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The role of natural selection in biology is well appreciated. Recently, however, a critical role for physical principles of
network self-organization in biological systems has been revealed. Here, we employ a systems level view of genome-
scale sequence and expression data to examine the interplay between these two sources of order, natural selection and
physical self-organization, in the evolution of human gene regulation. The topology of a human gene coexpression
network, derived from tissue-specific expression profiles, shows scale-free properties that imply evolutionary self-
organization via preferential node attachment. Genes with numerous coexpressed partners (the hubs of the coexpression
network) evolve more slowly on average than genes with fewer coexpressed partners, and genes that are coexpressed
show similar rates of evolution. Thus, the strength of selective constraints on gene sequences is affected by the topology
of the gene coexpression network. This connection is strong for the coding regions and 39 untranslated regions (UTRs),
but the 59 UTRs appear to evolve under a different regime. Surprisingly, we found no connection between the rate of
gene sequence divergence and the extent of gene expression profile divergence between human and mouse. This suggests
that distinct modes of natural selection might govern sequence versus expression divergence, and we propose a model,
based on rapid, adaptation-driven divergence and convergent evolution of gene expression patterns, for how natural
selection could influence gene expression divergence.

Introduction

The recent genomic sequencing efforts yielded
detailed lists of genes and the proteins that they encode
(Lander et al. 2001; Waterston et al. 2002), and functional
genomics studies have gone a step further by elucidating
many of the processes and interactions that individual
proteins are involved in (Ho et al. 2002; Giot et al. 2003;
Kamath et al. 2003; Li et al. 2004). Building on the
success of these high-throughput experimental approaches,
a synthetic view of how individual genes and proteins
emerge and act collectively to carry out the business of the
cell is needed to facilitate a deeper understanding of
biological function and evolution. Systems-based ap-
proaches to biology seek to meet this challenge by
emphasizing the patterns and processes that govern how
collections of biological molecules are assembled and
ordered (Pennisi 2003).

The agent that probably has been most often invoked
to explain the ordering of biological systems over time is
natural selection (Darwin 1859; Li 1997). Genome-scale
studies on natural selection have detailed many of the
factors that mitigate the effects of selection on the evolution
of gene sequences. Such surveys rely on comparisons
between evolutionary rates, which yield information about
the action of natural selection, and various quantifiable
functional genomic parameters. For instance, several
studies have demonstrated a relationship between gene
evolutionary rates and the fitness effects associated with
gene knockouts. Genes with greater fitness effects (e.g.,
essential genes) seem to evolve more slowly, on average,
than genes with smaller fitness effects (Hirsh and Fraser
2001; Jordan et al. 2002). This is taken to suggest that
essential genes evolve under stronger functional constraints
and, thus, a more severe purifying selection regime, than

nonessential genes. Similarly, genes that encode proteins
involved in numerous protein-protein interactions have
been reported to be more evolutionarily conserved than
genes encoding less-prolific interactors (Fraser et al. 2002;
Fraser, Wall, and Hirsh 2003). A recent study that dealt
with several such relationships simultaneously demon-
strated correlations between different measures of evolu-
tionary conservation and various functional genomic
parameters (Krylov et al. 2003).

However, the findings of some of these evolutionary
genomics studies have been challenged. The possibility
that the observed effects of any one genomic parameter on
evolutionary rates can be confounded by the correlations
between different genomic parameters has been raised
repeatedly. For example, some of the strongest correlations
seen are between evolutionary rates and gene expression
levels. Genes that are expressed at high levels and in
numerous tissues tend to be more conserved than genes
with lower and narrower expression patterns (Duret and
Mouchiroud 2000; Pal, Papp, and Hurst 2001; Krylov
et al. 2003; Zhang and Li 2004). When the effects of
expression level are controlled for, the correlations
between evolutionary rate and fitness effects as well as
between evolutionary rate and the number of protein-
protein interactions are mitigated (Bloom and Adami
2003; Pal, Papp, and Hurst 2003). Furthermore, when
duplicate genes were removed from consideration, the
relationship between fitness effects and evolutionary rate
disappeared (Yang, Gu, and Li 2003). These controversies
remain unsettled, and the general question of how various
functional genomic parameters interact to effect evolu-
tionary rate is open.

In addition to natural selection, an emphasis has
recently been placed on the role of fundamental physical
principles in imposing order on biological systems
(Barabasi and Oltvai 2004). Various complex biological
systems have been abstracted as networks where the nodes
in the network represent the individual parts, such as
proteins or metabolites, and the links in the network
represent the interactions between the parts (Jeong et al.

Key words: Gene expression, Human evolution, Natural selection,
Network, Self-organization, Substitution rate.

E-mail: koonin@ncbi.nlm.nih.gov.

Mol. Biol. Evol. 21(11):2058–2070. 2004
doi:10.1093/molbev/msh222
Advance Access publication July 28, 2004

Molecular Biology and Evolution vol. 21 no. 11 � Society for Molecular Biology and Evolution 2004; all rights reserved.



2000, 2001; Luscombe et al. 2002; Ravasz et al. 2002).
Studies of the statistical properties of the topologies of
such networks suggest specific mechanisms that govern
their evolution. In particular, many biological networks
show scale-free topological properties that can be ex-
plained by a model of network growth via preferential
attachment of new nodes to existing nodes that are already
highly connected (Barabasi and Albert 1999). At the
genomic level, gene duplication is thought to underlie the
phenomenon of preferential attachment (Rzhetsky and
Gomez 2001; Bhan, Galas, and Dewey 2002; Barabasi and
Oltvai 2004). Existing highly connected nodes (i.e., genes
or proteins) are more likely, simply by virtue of their large
number of connections, to be linked to nodes that are
duplicated. Because the duplicated nodes are expected to
maintain the same links as the ancestral singleton, the
connectivity of a highly connected node will increase with
duplication (Barabasi and Oltvai 2004). This process alone
can lead to network growth by preferential attachment. The
ubiquity of scale-free network topological patterns sug-
gests that network growth by preferential attachment, via
mechanisms such as gene duplication, is a fundamental
and conserved evolutionary process.

In this work, we attempted to integrate the two
perspectives of natural selection and physical self-
organization to analyze the evolution of gene sequence
and expression patterns. Comparison of human and mouse
genome sequence data was combined with the analysis of
gene expression profiles that were derived from microarray
experiments on a number of tissues in both species.
Human gene expression profiles were used to reconstruct
a network of coexpressed genes, and we demonstrate the
effect of the network topology on the strength of natural
selection as well as an unexpected relationship between
human-mouse gene sequence and gene expression di-
vergence. These results underscore the influence of
expression network self-organization on gene evolution
and suggest that distinct mechanisms are responsible for
the evolution of expression patterns and gene sequences.

Materials and Methods

Human and mouse gene expression levels were taken
from a recently published series of Affymetrix microarray
experiments (Su et al. 2002) and were retrieved from the
Gene Expression Omnibus database at the National Center
for Biotechnology Information (NCBI). The two data set
flat files—GDS181.soft (human) and GDS182.soft
(mouse)—were downloaded from ftp://ftp.ncbi.nih.gov/
pub/geo/data/gds/soft/. Affymetrix probe identifiers were
mapped to individual loci in the human and mouse
genomes using the LocusLink database (NCBI, NIH,
Bethesda). A total of 7,383 human and 6,724 mouse loci
corresponded to the probe identifiers. The results of
microarray experiments on cancerous tissues were re-
moved to yield profiles of normal mammalian tran-
scriptomes. This left data from a total of 63 human and
89 mouse microarray experiments that were subsequently
analyzed. Levels of expression, recorded as average
difference (AD) values, for redundant experiments (i.e.,
studies of the same tissue samples) were averaged before

analysis. Because negative AD values represent more
noise than signal, AD values were clipped at a value of 20.
For the purpose of determining the breadth of expression,
an AD value of 200 was taken as a threshold to consider
a gene to be expressed in a given tissue (Su et al. 2002),
and the number of tissues where a gene was expressed
was counted. For the purpose of determining the level
of expression, the sum of the log2 normalized AD values
over all tissues was taken. The similarity between gene
expression patterns was determined using the Pearson
correlation coefficient (r) (Eisen et al. 1998). Before
this correlation analysis, unexpressed genes (AD , 200
in all tissues) and nondifferentially expressed genes
(maximum AD/minimum AD , 10) were removed from
the data matrices. In addition, to control for the effects of
the overall level of gene expression, AD values were
normalized for each gene by taking the log2 value of the
ratio of the tissue-specific AD value/median AD value for
all tissues.

Pairwise correlations between gene expression pat-
terns were used to derive the gene coexpression network.
The fit of the network node degree distribution—that is,
the frequency distribution of the number of genes, f(n), that
have n coexpressed genes—to a theoretical distribution
(the generalized Pareto distribution here) was done as
previously described (Karev et al. 2002; Koonin, Wolf,
and Karev 2002). It should be noted that, because the
available node degree data span only approximately 2.5
orders of magnitude, a formal possibility remains that the
coexpression data are also compatible with models other
than the scale-free model adopted here. The clustering
coefficient (C) was calculated for each node as the ratio
of the number of the actual connections between the
neighbors of the node to the number of possible con-
nections between them (Barabasi and Oltvai 2004).

Human and mouse gene sequences were extracted
from the RefSeq database (NCBI, NIH, Bethesda). Human-
mouse orthologs were identified as reciprocal best Blast hits
between protein sequences as previously described (Jordan,
Wolf, and Koonin 2003). Human-mouse orthologous
protein sequences were aligned using ClustalW (Higgins,
Thompson, and Gibson 1996), and the protein alignments
were used to guide alignments of the corresponding
nucleotide coding sequences to ensure that they were
aligned in frame. The 59 and 39 UTR sequences were
aligned using ClustalW, and only alignments where the
shortest sequence had more than 20 residues and had no
more than 50% differences in the number of residues (i.e.,
length) between aligned sequences were used for further
analysis. Synonymous (dS) and nonsynonymous (dN) sub-
stitution rates were calculated for alignments of protein-
coding sequences using the Nei-Gojobori method (Nei and
Gojobori 1986) implemented in the PAML package (Yang
1997). The 59 and 39 UTR substitution rates (d) were
calculated using the Jukes-Cantor correction for multiple
substitutions (Jukes and Cantor 1969). Paralogous genes
were identified using an all-against-all BlastP search of the
proteins in the coexpression (r � 0.7) network with an
e-value threshold of 1025 and a coverage cutoff such
that more than 50% of the shorter protein sequence had to
be included in the high scoring segment pair.
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Comparisons between substitution rates and various
gene expression parameters (expression breadth, expression
level, and correlations) were done by sorting the rates or
rate differences in the ascending order and then binning the
sorted values into 10 equal-sized bins. Average and frac-
tional values of gene expression parameters for each sub-
stitution rate bin were compared with respect to the order of
the bins and the Spearman rank correlation (R), along with
its statistical significance (P-value at n ¼ 10 for all com-
parisons), was computed for each comparison (table 1).
Regular correlation coefficients (rXY) and partial correla-
tion coefficients (rXY�Z) were Fisher Z–transformed, and
the significance of the differences between them was calcu-
lated using a z-test.

Phyletic patterns for human genes were taken from
the eukaryotic Clusters of Orthologous Groups of proteins
(KOGs) database (Tatusov et al. 2003; Koonin et al. 2004).
For each KOG, its phyletic pattern corresponds to the
presence/absence state of the KOG member proteins
among the seven eukaryotic species included in the
database. For each phyletic pattern, a specific evolutionary
scenario was determined by mapping the states (presence
or absence) and events (gain or loss) to the species tree
of the seven organisms in KOGs using the Dollo parsi-
mony method (Farris 1977). Pairs of scenarios were then
compared to derive values of the phyletic similarity
measure. This was done by scoring the combinations of
states and events on each branch of the species tree and
summing across all branches. For each branch, the specific
combination of states and events for a pair of scenarios
was considered with respect to the branch length and
the branch specific propensities for gene gain and loss. The
branch lengths (MYR) on the species tree were taken as
described previously (Hedges et al. 2001; Krylov et al.
2003). The branch-specific relative propensities for gene
gain (PG

i ) and gene loss (PL
i ) were calculated using the

total number of gene gains and losses mapped to each
branch (Koonin et al. 2004) according to the following
formula:

PG
i ¼ Gi

X
j

Nj

.
Ni

X
j

Gj; PL
i ¼ Li

X
j

Nj

.
Ni

X
j

Lj

where Ni, Gi, and Li are the numbers of present genes,
gains, and losses mapped to the ith branch. The scoring
schemes for all possible combinations of states and events
are shown at ftp://ftp.ncbi.nih.gov/pub/koonin/Jordan/
MBE-04-0138.R1/SupplementaryTable4.doc. The sum of
scores across all branch lengths was divided by the sum
of the respective normalization scores (see table 4 in
Supplementary Material online) to provide the pattern
similarity scores (range from 21 to 1).

Results and Discussion
Expression Level and Breadth Versus
Sequence Divergence

A recent large-scale microarray study that includes
quantitative analysis of gene expression patterns for 31

human and 46 mouse tissues yielded detailed profiles of
two mammalian transcriptomes (Su et al. 2002). We used
these expression data, along with comparative human-
mouse gene sequence analysis, to evaluate the relationship
between gene sequence evolution and gene expression
divergence on a genomic scale. For each human-mouse
orthologous gene pair, the number of tissues where it is
expressed (expression breadth) and total level of expres-
sion were determined (see Materials and Methods). These
values were compared to several measures of human-
mouse orthologous gene sequence divergence: the synon-
ymous (dS) and nonsynonymous (dN) protein-coding
sequence substitution rates as well as the substitution rates
(d) for the 59 and 39 untranslated regions (UTRs). As
reported previously (Duret and Mouchiroud 2000; Pal,
Papp, and Hurst 2001; Zhang and Li 2003; Zhang and Li
2004), genes that are more widely expressed and genes
that are more highly expressed are more evolutionarily
conserved (i.e., evolve more slowly) than genes with
narrower and lower overall levels of expression (fig. 1 and
table 1, and see supplementary figure 1). The negative
correlation between expression levels and substitution
rates was more pronounced for dN than for dS (fig. 1 and
table 1, and see supplementary figure 1). This suggests that
relatively slow evolution of highly expressed genes
depends more on the strict functional constraints on the
protein structure than on adaptation of codon usage for
expression level. The connection between gene expression
and evolutionary rate was far stronger for the 39 UTRs than
for the 59 UTRs (fig. 1 and table 1, and see supplementary
figure 1). This seems to indicate that, on average, 39 UTRs
contain more cis-regulatory sites that are functionally
constrained in highly expressed genes than do 59 UTRs.
Overall, the 59 and 39 UTRs have similar rates of
evolution: the median of the ratio d(59 UTR)/d(39 UTR)
is approximately 1.12 (see supplementary figure 2a).
Furthermore, both 39 UTRs and 59 UTRs were found to
evolve somewhat slower on average than the synonymous
positions (see supplementary figures 2b and c). Thus, 59
UTRs appear to evolve under functional constraints that
are nearly as strong as those that affect the 39 UTRs and
even stronger than those for the synonymous positions of
the coding region. However, for the 59 UTRs, these
constraints appear to be unrelated to expression breadth
and level as measured here.

Human Gene Coexpression Network

Tissue-specific expression patterns of human genes
were further compared to identify coexpressed genes. For
each differentially expressed human gene, the normalized
expression levels in each of the 31 tissues were used to
construct a vector, which was compared with similarly
derived vectors of other human genes using the Pearson
correlation coefficient (r) (Eisen et al. 1998). Pairs of genes
with high r-values are considered to be coexpressed.
Values of r were determined for all pairs of human genes.
These data were used to infer a network of coexpressed
genes, where the genes are nodes that are connected by an
edge if they share an r-value greater than or equal to a
specified threshold. This was done using a series of r-value
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FIG. 1.—The dependence between expression breadth, expression level, and substitution rates of human genes. (a–d) Average (6 standard error) human gene expression breadth values for 10 ascending
bins of human-mouse orthologous gene substitution rates. (e–h) Average (6 standard error) human gene expression level values for 10 ascending bins of human-mouse orthologous gene substitution rates.
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thresholds (0.9 2 0.4), and the topological properties of
the resulting series of networks were investigated by
analyzing their node degree distributions; that is, the
frequency distributions of the number of genes, f(n), that
have n coexpressed genes. As the r-value threshold
increases, the number of edges in the network decreases,
and the node degree distribution seems to tend to a power
law distribution (see supplementary figure 3). Node degree
distributions and graphic representations of the corre-
sponding network topologies, for r � 0.9, 0.8, and 0.7, are
shown in figure 2. Because the distribution for r � 0.7
shows a good fit to a distribution with a power law tail
while still retaining enough data for meaningful statistical
analysis (fig. 2, and see supplementary figure 3), the
threshold of 0.7 was chosen for further analysis. A list
of coexpressed gene pairs at r � 0.7 is shown at ftp://
ftp.ncbi.nih.gov/pub/koonin/Jordan/MBE-04–0138.R1/
SupplementaryTable1.tab.

The node degree distribution for r � 0.7 displays a
good fit to a generalized Pareto distribution where f(n) ’
(n 1 1.34)21.17 (fig. 3a). This distribution has a power law
tail, which implies asymptotically scale-free properties
(Barabasi and Albert 1999). Such scale-free networks have
no single characteristic node degree and are dominated by
a small number of highly connected hubs (Barabasi and
Albert 1999); in this case, genes that are coexpressed with
many other genes. Similar scale-free properties have been
previously detected for node degree distributions of several
other gene expression–related parameters. For instance,

gene expression levels (Hoyle et al. 2002; Kuznetsov,
Knott, and Bonner 2002; Luscombe et al. 2002), as well as
changes in gene expression level (Ueda et al. 2004), have
been shown to follow power law distributions. Coexpres-
sion networks derived with different techniques for several
cancers (Agrawal 2002) and for yeast, plants, and animals
(Bhan, Galas, and Dewey 2002; Bergmann, Ihmels, and
Barkai 2004) also show scale-free properties. Finally,
a number of other biological and other evolving networks,
including protein-protein interactions, metabolic networks,
social contacts networks, and the Internet (Barabasi and
Albert 1999; Jeong et al. 2000, 2001; Ravasz et al. 2002;
Barabasi and Oltvai 2004) have node degree distributions
that follow a power law and, thus, imply scale-free
properties. The principal mode of evolution of scale-free
networks is thought to be preferential attachment of new
nodes to those that are already highly connected (i.e., ‘‘the
rich get richer’’ or ‘‘the fit get fitter’’ model [Barabasi and
Albert 1999]).

Obviously, there is a transitive property to the
correlation coefficients that are used to measure coex-
pression and connect nodes in the coexpression network. If
the tissue-specific expression pattern of gene A is cor-
related with that of gene B, and the pattern of gene B is
correlated with that of gene C, then one should expect
expression of gene A to be correlated with that of gene C.
However, the level of correlation between A and C is an
open question because some groups of genes can be tightly
coregulated, whereas others are only loosely coexpressed.

FIG. 2.—The human gene coexpression network. Node degree distributions and network topologies are shown for networks where coexpressed
genes (nodes) are linked if (a) r � 0.9, (b) r � 0.8, and (c) r � 0.7.
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To further evaluate the topological properties of the human
gene coexpression network, the clustering of network
nodes was analyzed. The clustering coefficient (C) of
a given node is the ratio of the number of the actual
connections between the neighbors of the node to the
number of possible connections between them (Barabasi
and Oltvai 2004). The average C for the gene coexpression
network is 0.452. This indicates a high degree of clustering
that is typical of many scale-free networks (Barabasi and
Oltvai 2004); however, the fact that C �1 indicates only
limited transitivity in the gene coexpression network
analyzed here. The shape of the dependence of C on the
node degree is thought to be indicative of the mode of
network growth (Barabasi and Oltvai 2004). Furthermore,
a plot of the clustering coefficient, C(n), versus node
degree (n) shows the absence of any clear trend between
the two (fig. 3b). C(n) ’ constant, as seen here, is
consistent with network growth by simple preferential
attachment of nodes rather than growth by the hierarchical
addition of modules that is thought to be characterized by
C(n) ’ n21 (Barabasi and Oltvai 2004).

The human gene coexpression network was examined
to assess the functional relationships between coexpressed
genes. Pairs of coexpressed genes were functionally
classified using the eukaryotic KOG database (Tatusov et
al. 2003) and the Gene Ontology database (Ashburner et
al. 2000). Using both of these approaches, approximately
17.5% of coexpressed gene pairs were found to encode

proteins with the same functional classification, a signifi-
cant (P , 0.0001) but relatively small excess over the
random expectation (;13%). However, far more striking
nonrandomness was observed when the coexpressed genes
were examined for co-occurrence of different functions:
certain combinations of seemingly related functions were
strongly preferred (ftp://ftp.ncbi.nih.gov/pub/koonin/
Jordan/MBE-04–0138.R1/SupplementaryTable2.tab). For
example, signal transduction genes are coexpressed with
those involved in secretion, transcription, and posttransla-
tional protein modification much more often than expected
by chance. This is likely to reflect coexpression of genes
coding for proteins that function together in biochemical
and signaling pathways.

A number of highly connected individual clusters
from the human gene coexpression network were further
examined with respect to the expression patterns and
functions of their member genes. The majority of these
clusters are made up of genes with narrow, if not exclusive,
tissue-specific expression patterns (see supplementary
figure 4). Examples of the topologies of two of these
clusters, along with their tissue-specific expression patterns,
are shown in figure 4. The experimentally determined and
predicted functions for the member genes of these two
clusters are generally consistent with their expression
patterns and indicate their involvement in pancreatic and
testis-related physiological functions, respectively (table 2).

Conservation and Coevolution of Coexpressed
Human Genes

For each human gene with an identifiable mouse
ortholog, the number of other human genes that it is
coexpressed with at r � 0.7 (ftp://ftp.ncbi.nih.gov/pub/
koonin/Jordan/MBE-04-0138.R1/SupplementaryTable3.tab)
was compared with its human-mouse substitution rate
(fig. 5 and table 1). Genes that have a higher number of
coexpressed genes (the node degree in the transcription
expression network) are substantially more conserved
than genes with fewer coexpressed partners. Qualitatively
identical results are seen when the mouse expression data is
used to compare the number of coexpressed mouse genes
with human-mouse evolutionary rates (see supplementary
figure 5a). As with the relationship between expression
level and evolutionary rate, the negative correlation
between the number of coexpressed genes and evolutionary
rates was strongest for dN (fig. 5). Thus, the protein
products of those genes that are hubs of the transcription
coexpression network are subject to comparatively high
levels of functional constraint, which could reflect their
essential roles in cellular processes (Hirsh and Fraser 2001;
Jordan et al. 2002; Krylov et al. 2003), multifunctionality,
and/or involvement in a large number of protein-protein
interactions (Fraser et al. 2002; Jordan, Wolf, and Koonin
2003). The negative correlation between dS and d(39 UTR)
and the number of coexpressed genes (fig. 5) is likely
to result from purifying selection maintaining tight trans-
lational regulation of genes that are highly connected in the
coexpression network. In contrast, the correlation between
d(59 UTR) and the number of coexpressed genes was not
significant (fig. 5 and table 1).
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FIG. 3.—Statistical properties of the human gene coexpression
network. (a) Node degree distribution. Number of genes, f(n), that have
exactly n coexpressed genes. Equation and line for the best fitting
distribution are shown. Probability associated with the v2 test for the
goodness of fit of the observed data to the theoretical generalized Pareto
distribution is shown. (b) Clustering coefficient (y-axis) plotted against
the node degree (x-axis). Average clustering coefficients and standard
deviations of the averages for node degree bins are shown.

Evolution and the Human Gene Coexpression Network 2063

ftp://ftp.ncbi.nih.gov/pub/koonin/
ftp://ftp.ncbi.nih.gov/pub/


Although the correlation between dN and the number
of coexpressed genes was nearly as strong as that between
dN and expression breadth and level, for dS, the latter
correlation was substantially stronger (table 1). This is not
surprising, because codon usage adaptation is particularly
important for highly expressed genes (Carbone, Zinovyev,
and Kepes 2003). Partial correlation, rXY�Z where X ¼
number of coexpressed genes, Y ¼ substitution rate, and
Z¼ expression level, was used to control for the effects of
expression level on the relationship between the number of
coexpressed genes and substitution rates. In all cases
where the substitution rate was found to be significantly
correlated with the number of coexpressed genes—dN,
dS, and d(39 UTR) (table 1)—the application of partial
correlation did not result in any significant decrease of the
correlation coefficient; that is, rXY�Z is not significantly
smaller than rXY (0.38 , P , 0.56). Thus, the effect of
the number of coexpressed genes on substitution rates is
not based on any correlation between the number of
coexpressed genes and the expression level.

The relationship between gene coexpression and
evolutionary rate was further examined by comparing the
r-values between pairs of human gene expression patterns
with their pairwise gene substitution rate differences (fig. 6
and table 1). The results show that bins of human genes
with similar values of dN between human and mouse (i.e.,
those genes that evolve at similar rates) have a greater
fraction of pairwise r-values � 0.7. This negative

correlation was substantial and statistically significant
(fig. 6 and table 1). In contrast, the pairwise dS difference
between human genes did not correlate with the difference
in expression patterns (fig. 6). Thus, genes with similar
patterns of expression tend to evolve at similar rates, and
the selection that leads to such coevolution appears to
operate primarily at the protein sequence level. The dif-
ference in evolution rates of 59 and 39 UTRs also neg-
atively correlated with pairwise r-values between human
gene expression patterns, although the effect, statistically
significant because of the large number of analyzed gene
pairs (table 1), was not nearly as pronounced as seen for
dN (fig. 6). As with other comparisons between evolu-
tionary rate and expression patterns, the magnitude of this
relationship was greater for 39 UTRs, suggesting that this
region is more functionally relevant than the 59 UTR with
respect to the pattern of gene expression. Qualitatively
identical results are seen when the mouse expression data
was used to compare r-values between pairs of mouse
genes with pairwise human-mouse gene substitution rate
differences (see supplementary figure 5b).

The connection between gene coexpression and
evolutionary conservation on a longer timescale was
investigated by considering the expression data along
with the patterns of phyletic distribution inferred from
the recently developed collection of eukaryotic KOGs
(Tatusov et al. 2003; Koonin et al. 2004). Each human
gene was mapped to a specific KOG and assigned

FIG. 4.—Two highly connected gene expression clusters form the human gene coexpression network. (a) Nodes correspond to genes and are
labeled with LocusLink ID numbers. All links between genes correspond to coexpression at r � 0.9. (b) Tissue-specific gene expression patterns of the
cluster members. Genes (rows) are labeled with LocusLink ID numbers. Relative levels (log2 ratios) of expression are shown for each gene in each
tissue; green cells show underexpression relative to the median, black cells show median expression levels, and red cells show overexpression.
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a phyletic pattern; that is, the pattern of presence/absence
of orthologous genes from the given KOG among seven
eukaryotic species. The phyletic patterns of KOGs were
compared to determine their similarity in terms of
propensities for gene gain and loss over the approximately
1.8 billion years of eukaryotic crown group evolution
(Krylov et al. 2003). A statistically significant positive
correlation was detected between the similarity of evolu-
tionary patterns of gain-loss and the level of coexpression
among pairs of human genes (fig. 7 and table 1). Thus,
coexpressed genes tend to evolve under similar long-term
evolutionary constraints.

Human-Mouse Sequence Divergence Versus Expression
Profile Divergence

Expression data collected for human and mouse were
further compared to assess levels of regulatory divergence

(divergence of expression profiles) between orthologous
genes in the two species. From the original series of
microarray experiments (Su et al. 2002), 19 tissues that
were studied in both human and mouse were identified.
Relative levels of gene expression across these tissues in
both species were taken as vectors, and pairs of vectors
for human-mouse orthologous genes were compared to
measure the extent of regulatory divergence between
species. In a general agreement with the original report (Su
et al. 2002), the r-values for orthologs displayed a narrow
distribution with the median at approximately 0.4. This
was in sharp contrast to the distribution of r-values for
nonorthologous human and mouse genes, which had
a median of approximately 0 (fig. 8). The difference
between the two distributions is highly statistically
significant (P � 10210). Surprisingly, however, when
the resulting r-values were compared with the levels of
sequence divergence to determine whether sequence and
regulatory divergence were correlated, no significant
correlation between the human-mouse expression pattern
divergence and the four different measures, dN, dS,
d(59 UTR), and d(39 UTR), of human-mouse sequence
divergence was detected (fig. 9 and table 1). This finding
stands in contrast with the results of the recent analysis of
the connection between the sequence and expression
divergence between paralogous human genes, where a
significant negative correlation was observed between
the correlation coefficients of the expression profiles and
sequence divergence (Makova and Li 2003). However, an
earlier study of yeast duplicate genes found no correlation

phyletic similarity
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FIG. 7.—Coexpressed human genes have similar phyletic patterns.
The fractions of coexpressed gene pairs (r � 0.7) are shown for 10
ascending bins of phyletic similarity values (see Materials and Methods).

Table 1
Evolutionary Rate Versus Gene Expression Comparisons

Comparison Ra Pb nc

dN vs. expression breadth 21.000 5.5e–7 3,906
dS vs. expression breadth 20.976 2.1e–5 3,906
59 UTR d vs. expression breadth 20.539 ns 1,121
39 UTR d vs. expression breadth 20.964 4.9e–5 1,438

dN vs. expression level 21.000 5.5e–7 3,906
dS vs. expression level 20.952 1.1e–4 3,906
59 UTR d vs. expression level 20.624 ns 1,121
39 UTR d vs. expression level 20.964 4.9e–5 1,438

dN vs. number coexpressed genes 20.964 4.9e–5 2,307
dS vs. number coexpressed genes 20.746 1.7e–2 2,307
59 UTR d vs. number coexpressed
genes 20.588 ns 1,119

39 UTR d vs. number coexpressed
genes 20.818 5.8e–3 1,436

dN difference vs. fraction r � 0.7 20.976 2.1e–5 2,659,971
dS difference vs. fraction r � 0.7 20.249 ns 2,659,971
59 UTR d difference vs. fraction
r � 0.7 20.812 5.8e–3 625,521

39 UTR d difference vs. fraction
r � 0.7 20.867 2.2e–3 1,030,330

dN vs. expression divergence 0.139 ns 551
dS vs. expression divergence 20.079 ns 551
59 UTR d vs. expression divergence 0.164 ns 273
39 UTR d vs. expression divergence 20.552 ns 382

a Spearman rank correlation coefficient for the average expression parameter

value against the 10 bins of substitution rate values (see figures 1 and 3–5).
b Level of significance (n ¼ 10) associated with R values; ns ¼ nonsignifi-

cant (i.e., P � 0.05)
c The total number of comparisons that were binned.
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between gene sequence and gene expression pattern
divergence (Wagner 2000). The apparent disparity be-
tween orthologs and paralogs in terms of expression
evolution in mammals seems to suggest unexpected
differences in the evolutionary modes and deserves further
investigation.

Conclusion

The results described here indicate that mammalian
coexpressed genes form a scale-free network, which
probably evolved by self-organization based on the
preferential attachment principle. One possible mechanism

of this evolution is the duplication of genes together with
their transcriptional control regions, as suggested for the
yeast coexpression network (Bhan, Galas, and Dewey
2002). An examination of the contribution of paralogous
gene pairs to the gene coexpression network analyzed here
indicates that such duplicated pairs (see Materials and
Methods) are found approximately two times more
frequently than expected by chance (P � 10210).
However, the fraction of coexpressed gene pairs that are
related by duplication is small (0.28%), suggesting that
duplication may not be a major force affecting the
structure of the gene coexpression network. This finding
seems to be consistent with an analysis of yeast protein

Table 2
Examples of Two Human Gene Coexpression Network Clusters

Locus Link ID/GenBank accessiona Gene Symbolb Annotationc Physiological Function

A Pancreas-Specific Gene Cluster

1208/P16233 CLPS colipase preproprotein Pancreatic digestive enzyme
1357/NP_001859 CPA1 pancreatic carboxypeptidase A1 precursor Pancreatic digestive enzyme
1358/NP_001860 CPA2 pancreatic carboxypeptidase A2 precursor Pancreatic digestive enzyme
2641/P01275 GCG glucagon preproprotein Pancreatic islet hormone
2813/AAB19240 GP2 glycoprotein 2 (zymogen granule

membrane)
The major membrane protein in the
secretory granule of the
exocrine pancreas

2906/AAB49992 GRIN2D N-methyl-D-aspartate receptor subunit
2D precursor

Implicated in pancreatic hormone
secretionPMID: 7768362

148223/ NP_689695 hypothetical protein FLJ36666 Uncharacterized protein
25803/NP_036523 SPDEF SAM pointed domain–containing ets

transcription factor
Prostate epithelium-specific transcription
factor

84444/NP_115871 histone methyltransferase DOT1L Regulator of gene dynamics and
chromatin activity

9436/NP_004819 NCR2 natural cytotoxicity triggering receptor–2 Mediator of killer cells’cytotoxicity
9610/AAB67270 RIN1 ras inhibitor RIN1 A dominant negative inhibitor of the

RAS signaling pathway
9753/AAH41661 ZNF305 zinc finger protein–305 Predicted transcription regulator

A Testis-Specific Gene Cluster

6847/Q15431 SYCP1 synaptonemal complex protein–1 Major component of the transverse
filaments of synaptonemal
complexes during meiotic prophase

10388/ Q9BX26 SYCP2 synaptonemal complex protein–2 Major component of the axial/lateral
elements of synaptonemal complexes
during meiotic prophase

27285/NP_055281 TEKT2 tektin 2 Major sperm microtubule protein
8852/NP_647450 AKAP4 A-kinase anchor protein–4 isoform 2 Major sperm sheath protein
676/ AAB87862 BRDT testis-specific bromodomain protein Testis-specific chromatin-associated protein

involved in chromatin remodeling
11077/ O75031 HSF2BP heat shock transcription factor–2 binding

protein
Implicated in modulating HSF2
activation in testis

7180/P16562 CRISP2 testis-specific protein–1 Probable sperm-coating glycoprotein
11116/NP_919410 FGFR1OP FGFR1 oncogene partner isoform b Implicated in the proliferation and

differentiation of the erythroid lineage
4291/P58340 MLF1 myeloid leukemia factor–1 Uncharacterized protein implicated in

cell proliferation
5261/AAH02541 PHKG2 phosphorylase kinase, gamma 2 (testis) Testis/liver-specific regulator of

glycogen metabolism
54344/ O94777 DPM3 dolichyl-phosphate mannosyltransferase

polypeptide–3 isoform 2
Regulator of dolichyl-phosphate mannose
biosynthesis. Might be important for
sperm maturation PMID: 6231179

7288/O00295 TULP2 tubby-like protein–2 Retina-specific and testis-specific
heterotrimeric G-protein–responsive
intracellular signaling factor

51460/NP_057413 SFMBT1 Scm-like with four mbt domains–1 Polycomb group transcription regulator
114049/ NP_684281 WBSCR22 Williams Beuren syndrome chromosome

region 22 protein
tRNA 5-cytosine methylase

a Locus Link identification numbers and GenBank accessions from NCBI’s LocusLink database, http://www.ncbi.nlm.nih.gov/LocusLink/index.html.
b Official gene symbol from the Human Genome Organization (HUGO), http://www.gene.ucl.ac.uk/nomenclature/
c Official HUGO gene name.
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interaction networks, which showed that the network
structure is not predominantly shaped by duplication
(Wagner 2003).

Our results show that overall levels of expression
and more specific topological properties of the gene co-
expression network are clearly related to the rates of
sequence evolution: highly connected network hubs tend
to evolve slowly, and genes that are coexpressed show
a strong tendency to evolve at similar rates. These
relationships most likely reflect purifying selection, which
appears to act primarily at the level of the protein
sequence. Generally, these results are compatible with
the notion of greater biological importance of highly
connected nodes of biological networks (Jeong et al.
2001). However, two of the findings reported here appear
to be distinctly surprising. Firstly, we found that the
connection between gene coexpression network topology
and sequence evolution held for both nonsynonymous and
synonymous sites in the coding sequence and 39 UTR but
not for the 59 UTR. Thus, the constraints on 59 UTR
evolution appear to be unrelated to expression regulation
as analyzed here. Secondly, we found that, although the
expression profiles of orthologs tend to be strongly
correlated, they diverged at roughly the same rate across
a wide range of sequence evolution rates. Thus, unlike the
properties of the gene coexpression network, evolution of
an individual gene’s expression regulation after speciation
seems to be uncoupled from the functional constraints on
the gene’s sequence. This is generally compatible with
the pregenomic notion that regulatory evolution could be
the decisive factor of biological diversification between
species (Britten and Davidson 1969; King and Wilson
1975) and can be taken to suggest that sequence diver-
gence and expression pattern divergence are governed by
distinct forces.

Recent studies have reported the rapid diversification
of gene expression patterns and suggested that this might
reflect neutral evolution of transcriptional regulation
(Khaitovich et al. 2004; Yanai, Graur and Ophir 2004).
The lack of correlation between sequence divergence and
expression profile divergence demonstrated here could be
deemed as compatible with the neutral model whereby
transcription profiles of orthologs diverge rapidly upon
speciation until they reach a basal level of similarity that is
then maintained by purifying selection. However, it is
tempting to speculate as to a distinct role for natural
selection in driving expression pattern divergence. Perhaps,
whereas sequence divergence levels are determined largely
by purifying selection, the effects of adaptive (diversifying)
selection are more prevalent at the level of gene expression.
Under this hypothetical scenario, although the basal level of
correlation between orthologs tends to persist, probably
reflecting the conservation of the general function, the
aspects of the gene expression patterns that reflect species-
specific changes, governed in part by short, degenerate
transcription factor–binding sites, would be expected to
diverge rapidly. Indeed, our analysis of the relationship
between gene coexpression in this work and gene
duplication, as well as previous results (Gu et al. 2002),
suggest rapid divergence of expression patterns after
duplication. Once the expression patterns of homologous
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genes (paralogs or orthologs) diverge, convergent evolu-
tion, which is a hallmark of adaptation and is widely evident
for phenotypic characters, could cause unrelated genes to
achieve similar expression patterns. This convergence could
be related to the rapid de novo generation of transcription
factor–binding sites in promoters that lead to slight changes
in expression patterns. If the functionally relevant aspects
of the ancestral expression pattern are maintained during
this process, subtle expression pattern changes would be
simultaneously invisible to purifying selection and serve as
the raw material for repeated trials of adaptive selection.
This hypothesis yields a specific prediction with regard to
the evolution of promoter regions that is currently being
investigated. Expression profiles are predicted to be more
correlated with the distributions of specific transcription
factor–binding sites along promoters than with the overall
sequence divergence (i.e., relatedness) between promoters.
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Supplementary Material

Supplementary Figure 1.—The dependence between
expression breadth, level, and substitution rates of mouse
genes. (a–d) Average (6 standard error) expression
breadth values for 10 ascending bins of human-mouse
orthologous gene substitution rates. (e–h) Average (6
standard error) expression level values for 10 ascending
bins of human-mouse orthologous gene substitution rates.

Supplementary Figure 2.—Frequency distributions of
human-mouse substitution rate ratios. Ratios shown in
log scale. (a) d(59 UTR)/d(39 UTR). d(59 UTR)/d(39 UTR)
is shown in log scale. In 43% of genes, d(59 UTR) ,
d(39UTR), whereas in 57% d(39 UTR) , d(59 UTR). (b)
d(59 UTR)/dS. (c) d(39 UTR/dS).

Supplementary Figure 3.—Frequency distributions of
the number of links per node in human gene coexpression
networks. For each network, the correlation coefficient
value (r) threshold used to determine whether any two
genes (nodes) are considered to be coexpressed (linked)
are shown above the plot. The slope of the linear trend line
that fits the data and the r2 value indicating the goodness of
fit to the power law are shown for each network plot.

Supplementary Figure 4.—Tissue-specific expression
patterns for human gene coexpression network (r � 0.9)
clusters. Cluster expression patterns: 1, adult and fetal liver;
2, fetal liver; 3, testis; 4, pancreas; 5, testis and umbilical
vein; 6, various brain tissues; 7, salivary gland; 8, adult
liver; 9, thymus; 10, spleen; 11, lung; 12, cerebellum.

Supplementary Figure 5.—Relationship between the
mouse coexpression network topology and substitution
rates. (a) The dependence between the node degree and
substitution rate. Average (6 standard error) numbers of
coexpressed genes (node degree for r � 0.7) per gene for
10 ascending bins of human-mouse orthologous gene sub-
stitution rates are shown. (b) Coexpressedmouse genes have
similar substitution rates. Fractions of pairwise correlation

coefficient values, where r � 0.7 between mouse genes, are
shown for 10 ascending bins of pairwise human-mouse
orthologous gene substitution rate differences.
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