization when population-specific habitat use information

is unavailable, which is often the case for small or otherwise imperiled populations of bears

and other carnivores (e.g., [108]).

Nonetheless, establishing hair traps in non-habitat where presumably no bears reside (e.g.,

urban developments and open ranchlands) would probably improve specification of the D-

covariate relationship; however, bear researchers will likely be reluctant to implement hair trap

sampling in non-habitat for logistical, financial, and social reasons. In contrast, deploying

remote cameras in non-habitat and modeling photo detections versus non-detections as occu-

pancy data [109] within a spatially explicit framework using models similar to those developed

by Chandler and Clark [110] would be a feasible and statistically reasonable alternative.

Regardless, we caution that spatially inhomogeneous Dmodels appear to be sensitive to mis-

specification of the D-covariate relationship if suitable habitats are severely fragmented and

the trap array does not sample the entire range of covariate values. Considering habitat loss
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and fragmentation are likely to increase globally commensurate with projected human popula-

tion growth [111], which may increase the use of spatially inhomogeneous Dmodels for esti-

mating wildlife populations that inhabit fragmented landscapes [27, 36], further investigation

of this issue via simulation is warranted. Additionally, the hair subsampling protocol that we

used results in reliable D estimates for bear populations identified as having spatially homoge-

nous D [31]. Whether this is true for populations with spatially varying D is unclear, however,

because the loss of critical spatial recaptures to subsampling that could have placed activity

centers in moderate to high percent natural cover may degrade model reliability; thus, further

investigation of the effects of subsampling is also needed (e.g., [82, 112]).

Given the probably erroneous predictions of the spatially inhomogeneous Dmodels, we

estimated model parameters using the next most supported sex-specific models in which D

was spatially fixed (Table 2). Estimated D for the HGS (0.054 bear/km2) had high precision

(coefficient of variation = 0.124) and was significantly female-biased, but approached the low-

est estimated via spatial capture-recapture models for black bear populations in the United

States (lowest: 0.040–0.046 bear/km2 [77, 78]). Our estimate corresponded to N of 98 (95% CI:

75–122) total bears in available habitat, or a 53–104% smaller population size than previously

presumed and for which conservation and management decisions have been made [15]. The

absence of previous D and N estimates for the HGS precluded an evaluation of long-term tem-

poral demographic changes, but comparing estimates of NE between 2004–2005 and 2010–

2012 suggests D and N have probably remained relatively constant over time.

In large bear populations, sex ratios skewed towards females are typically indicative of pop-

ulation growth and expansion [31, 113, 114]. Considering the small size of the HGS and the

severity of habitat fragmentation, however, breeding opportunities may have been reduced

[115, 116] by relatively high male bear mortality from anthropogenic causes compared to male

abundance (n = 8 male bear deaths/year [117], or 30% of NMale annually). Although anecdotal,

the female-biased sex ratio, low genetic diversity, NE smaller than necessary for long-term via-

bility [47], small N, and low D are collectively indicative of a population that is potentially on

the verge of deteriorating into an extinction vortex if habitat fragmentation and loss continue

as projected [118]. For example, Palomares et al. [119] discovered that a female-biased sex

ratio and low genetic diversity were among the factors contributing to an extinction vortex in

a similarly small, low density, and isolated population of another terrestrial carnivore, the Ibe-

rian lynx (Lynx pardinus). Given the substantial loss of natural habitats in south-central Flor-

ida that is expected in coming decades, which could further reduce population size and erode

genetic variation, efforts to preserve remaining lands comprised of natural habitats, possibly

by acquiring conservation easements or government ownership, will likely be critical to long-

term persistence of the HGS. Additionally, implementing a program to monitor population

vital rates (e.g., survival and reproductive rates) and genetics of the HGS would allow modeling

subpopulation growth and genetic diversity over time [15]. Such a program would provide

more conclusive information on the status and potential future of this small subpopulation of

bears that is faced with imminent deleterious landscape changes [120, 121].
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119. Palomares F, Godoy JA, López-Bao JV, Rodrı́guez A, Roques S, Casas-Marce M, et al. Possible
extinction vortex for a population of Iberian lynx on the verge of extirpation. Conservation Biology.
2012; 26:689–97. https://doi.org/10.1111/j.1523-1739.2012.01870.x PMID: 22731698

120. Beston JA. Variation in life history and demography of the American black bear. The Journal of Wildlife
Management. 2011; 75:1588–96.

121. Clark JD, Eastridge R, Hooker MJ. Effects of exploitation on black bear populations at White River
National Wildlife Refuge. The Journal of Wildlife Management. 2010; 74:1448–56.

Consequences fragmentation density genetics spatial capture-recapture bears

PLOSONE | https://doi.org/10.1371/journal.pone.0181849 July 24, 2017 20 / 20

https://doi.org/10.1126/science.1192891
http://www.ncbi.nlm.nih.gov/pubmed/20929847
http://www.ncbi.nlm.nih.gov/pubmed/25000765
https://doi.org/10.7717/peerj.532
https://doi.org/10.7717/peerj.532
http://www.ncbi.nlm.nih.gov/pubmed/25210658
https://doi.org/10.1126/sciadv.1500052
https://doi.org/10.1126/sciadv.1500052
http://www.ncbi.nlm.nih.gov/pubmed/26601154
https://doi.org/10.1111/ele.12049
http://www.ncbi.nlm.nih.gov/pubmed/23237200
http://myfwc.com/wildlifehabitats/managed/bear/bmu/
https://doi.org/10.1111/j.1461-0248.2005.00845.x
https://doi.org/10.1111/j.1461-0248.2005.00845.x
http://www.ncbi.nlm.nih.gov/pubmed/16958868
https://doi.org/10.1111/j.1523-1739.2012.01870.x
http://www.ncbi.nlm.nih.gov/pubmed/22731698
https://doi.org/10.1371/journal.pone.0181849

	Consequences of Severe Habitat Fragmentation on Density, Genetics, and Spatial Capture-Recapture Analysis of a Small Bear Population
	Repository Citation

	Consequences of Severe Habitat Fragmentation on Density, Genetics, and Spatial Capture-Recapture Analysis of a Small Bear Population
	Digital Object Identifier (DOI)
	Notes/Citation Information
	Authors

	Consequences of severe habitat fragmentation on density, genetics, and spatial capture-recapture analysis of a small bear population

