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1 Introduction

In four-dimensional gravity, the analysis of asymptotically flat spacetimes at null infinity [1,
2] has led to the Bondi mass loss formula, which states that the mass of the system decreases
in time due to the emission of gravitational waves. This theoretical result was one of the
striking arguments to prove the existence of the gravitational waves at a non-linear level of
the theory. The non-conservation of charges is therefore an important ingredient to describe
the dynamics of the system [3–5]. When applying covariant phase space methods [6–12] to
derive the gravitational charges from first principles, non-conservation has been observed
to be related to non-integrability of the charges [13–15].

This non-integrability is often considered as an unpleasant property since it implies that
the finite charge expressions depend on the particular path that one chooses to integrate on
the solution space, which is a typical feature of a dissipative system. Several prescriptions
have been proposed to isolate meaningful integrable parts in the charge expressions [13, 16–
22]. These procedures require additional inputs in the theory, which rely on the context
and the specific motivations. An alternative approach is to keep the full non-integrable
expressions and try to make sense of them. An important technical result going into this
direction is the Barnich-Troessaert bracket [14] that allows one to derive mathematically
consistent charge algebras for non-integrable charges. This bracket has then been used in
many different contexts [15, 19, 21, 23–27] and the associated charge algebras have been
shown to be physically extremely relevant since they contain all the information about the
flux-balance laws of the theory [13, 28, 29].

Recently, progress has been made in understanding the relation between non-
conservation and non-integrability of the charges. In [30], it was proposed that no “genuine”
flux passing through the boundary is equivalent to the existence of a particular slicing of
the phase space for which the charges are integrable. This conjecture has been shown to
hold for generic hypersurfaces in the bulk for topological theories [30] and some prelim-
inary results suggest that it is also true in four-dimensional gravity [31]. A natural but
non-trivial question that we explore in this work is whether this conjecture is also applicable
for asymptotic boundaries.

A widely used gauge to study asymptotic boundaries is the Bondi gauge [1, 2, 32,
33]. Indeed, it is particularly well-adapted to investigate the interplay between radiation
and symmetries [17, 19, 28, 34–39]. Furthermore, it allows us to consider simultaneously
asymptotically locally flat spacetimes exhibiting null boundaries and asymptotically locally
AdS spacetimes with timelike boundaries [26, 40–45]. The analyses of these two types of
asymptotics are related through a flat limit process [40, 46, 47].

To consider asymptotically locally AdS and flat spacetimes in Bondi gauge, one has
to allow the boundary structure to fluctuate [19, 26, 36, 41–43, 48]. These mild falloffs
led to the proposal of an infinite-dimensional enhancement of the BMS group with smooth
superrotations in the flat case [19, 36, 48] and the discovery of BMS-like symmetries in
presence of non-vanishing cosmological constant [26, 47]. Fluctuations of the boundary
structure are compatible with conformal compactification of the spacetime [49], but involve
some divergences at the level of the symplectic structure [19, 26, 50]. While the holographic
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renormalization procedure is well understood in asymptotically locally AdS spacetimes
written in Fefferman-Graham gauge [26, 27, 51–53], it is less clear how this works in Bondi
gauge. One of the main objectives of this paper is to make one step further into that
endeavour and investigate this question in lower-dimensional gravity.

More precisely, in this work, we address the questions of conservation, integrability
and renormalization of the charges in the framework of two-dimensional dilaton gravity
and three-dimensional Einstein’s gravity theories (see e.g. [54–56]) in Bondi gauge. Indeed,
these models share the common feature to have no local propagating degrees of freedom
in the bulk of the spacetime. As such they provide a useful arena for investigating new
concepts and ideas.

Analogously to the aforementioned higher-dimensional case, considering fluctuations
of the boundary structure in lower-dimensional gravity theories unveils new asymp-
totic symmetries and the phase space analysis yields non-conserved and a priori non-
integrable charges at the asymptotic boundary. Since the theories are topological, the non-
integrability and non-conservation are not due to the leak of gravitational waves through
the spacetime boundary. Instead, these features can be seen as implied by the presence of
external sources encoded in the fluctuations of the boundary structure [27, 57, 58]. In this
picture, the gravitational system is therefore seen as an open dissipative system. Freezing
the fluctuations of the boundary structure, which amounts to turn off the sources, yields
back a closed system. The precise nature of the external sources depends on the environ-
ment that one is considering. However, the analysis of the asymptotic structure does not
require to provide a specific environment and one can directly work with the open system.

Analysing non-conservation, non-integrability and renormalization of the charges in
two and three dimensions is definitely worthwhile since this sets the stage for similar in-
vestigations in higher dimensions. Beyond these technical considerations, the boundary
conditions with fluctuating boundary structure that we consider may also have their own
physical interest in lower-dimensional gravity theories. An example where they may be
relevant appears in the recent analysis of the black hole information paradox to derive
the Page curve from quantum gravity path integral arguments in two dimensions [59, 60]
(see also [61, 62]). In this context, it has been useful to couple the gravitational system
with an environment so that the black hole can evaporate in AdS. Our considerations
of fluctuating boundary conditions makes this construction explicit at the level of the
asymptotic structure. Another context where the fluctuating boundary structure is rele-
vant appears when considering brane worlds interacting with ambient higher-dimensional
spacetimes [63–65]. This picture naturally yields fluctuations of the boundary metric and
induced quantum gravity on the boundary [53]. Finally, let us mention that a specific ex-
ample which reinforces the physical relevance of this type of relaxed boundary conditions
has been investigated recently in asymptotically locally AdS3 spacetimes, where the non-
conservation of the charges has been interpreted as an anomalous Ward-Takahashi identity
in the dual theory [66].

At a technical level, our motivation to work in the second order metric formalism is
twofold: it has the great advantage to be very intuitive when imposing boundary conditions
on the metric components and the results can be extended to the treatment of higher-
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dimensional cases without conceptual obstructions. For related works in other formalisms
see e.g. [24, 67–81]. Note that it is expected that different formalisms lead to different
symmetry algebras [77].

Summary of the results. Our analysis provides some new results concerning the quest
of the most general boundary conditions in two dimensions for a generic class of models that
contains JT [82, 83] and CGHS [84] gravity theories. Indeed, as suggested in [67, 68] (see
also [25, 42, 43]), fixing the gauge completely in the analysis of asymptotics seems to elimi-
nate some potentially interesting asymptotic symmetries and associated towers of charges.
In this work, we construct the maximal asymptotic symmetry algebra that one can obtain in
two-dimensional gravity theories by imposing only partial gauge fixing on the components
of the metric and very mild falloffs. After a renormalization procedure of the on-shell action
and the symplectic structure involving covariant counter-terms [53, 85–88], we obtain finite
charge expressions that we render integrable through a field-dependent redefinition of the
symmetry parameters [12, 30, 66, 89–91]. The asymptotic symmetry algebra is given by
the direct sum of three abelian Lie algebras of smooth functions C∞(R)⊕C∞(R)⊕C∞(R).
The associated charge algebra is shown to be centrally extended, exhibiting a Heisenberg
subalgebra. Finally, a notion of flat limit is discussed between JT and CGHS gravity the-
ories to relate the analysis performed in the different types of asymptotics [92, 93] (see
also [94–96] and references therein).

In three dimensions, the rigidity of the Bondi gauge fixing does not allow us to pre-
tend for the most general boundary conditions [42, 43]. However, our analysis investigates
new boundary conditions that encompass those considered previously in the literature (see
e.g. [33, 40, 97]). Furthermore, this set-up is sufficient to illustrate our techniques on renor-
malization and integrability of non-conserved charges. After performing the holographic
renormalization of the action and the symplectic structure in Bondi gauge using covariant
counter-terms [27, 53, 85, 86, 98] and corner terms [26, 98], we obtain the gravitational
charges associated with the solution space derived in [42, 43] that includes fluctuating
boundary structure. Again, we find the appropriate field-dependent redefinition of the pa-
rameters to render the charges integrable [12, 30, 66, 89–91]. In asymptotically locally AdS3
spacetimes (respectively asymptotically locally flat spacetimes), the asymptotic symmetry
algebra is given by a Lie algebroid [99] with a one-dimensional base space parametrized
by the time u on the boundary and with a Diff(S1)⊕Diff(S1) (respectively BMS3) algebra
at each value of u. The charge algebra involves a central extension that reduces to the
standard expressions when fixing the boundary structure: in asymptotically AdS3 space-
times, it reduces to the Brown-Henneaux central extension [97], while in asymptotically
flat spacetimes, it reproduces the BMS3 central extension [100].

Organization of the paper. The paper is organized as follows. In section 2, we review
the notions of non-conservation and non-integrability in the covariant phase space formal-
ism, and mention the implication of the non-conservation at the level of the variational
principle of the theory. In particular, we propose a refinement of the variational principle
to accommodate open systems. In section 3, we present our results in two dimensions.
More specifically, we apply the covariant phase space methods on a very general class of
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two-dimensional dilaton gravity models that includes JT and CGHS gravity theories. Then,
we specify our analysis to the Bondi gauge with linear dilaton, keeping an arbitrary poten-
tial. We discuss the solution space (see also appendix A), renormalize the action principle
and the symplectic structure, derive the corresponding finite surface charges associated
with the asymptotic symmetries, compute the charge algebra and discuss the flat limit. In
section 4, we repeat this analysis for three-dimensional gravity theory. We conclude the
discussion in the last section by providing further comments on the results.

2 Conservation and integrability in the covariant phase space formalism

In this section, we review the notions of non-conservation and non-integrability of charges.
In particular, we explain the implication of non-conservation on the variational principle.
We also review how the notion of integrability can be formulated as a Pfaff problem, which
makes the field-dependent redefinitions of the symmetry parameters very natural.

2.1 Conservation and variational principle

In the covariant phase space formalism [6–12, 101], the infinitesimal charges associated with
the asymptotic symmetry parameters ξ are computed by integrating some co-dimension 2
forms1 kξ[φ; δφ] on a co-dimension 2 surface at infinity2 S∞ as

/δQξ[φ] =
∫
S∞

kξ[φ; δφ] (2.1)

where φ denotes the dynamical fields of the theory. As we will see later in the text, one
can either use the Barnich-Brandt [10–12] or the Iyer-Wald [7–9, 13] methods to construct
this co-dimension 2 form. For the purpose of this discussion, we take the later point of
view that we briefly review now.

Starting from a Lagrangian field theory L = L[φ], the presymplectic potential Θ[φ; δφ]
is obtained by taking a variation on the field space

δL[φ] = δL[φ]
δφ

δφ+ dΘ[φ; δφ] . (2.2)

This presymplectic potential is defined up to a δ-exact co-dimension 1 form δA[φ] and up
to a d-exact co-dimension 1 form dY [φ; δφ], namely

Θ[φ; δφ]→ Θ[φ; δφ] + δA[φ] + dY [φ; δφ] . (2.3)

The δ-exact ambiguity is coming from the freedom to add boundary terms to the bulk
Lagrangian L[φ] → L[φ] + dA[φ]. It can be fixed by prescribing the action principle S.

1Our convention for the components of differential forms is the following: a co-dimension p form (or
a (n − p)-form, where n is the spacetime dimension) α is written as α = αµ1...µp (dn−px)µ1...µp with
(dn−px)µ1...µp = 1

p!(n−p)! εµ1...µpν1...νn−pdx
ν1 ∧ . . . ∧ dxνn−p .

2In two dimensions, S∞ is a point on a boundary. In three dimensions, it corresponds to a circle S1 on
the boundary.
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The d-exact term in (2.3) is due to the fact that d2 = 0 so that (2.2) remains unaffected
by adding this term.3 The presymplectic current is then defined through

ω[φ; δ1φ, δ2φ] = δ2Θ[φ; δ1φ]− δ1Θ[φ; δ2φ] . (2.4)

Notice that from (2.3), it is defined up to the ambiguity

ω[φ; δ1φ, δ2φ]→ ω[φ; δ1φ, δ2φ] + δ2dY [φ; δ1φ]− δ1dY [φ; δ2φ] . (2.5)

In particular, the δ-exact ambiguity in (2.3) does not influence the presymplic current,
neither the charges. The presymplectic potential is related to the on-shell variation of the
action through

δS =
∫

I
Θ[φ; δφ] (2.6)

where we consider only timelike or null spacetime boundaries I .
The Iyer-Wald co-dimension 2-form kξ[φ; δφ] appearing in (2.1) can be defined on-shell

through
dkξ[φ; δφ] = ω[φ; δξφ, δφ] (2.7)

(see sections 3.1 and 4.1 for explicit constructions). It is determined up to a d-exact co-
dimension 2 form kξ[φ; δφ]→ kξ[φ; δφ]+dMξ[φ; δφ]. This ambiguity does not play any role
when integrating on a compact co-dimension 2 surface as in (2.1). Of course, the ambiguity
in the presymplectic current (2.5) brings some non-trivial modifications at the level of the
co-dimension 2 form kξ[φ; δφ]. In particular, this ambiguity will be used in the following
to renormalize the divergences arising in the symplectic structure.

The non-conservation of the infinitesimal charge (2.1) is completely controlled by the
breaking in the closure of the co-dimension 2 form kξ[φ; δφ] in (2.7). In particular, if the
pull-back of the on-shell presymplectic current vanishes on the spacetime boundary I , i.e.

ω[φ; δ1φ, δ2φ]|I = 0 , (2.8)

the infinitesimal charge will be conserved in time. Notice that in this case, the pull-back
of the presymplectlic potential is necessarily a δ-exact term, i.e. Θ[φ; δφ]|I = δB[φ]. This
implies that one can add a boundary term to the action,

S → S −
∫

I
B[φ] (2.9)

so that the variational principle is stationary on-shell, i.e. δS = 0 (see (2.6)). In asymptoti-
cally AdS spacetimes, following the terminology of [27], boundary conditions that fulfil the
requirement (2.8) are called conservative boundary conditions. The archetype of those is
given by the Dirichlet boundary conditions which freeze completely the boundary metric.

As argued in [27], considering leaky boundary conditions, namely boundary conditions
for which

ω[φ; δ1φ, δ2φ]|I 6= 0 (2.10)
3See for e.g.[77] for a prescription to fix the d-exact ambiguity.
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is appealing. While this type of boundary conditions is mandatory when considering ra-
diative asymptotically flat spacetimes at null infinity in four dimensions, their analysis in
asymptotically AdS spacetimes is very recent and their implication on the AdS/CFT is still
to be uncovered. Importantly, for leaky boundary conditions, the presymplectic potential
is not δ-exact and one cannot obtain a well-defined variational principle satisfying δS = 0
on-shell. We therefore impose refined criteria to (partially) fix the boundary terms of the
action:

• The action principle is well-defined when restricting to Dirichlet boundary conditions,
namely we recover the standard result δS = 0 on-shell.4 This allows us to interpret
the fluctuations of the boundary structure as external sources responsible for the
non-conservation of the infinitesimal charges.

• The action is finite on-shell. Indeed, the Euclidean version of the on-shell action is
associated to the free energy of the system in the canonical ensemble.5 This finiteness
requirement will allow us to prescribe covariant counter-terms to renormalize the
symplectic structure.

Moreover, in this work, we require that the action admits a well-defined flat limit. This
requirement only makes sense when one is considering a solution space that admits a well-
defined flat limit, which is the case in Bondi gauge.

We believe that these three requirements are the natural criteria to impose in presence
of leaky boundary conditions in order to prescribe meaningful boundary terms for the
action. We will illustrate them in the explicit examples considered below and perform the
appropriate holographic renormalization (see sections 3.3.1 and 4.3.1).

Notice that leaky boundary conditions imply that we are dealing with an open gravi-
tational system where the external sources are encoded in the variations of the boundary
structure. In other words, the fluctuations of the boundary structure can be interpreted as
boundary degrees of freedom that couple with the gravitational system. The fact that the
action is not stationary on solutions arises because we do not include the environment into
the analysis. Indeed, the investigation of asymptotics does not require to know the precise
nature of this environment. Including the latter into the analysis would impose some spe-
cific dynamics for the sources and restore the stationarity of the action on the solutions.6
A typical example would be to take the boundary at finite distance and interpret it as a
brane world in AdS with induced gravity [63, 64].

2.2 Integrability

Let us now discuss the notion of integrability of the charges. The infinitesimal charge (2.1)
is a 1-form on the solution space. It can be integrated on a path γ in the solution space to

4Notice that the first requirement echoes the Dirichlet flux condition imposed in [21] when considering
non-vanishing flux in the phase space analysis.

5However, see e.g. [87, 102–104] for examples where the requirement of finite free energy has to be refined.
6For instance, in the context of electromagnetism at spatial infinity, boundary degrees of freedom with

constrained dynamics are introduced and lead to a well-defined action principle [105, 106].
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obtain the surface charge expression

Qξ[φ] =
∫
γ
/δQξ[φ] +Nξ (2.11)

where Nξ is the value of the charge at the reference solution. This integration on the
solution space is path-independent if and only if the infinitesimal charge is δ-exact, i.e.
/δQξ[φ] ≡ δQξ[φ]. If the infinitesimal charge is δ-exact, we say that it is integrable. If this
is not the case, we say that it is non-integrable.

As explained in [12], given an infinitesimal charge expression, the question whether or
not it is possible to find an integrable charge by performing a field-dependent redefinition
of the parameters can be addressed more precisely as a Pfaff system on the solution space
governed by the Frobenius theorem.7 Let x be the spacetime coordinates and φ = φ(x; a)
the solutions of the equations of motion parametrized by a = (aA), A = 1, . . . , p. Let
us also write ξ = ξ(x; a, b) the asymptotic symmetry generators involving the solution
space parameters a and depending linearly on symmetry parameters b = (bi), i = 1 . . . q.
The generators ei(x, a) = ∂

∂bi
ξ(x; a, b), i = 1, . . . , q, form a basis of the Lie algebra at a

given point in the solution space.8 Now, we consider the set of 1-forms on the solution
space θi[a, δa] = /δQei [φ(x; a); δφ(x; a)]. The question of integrability can be formulated as
follows: is it possible to find a field-dependent invertible q × q matrix Sij(a) such that

δQfj [φ(x; a); δφ(x; a)] = Sij(a)θi[a, δa] = /δQSij(a)ei [φ(x; a); δφ(x; a)] (2.12)

where fj = Sij(a)ei? If the answer is yes, then the charges are integrable and the integration
of the expressions δQfj [φ; δφ] on the solution as in (2.11) is path independent.

While the problem is well posed, it is not clear to know a priori whether a generic
system is integrable or not. Nevertheless, in the absence of propagating degrees of freedom
passing through the boundary, it is physically expected that a slicing of the phase space
for which the charges are integrable can be found [30]. In equations (3.44) and (4.38)
below, we will see two explicit examples of field-dependent redefinition as in (2.12) (see
also [66, 89–91] for other examples).

Another interesting aspect is that if there exists an integrable slicing of the phase
space, then it is not unique. In general there is an infinite number of slicings preserving
the integrability of the charges. See [30] for an explicit discussion.

3 Gravity in two dimensions

We now apply the general framework presented in section 2 to the case of two-dimensional
dilaton gravity.

3.1 Phase space of dilaton gravity models

In two-dimensional dilaton gravity, the dynamical fields of the theory are the metric gµν
and the dilaton scalar field X. Writing φ = (gµν , X) with (xµ) = (x0, x1), we consider the

7See e.g. [107] for a relevant discussion on Pfaff systems in a physical context.
8A structure of Lie algebroid emerges naturally in the context of gauge symmetries and asymptotic

symmetries [99, 108, 109].

– 7 –



J
H
E
P
0
4
(
2
0
2
1
)
0
3
4

general class of dilaton gravity models

LDGT[φ] =
√
−g

16πG [RX − U(X)(∇X)2 − 2V (X)] (3.1)

where U(X) and V (X) are potentials that are functions of the dilaton field X (see e.g. [55]
for a review). This contains an important class of two-dimensional dilaton gravity theories,
including JT gravity [82, 83]

LJT[φ] =
√
−g

16πGX[R− 2Λ], U(X) = 0, V (X) = ΛX (3.2)

and CGHS model [84]

LCGHS[φ] =
√
−g

16πG [XR− 2λ], U(X) = 0, V (X) = λ (3.3)

where Λ and λ are constants whose relation in the flat limit will be discussed in section 3.5.
Taking an infinitesimal variation of the Lagrangian density (3.1), and integrating by

parts to keep track of the boundary terms, we have

δLDGT[φ] = δLDGT
δgµν

δgµν + δLDGT
δX

δX + ∂µΘµ
DGT[φ; δφ] (3.4)

where the Euler-Lagrange derivatives are explicitly given by

δLDGT
δgµν

=
√
−g

16πG

[
∇µ∇νX − gµν∇2X + (∇µX)(∇νX)U − 1

2g
µν(∇X)2U − gµνV

]
,

δLDGT
δX

=
√
−g

16πG [R+ U ′(∇X)2 + 2U∇2X − 2V ′]
(3.5)

and the canonical presymplecic potential9 reads as

Θµ
DGT[φ; δφ] = XΘµ

EH [g; δg] +
√
−g

16πG [−(δg)µν∇νX + (δg)νν∇µX − 2δX(∇µX)U ] (3.6)

where Θµ
EH [g; δg] =

√
−g

16πG [∇ν(δg)µν − ∇µ(δg)νν ]. In these expressions, the variation of the
metric is defined with lower indices and (δg)µν = gµαgνβδgαβ , (δg)νν = gανδgαν .

The theory (3.1) is invariant under diffeomorphisms that act on the dynamical fields as

δξgµν = 2∇(µξν), δξX = ξµ∇µX (3.7)

where ξ is the generator of infinitesimal diffeomorphisms.
Let us now derive the co-dimension 2 forms (which are actually 0-forms in two dimen-

sions) associated with (3.1) that contain the information about the charges of the theory.
We first apply the Barnich-Brandt procedure [10–12] and then relate the results to the

9We use the terminology “canonical presymplectic potential” to refer to the presymplectic potential
obtained directly by integration by parts from the Lagrangian, without adding any ambiguity appearing
in (2.3).
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Iyer-Wald construction [7–9, 13]. The weakly-vanishing Noether current Sµξ [φ], is obtained
through

δLDGT
δgµν

δξgµν + δLDGT
δX

δξX = ∂µS
µ
ξ [φ], (3.8)

where to obtain the right-hand side, we have integrated by parts in order to isolate the
diffeomorphism parameters and used the Noether identities

δLDGT
δgµν

∂ρgµν + δLDGT
δX

∂ρX − 2∂µ
(
δLDGT
δgµν

gρν

)
= 0 (3.9)

which can be checked explicitly. The total derivative term gives the weakly-vanishing
Noether current

Sµξ [φ] = 2δLDGT
δgµν

gρνξ
ρ . (3.10)

It has the property to vanish and to be conserved on-shell. Applying the homotopy operator
on it yields the Barnich-Brandt co-dimension 2 form, which can be used to compute the
charges associated with the diffeomorphism generator ξ,

kµνBB,ξ[φ; δφ] = 1
2δφ

i δ

δφiν
Sµξ +

(2
3∂σδφ

i − 1
3δφ

i∂σ

)
δ

δφiνσ
Sµξ − (µ↔ ν) (3.11)

where (φi) = (X, gµν). We have explicitly

kµνBB,ξ[φ; δφ] =
√
−g

8πG
[
2Uξ[ν(∇µ]X)δX + 2(∇[µδX)ξν] − δX∇[µξν] + ξ[µ(δg)ν]

α∇αX
]
.

(3.12)

It is worthy to remark that the charge expression is independent of the potenital V but
depends on U . This co-dimension 2 form is defined without any ambiguity since there is
no possibility for total derivative terms in two dimensions.

Now, the relation between Barnich-Brandt and Iyer-Wald procedures is controlled by
the object

Eµν [φ; δ1φ, δ2φ] = 1
16πGX(δ1g)µσ(δ2g)νσ − (1↔ 2) (3.13)

so that
kµνBB,ξ[φ; δφ] = kµνξ [φ; δφ]− Eµν [φ; δξφ, δφ] . (3.14)

We have the conservation law (2.7),

∂νk
µν
ξ [φ; δφ] = ωµDGT[φ; δξφ, δφ] (3.15)

where ωµDGT[g; δ1g, δ2g] = δ2Θµ
DGT[g; δ1g] − δ1Θµ

DGT[g; δ2g] is the Iyer-Wald presymplectic
current defined in (2.4). In the following, we will work in the Iyer-Wald approach that
allows us to renormalize the symplectic structure using the ambiguities arising in (2.3).
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3.2 Linear dilaton Bondi gauge in two dimensions

We now apply the formalism displayed in the previous section to study the asymptotic
structure of the spacetime. For convenience, we set the kinetic potential U(X) to zero
in (3.1) but keep V (X) arbitrary (in particular, this discussion includes JT (3.2) and
CGHS (3.3) models). This choice eliminates the dependence in the potential in the expres-
sion of the charges (3.12) and therefore allows us to keep the discussion of the phase space
very generic. We refer to appendix A for a discussion of the solution space that includes
an arbitrary U(X).

3.2.1 Solution space

Writing the coordinates as (xµ) = (u, r), we start by imposing the following condition on
the metric:

grr = 0 . (3.16)

We will refer to this condition as the Bondi (partial) gauge fixing on the metric, analogously
to the terminology commonly used in higher dimensions [1, 2, 33]. Notice that we have
only used one degree of freedom in the diffeomorphims among the two available in two
dimensions. Therefore, this is only a partial gauge fixing (see e.g. [110]). We write the
metric as

ds2 = 2B(u, r)du2 − 2eA(u,r)dudr . (3.17)

Furthermore, we will consider linear dilaton gravity solutions which are relevant for our
analysis of the phase space since it will produce non-vanishing charges. Using the residual
gauge diffeomorphisms preserving (3.16), we set

X = e−Q0(u)r + ϕ0(u) . (3.18)

Solving the equations of motion (3.5) in the linear dilaton Bondi gauge (condi-
tions (3.17) and (3.18)), we obtain

A = A0(u),

B = eQ0+A0B0 + eA0∂uQ0 r + e2(A0+Q0)
∫ X

dY V (Y ) .
(3.19)

The last equation of motion (A.7) is conveniently written as

∂uM = 0 , (3.20)

in terms of
M = e−(A0+Q0)(B0 + ∂uϕ0) . (3.21)

It corresponds to a Casimir of the theory [55, 111] and labels the different orbits for the
action of the symmetry group on the solution space (see equation (3.25) below). When
considering the surface charges in section 3.4.1, M will be interpreted as the mass of
the system.

In summary, the solution space is thus characterized by four functions of u: (Q0(u),
A0(u), ϕ0(u), B0(u)) with the constraint (3.20) on the Casimir.
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3.2.2 Residual symmetries

The generators of the residual gauge diffeomorphisms preserving the linear dilaton Bondi
gauge (equations (3.17) and (3.18)) are given by

ξ = ε(u)∂u + (χ(u) r + η(u))∂r (3.22)

where ε(u), χ(u) and η(u) are arbitrary functions of u that may be field-dependent. Using
the modified Lie bracket10 [33]

[ξ1, ξ2]? = [ξ1, ξ2]− δξ1ξ2 + δξ2ξ1 (3.23)

that takes into account the possible field-dependence of the vector fields (3.22), we obtain
the commutation relations [ξ(ε1, χ1, η1), ξ(ε2, χ2, η2)]? = ξ(ε12, χ12, η12), where

ε12 = ε1∂uε2 − δξ1ε2 − (1↔ 2),
η12 = η1χ2 + ε1∂uη2 − δξ1η2 − (1↔ 2),
χ12 = ε1∂uχ2 − δξ1χ2 − (1↔ 2) .

(3.24)

Under residual gauge transformations generated by (3.22), the solution space transforms
infinitesimally as

δξA0 = χ+ ε∂uA0 + ∂uε, δξQ0 = −χ+ ε∂uQ0,

δξB0 = ε∂uB0 + e−Q0(η∂uQ0 + eQ0B0 ∂uε− ∂uη),
δξϕ0 = e−Q0(η + eQ0ε∂uϕ0), δξM = 0 .

(3.25)

From general considerations, [108, 110, 112, 113], the action of the residual gauge diffeo-
morphisms on the solution space satisfies

[δξ1 , δξ2 ]α = −δ[ξ1,ξ2]?α (3.26)

where α = (A0, Q0, B0, ϕ0), [δξ1 , δξ2 ] = δξ1δξ2 − δξ2δξ1 and [ξ1, ξ2]? is the modified Lie
bracket (3.23) yielding (3.24). This equation highlights the structure of Lie algebroid [99]
involved in the asymptotic symmetries [108, 109], where the base space is the solution
space parametrized by α = (A0, Q0, B0, ϕ0), the Lie algebra at each point is formed by the
span of the generators of the residual gauge diffeomorphisms ξ(ε, χ, η) given in (3.22) and
endowed with the bracket (3.23). In this picture, the relation (3.26) translates the fact
that the anchor map ξ → δξ preserves the bracket between the Lie algebra and the tangent
space at each point.

3.2.3 Dirichlet boundary conditions

The general framework that we have presented here encompasses all the solution space
analyses performed in the Eddington-Finkelstein types of gauge (see e.g. [44, 94] and ref-
erences therein). The more restrictive Dirichlet boundary conditions are imposed in linear

10The modified Lie bracket is sometimes referred as the adjusted bracket (see e.g. [25, 30]). The ter-
minology should not be confused with the modified Barnich-Troessaert bracket at the level of the charge
algebra [14].
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dilaton Bondi gauge by requiring

A0 = 0, Q0 = 0 . (3.27)

The residual gauge diffeomorphisms (3.22) preserving these boundary conditions are those
whose parameters satisfy the constraints

∂uε = 0, χ = 0 (3.28)

In this case, the asymptotic symmetry algebra is R(ε) ⊕ C(η)
∞ (R).

3.3 Renormalization of the phase space

In this section, we renormalize the action and the symplectic structure for the generic
model (3.1) with vanishing kinematic potential in linear dilaton Bondi gauge.

3.3.1 Holographic renormalization

Before constructing the renormalized phase space of the theory, let us consider the minimal
variational principle satisfying the following criteria (see the discussion in section 2.1):

• The action is finite on-shell, i.e. S = O(r0).

• The on-shell action has a well-defined flat limit in the sense discussed in section 3.5.

• When restricting our general framework to Dirichlet boundary conditions (3.27), the
action is stationary on solutions, i.e. δS = 0.

In presence of timelike boundary (e.g. for JT gravity (3.2)), one can show by an explicit
computation that the following variational principle satisfies these requirements:

S = 1
16πG

∫
M
d2x
√
−g[RX − 2V (X)] +

∫
∂M

duLGHY

+
∫
∂M

duLw +
∫
∂M

duLc +
∫
∂M

duLn

(3.29)

where the first term is the bulk action for the dilaton gravity models (3.1). The second
term is the Gibbons-Hawking-York boundary term which is given explicitly by

LGHY = 1
8πG

√
|γ|XK (3.30)

on each leaf of the foliation r = constant. Here γ is the determinant of the metric γuudu2 =
2Bdu2 induced on the leaves, and K is the extrinsic curvature, K = gµν∇µnν , with nµ =

1√
grr
δrµ = eA√

|γ|
δrµ the unit normal vector. The second line in (3.29) is given by

Lw + Lc + Ln = 1
4πGe

A0+Q0

(∫ X

dY V (Y )
)
− 1

8πG
eA0√
|γ|
∂u

(
Xe−A0

√
|γ|
)
. (3.31)

These terms can be rewritten in a more covariant way as follows. We introduce the quantity

w(X) = 2
(
−
∫ X

dY V (Y ) + e−(A0+Q0)∂uX

)
(3.32)
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in terms of which the determinant of the induced boundary metric is

√
|γ| = eA0+Q0

√∣∣∣∣w(1− 2M
w

)∣∣∣∣ . (3.33)

Assuming asymptotic dilaton domination [114], M
w(X) → 0 when r →∞, which is the case

for JT (3.2) and CGHS (3.3) models, the expression (3.31) can be rewritten as the sum of
three covariant boundary Lagrangians. Indeed, we have explicitly

Lw = − 1
8πG

√
|γ|
√
|w|, Lc = 1

8πG

√
|γ|Da(vaX),

Ln = − 1
8πG

√
|γ|Xnµvb∂bnµ .

(3.34)

Here, we write (xa) = (u) the unique coordinate on each leaf of the foliation r = constant,
va the unit vector field (vava = γuuv

uvu = −1) tangent to the leaves and Da the covari-
ant derivative with respect to the induced metric γuudu2. Notice that the second term
in (3.34) is a corner Lagrangian [26, 98]. Indeed, we have Lc = 1

8πG
√
|γ|Da(vaX) =

1
8πG∂a(

√
|γ|vaX).

The variational principle (3.29) corresponds to the renormalized action proposed in [87]
once considering the same regimes. In particuler, the Lagrangian Lw in (3.34) reduces to
the counter-term proposed in [87] once requiring stationarity. Finally, notice that our
action differs from the one proposed in [69] for JT gravity since we are considering open
systems and assuming δS = 0 only in the Dirichlet case.

When evaluated on-shell, the renormalized action (3.29) is finite and reads as

S = − 1
8πG

∫
du (ϕ0∂uQ0 + ∂uϕ0)− Γbulk(r0) (3.35)

where Γbulk(r0) is the finite contribution of the on-shell bulk action evaluated on its lower
bound. The Euclidean version of this action can be interpreted as the free energy and used
for thermodynamical considerations (see e.g. [87]).

3.3.2 Renormalization of the symplectic structure

Inserting the on-shell Bondi metric (3.17) and the linear dilaton (3.18) into (3.6), the radial
component of the canonical presymplectic potential yields some divergences, which can be
subtracted using the ambiguities of the covariant phase space formalism (2.3). We define
the renormalized presymplectic potential [26, 27, 53] as

Θr
ren[φ; δφ] = Θr

DGT[φ; δφ] + δ (LGHY[φ] + Lw[φ] + Lc[φ] + Ln[φ])− ∂aY ar[φ; δφ] (3.36)

where
Y ar[φ; δφ] = 1

2rΘ̄
a
n[φ; δφ], Θ̄a

n[φ; δφ] = 1
8πGe

−Q0δA0 . (3.37)

As discussed in section 2.1, the δ-exact ambiguities in Θr
ren[φ; δφ] are completely fixed

by the boundary terms in the variational principle (3.29). Let us provide a covariant
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interpretation of the ambiguity (3.37) in terms of the boundary structure. We define the
boundary Lagrangian

L̄n[A0; γ̄, X̄] = − 1
8πG

√
|γ̄|X̄n̄µv̄b∂bn̄µ (3.38)

as the pull-back of the Lagrangian Lw defined in (3.34) on the spacetime boundary (X̄,
γ̄, n̄µ, n̄µ, v̄a are the “unphysical” quantities associated with X, γ, nµ, nµ, va, respec-
tively, through the conformal compactification process). The counter-term Θ̄a

n[φ; δφ] de-
fined in (3.37) corresponds to the presymplectic potential associated with (3.38) where the
boundary metric γ̄uudu2 is kept fixed (i.e. γ̄uudu2 is seen as background structure).

The explicit expression of the renormalized presymplectic potential (3.36) is finite and
given by

Θr
ren[φ; δφ] = − 1

8πG

(
δB0 +B0δ(Q0 +A0) + 1

2δA0∂uϕ0

− 1
2ϕ0∂uδA0 + δϕ0∂uQ0 + ∂uδϕ0

)
(3.39)

from which one can derive the renormalized presymplectic current

ωrren[φ; δ1φ, δ2φ] = − 1
8πG

[
δ2B0δ1(Q0 +A0) + 1

2δ1A0∂uδ2ϕ0

− δ2ϕ0∂uδ1

(1
2A0 +Q0

)]
− (1↔ 2) .

(3.40)

An important observation is that the symplectic structure does not depend on the particular
form of V (X) in (3.1). Therefore, the analysis of the charge algebra that we perform in the
next section is very general and is not sensitive to the particular model of dilaton gravity
that one is considering.11

Finally, notice that (3.40) vanishes when we impose Dirichlet boundary condi-
tions (3.27). Hence, the associated charges are conserved and the variational princi-
ple (3.29) is stationary on solutions, which is in agreement with our general discussion
in section 2.1.

3.4 Integrability and charge algebra

In this section, we discuss the renormalized charges and present a particular slicing of the
phase space for which they are integrable. Furthermore we compute the charge algebra.

3.4.1 Surface charges

The renormalization of the presymplectic potential (3.36) does not affect the finite part
in r of the Iyer-Wald charges. Furthermore, in the linear dilaton Bondi gauge (see equa-
tions (3.17) and (3.18)), the Barnich-Brandt and the canonical Iyer-Wald co-dimension 2

11However, as mentioned earlier, we have set the kinetic potential to zero in our analysis, i.e. U(X) = 0.
As can be seen from (3.12), considering a non-vanishing kinetic potential could have an impact on the phase
space analysis that would make it model-dependent. This justifies a posteriori our choice of assumption.
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forms coincide (i.e. Eru[φ; δ1φ, δ2φ] = 0, see (3.13) and (3.14)). Therefore, the finite ex-
pressions that we discuss now precisely correspond to the finite part of the Barnich-Brandt
charges as well.

The renormalized co-dimension 2 form can be derived from

∂uk
ru
ren,ξ[φ; δφ] = ωrren[φ; δξφ, δφ] (3.41)

(see (2.7)), where ωrren[φ; δ1φ, δ2φ] is given explicitly in (3.40). In two dimensions, a co-
dimension 2 surface is a point. The surface charges are therefore simply obtained by
evaluating the co-dimension 2 form at a point on the spacetime boundary

/δQξ[φ] = kruren,ξ[φ; δφ] . (3.42)

The explicit expression reads as

/δQξ[φ] = 1
16πG

[
δϕ0(χ− ∂uε)+e−Q0(δA0 + 2δQ0)η

+ 2ε
(
eQ0+A0δM+ 1

2(∂uϕ0δA0 − ∂uA0δϕ0)
)]

. (3.43)

The charges are finite, thanks to the renormalization procedure (3.36). As a consequence
of (3.41), they are generically not conserved. Furthermore, the charges seem to be non-
integrable. However, as explained in section 2.2, this apparent obstruction for integrability
can be removed by performing field-dependent redefinitions of the symmetry parameters,
which amounts to solve the Pfaff problem [12, 30, 66, 89–91]. In the present situation, we
perform the redefinition

η = e2Q0+ 1
2A0 η̃ − ε̃∂uϕ0e

−A0 − χ̃e−
1
2A0ϕ0 , ε = e−(Q0+A0) ε̃ ,

χ = 2e−(Q0+ 1
2A0)χ̃+ e−(Q0+A0)(∂uQ0 ε̃+ ∂uε̃)

(3.44)

where ε̃, η̃ and χ̃ are taken to be field-independent, i.e. δε̃ = δη̃ = δχ̃ = 0. In terms of
these parameters, the commutation relations (3.24) become [ξ(ε̃1, η̃1, χ̃1), ξ(ε̃2, η̃2, χ̃2)]? =
ξ(ε̃12, η̃12, χ̃12) with

ε̃12 = η̃12 = χ̃12 = 0 . (3.45)

Henceforth, the algebra of the residual gauge diffeomorphisms is abelian and is given by
C

(ε)
∞ (R) ⊕ C(η)

∞ (R) ⊕ C(χ)
∞ (R). Moreover, the redefinition (3.44) renders the charges (3.43)

integrable, namely /δQξ[φ] ≡ δQξ[φ] with

δQξ[φ] = 1
8πG

[
ε̃ δM+ χ̃ δ(e−(Q0+ 1

2A0)ϕ0) + η̃ δ(eQ0+ 1
2A0)

]
. (3.46)

Integrating this expression on a path in the solution space gives the finite charge expression

Qξ[φ] = 1
8πG

[
ε̃M+ χ̃ (e−(Q0+ 1

2A0)ϕ0) + η̃ (eQ0+ 1
2A0)

]
. (3.47)

The charges involve three independent combinations of the solution space, one of them
being the particular function that corresponds to the Casimir (3.21). In terms of the new
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parameters (3.44), the variations of the combinations of the solution space appearing in
the charges (3.47) are extremely simple

δξM = 0, δξ(e
1
2A0+Q0) = −χ̃, δξ(e−

1
2A0−Q0ϕ0) = η̃ . (3.48)

The integrable slicing (3.44) of the phase space renders manifest the split between the
directions tangent to the orbits M = constant and the transverse direction related to the
exact symmetry ξ = ε̃ with ∂uε̃ = 0 [115].

Notice that among all the possible field-dependent redefinitions of the parameters
that render the charges integrable, the choice (3.44) has the property that we can impose
the Dirichlet boundary conditions (3.27) consistently with the requirements to keep the
parameters field-independent. This can be readily seen from the variation of A0 and Q0 in
terms the new parameters:

δξA0 = 2e−(Q0+A0)
(
e

1
2A0χ̃+ ∂uε̃

)
, δξQ0 = e−(Q0+A0)

(
2e

1
2A0χ̃+ ∂uε̃

)
. (3.49)

Indeed, preserving the Dirichlet boundary conditions (3.27) implies ∂uε̃ = 0 and χ̃ = 0.
Notice that in this case, the charges are simply Qξ[φ] = 1

8πG ε̃M. In particular they are
conserved as discussed below (3.40).

3.4.2 Charge algebra

The charges (3.47) being integrable, one can use the representation theorem which states
that the charges form a representation of the asymptotic symmetry algebra, up to a possible
central extension [97, 116] (see also [10, 12, 117] for the covariant formulation of this result).
Indeed, using the Peierls bracket [118, 119]

{Qξ1 [φ], Qξ2 [φ]} ≡ δξ2Qξ1 [φ] (3.50)

and the variations (3.48), one can show that the charges (3.47) satisfy

{Qξ1 [φ], Qξ2 [φ]} = 1
8πG(χ̃1η̃2 − χ̃2η̃1) . (3.51)

The central extension appearing in the right-hand side of this charge algebra is a non-
trivial. Indeed, the 2-cocycle of an abelian algebra cannot be a coboundary. Therefore, the
charge algebra is given by the direct sum C∞(R) ⊕ Heisenberg, i.e. the charges represent
the algebra of symmetries C(ε)

∞ (R)⊕C(η)
∞ (R)⊕C(χ)

∞ (R) displayed in (3.45), up to a central
extension that appears in the C(η)

∞ (R)⊕ C(χ)
∞ (R) sector.

These general results echo some previous analyses in lower-dimensional gravity con-
cerning the asymptotic structure of the spacetime near generic null hypersurfaces [30]. It
was found in that reference that the charges in two dimensions can always been made
integrable by a field-dependent redefinition of the parameters. Furthermore, it was shown
that the Heisenberg algebra always appears when considering the most general boundary
conditions around null hypersurfaces in the bulk. Therefore, our work confirms and ex-
tends these results to timelike and null hypersurfaces at infinity. Furthermore, it exhibits
the presence of the Casimir labelling the orbits in the phase space.
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Notice that the signature of the spacetime boundary will depend on the particular
model that we consider. In JT gravity (3.2), the boundary is timelike, while in CGHS
gravity (3.3), the boundary is null. The interplay between these two models is discussed
in the next section.

Moreover, notice that the partial gauge fixing (3.17) which is reached by using only
one out of the two diffeomorphism degrees of freedom in two dimensions allows us to find
additional asymptotic symmetries. Indeed, consider the additional condition

A0 = 0 ⇐⇒ gru = −1 (3.52)

which fixes the gauge completely for the metric (3.17). In this case, the linear dilaton
condition (3.18) is just a consequence of the equations of motion and does not impose
further restriction, see (A.4). The additional gauge-fixing condition (3.52) is preserved
under residual gauge diffeomorphisms if the parameters satisfy

χ̃ = −∂uε̃ . (3.53)

Henceforth, we loose one of the three independent symmetry parameters. Consequently,
we loose one tower of charges since (3.47) becomes

Qξ[φ] = 1
8πG

[
ε̃M− ∂uε̃ (e−(Q0+ 1

2A0)ϕ0) + η̃ (eQ0+ 1
2A0)

]
(3.54)

and the asymptotic symmetry algebra reduces to C(ε)
∞ (R)⊕C(η)

∞ (R). This observation that
gauge fixing eliminates potentially interesting asymptotic symmetries confirms previous
analyses performed in different contexts [25, 42, 43, 67, 68]. The charge algebra (3.51)
reduces to the Heinsenberg algebra, while the central charge reads as

1
8πG(∂uε1η2 − ∂uε2η1) . (3.55)

Furthermore, when restricted to JT gravity, our analysis encompasses the recent results
concerning new boundary conditions in asymptotically AdS2 spacetimes [44]. In particular,
our study provides the field-dependent redefinition of the parameters that renders the
charges discussed in that reference integrable.

3.5 Flat limit

The JT dilaton gravity model (3.2) is the analogue of the higher-dimensional gravity the-
ories with non-vanishing cosmological constant. Indeed, it contains asymptotically (A)dS2
spacetime solutions, including black holes. The solution space discussed in section 3.2
specified for JT gravity (3.2) reads as

ds2 = 2B(u, r)du2 − 2eA0(u)dudr, X = e−Q0(u)r + ϕ0(u) (3.56)

where

B(u, r) = r2

2 Λe2A0 + reA0(ΛeA0+Q0ϕ0 + ∂uQ0) + Λ
2 ϕ

2
0e

2(A0+Q0) +B0e
(Q0+A0) . (3.57)
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However, in contrast with gravity in higher dimension, taking naively the limit Λ→ 0
in JT gravity (3.2) does not yield an interesting model. In fact, the solution space of the
model

L[φ] =
√
−g

16πGRX (3.58)

is given by

ds2 = 2eA0(r∂uQ0 +B0e
Q0)du2 − 2eA0(u)dudr, X = e−Q0(u)r + ϕ0(u) . (3.59)

Despite it contains two-dimensional Minkowski space as a solution (Q0 = 0 = A0, B0 =
−1

2), it does not contain any black hole solution. Therefore, we consider another road
to obtain models with interesting asymptotically flat solutions. Starting from (3.2) and
shifting the dilaton by a constant X → X + α, the Lagrangian reads as

LJT[φ] =
√
−g

16πG [(R+ 2Λ)(X + α)] =
√
−g

16πG [RX + 2Λα+Rα+ 2ΛX] . (3.60)

The third term in the last expression is the Gauss-Bonnet topological term in two dimen-
sions and can be discarded since it will not contribute to the dynamics. Now, defining
λ = αΛ and taking the limit

α→∞, Λ→ 0, λ kept fixed, (3.61)

we precisely recover the CGHS model (3.3), which contains interesting class of asymptot-
ically flat black hole solutions [84]. Therefore, we will consider the limit (3.61) as the flat
limit in two dimensions, relating asymptotically AdS2 solutions in JT gravity to asymptot-
ically flat solutions in CGHS gravity. The solution space discussed in section 3.2 specified
for CGHS gravity (3.3) reads as

ds2 = 2B(u, r)du2 − 2eA0(u)dudr, X = e−Q0(u)r + ϕ0(u) (3.62)

where
B(u, r) = reA0(λeA0+Q0 + ∂uQ0) + λϕ0e

2(A0+Q0) +B0e
(Q0+A0) . (3.63)

This solution space can be obtained in the flat limit (3.61) of the solution space of JT
gravity given in (3.56)–(3.57), after re-absobring the α parameter in the dilaton.

As discussed above, under the assumption U(X) = 0, the symplectic structure of the
theory does not depend on the particular expression of the potential V (X). Therefore,
the analyses performed in section 3.4 is valid for both JT and CGHS gravity theories.
Consequently, the flat limit of the phase space is immediate. Notice however that the
interpretation of the asymptotic region for the two models is drastically different. In JT
gravity, the boundary is timelike and is endowed with a boundary metric Λe2A0du2, while
in CGHS gravity, the boundary is null and endowed with a degenerate (vanishing) metric.

4 Gravity in three dimensions

We now apply the general framework presented in section 2 to the case of three-dimensional
Einstein gravity.
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4.1 Phase space of three-dimensional gravity

The phase space of general relativity in three dimensions has been extensively studied in
the literature (see e.g. [110, 113, 120, 121] for reviews). Let us briefly sketch the main
results. We start from the Einstein-Hilbert Lagrangian density

LEH[g] =
√
−g

16πG

(
R+ 2

`2

)
. (4.1)

Taking an infinitesimal variation of the Lagrangian yields

δLEH[g] = δLEH
δgµν

δgµν + ∂µΘµ
EH[g; δg] . (4.2)

The Euler-Lagrange derivatives

δLEH
δgµν

= −
√
−g

16πG

(
Gµν − 1

`2
gµν

)
(4.3)

lead to the Einstein equations and the canonical Einstein-Hilbert presymplectic potential
reads as

Θµ
EH[g; δg] =

√
−g

16πG [∇ν(δg)µν −∇µ(δg)νν ] . (4.4)

The Einstein-Hilbert theory (4.2) is invariant under diffeomorphisms which act on the
metric with a standard Lie derivative δξgµν = 2∇(µξν). We have

δLEH
δgµν

δξgµν =
√
−g

8πG∇µG
µνξν + ∂µS

µ
ξ [g] (4.5)

after integrating by parts to isolate the diffeomorphism parameters. The first term in
the right-hand side vanishes because of the Bianchi identities which correspond to the
Noether identities of the theory. The total derivative term contains the weakly-vanishing
Noether current

Sµξ [g] = 2δLEH
δgµν

ξν = −
√
−g

8πG

(
Gµν − 1

`2
gµν

)
ξν . (4.6)

Applying the homotopy operator (3.11) on this expression gives the Barnich-Brandt co-
dimension 2 form (which is a 1-form in three dimensions)

kµνBB,ξ[g; δg] =
√
−g

8πG

(
ξµ∇σ(δg)νσ − ξµ∇ν(δg)σσ + ξσ∇ν(δg)µσ

+ 1
2(δg)σσ∇νξµ −

1
2(δg)σν∇σξµ + 1

2(δg)νσ∇µξσ
)
.

(4.7)

It is defined up to an exact 1-form kµνBB,ξ[g; δg] → kµνBB,ξ[g; δg] + ∂ρM
[µνρ]
ξ [g; δg] that will

play no role when integrating on compact co-dimension 2 surface to obtain the gravita-
tional charges.

The Barnich-Brandt and Iyer-Wald co-dimension 2-forms are related
through (3.14) where

Eµν [g; δ1g, δ2g] =
√
−g

32πG(δ1g)µσ(δ2g)σν − (1↔ 2) . (4.8)
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We have the conservation law

∂νk
µν
ξ [g; δg] = ωµEH[g; δξg, δg] (4.9)

where ωµEH[g; δ1g, δ2g] = δ2Θµ
EH[g; δ1g]− δ1Θµ

EH[g; δ2g]. As in the two-dimensional case, we
will use the Iyer-Wald procedure to derive the charges and play with the ambiguities (2.3)
to eliminate the divergences.

4.2 Bondi gauge in three dimensions

The Bondi gauge in three dimensions has been studied in e.g. [33, 100] to investigate
asymptotically AdS3 and asymptotically flat spacetimes. The analysis was then extended
to asymptotically locally AdS3 and asymptotically locally flat spacetimes to include the
boundary structure in the solution space [42, 43]. We review these results here.

4.2.1 Solution space

Writing the coordinates as (xµ) = (u, r, φ), the Bondi gauge is obtained by requiring the
following three gauge-fixing conditions

grr = 0, grφ = 0, gφφ = r2e2ϕ. (4.10)

where ϕ is function of (u, φ). This gauge is always reachable by using the three degrees
of freedom we have on coordinate transformations. The Bondi gauge line element in three
dimensions takes the form

ds2 = V

r
e2βdu2 − 2e2βdudr + r2e2ϕ(dφ− Udu)2 , (4.11)

In this expression, V , β and U are functions of (u, r, φ). Solving Einstein’s equations
Gµν − 1

`2 gµν = 0 gives the following expansions

β =β0(u, φ),

U =U0(u, φ) + 1
r

2e2β0e−2ϕ∂φβ0 −
1
r2 e

2β0e−2ϕN(u, φ),

V

r
= − r2

`2
e2β0 − 2r(∂uϕ+ ∂φU0 + ∂φϕU0) +M(u, φ)

+ 1
r

4e2β0e−2ϕN∂φβ0 −
1
r2 e

2β0e−2ϕN2.

(4.12)

In these expressions,M = M(u, φ) is the Bondi mass aspect and N = N(u, φ) is the angular
momentum aspect. The Einstein equations also lead to time evolution constraints on M

and N (see [42, 43] for the explicit expressions). The solution space is thus paramatrized
by five arbitrary functions of (u, φ) with two time evolution constraints. Three of them
(β0, U0, ϕ) characterize the induced boundary metric on the boundary I through

γ̄abdx
adxb ≡ lim

r→∞

( 1
r2ds

2
)

=
(
− e4β0

`2
+ e2ϕU2

0

)
du2 − 2e2ϕU0dudφ+ e2ϕdφ2 (4.13)

where (xa) = (u, φ) are the coordinates on I . The two other functions (M , N) encode
the bulk information on the mass and the angular momentum.
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4.2.2 Residual symmetries

The on-shell residual gauge diffeomorphisms preserving the Bondi gauge-fixing condi-
tions (4.10) are generated by vector fields ξ = ξu∂u + ξφ∂φ + ξr∂r whose components
read explicitly as

ξu =f,

ξφ =Y − 1
r
∂φf e

2β0−2ϕ,

ξr =− r[∂φY − ω − U0∂φf + Y ∂φϕ+ f∂uϕ]

+ e2β0−2ϕ(∂2
φf − ∂φf∂φϕ+ 4∂φf∂φβ0)− 1

r
e2β0−2ϕ∂φf N

(4.14)

where f , Y and ω are arbitrary functions of (u, φ) that may be field-dependent [42, 43].
Using the modified Lie bracket (3.23), these vector fields satisfy the commutation relations
[ξ(f1, Y1, ω1), ξ(f2, Y2, ω2)]? = ξ(f12, Y12, ω12) where

f12 = f1∂uf2 + Y ∂φf2 − δξ1f2 − (1↔ 2) ,
Y12 = f1∂uY2 + Y1∂φY2 − δξ1Y2 − (1↔ 2) ,
ω12 = −δξ1ω2 − (1↔ 2) .

(4.15)

The terms δξf , δξY and δξω are present to take into account the possible field-dependence
of the parameters. Indeed, as explained below, a field-dependent redefinition of these
parameters will be necessary to make the charges integrable.

Under these infinitesimal residual gauge diffeomorphisms, the boundary structure
transforms as

δξϕ =ω,

δξβ0 = (f∂u + Y ∂φ)β0 +
(1

2∂u −
1
2∂uϕ+ U0∂φ

)
f − 1

2(∂φY + Y ∂φϕ− ω),

δξU0 = (f∂u + Y ∂φ − ∂φY )U0 −
(
∂uY −

1
`2
e4β0e−2ϕ∂φf

)
+ U0(∂uf + U0∂φf).

(4.16)

The explicit variations of the angular momentum and mass aspects can be found in [42, 43].

4.2.3 Dirichlet boundary conditions

Let us mention that this general framework contains all the previous analyses performed
in Bondi gauge. In particular, Dirichlet boundary conditions [97] are imposed by requiring

β0 = 0, U0 = 0, ϕ = 0 (4.17)

on the solution space [40]. This implies that the induced boundary metric (4.13) is flat.
From (4.16), the residual gauge diffeomorphisms (4.14) preserving (4.17) are those whose
parameters satisfy the constraints

∂uf = ∂φY, ∂uY = 1
`2
∂φf, ω = 0 , (4.18)

i.e. they induce conformal Killing vectors on the boundary.
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4.3 Renormalization of the phase space

Similarly to what happens in the two-dimensional case, when evaluating the radial compo-
nent of the canonical Einstein-Hilbert presymplectic potential (4.4) on the solution space
displayed in the previous section, we obtain some O(r2) terms that diverge when r →∞.
Furthermore, the presymplectic potential also admits some O(`2) terms that constitute an
obstruction to take the flat limit ` → ∞. Therefore, to eliminate these divergences, we
have to add some counter-terms using the ambiguities (2.3) of the formalism. We show
below that the precise form of these divergences are related to the counter-terms that one
has to add to the action in the holographic renormalization process [53, 85]. Moreover, we
show that the counter-terms do not modify the finite part of the charges.

4.3.1 Holographic renormalization in Bondi gauge

As discussed in section 2.1, a variational principle S will be appropriate if it satisfies the
three following requirements:

• The action is finite on-shell, i.e. S = O(r0).

• The on-shell action has a well-defined flat limit, i.e. S = O(`0)

• When restricting our general framework to Dirichlet boundary conditions (4.17), the
action is stationary on solutions, i.e. δS = 0.

In asymptoticaly locally AdS3 spacetimes, the minimal action principle in Bondi gauge
that satisfies these requirements is given by

S = 1
16πG

∫
M

√
−g

(
R+ 2

`2

)
d3x+

∫
∂M

a1LGHY d2x+
∫
∂M

a2Lct d
2x

+
∫
∂M

a3 L◦ d
2x+

∫
∂M

a4 Lb d
2x+

∫
∂M

a5 LR d2x (4.19)

where the coefficients are settled to
ai = 1 (4.20)

with i = 1, . . . , 5. Let us now describe each term in this action and justifies that this is
actually the right choice.

The first line of (4.19) is the holographically renormalized variationnal principle that
one would expect to have in Fefferman-Graham gauge [85]. The first piece is the Einstein-
Hilbert buk action. The second piece is made of the Gibbons-Hawking-York boundary term

LGHY = 1
8πG

√
−γK (4.21)

constructed from the extrinsic curvature K = gµν∇(µnν), where nµ = 1√
grr
δrµ is the unit

normal vector to the foliation {r = constant} induced by the Bondi gauge (4.10).12 The
12The leading terms of the extrinsic curvature are given by K = 2

`
+ `

2R[γ] +O(r−3), where R[γ] is the
Ricci scalar of the induced metric γab.

– 22 –



J
H
E
P
0
4
(
2
0
2
1
)
0
3
4

coordinates on each leaf of the foliation are (xa) = (u, φ). The induced metric is written
γab and is obtained by taking the pull-back of

γµν = gµν − nµnν (4.22)

on each leaf. The determinant and the Levi-Civita connection associated with the induced
metric are written γ = det(γab) and Da, respectively. The last term in the first line is the
counter-term prescribed by the holographic renormalization in Fefferman-Graham gauge

Lct = − 1
8πG`

√
−γ . (4.23)

These terms are not sufficient in Bondi gauge to remove the r−divergences and one
has to add additional contributions displayed in the second line of (4.19) that we describe
now. The first term

L◦ = − 1
8πG

√
−γDav

a, va∂a = r eϕ√
−γ

(∂u + U∂φ) (4.24)

is a corner Lagrangian [26, 98]. Indeed, we have L◦ = ∂aL
a
C , where LC = − 1

8πG
√
−γva.

The vector field va appearing in (4.24) is tangent to the leaves of the foliation and satisfies
the two properties

vaγabv
b = −1, lim

r→∞

(1
r
γabv

b
)

= −e
2β0

`
δua . (4.25)

Its geometric interpretation is clear: this is the unique future-oriented unit vector that
indicates the direction in which the boundary metric 1

r2ds
2|I degenerates in the flat limit

`→∞. The next term in (4.19) is a kinetic term for this vector,

Lb = `

16πG
√
−γ(Dav

a)2 . (4.26)

Finally, the last term in (4.19) is the Gauss-Bonnet term

LR = − `

16πG
√
−γR[γ] . (4.27)

Let us now provide some details on how to obtain the values of the coefficients (4.20)
of the various terms in the action (4.19).

• When evaluating the action (4.19) on-shell, divergences in O(r2) arise. The r2-
divergences are removed by imposing 2a1 − a2 = 1, while the r-divergences are sup-
pressed by 2a1 − a2 − a3 = 0.

• When evaluated on-shell, the action (4.19) exhibits some terms in O(`) that are
eliminated by imposing a5 = a1 and 2a1 − a2 − a4 = 0.

• The condition that the action is stationnary on solutions when Dirichlet boundary
conditions (4.17) are imposed requieres a1 = 1.
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Putting all these constraints together, we obtain (4.20). Sending the cut-off to infinity,
r →∞, the expression of the on-shell renormalized action (4.19) is explicitly given by

S = 1
16πG

∫
d2x

(
−eϕM − 4e2β0−ϕ(2(∂φβ0)2 − ∂φβ0∂φϕ+ ∂2

φβ0)
)
− Γbulk(r0) (4.28)

where Γbulk(r0) is the finite contribution of the on-shell bulk action evaluated on its lower
bound. One can check that the Euclidean version of the on-shell action (4.28), when eval-
uated for BTZ black hole, exactly reproduces the Gibbs free energy obtained by Legendre
transformation of the BTZ black hole mass (see e.g. [122]). A similar computation can be
done for flat space cosmologies [123, 124] when considering the Euclidean version of the
flat limit of (4.28).

4.3.2 Renormalization of the symplectic structure

We now renormalize the presymplectic potential using the ambiguities of the covariant
phase space formalism (2.3). The counter-terms to remove the O(r2) and O(`2) divergences
are similar to those used in (4.19) to renormalize the action. Indeed, one can show that
the following renormalization procedure [26, 27, 53] has the requiered properties:

Θr
ren[g; δg] = Θr

EH[g] + δLGH [g] + δLct[g] + δL◦[g] + δLb[g] + δLR[g]

− ∂aΘa
◦[g; δg]− 1

2r∂aΘ̄
a
◦[g; δg] .

(4.29)

The first line is the part of the presymplectic potential prescribed by the renormalized
action (4.19). It fixes the δ-exact ambiguity in (2.3) as Ar = LGH + Lct + L◦ + Lb + LR.
The second line fixes the d-exact ambiguity appearing in (2.3) as

Y ar[g; δg] = Θa
◦[g; δg] + 1

2rΘ̄
a
◦[g; δg] . (4.30)

Here, Θa
◦[g; δg] is the presymplectic potential associated with the corner Lagrangian (4.24),

i.e δL◦ = ∂aΘa
◦. To understand the second term in (4.30), we define the following unphysical

quantities induced on the spacetime boundary:

v̄a = lim
r→∞

(rva) , γ̄ab = lim
r→∞

( 1
r2 γab

)
(4.31)

and we write γ̄ = det(γ̄ab) and D̄a the determinant and the Levi-Civita connection associ-
ated with the induced boundary metric γ̄ab, respectively. Notice that the boundary vector
v̄a corresponds to the relativistic velocity of the holographic fluid in Bondi frame [42, 43].
The term Θ̄a

◦ is then understood as the presymplectic potential of the boundary Lagrangian

L̄◦[v̄a; γ̄ab] = − 1
8πG

√
−γ̄D̄av̄

a, δL̄◦ = ∂aΘ̄a
◦ = − 1

8πG
√
−γ̄D̄aδv̄

a (4.32)

where the variation is taken with respect to v̄a by keeping the boundary metric γ̄ab fixed
(i.e. γ̄ab is seen as a background). Hence, we see that the counter-terms to renormalize the
presymplectic potential (4.29) are of the same nature than those necessary to remove the
divergences in the action (4.19).
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We have explicitly

Θr
ren[g; δg] = 1

16πG [eϕMδ(ϕ− 2β0) + 2eϕNδU0

+ 2e2β0−ϕ(6∂φβ0∂φδβ0 − ∂φϕ∂φδβ0 + ∂2
φδβ0)] +O(r−1) .

(4.33)

The associated presymplectic current reads as

ωrren[g; δ1g, δ2g] = 1
16πG [δ2(eϕM)δ1(ϕ− 2β0) + 2δ2(eϕN)δ1U0 − 2e2β0−ϕ∂φδ2ϕ∂φδ1β0

+ 2δ2(2β0 − ϕ)e2β0−ϕ(6∂φβ0∂φδ1β0 − ∂φϕ∂φδ1β0 + ∂2
φδ1β0)]

− (1↔ 2) +O(r−1) . (4.34)

Notice that this expression vanishes at leading order when we impose Dirichlet boundary
conditions (4.17). Hence, the associated charges are conserved and the variational princi-
ple (4.19) is stationary on solutions, which is in agreement with our general discussion in
section 2.1.

4.4 Integrability and charge algebra

In this section, we discuss the renormalized charges and present a particular slicing of the
phase space for which they are integrable. Furthermore we compute the charge algebra.

4.4.1 Surface charges

Let us mention that the holographic renormalization procedure (4.29) does not affect the
finite part in r of the Iyer-Wald charges. Furthermore, since the Barnich-Brandt and the
canonical Iyer-Wald procedures coincide in Bondi gauge (i.e. Eru[g; δg, δg] = 0, see (4.8)),
the finite charge expressions that we discuss now correspond to the finite part of the
Barnich-Brandt charges (4.7) as well.

The renormalized co-dimension 2 form can be derived using

∂ak
ra
ren,ξ[g; δg] = ωrren[g; δξg, δg] (4.35)

where ωrren[g; δ1g, δ2g] is provided in (4.34). As discussed in section 2.1, this defines the co-
dimension 2 form up to a total derivative term that will not play any role when integrating
on the circle S1

∞ at infinty. We obtain the infinitesimal charges by integration on S1
∞

/δQξ[g] =
∫ 2π

0
dφ kurren,ξ[g; δg] . (4.36)

The explicit expression reads as

/δQξ[g] = 1
8πG

∫ 2π

0
dφ

[
Y δ (eϕN) + ∂φ

(
e2β0−ϕ∂φf

)
δ (β0 − ϕ)

+ f

(1
2e

ϕδM − eϕMδ (β0 − ϕ)− U0δ (eϕN)

+ e2β0−ϕ(6∂φβ0∂φδβ0 − ∂φϕ∂φδβ0 + ∂2
φδβ0

)]
. (4.37)
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The charges are finite, thanks to the renormalization procedure (4.29). As a consequence
of (4.35), they are generically not conserved. Moreover, we notice that the Weyl charge as-
sociated with the parameter ω vanishes. Therefore, the Weyl rescaling part of the residual
gauge diffeomorphisms is not in the asymptotic symmetry algebra. This observation con-
trasts with results obtained in the Fefferman-Graham gauge [27, 66] where the Weyl charge
is non-vanishing and highlights the presence of a Weyl anomaly in the dual theory. However,
this apparent discrepancy unveils some non-trivial dependence in the choice of gauge fixing
to perform the analysis of asymptotics. Indeed, the diffeomorphism between Bondi and
Fefferman-Graham gauge being field-dependent [41–43, 47] the symplectic structure and
the associated charges transform in a subtle way [26, 125]. We will address the question on
how the symplectic structure transforms under field-dependent diffeomorphisms elsewhere.

Finally, more importantly for us, the charges (4.37) seem to be non-integrable. As
discussed in section 2.2, this apparent obstruction for integrability can be cured by per-
forming field-dependent redefinitions of the symmetry parameters, which amounts to solve
the Pfaff problem [12, 30, 66, 89–91]. In our case, we perform the redefinition

f̃ = f e2β0−ϕ, Ỹ = Y − U0 f, ω̃ = ω (4.38)

where f̃ , Ỹ and ω̃ are taken to be field-independent, i.e. δf̃ = δỸ = δω̃ = 0. In terms of
these parameters, the commutation relations (4.15) become [ξ(f̃1, Ỹ1, ω̃1), ξ(f̃2, Ỹ2, ω̃2)]? =
ξ(f̃12, Ỹ12, ω̃12) with

ω̃12 = 0 ,

f̃12 = Ỹ1∂φf̃2 + f̃1∂φỸ2 − (1↔ 2) ,

Ỹ12 = Ỹ1∂φỸ2 + 1
`2
f̃1∂φf̃2 − (1↔ 2) .

(4.39)

These commutation relations higlight the structure of a direct sum between the abelian
Weyl rescalings C

(ω)
∞ (I ) and a Lie algebroid with a one-dimensional base space

parametrized by u [99]. In the asymptotically locally flat case (` → ∞), the algebra
at each value of u is the BMS3 algebra given by the semi-direct sum Diff(S1)+Vect(S1).
In the asymptotically locally AdS3 case, the algebra at each value of u is the double copy
of the Witt algebra Diff(S1)⊕Diff(S1). The later can be made manifest by rewriting the
algebra (4.39) in terms of the parameters F = 1

` f̃ + Ỹ and G = −1
` f̃ + Ỹ as

ω̃12 = 0, F12 = F1∂φF2 − F2∂φF1, G12 = G1∂φG2 −G2∂φG1 . (4.40)

The redefinition (4.38) renders the charges (4.37) integrable. We have explicitly /δQξ[g] ≡
δQξ[g] with

δQξ[g] = 1
8πG

∫ 2π

0
dφ

[
Ỹ δ (eϕN) + f̃ δ

(1
2e

2ϕ−2β0M

)
+ f̃ δ

(
4(∂φβ0)2 − 2∂φβ0∂φϕ+ 1

2(∂φϕ)2 + ∂2
φ(2β0 − ϕ)

)]
(4.41)

– 26 –



J
H
E
P
0
4
(
2
0
2
1
)
0
3
4

where we threw away a total derivative in φ. Integrating the expression (4.41) on a path
in the solution space gives the finite charge expression

Qξ[g] = 1
16πG

∫ 2π

0
dφ

[
2Ỹ Ñ + f̃M̃

]
(4.42)

where

Ñ = eϕN , M̃ = e2ϕ−2β0M + 8(∂φβ0)2 − 4∂φβ0∂φϕ+ (∂φϕ)2 + 2∂2
φ(2β0 − ϕ) . (4.43)

Notice that there are only two independent charges. However, one expects from the argu-
ments presented in [126] that the maximal number of independent charges in this context
is three. As already suggested in [42, 43], this confirms that three-dimensional Bondi gauge
is not the most general framework to study the maximal phase space of the theory.

4.4.2 Charge algebra

The charges (4.42) being integrable, they form a representation of the symmetry algebra,
up to a possible central extension [10, 12, 97, 116, 117]. Indeed, using the bracket

{Qξ1 [g], Qξ2 [g]} ≡ δξ2Qξ1 [g] , (4.44)

we obtain

{Qξ1 [g], Qξ2 [g]} = Q[ξ1,ξ2]? [g] + 1
8πG

∫ 2π

0
dφ

(
∂2
φf̃1 ∂φỸ2 − ∂2

φf̃2 ∂φỸ1
)

(4.45)

where [ξ1, ξ2]? is given by (4.39). Let us stress that the charge algebra is u-dependent. In
other words, it corresponds to a centrally extended Lie algebroid whose one-dimensional
base space is parametrized by the boundary time u. The centrally extended algebra at each
value of u is the double copy of the Virasoro algebra in the asymptotically locally AdS3
case, and the centrally extended BMS3 algebra in the asymptotically locally flat case.

We now restrict our general charge algebra for the particular case of Dirichlet boundary
conditions (4.17). Defining

f̃ = `

2(Y + + Y −), Ỹ = 1
2(Y + − Y −) (4.46)

and x± = t
` ± φ, the conformal Killing equations (4.18) become simply ∂±Y ∓ = 0. The

commutation relations (4.39) are Y ± = Y ±1 ∂±Y
±

2 −Y
±

1 ∂±Y
±

1 , which is precisely the direct
sum of two copies of the Witt algebra. Moreover, using the decomposition in modes
Y ± = ∑

m∈Z Y
±
m l
±
m, l±m = e±imx

± and writing L± = Qξ(l±m), the charge algebra (4.45) is

i{L±m, L±n } = (m− n)L±m+n −
c±

12m
3δ0
m+n, {L±m, L∓n } = 0 (4.47)

where c± = 3`
2G is precisely the Brown-Henneaux central charge [97].
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4.5 Flat limit

We now discuss the flat limit of our three-dimensional results that goes from asymptotically
locally AdS3 to asymptotically locally flat spacetimes. The Bondi gauge has the interesting
property to have a well-defined behaviour when `→∞ [40] .

The flat limit of the solution space and of the residual gauge diffeomorphisms is dis-
cussed in details in [42, 43]. Let us mention that the boundary metric (4.13) becomes
degenerate when `→∞, so that the timelike spacetime boundary (IAdS) becomes null in
the limit (I +). As mentioned under (4.25), the degeneracy direction on the boundary is
generated by the pull-back on the boundary of the vector va introduced in (4.24). More-
over, the symmetry algebra of the residual gauge symmetries in the integrable slicing is
discussed below (4.39).

Now, at the level of the phase space, our analysis yields additional results. Indeed,
we have seen that the on-shell value of the renormalized action was given by (4.28). This
expression being finite in `, its flat limit is straightforward. Its Euclidean version provides us
with the expression for the free energy in asymptotically locally flat spacetimes. Similarly,
the renormalized presymplectic potential (4.33) and presymplectic current (4.34) do not
depend on ` and their flat limit can be readily taken. Finally, the charges (4.42) and the
algebra (4.45) do not depend on ` and the expressions are therefore formally the same in
asymptotically locally flat spacetimes.

Notice that even if the phase space expressions appear to be the same in asymptotically
locally AdS3 and asymptotically locally flat spacetimes, the physics behind it is completely
different. Indeed, as discussed in [42, 43], the constraint equations on M and N are not the
same in the flat limit. Analogously, the variation of the solution space is `-dependent. To
understand the implications of that, consider the boundary conditions that define asymp-
totically flat spacetimes [100, 127]. In our framework, these conditions have formally the
same form as the Dirichlet boundary conditions (4.17) in AdS. However, the constraint
equations on the parameters (4.18) reduce to

∂uf = ∂φY, ∂uY = 0, ω = 0 (4.48)

in the limit ` → ∞ [40]. This can be readily solved as Y = Y (φ) and f = T (φ) +
u ∂φY , where T (φ) are the supertranslation generators, while Y (φ) are the superrotation
generators. Using the mode decomposition Tn = ξ(T = einφ, Y = 0) and Yn = ξ(T =
0, Y = einφ) and writing Pn = QTn [g] and Jn = QYn [g], the charge algebra (4.45) reads as

[Pm, Pn] = 0, i[Jm, Jn] = (m−n)Jm+n, i[Jm, Pn] = (m−n)Pm+n−
m3

4πGδ
0
m+n . (4.49)

This is the BMS3 centrally extended algebra [100]. Hence, when fixing the boundary struc-
ture, we see that the central charge appearing in (4.45) reduces to the Brown-Henneaux
central extension [97] in asymptotically AdS3 spacetimes (see equation (4.47)) and to the
BMS3 central extension [100] in the flat limit `→∞ (see equation (4.49)).
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5 Comments

In this section, we provide further comments on the results that have been obtained in this
work and draw some motivations for this analysis in a broader context.

In this article, we have investigated a type of boundary conditions that allows the
boundary structure to fluctuate. The systematic analysis of such boundary conditions is
recent. In asymptotically locally flat spacetimes, the generalized BMS group, which is
an infinite-dimensional enhancement of the BMS group with smooth superrotations, has
been obtained by relaxing the conditions on the transverse components of the boundary
metric [19, 36, 48]. Similar relaxed boundary conditions have been considered in presence
of non-vanishing cosmological constant, leading to the Λ-BMS group(oid) [26, 47]. These
additional symmetries are believed to play an important role in the relations between
asymptotic symmetries, soft theorems and memory effects (see e.g. [129] for a review).

In asymptotically locally AdS spacetimes, as explained in [27], the boundary condi-
tions with relaxed boundary structure (also referred as “leaky boundary conditions”) yield
some non-vanishing symplectic flux throughout the boundary. In this picture, the gravita-
tional system is seen as an open system which couples to external sources encoded by the
fluctuations of the boundary metric [57, 58]. The inclusion of the boundary structure in
the phase space leads to non-conservation and non-integrability of charges which are not
necessarily related to the passage of gravitational waves through the spacetime boundary.
In particular, as we have seen in the present context, it also produces non-conservation and
non-integrability in lower-dimensional gravity theories. Understanding the precise role of
these sources in the AdS/CFT correspondence would be a rewarding investigation.

In particular, using flat limit processes similar to those that have been studied here, a
description of holography with external sources would enable us to capture some features of
holography in higher-dimensional radiating asymptotically flat spacetimes. A first step to-
wards this endeavour is the holographic renormalization procedure that we have performed
in the present paper in the Bondi gauge. We have found the covariant counter-terms to
remove the potential divergences when taking the cut-off to infinity or when taking the
flat limit. We believe that this procedure could be repeated in higher dimension without
conceptual obstruction and ultimately lead to a renormalized action in asymptotically flat
spacetimes at null infinity.

This work provides a non-trivial check of the conjecture coined in [30] and stating that
non-integrability, when not due to genuine propagating degrees of freedom, can be removed
by a field-dependent redefinition of the symmetry parameters. We have shown that for
asymptotic boundaries such redefinitions (3.44) and (4.38) render the charges integrable.
Starting from any integrable slicing, one can generate an infinite number of integrable
slicings that lead to different symmetry algebras or algebroids, see the general discussion
in [30]. In our case, we have chosen slicings that display pleasant properties. Indeed, they
lead to some field-independent commutation relations (see equations (3.45) and (4.39)) and
yield some simple transformation laws for the solution space (see e.g. (3.48)). Furthermore,
as discussed in the text, they have the property to be compatible with the restriction to
Dirichlet boundary conditions, which amounts to freeze the boundary structure and turn
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off the sources. It would be interesting to see whether the procedures to render the charges
integrable can be applied to higher dimensions when non-integrability that is not related to
propagating degrees of freedom occurs (e.g. in the context of asymptotically flat spacetimes
at spatial infinity, where there is no flux of gravitational waves, but where relaxing the
boundary structure is possible).
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A Solution space in linear dilaton Bondi gauge

In this appendix we discuss the solution phase for the theory (3.1) (we keep U and V

arbitrary). We only assume that the metric is in Bondi gauge

ds2 = 2B(u, r)du2 − 2eA(u,r)dudr . (A.1)

We start by analysing the rr component of (3.5), it reads as

∂2
rX + ∂rX(U∂rX − ∂rA) = 0 . (A.2)

We have two classes of solutions, the constant dilaton and non-constant dilaton. The
former yields to V (X) = 0. Indeed taking the trace of (3.5) yields

∇2X = −2V . (A.3)

The non-constant dilaton case is more interesting [128] and for now on we suppose
that ∂rX 6= 0. Equation (A.2) can be solved by

∂rX = e−Q(X)+A(u,r) , Q(X) := q0(u) +
∫ X

dY U(Y ) . (A.4)

Hence (A.3) reads as

∂rX∂rB = e2AV +BU(∂rX)2 − eA∂r∂uX (A.5)

which can be solved by

B = eQ(X)
(
B0 +

∫ X

dY (V (Y )eQ(Y ) + ∂u(Q(Y )−A(Y ))
)
. (A.6)
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This solves all equations of motion but the evolution equation for X, namely

∂2
uX + U (∂uX)2 − ∂uX ∂uA+ ∂uB0 −B e−Q ∂uq0 = 0 . (A.7)

Furthermore, we only have used one gauge degree of freedom to fix grr = 0. We can
use the other one to require the dilaton to be linear, namely ∂re

−Q+A = 0. It implies
A = Q(X)−Q0(u) with Q0(u) an arbitrary function and

X = e−Q0(u)r + ϕ0(u) . (A.8)

Note that in more standard Eddington-Finkelstein type of gauges, where A = 0, the linear
dilaton condition enforces U = 0 and q0 = Q0.
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