
Conservation Cores:
Reducing the Energy of Mature Computations

Ganesh Venkatesh Jack Sampson Nathan Goulding Saturnino Garcia
Vladyslav Bryksin Jose Lugo-Martinez Steven Swanson Michael Bedford Taylor

Department of Computer Science & Engineering
University of California, San Diego

{gvenkatesh,jsampson,ngouldin,sat,vbryksin,jlugomar,swanson,mbtaylor}@cs.ucsd.edu

Abstract
Growing transistor counts, limited power budgets, and the break-
down of voltage scaling are currently conspiring to create a utiliza-
tion wall that limits the fraction of a chip that can run at full speed
at one time. In this regime, specialized, energy-efficient processors
can increase parallelism by reducing the per-computation power re-
quirements and allowing more computations to execute under the
same power budget. To pursue this goal, this paper introduces con-
servation cores. Conservation cores, or c-cores, are specialized pro-
cessors that focus on reducing energy and energy-delay instead of
increasing performance. This focus on energy makes c-cores an ex-
cellent match for many applications that would be poor candidates
for hardware acceleration (e.g., irregular integer codes). We present
a toolchain for automatically synthesizing c-cores from application
source code and demonstrate that they can significantly reduce en-
ergy and energy-delay for a wide range of applications. The c-cores
support patching, a form of targeted reconfigurability, that allows
them to adapt to new versions of the software they target. Our re-
sults show that conservation cores can reduce energy consumption
by up to 16.0× for functions and by up to 2.1× for whole appli-
cations, while patching can extend the useful lifetime of individual
c-cores to match that of conventional processors.

Categories and Subject Descriptors C.1.3 [Processor Architec-
tures]: Heterogeneous (hybrid) systems; C.3 [Special-Purpose
and Application-based systems]

General Terms Design, Experimentation, Measurement

Keywords Conservation Core, Utilization Wall, Heterogeneous
Many-Core, Patching

1. Introduction
As power concerns continue to shape the landscape of general-
purpose computing, heterogeneous and specialized hardware has
emerged as a recurrent theme in approaches that attack the power
wall. In the current regime, transistor densities and speeds continue
to increase with Moore’s Law, but limits on threshold voltage scal-
ing have stopped the downward scaling of per-transistor switching

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

power. Consequently, the rate at which we can switch transistors
is far outpacing our ability to dissipate the heat created by those
transistors.

The result is a technology-imposed utilization wall that limits
the fraction of the chip we can use at full speed at one time.
Our experiments with a 45 nm TSMC process show that we can
switch less than 7% of a 300mm2 die at full frequency within an
80W power budget. ITRS roadmap projections and CMOS scaling
theory suggests that this percentage will decrease to less than 3.5%
in 32 nm, and will continue to decrease by almost half with each
process generation—and even further with 3-D integration.

The effects of the utilization wall are already indirectly ap-
parent in modern processors: Intel’s Nehalem provides a “turbo
mode” that powers off some cores in order to run others at higher
speeds. Another strong indication is that even though native tran-
sistor switching speeds have continued to double every two process
generations, processor frequencies have not increased substantially
over the last 5 years.

In this regime, reducing per-operation energy [19] translates
directly into increased potential parallelism for the system: If a
given computation can be made to consume less power at the same
level of performance, other computations can be run in parallel
without violating the power budget.

This paper attacks the utilization wall with conservation cores.
Conservation cores, or c-cores, are application-specific hardware
circuits created for the purpose of reducing energy consumption on
computationally-intensive applications. Since it is no longer possi-
ble to run the entire chip at full frequency at once, it makes sense to
customize the portions of the chip that are running so they will be as
efficient as possible for the application at hand. In effect, conserva-
tion cores allow architects to trade area for energy in a processor’s
design. The utilization wall has made this trade-off favorable, be-
cause Moore’s Law has made increases in transistor counts cheap,
while poor CMOS scaling has exhausted power budgets, making
increases in power consumption very expensive.

Conservation cores have a different goal than conventional
application-specific circuits, and we differentiate between c-cores
and the more common accelerators along several axes. First, ac-
celerators focus on improving performance, at a potentially worse,
equal, or better energy efficiency. Conservation cores, on the other
hand, focus primarily on energy reduction. C-cores that are also
accelerators are possible, but this work targets similar levels of
performance, and focuses on reducing energy and energy-delay,
especially at advanced technology nodes where DVFS is less effec-
tive for saving energy.

Shifting the focus from performance to efficiency allows c-cores
to target a broader range of applications than accelerators. Accel-
erators provide the greatest benefit for codes with large amounts

of parallelism and predictable communication patterns, since these
codes map naturally onto hardware. Thus, parallelism-intensive re-
gions of code that are hot (i.e., occupy a high percentage of running
time) are the best candidates for implementation as accelerators.
On the other hand, c-cores are parallelism-agnostic: Hot code with
a tight critical path, little parallelism, and/or very poor memory be-
havior is an excellent candidate for a c-core, as c-cores can reduce
the number of transistor toggles required to get through that code.
For instance, our results show that c-cores can deliver significant
energy savings for irregular, integer applications (e.g., MCF from
SPEC 2006) that would be difficult to automatically accelerate with
specialized hardware.

Incorporating c-cores into processors, especially at a scale large
enough to save power across applications with multiple hot spots,
raises a number of challenges:

1. Determining which c-cores to build In order to build c-cores,
we must be able to identify which pieces of code are the best
candidates for conversion into c-cores. The code should account
for a significant portion of runtime and energy, and stem from a
relatively stable code base.

2. Automatic synthesis Designing numerous c-cores by hand is
not scalable, so it must be possible to synthesize c-cores auto-
matically and correctly, without significant human intervention.

3. Programming model It should not be necessary to rewrite
applications to make use of c-cores. The system must utilize
them automatically.

4. Longevity Conservation cores should remain useful even as the
code they are designed to replace evolves.

5. System integration Since c-cores should work seamlessly with
existing code, the c-core hardware and memory model must be
tightly integrated with the rest of system.

This paper describes both a system architecture that incorpo-
rates the c-cores and the tools for automatically creating them and
compiling for them. The toolchain automatically extracts the key
kernels in a given codebase and uses a custom C-to-silicon infras-
tructure to generate 45 nm implementations of the c-cores. The
compiler takes in a description of the c-cores available on a chip,
and emits code that can utilize the available c-cores.

Conservation cores also support patching, a form of load-time
reconfiguration, that allows one c-core to run both past and future
versions of the code it was generated from. The patching facilities
match the types of changes we found in our study of changes in
mature code bases (i.e., those in which large-scale changes are in-
frequent and most modifications between versions are small). This
adaptability is essential if c-cores are to be useful on commod-
ity, general-purpose processors, since these designs’ lifetimes span
many software upgrades.

To evaluate c-cores we have generated 18 fully placed-and-
routed c-cores for multiple versions of five applications. The c-
cores improve energy efficiency for their target functions by be-
tween 3.3× and 16.0×, and reduce system energy consumption by
up to 47% and energy-delay by up to 55% at the full application
level. Furthermore, their patching capabilities ensure that, despite
the appearance of new software versions, they will continue to de-
liver significant savings for between 9 and 15 years in most cases.

The rest of this paper is organized as follows: Section 2 de-
scribes the utilization wall in more detail. Section 3 provides an
overview of c-cores and their life-cycle in a computer system. Sec-
tions 4 and 5 describe the internal architecture of a c-core and
explain our approach to ensuring c-core longevity using patches.
Section 6 details our c-core toolchain and methodology. Section 7

Param. Description Relation Classical Leakage
Scaling Limited

B power budget 1 1

A chip size 1 1

Vt threshold voltage 1/S 1

Vdd supply voltage ∼ Vt × 3 1/S 1

tox oxide thickness 1/S 1/S

W, L transistor dimensions 1/S 1/S

Isat saturation current WVdd/tox 1/S 1

p
device power

IsatVdd 1/S2 1at full frequency

Cgate capacitance WL/tox 1/S 1/S

F device frequency Isat
CgateVdd

S S

D devices per chip A/(WL) S2 S2

P
full die, full

D × p 1 S2
frequency power

U
utilization at

B/P 1 1/S2
fixed power

Table 1. The utilization wall The utilization wall is a consequence
of CMOS scaling theory and current-day technology constraints,
assuming fixed power and chip area. The Classical Scaling column
assumes that Vt can be lowered arbitrarily. In the Leakage Limited
case, constraints on Vt, necessary to prevent unmanageable leakage
currents, hinder scaling, and create the utilization wall.

presents our results, and Section 8 discusses related work. Finally,
Section 9 concludes.

2. The utilization wall
In this section, we examine the utilization wall in greater detail.
First, we show how the utilization wall is a consequence of CMOS
scaling theory combined with modern technology constraints. Sec-
ond, we use the results of our own experiments with TSMC 90 and
45 nm processes to measure the impact of the utilization wall in
current process technologies. Finally, we use ITRS predictions for
32 nm to draw conclusions on that process.

Scaling Theory The utilization wall has arisen because of a
breakdown of classical CMOS scaling as set down by Dennard [11]
in his 1974 paper. The introduction of 3D CMOS technology will
exacerbate this trend further.

Table 1 shows how the utilization wall emerges from these
trends. The equations in the “Classical Scaling” column governed
scaling up until 130 nm, while the “Leakage Limited” equations
govern scaling at 90 nm and below. CMOS scaling theory holds
that transistor capacitances (and thus switching energy) decrease
roughly by a factor of S (where S is the scaling factor, e.g., 1.4×)
with each process shrink. At the same time, transistor switching
frequency rises by S and the number of transistors on the die
increases by S2.

In the Classical Scaling Regime, it has been possible to scale
supply voltage by 1/S, leading to constant power consumption for
a fixed-size chip running at full frequency, and consequently, no
utilization wall. Scaling the supply voltage requires that we also
scale the threshold voltage proportionally. However, this is not an
issue because leakage, although increasing exponentially, is not
significant in this regime.

In the Leakage Limited Regime, we can no longer scale the
threshold voltage because leakage rises to unacceptable levels.

D-CacheI-Cache

CPU

FPU

Tile

Sc
an

 C
ha

in
 S

el
ec

t

C-core

C-core

C-core

C-core

OCN

cond==0

ld

0

<

init

stValid==0

Control
Path

Cache
Interface

Scan
Chain

C-core

Data Path
Operations

st

ldValid==0

(a) (b) (c)

Figure 1. The high-level structure of a c-core-enabled system A c-core-enabled system (a) is made up of multiple individual tiles (b),
each of which contains multiple c-cores (c). Conservation cores communicate with the rest of the system through a coherent memory system
and a simple scan-chain-based interface. Different tiles may contain different c-cores. Not drawn to scale.

Without the corresponding supply voltage scaling, reduced tran-
sistor capacitances are the only remaining counterbalance to in-
creased transistor frequencies and increasing transistor counts.
Consequently, the net change in full chip, full frequency power
is rising as S2. This trend, combined with fixed power budgets,
indicates that the fraction of a chip that we can run at full speed,
or the utilization, is falling as 1/S2. Thus, the utilization wall is
getting exponentially worse, roughly by a factor of two, with each
process generation.

Experimental results To quantify the current impact of the uti-
lization wall, we synthesized, placed, and routed several circuits
using the Synopsys Design and IC Compilers. Table 2 summarizes
our findings. For each process, we used the corresponding TSMC
standard cell libraries to evaluate the power and area of a 300 mm2

chip filled with 64-bit operators to approximate active logic on a
microprocessor die. Each operator is a 64-bit adder with registered
inputs and outputs, which runs at its maximum frequency in that
process. In a 90 nm TSMC process, running a chip at full frequency
would require 455 W, which means that only 17.6% of the chip
could be used in an 80 W budget. In a 45 nm TSMC process, a
similar design would require 1225 W, resulting in just 6.5% uti-
lization at 80 W, a reduction of 2.6× attributable to the utilization
wall. The equations in Table 1 predicted a larger, 4× reduction. The
difference is due to process and standard cell tweaks implemented
between the 90 nm and 45 nm generations. Table 2 also extrapolates
to 32 nm based on ITRS data for 45 and 32 nm processes. Based on
ITRS data, for the 32 nm process, 2401 W would be required for a
full die at full frequency, resulting in just 3.3% utilization.

Process 90 nm TSMC 45 nm TSMC 32 nm ITRS

Frequency (GHz) 2.1 5.2 7.3
mm2 Per Op. .00724 .00164 .00082
Operators 41k 180k 360k
Full Chip Watts 455 1225 2401
Utilization at 80 W 17.6% 6.5% 3.3%

Table 2. Experiments quantifying the utilization wall Our ex-
periments used Synopsys CAD tools and TSMC standard cell li-
braries to evaluate the power and utilization of a 300 mm2 chip
filled with 64-bit adders, separated by registers, which is used to
approximate active logic in a processor.

Discussion The effects of the utilization wall are already indi-
rectly apparent in modern processors: Intel’s Nehalem provides a
“turbo mode” that powers off some cores in order to run others
at higher speeds. Another strong indication is that even though na-
tive transistor switching speeds have continued to double every two
process generations, processor frequencies have not increased sub-
stantially over the last 5 years. The emergence of three-dimensional
(3D) CMOS integration will exacerbate this problem by substan-
tially increasing device count without improving transistor energy
efficiency.

For scaling existing multicore processor designs, designers have
choices that span a variety of design points, but the best they can do
is exploit the factor of S (e.g., 1.4×) reduction in transistor switch-
ing energy that each generation brings. Regardless of whether de-
signers a) increase frequency by a factor of 1.4×, b) increase core
count by 1.4×, c) increase core count by 2×, and reduce frequency
by 1.4×, or d) some compromise of the three, the utilization wall
ensures transistor speeds and densities are rapidly out-pacing the
available power budget to switch them. Conservation cores are one
mechanism for addressing this issue: Specialized silicon can trade
area for energy efficiency and enable systems with higher through-
put.

3. Conservation cores: System overview
This section provides an overview of c-core-enabled systems. It de-
scribes the composition of a prototypical c-core system and the c-
core synthesis process. Then, it outlines our approach to compila-
tion and handling target application program changes.

3.1 Basic hardware architecture
A c-core-enabled system includes multiple c-cores embedded in
a multi- or many-core tiled array like the one in Figure 1(a).
Each tile of the array contains a general purpose processor (the
“CPU”), cache and interconnect resources, and a collection of
tightly-coupled c-cores. The c-cores target hot regions of specific
applications that represent significant fractions of the target sys-
tem’s workload. The CPU serves as a fallback for parts of applica-
tions that are not important enough to be supported by the c-cores
or that were not available at the time of the manufacture of the chip.

Within a tile (Figure 1(b)), the c-cores are tightly coupled to
the host CPU via a direct, multiplexed connection to the L1 cache,
and by a collection of scan chains that allow the CPU to read and

Versions
Released
Over Time

10

00
11101

Extracted
Energy-Intensive
Code Regions

Patchable
C-core
Specifications Conservation Cores

Many-core
Processor
with C-cores

1.2 1.21 1.22 1.3

3.4 3.5 4.2 4.212.96

.9

Stable
Applications

Patching-Aware Compiler

(a)

(b) (c)

(d)

(e)

Figure 2. Automatic synthesis and compilation of c-cores A profiler (a) extracts a set of energy-intensive code regions from a corpus
of stable applications in the processor’s target domain. The toolchain generalizes these regions into patchable c-core specifications (b),
translates them into circuits via an automated synthesis infrastructure (c), and integrates them into a multi-core processor (d). A patching-
aware compiler maintains a database of c-core specifications and generates binaries that execute on a combination of c-cores and the local
CPU. The compiler (e) generates a patching configuration that allows the c-cores to run future (and past) versions of the original applications.

write all state within the c-cores. The CPU uses these scan chains
for passing arguments, for context switching, and for patching the
c-cores. These facilities allow the system to reconfigure a c-core to
run future and past modified versions of the source code that was
used to generate the c-cores. Most data transfer occurs through the
coherent L1 cache connection.

An individual c-core (Figure 1(c)) comprises a datapath and
control state machine derived directly from the code it targets. Spe-
cialized load and store units share ports to memory and use a sim-
ple token-based protocol to enforce correct memory ordering and
support nearly arbitrary C code. The scan chain interface provides
access to internal state.

3.2 Creating and targeting conservation cores
Figure 2 depicts the generation of a many-core processor equipped
with c-cores and the toolchain needed to target them. The pro-
cess begins with the processor designer characterizing the work-
load by identifying codes that make up a significant fraction of the
processor’s target workload. The toolchain extracts the most fre-
quently used (or “hot”) code regions (a), augments them with a
small amount of reconfigurability (b) and then synthesizes c-core
hardware (see Section 4) using a 45 nm standard cell CAD flow
(c). A single processor contains many tiles, each with a general
purpose CPU and collection of different c-cores (d).

In order to generate code for the processor, we extend a standard
compiler infrastructure (which could easily be a derivative of stan-
dard compiler infrastructures such as GCC, the Intel C++ compiler,
or Microsoft Visual Studio—in our case, we use a combination
of OpenIMPACT and GCC) to support automatic code generation
for c-cores. The compiler incorporates a description of the c-core
that the manufacturer has shipped silicon for. The compiler uses a
matching algorithm to find similarities between the input code and
the c-core specifications (e). In cases where there are close matches,
the compiler will generate both CPU-only object code and object

code that makes use of the c-core. The latter version of the code
includes patching information that is downloaded into the c-core
via scan chain before it is used. The decision of whether to use the
c-core-enabled version of the code or the “software-only” version,
is made at run time, based on c-core availability and other factors.

3.3 Support for future application versions
Although the c-cores are created to support existing versions of
specific applications, they also need to support newer versions that
are released after the original c-cores were synthesized. To do this,
the c-cores include reconfiguration bits which allows the behavior
of c-cores to adapt to commonly found changes in programs. The
patching engine in the compiler performs a specialized graph-
matching algorithm on the data- and control-flow graphs of the
application or library (see Section 5). Depending on the extent
of the differences between the versions, the patch configuration
state may specify small changes (e.g., replacing an addition with
a subtraction or replacing a constant value) or larger changes, such
as bypassing a long sequence of operations with software execution
on the CPU. This patch is automatically included in the program
binary by the compiler and is invisible to the programmer or user.

The next two sections provide a more complete discussion of
each component of the system.

4. Conservation core architecture
This section describes the architecture of a c-core-enabled system
in more detail. We describe the organization and synthesis of the
c-cores themselves, the interface between the c-cores and the rest
of the system, and their support for patchability.

computeArraySum
{
 sum = 0;
 for(i = 0; i < n; i++)
 {
 sum += a[i];
 }
 return(sum);
}

i = 0
sum = 0

phi(i)
phi(sum)

i < n

sum+=a[i]
i++ return(sum)

F

(a) (b) (c)

isum a

+

ld unit
addr

valid

en

value+

0 0

+1

muxSel
muxSel

ldEn

ldValid

<

n

cond

Data Path

sInit

s1

s2

s3 ldValid==0

sRet
cond==0

Control
Path

Cache
Interface

Scan Chain
Interface

Scan Chain

Figure 3. Conservation core example An example showing the translation from C code (a), to the compiler’s internal representation (b),
and finally to hardware (c). The hardware schematic and state machine correspond very closely to the data and control flow graphs of the C
code.

4.1 Conservation core organization
Figure 1(c) shows the architecture of a prototypical c-core. The
principle components are the datapath, the control unit, the cache
interface, and the scan chain interface to the CPU.

Datapath and control By design, the c-core datapath and control
very closely resemble the internal representation that our toolchain
extracts from the C source code. The datapath contains the func-
tional units (adders, shifters, etc.), the muxes to implement control
decisions, and the registers to hold program values across clock cy-
cles.

The control unit implements a state machine that mimics the
control flow graph of the code. It tracks branch outcomes (com-
puted in the datapath) to determine which state to enter on each
cycle. The control path sets the enable and select lines on the regis-
ters and muxes so that the correct basic block is active each cycle.

The close correspondence between the program’s structure and
the c-core is important for two reasons: First, it makes it easier to
enforce correct memory ordering in irregular programs. The order-
ing that the control path’s state machine enforces corresponds to
the order that the program counter provides in general purpose pro-
cessors, and we use that ordering to enforce memory dependencies.
Second, by maintaining a close correspondence between the origi-
nal program and the hardware, it is more likely that small changes
in the source code (which are the common case) will result in cor-
respondingly small patches to the hardware.

To maintain this correspondence and to reduce the number of
registers required in the datapath, the registers in the c-core data-
paths adhere to SSA form: Each static SSA variable has a corre-
sponding register. This invariant minimizes the number of register
updates: Exactly one register value changes per new value that the
program generates.

Memory interface and ordering Memory operations require spe-
cial attention to ensure that the c-core enforces memory ordering
constraints. Conservation cores enforce these constraints by allow-
ing only one memory operation per basic block. The c-core only
activates one basic block at a time, guaranteeing that memory op-
erations execute in the correct order.

The load/store units connect to a coherent data cache that en-
sures that all loads and stores are visible to the rest of the system
regardless of which addresses the c-core accesses.

Since memory operations can take multiple cycles, the toolchain
adds a self-loop to the basic block that contains each memory

operation and exports a “valid” line to the control path. When the
memory operation is complete, it asserts the “valid” signal and
control exits the loop and proceeds with the following basic block.
The “valid” signal is similar to the memory ordering token used in
systems such as Tartan [27] and WaveScalar [35].

Most of the communication between c-cores and the CPU oc-
curs via the shared L1 cache. A coherent, shared memory interface
allows us to construct c-cores for applications with unpredictable
access patterns. Conventional accelerators cannot speed up these
applications, because they cannot extract enough memory paral-
lelism. Such applications can be an excellent fit for c-cores, how-
ever, as performance is not the primary concern. Since the CPU
and c-cores do not simultaneously access the cache, the impact
on the CPU cycle time is negligible, because the c-cores can mux
in through non-critical, pre-existing paths that are used to handle
cache fills.

Multi-cycle instructions Conservation cores handle other multi-
cycle instructions (e.g., integer division and floating point opera-
tions) in the same way as memory operations. Each multi-cycle
instruction resides in a basic block with a self-loop and generates a
“valid” signal when it completes.

Example Figure 3 shows the translation from C code (a) to hard-
ware schematic and state machine (c). The hardware corresponds
very closely to the CFG of the sample code (b). It has muxes for
variables i and sum corresponding to the phi operators in the CFG.
Also, the state machine of the c-core is almost identical to the CFG,
but with additional self-loops for multi-cycle operations. The dat-
apath has a load unit to access the memory hierarchy to read the
array a.

4.2 The CPU/c-core interface
Aside from the cache, the only connection between the CPU and
the c-cores is a set of scan chains that allow the CPU to manip-
ulate all of the c-core’s internal state. The CPU side of the inter-
face is shared among all c-cores on the CPU’s tile. The CPU can
communicate via scan chains with only one c-core at a time, with
switching controlled by the CPU. The CPU uses the scan chains
to install patches that will be used across many invocations, and to
pass initial arguments for individual invocations. The scan chains
also allow the CPU to read and modify internal c-core state to im-
plement exceptions.

Conservation core scan chains are divided into two groups:
There are a small number of short, fixed-function scan chains for
control, argument passing, and patch installation, and up to 32 scan
chains for accessing datapath state.

The scan chains for arguments are short (just 64 bits) to make
invocation fast, but the patch installation scan chains can be much
longer (up to 13,000 bits in our biggest c-core). However, patch
installation is infrequent, so the cost of accessing the scan chain
is minor. A special “master control” scan chain contains a single
bit and allows the CPU to start and stop the c-core’s execution as
needed.

Datapath scan chains allow the CPU to manipulate arbitrary
execution state during an exception. Datapath scan chains range
in length from 32 to 448 bits in our largest c-core.

To access the interface, the CPU provides three new instruc-
tions: Move-From-ScanChain (MFSC), Move-To-ScanChain
(MTSC), and ScanChain-Rotate-Left (SCRL). MFSC moves the
32 bits at the head of a scan chain into a general purpose pro-
cessor register, and MTSC does the reverse. SCRL rotates a scan
chain left by n bits. SCRL executes asynchronously but MFSC and
MTSC have blocking semantics: They will wait for previously is-
sued SCRLs on a scan chain to finish before returning a value from
that scan chain.

4.3 Initiating c-core execution
When compiling an application or library containing functions that
are compatible with a c-core, the compiler will insert stubs that
enable the code to choose between using the c-core-enabled version
or the CPU-only version at runtime.

Later, when the application is run and calls the function, the
stub checks for an available c-core. If it finds one, it uses the scan
chain interface to pass arguments to the c-core, starts it running, and
then waits for execution to complete. Once execution completes,
the c-core raises an exception and control transfers back to the stub,
which extracts the return value and passes it back to the caller.

As the c-cores are drop-in replacements for existing code, pro-
grams need not block if the correct c-core is not available (i.e., if
it is in use by another program or currently configured with the in-
correct patch). The original CPU (software) implementation is still
available, and the program can use it instead.

4.4 Patching support
Our analysis of successive versions of our applications revealed a
number of common change patterns. The most common changes
included modifications to hard-coded constants, the removal or ad-
dition of code segments, and the replacement of one operation
by another (e.g., an add becomes a subtract). Fortunately, many
of these changes can be addressed effectively with very modest
amounts of reconfigurability. Conservation cores provide three fa-
cilities that can be used to adjusted their behavior after they have
been fabricated.

Configurable constants We generalize hard-coded immediate
values into configurable registers to support changes to the values
of compile-time constants and the insertion, deletion, or rearrange-
ment of structure fields.

Generalized single-cycle datapath operators To support the re-
placement of one operator with another, we generalize any addition
or subtraction to an adder-subtractor, any comparison operation to
a generalized comparator, and any bitwise operation to a bitwise
ALU. A small configuration register is then added for each such
operator, determining which operation is currently active.

Control flow changes In order to handle changes in the CFG’s
structure and changes to basic blocks that go beyond what the above

Patching Enabled
Compiler

Original
Version

C-core
Identification

Configuration
Generator

BTL Simulator

VCS + PrimeTime

Synopsys
CAD Tool Flow

Source Code

C-core Code

HW Spec in C
Verilog

Placed and Routed
Circuit

Memory Trace

New
Version

C-core
Identification

C-core Code

Patching
Algorithm

3 Address Code

Fully Configured HW

Source Code

C to Verilog C to Binary

Performance
ResultsPower Results

Figure 4. The c-core C-to-hardware toolchain The various
stages of our toolchain involved in hardware generation, patching,
simulation, and power measurement are shown. The bold box con-
tains the patch generation infrastructure based on our patching en-
abled compiler.

mechanisms can handle, the c-cores provide a flexible exception
mechanism. The control path contains a bit for each state transition
that determines whether the c-core should treat it as an exception.

When the state machine makes an exceptional transition, the c-
core stops executing and transfers control to the general-purpose
core. The exception handler extracts current variable values from
the c-core via the scan-chain-based interface, performs a portion of
the patched execution, transfers new values back into the c-core,
and resumes execution. The exception handler can restart c-core
execution at any point in the CFG, so exceptions can arbitrarily
alter control flow and/or replace arbitrary portions of the CFG.

The next section describes the patch generation algorithm that
determines the reconfiguration state necessary to allow a c-core to
continue to run code even after it has been changed from the version
used to generate that c-core.

5. Patching conservation cores
This section describes the patching algorithm we have developed.
We expect that at least some patch generation will need to occur
at the assembly language level, so our patching algorithm works
directly on the program’s dataflow and control graphs, a represen-
tation that can be generated from either source code or a compiled
binary. The bold box in Figure 4 shows how the patching system
fits into the toolchain.

When a c-core-equipped processor ships, it can run the latest
versions of the targeted applications without modification. We refer
to this version as the original. When a new version of an application
becomes available, we must determine how to map the new version
of the software onto the existing c-core hardware. We refer to the
new version of the software as the target. The goal of the patching
process is to generate a patch for the original hardware that will let
it run the target software version.

sumArray(int n, int *a)
{
 int i = 0;
 int sum = 0;
 for(; i<n; i++)
 {
 sum += a[i];
 }

 return(sum);
}

Jump to appropriate

basic block

Exception to SW on
false edge

i = 0
sum = 0

sum += a[i]
i++

i < n

return sum
to CPU

Prologue:
Scan in sum

Patch Code:
sum = sum % 256

Epilogue:
Scan sum to c-core

Exception Patch

(a) (b) (c)

F

i = 0
sum = 0

sum += a[i]
i++

i < n

return sum
to CPU

F

sumArray(int n, int *a)
{
 int i = 0;
 int sum = 0;
 for(; i<n; i++)
 {
 sum += a[i];
 }
 sum = sum % 256;
 return(sum);
}

i = 0
sum = 0

sum += a[i]
i++

i < n

sum =
sum%256

return sum
to CPU

Ha
rd

w
ar

e
Re

gi
on

 1
Ha

rd
w

ar
e

Re
gi

on
 2

So
ftw

ar
e

Re
gi

on

Control Flow
Mapping

New VersionOriginal Version

Figure 5. Handling changes in control flow across versions The original source for sumArray() is shown alongside its CFG (a). The
mapping between the new and the original version of sumArray’s CFG covers most of the target version in two hardware regions (b).
Transfers of control between the hardware and software regions require an exception (c).

Our patching algorithm proceeds in four stages: basic block
mapping, control flow mapping, register remapping, and patch gen-
eration.

5.1 Basic block mapping
The first stage of the algorithm identifies which hardware basic
blocks in the original hardware can run each basic block in the
target application. Since the original hardware includes generalized
arithmetic operators and configurable constant registers, there is
significant flexibility in what it means for two basic blocks to
“match”. In our system, two basic blocks match if the data flow
graphs of the two basic blocks are isomorphic up to operators at
the nodes and constant values.

5.2 Control flow mapping
The next step is building a map between the control flow graphs of
the original and target versions. We identify regions of the target
control flow graph that map perfectly onto disjoint portions of the
original hardware. We call these portions of the function hardware
regions, and they will execute entirely in hardware under the patch.
Ideally, all basic blocks in the target will map to basic blocks in
the original, and there will be a single hardware region. In practice
this will sometimes not be possible: The target version may have
basic blocks inserted or deleted relative to the original, or one of
the basic blocks may have changed enough that no matching basic
block exists in the original. We use the exception mechanism to
execute the remaining, unmapped software regions on the general
purpose processor.

To divide the graph, the algorithm starts by matching the en-
try node of the target graph with the entry of the original graph.
The algorithm proceeds with a breadth-first traversal of the target
graph, greedily adding as many blocks to the hardware region as
possible. When that hardware region can grow no larger, the region
is complete.

A region stops growing for one of two reasons: It may reach
the end of the function or run up against another hardware region.
Alternatively, there may be no matching basic blocks available to
add to the region because of a code modification. In that case,
we mark the non-matching basic blocks as part of the software
region and select the lowest depth matching basic block available
to seed the creation of a new hardware region. This stage of the

algorithm terminates when the entire function has been partitioned
into hardware regions and software regions.

Figure 5 illustrates this portion of the algorithm. Figure 5(a)
shows the original software version of a function called sumArray()
and its CFG. Figure 5(b) shows the target version of sumArray()
which has an extra operation. Most of the new sumArray() is
mapped onto the original c-core in two hardware regions, but the
new operation is mapped to a separate software region because the
hardware for it does not exist in the original c-core. Any transition
to this region will be marked as an exception.

5.3 Register mapping
The next phase of the algorithm generates a consistent local map-
ping between registers in the original and target basic block for each
matched basic block pair. In this mapping the output of the first in-
struction in the original basic block corresponds to the output of the
first instruction in the target basic block, and so on.

The next step is to combine these per-block maps to create a
consistent register mapping for each hardware region. To construct
the mapping, we analyze the basic block mapping for each of the
basic blocks in the region. These data yield a weighted bipartite
graph, in which one set of nodes corresponds to the register names
from the original code and the second set corresponds to register
names from the target code. An edge exists between an original
register, r1, and a target register, r2, if the mapping for some pair of
basic blocks maps r2 onto r1. The weight of the edge is the number
of pairs of basic blocks whose mapping makes that conversion.

Next, we perform a maximum cardinality, maximum weight
matching on the graph. The resulting matching is the register map
for that hardware region. Finally, we examine each pair of corre-
sponding basic blocks to see if their register names are consistent
with the newly created global map. If they are not, we remove the
target basic block from the hardware region and place it in its own
software region.

5.4 Patch generation
At this point we have all the information required to generate a
patch that will let the target code run on the original hardware. The
patch itself consists of three parts:

Figure 6. MCF 2006 conservation core for primal bea mpp()
function The c-core synthesizes to 0.077mm2, operates at speeds
up to 1412 MHz, and provides 53% coverage for the application.
The light gray elements are datapath logic (adders, comparators,
etc.), dark gray elements are registers, and the white elements
constitute the control path.

• the configuration bits for each of the configurable datapath
elements along with values for each of the configurable constant
registers

• exception bits for each of the control flow edges that pass from
a hardware region into a software region

• code to implement each of the software regions

The software region code is subdivided into three sections. First,
the prologue uses the scan chain interface to retrieve values from
the c-core’s datapath into the processor core. Next, the patch code
implements the software region. The region may have multiple exit
points, each leading back to a different point in the datapath. At the
exit, the epilogue uses the scan chain interface again to insert the
results back into the datapath and return control to the c-core.

5.5 Patched execution example
Figure 5(c) shows how c-cores use the exception mechanism to
patch around software regions generated during the control flow
mapping stage. When the c-core execution reaches the false edge
of the for loop condition, it makes an exceptional transition which
freezes the c-core and transfers control to the CPU. The CPU re-
trieves the application’s software exception handler corresponding
to the edge that raised the exception, and the handler executes the
prologue, patch code, and epilogue before returning control to the
c-core.

6. Methodology
Our c-core synthesis toolchain takes C programs as input, splits
them into datapath and control segments, and then uses a state-
of-the-art EDA tool flow to generate a circuit fully realizable in
silicon. The toolchain also generates a cycle-accurate system sim-
ulator for the new hardware. We use the simulator for performance
measurements and to generate traces that drive Synopsys VCS and
PrimeTime simulation of the placed-and-routed netlist. Below, we
describe these components in more detail.

Year

1991 1994 1997 2000 2003 2006 2009
0

4

8

12

16

20

24

28

32

mcf
Patchable
djpeg
Patchable
cjpeg
Patchable
bzip2
Patchable
vpr
Patchable

Year

1991 1994 1997 2000 2003 2006 2009
0

4

8

12

16

20

24

28

32

mcf
Non−patchable
djpeg
Non−patchable
cjpeg
Non−patchable
bzip2
Non−patchable
vpr
Non−patchable

Non−patchable HW

Patchable HW

E
ne

rg
y

ef
fic

ie
nc

y
of

 H
W

 n
or

m
al

iz
ed

 to
 S

W

Figure 7. Conservation core effectiveness over time Since c-
cores target stable applications, they can deliver efficiency gains
over a very long period of time.

6.1 Toolchain
Figure 4 summarizes the c-core toolchain. The toolchain is based
on the OpenIMPACT (1.0rc4) [29], CodeSurfer (2.1p1) [8], and
LLVM (2.4) [23] compiler infrastructures and accepts a large sub-
set of the C language, including arbitrary pointer references, switch
statements, and loops with complex conditions.

In the c-core identification stage, functions or subregions of
functions (e.g., key loops) are tagged for conversion into c-cores
based on profile information. The toolchain uses outlining to isolate
the region and then uses exhaustive inlining to remove function
calls. We pass global variables by reference as additional input
arguments.

The C-to-Verilog stage generates the control and dataflow
graphs for the function in SSA [9] form. This stage then adds
basic blocks and control states for each memory operation and
multi-cycle instruction. The final step of the C-to-Verilog stage
generates synthesizeable Verilog for the c-core. This requires con-
verting φ operators into muxes, inserting registers at the definition
of each value, and adding self loops to the control flow graph for
the multi-cycle operations. Then, it generates the control unit with
a state machine that matches the control flow graph. This stage
of the toolchain also generates a cycle-accurate module for our
architectural simulator.

6.2 Simulation infrastructure
Our cycle-accurate simulation infrastructure is based on btl, the
Raw simulator [36]. We have modified btl to model a cache-
coherent memory among multiple processors, to include a scan
chain interface between the CPU and all of the local c-cores, and
to simulate the c-cores themselves. The c-cores may operate at dif-
ferent clock frequencies from each other and from the core clock;

C-core Ver. Key LOC % Exe. Area (mm2) Freq. (MHz)
Non-P. Patch. Non-P. Patch.

bzip2
fallbackSort 1.0.0 A i 231 71.1 0.128 0.275 1345 1161
fallbackSort 1.0.5 F i 231 71.1 0.128 0.275 1345 1161

cjpeg
extract MCUs v1 A i 266 49.3 0.108 0.205 1556 916

get rgb ycc rows v1 A ii 39 5.1 0.020 0.044 1808 1039
subsample v1 A iii 40 17.7 0.023 0.039 1651 1568

extract MCUs v2 B i 277 49.5 0.108 0.205 1556 916
get rgb ycc rows v2 B ii 37 5.1 0.020 0.044 1808 1039

subsample v2 B iii 36 17.8 0.023 0.039 1651 1568
djpeg

jpeg idct islow v5 A i 223 21.5 0.133 0.222 1336 932
ycc rgb convert v5 A ii 35 33.0 0.023 0.043 1663 1539
jpeg idct islow v6 B i 236 21.7 0.135 0.222 1390 932
ycc rgb convert v6 B ii 35 33.7 0.024 0.043 1676 1539

mcf
primal bea mpp 2000 A i 64 35.2 0.033 0.077 1628 1412
refresh potential 2000 A ii 44 8.8 0.017 0.033 1899 1647
primal bea mpp 2006 B i 64 53.3 0.032 0.077 1568 1412
refresh potential 2006 B ii 41 1.3 0.015 0.028 1871 1639

vpr
try swap 4.22 A i 858 61.1 0.181 0.326 1199 912
try swap 4.3 B i 861 27.0 0.181 0.326 1199 912

Table 3. Conservation core statistics The c-cores we generated
vary greatly in size and complexity. In the “Key” column, the
letters correspond to application versions and the Roman numerals
denote specific functions from the application that a c-core targets.
“LOC” is lines of C source code, and “% Exe.” is the percentage of
execution that each function comprises in the application.

however the cache clock is synchronized to the c-core when control
is transferred to the c-core.

6.3 Synthesis
For synthesis we target a TSMC 45 nm GS process using Synopsys
Design Compiler (C-2009.06-SP2) and IC Compiler (C-2009.06-
SP2). Our toolchain generates synthesizeable Verilog and automat-
ically processes the design in the Synopsys CAD tool flow, start-
ing with netlist generation and continuing through placement, clock
tree synthesis, and routing, before performing post-route optimiza-
tions. We specifically optimize for speed and power.

Figure 6 shows an automatically-generated c-core from the
MCF 2006 application. Over 50% of the area is devoted to per-
forming arithmetic operations in the datapath, 7% is dedicated to
the control logic, and 40% is registers. This circuit meets timing at
clock frequencies up to 1412 MHz.

6.4 Power measurements
In order to measure c-core power usage, our simulator periodically
samples execution by storing traces of all inputs and outputs to
the c-core. Each sample starts with a “snapshot” recording the
entire register state of the c-core and continues for 10,000 cycles.
The current sampling policy is to sample 10,000 out of every
50,000 cycles, and we discard sampling periods corresponding to
the initialization phase of the application.

We feed each trace sample into the Synopsys VCS (C-2009.06)
logic simulator. Along with the Verilog code our toolchain also
automatically generates a Verilog testbench module for each c-
core, which initiates the simulation of each sample by scanning in
the register values from each trace snapshot. The VCS simulation
generates a VCD activity file, which we pipe as input into Synopsys
PrimeTime (C-2009.06-SP2). PrimeTime computes both the static
and dynamic power for each sampling period. We model fine-
grained clock gating for inactive c-corestates via post-processing.

To model power for other system components, we derive pro-
cessor and clock power values from specifications for a MIPS

C-core Ver. States Ops Loads/
Stores

Patching Constructs
Add-Cmp.Bit.Const.Exc.
Sub Reg. Bit

bzip2
fallbackSort 1.0.0 285 647 66 / 38 138 78 33 323 363
fallbackSort 1.0.5 285 647 66 / 38 138 78 33 323 363

cjpeg
extract MCUs v1 116 406 41 / 25 152 11 0 235 127

get rgb ycc rows v1 23 68 14 / 3 16 2 0 39 25
subsample v1 32 85 9 / 1 16 8 1 34 40

extract MCUs v2 116 406 41 / 25 152 11 0 235 127
get rgb ycc rows v2 23 68 14 / 3 16 2 0 39 25

subsample v2 32 85 9 / 1 16 8 1 34 40
djpeg

jpeg idct islow v5 97 432 39 / 32 180 4 21 238 101
ycc rgb convert v5 40 82 24 / 3 19 4 0 40 44
jpeg idct islow v6 97 432 39 / 32 180 4 21 238 101
ycc rgb convert v6 40 82 24 / 3 19 4 0 40 44

mcf
primal bea mpp 2000 101 144 36 / 16 22 21 0 94 122
refresh potential 2000 44 70 17 / 5 6 10 0 35 54
primal bea mpp 2006 101 144 36 / 16 22 21 0 94 122
refresh potential 2006 39 60 16 / 4 3 8 0 29 47

vpr
try swap 4.22 652 1095 123 / 86 108 149 0 367 801
try swap 4.3 652 1095 123 / 86 108 149 0 367 801

Table 4. Conservation core details “States” is the number of
states in the control path, “Ops” is the number of assembly-level
instructions, and “Patching Constructs” gives a breakdown of the
different types of patching facilities used in each conservation core.

24KE processor in TSMC 90 nm and 65 nm processes [26], and
component ratios for Raw reported in [21]. We have scaled these
values for a 45 nm process and assume a MIPS core frequency of
1.5 GHz with 0.077 mW/MHz for average CPU operation. Finally,
we use CACTI 5.3 [37] for I- and D-cache power.

7. Results
This section describes the performance and efficiency of our c-core-
enabled architecture and the impact of c-cores on application per-
formance and energy consumption. Then we analyze the overheads
due to patching and the potential benefits of applying c-cores to a
wide range of applications.

7.1 Energy savings
Figure 8 shows the relative energy efficiency, EDP improvement,
and speedup of c-cores vs. a MIPS processor executing the same
code. For fairness, and to quantify the benefits of converting in-
structions into c-cores, we exclude cache power for both cases.
The figure compares both patchable and non-patchable c-cores to a
general-purpose MIPS core for six versions of bzip2 (1.0.0−1.0.5),
and two versions each of cjpeg (v1−v2), djpeg (v5−v6), mcf
(2000−2006), and vpr (4.22−4.30). Tables 3 and 4 summarize
the c-cores.

The data show that patchable c-cores are up to 15.96× as
energy-efficient as a MIPS core at executing the code they were
built to execute. The non-patchable c-cores are even more energy
efficient, but their inability to adapt to software changes limits their
useful lifetime.

Figure 7 quantifies the ability of patchability to extend the use-
ful lifetime of c-cores. The horizontal axis measures time in years,
and the vertical axis is energy efficiency normalized to software.
The lines represent what the c-cores built for the earliest software
version can deliver, both with and without patching support. For
instance, vpr 4.22 was released in 1999, but when a new version
appears in 2000, the non-patchable hardware must default to soft-
ware, reducing the energy efficiency factor from 6.2× down to 1×.
In contrast, patchable hardware built for 4.22 has a lower initial

�
� S

W
� u

np
at

ch
ab

le
� p

at
ch

ab
le

� p
at

ch
ed ��

�
S

W
�

un
pa

tc
ha

bl
e

�
pa

tc
ha

bl
e

�
pa

tc
he

d
��� �
 S

W
�

 u
np

at
ch

ab
le

�
 p

at
ch

ab
le

�
 p

at
ch

ed
���

� �
 S

W
�

 u
np

at
ch

ab
le

�
 p

at
ch

ab
le

�
 p

at
ch

ed
���

�� �

S
W

�

un
pa

tc
ha

bl
e

�

pa
tc

ha
bl

e
�

pa

tc
he

d
���

���
�

 S

W
�

 u

np
at

ch
ab

le
�

 p

at
ch

ab
le

�

 p
at

ch
ed

���
���

�
�

 S

W
�

 u

np
at

ch
ab

le
�

 p

at
ch

ab
le

�

 p
at

ch
ed

���
���

��
�

S
W

�

un

pa
tc

ha
bl

e
�

pa
tc

ha
bl

e
�

pa
tc

he
d

���
���

���
�

 S
W

�

 u

np
at

ch
ab

le
�

 p
at

ch
ab

le
�

 p
at

ch
ed

���
���

���
�

���
���

���
��

�

 S

W
�

 u
np

at
ch

ab
le

�

 p

at
ch

ab
le

�

 p

at
ch

ed

P
er

−
fu

nc
tio

n
ef

fic
ie

nc
y

(w
or

k/
J)

0

5

10

15

20

25

30

35
1.

00
18

.5
2

10
.7

4
10

.7
4

1.
00

17
.3

0
10

.0
1

10
.0

1

1.
00

29
.8

6
15

.9
6

8.
53

1.
00

27
.0

5
14

.6
3

14
.5

1

1.
00

6.
21

3.
38

3.
38

1.
00

7.
42

4.
08

4.
08

1.
00

21
.1

7
10

.2
1

10
.2

1

1.
00

21
.2

5
10

.2
2

10
.2

2

1.
00

12
.6

5
6.

43
6.

43

1.
00

17
.9

4
9.

52
8.

68

djpeg A�

�

��

djpeg B�

�

��

� mcf A�

�

�

�

� mcf B�

�

� �

� vpr A�

�
��

� vpr B�

�
��

cjpeg A�

�

��

cjpeg B�

�

��

bzip2 A−F Avg.�

�

��

�� �

�

� �

Dynamic

Leakage

�
� S

W
� u

np
at

ch
ab

le
� p

at
ch

ab
le

� p
at

ch
ed ��

�
S

W
�

un
pa

tc
ha

bl
e

�
pa

tc
ha

bl
e

�
pa

tc
he

d
��� �
 S

W
�

 u
np

at
ch

ab
le

�
 p

at
ch

ab
le

�
 p

at
ch

ed
���

� �
 S

W
�

 u
np

at
ch

ab
le

�
 p

at
ch

ab
le

�
 p

at
ch

ed
���

�� �

S
W

�

un
pa

tc
ha

bl
e

�

pa
tc

ha
bl

e
�

pa

tc
he

d
���

���
�

 S

W
�

 u

np
at

ch
ab

le
�

 p

at
ch

ab
le

�

 p
at

ch
ed

���
���

�
�

 S

W
�

 u

np
at

ch
ab

le
�

 p

at
ch

ab
le

�

 p
at

ch
ed

���
���

��
�

S
W

�

un

pa
tc

ha
bl

e
�

pa
tc

ha
bl

e
�

pa
tc

he
d

���
���

���
�

 S
W

�

 u

np
at

ch
ab

le
�

 p
at

ch
ab

le
�

 p
at

ch
ed

���
���

���
�

���
���

���
��

�

 S

W
�

 u
np

at
ch

ab
le

�

 p

at
ch

ab
le

�

 p

at
ch

edP
er

−
fu

nc
tio

n
E

D
P

 im
pr

ov
em

en
t (

1/
E

D
P

)

0

5

10

15

20

25

30

35

40

1.
00

21
.2

9
10

.7
3

10
.7

3

1.
00

18
.9

6
9.

33
9.

33

1.
00

30
.5

3
16

.1
1

8.
07

1.
00

27
.5

4
14

.6
5

14
.5

6

1.
00

5.
09

2.
25

2.
25

1.
00

7.
23

3.
28

3.
28

1.
00

31
.5

8
10

.5
2

10
.5

2

1.
00

31
.8

9
10

.5
8

10
.5

8

1.
00

16
.1

2
7.

58
7.

58

1.
00

21
.1

4
9.

45
8.

54

djpeg A�

�

��

djpeg B�

�

��

� mcf A�

�

�

�

� mcf B�

�

� �

� vpr A�

�
��

� vpr B�

�
��

cjpeg A�

�

��

cjpeg B�

�

��

bzip2 A−F Avg.�

�

��

�� �

�

� �

EDP
Improvement

�
� S

W
� u

np
at

ch
ab

le
� p

at
ch

ab
le

� p
at

ch
ed ��

�
S

W
�

un
pa

tc
ha

bl
e

�
pa

tc
ha

bl
e

�
pa

tc
he

d
��� �
 S

W
�

 u
np

at
ch

ab
le

�
 p

at
ch

ab
le

�
 p

at
ch

ed
���

� �
 S

W
�

 u
np

at
ch

ab
le

�
 p

at
ch

ab
le

�
 p

at
ch

ed
���

�� �

S
W

�

un
pa

tc
ha

bl
e

�

pa
tc

ha
bl

e
�

pa

tc
he

d
���

���
�

 S

W
�

 u

np
at

ch
ab

le
�

 p

at
ch

ab
le

�

 p
at

ch
ed

���
���

�
�

 S

W
�

 u

np
at

ch
ab

le
�

 p

at
ch

ab
le

�

 p
at

ch
ed

���
���

��
�

S
W

�

un

pa
tc

ha
bl

e
�

pa
tc

ha
bl

e
�

pa
tc

he
d

���
���

���
�

 S
W

�

 u

np
at

ch
ab

le
�

 p
at

ch
ab

le
�

 p
at

ch
ed

���
���

���
�

���
���

���
��

�

 S

W
�

 u
np

at
ch

ab
le

�

 p

at
ch

ab
le

�

 p

at
ch

ed

P
er

−
fu

nc
tio

n
sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.
00

1.
15

1.
00

1.
00

1.
00 1.

10
0.

93
0.

93 1.
00 1.
02

1.
01

0.
95 1.

00
1.

02
1.

00
1.

00

1.
00

0.
82

0.
67

0.
67

1.
00

0.
97

0.
80

0.
80

1.
00

1.
49

1.
03

1.
03

1.
00

1.
50

1.
04

1.
04

1.
00

1.
27

1.
18

1.
18

1.
00

1.
15

0.
96

0.
95

djpeg A

�
�

��

djpeg B

�
�

��

� mcf A

� � � �

� mcf B

� � � �

� vpr A

�
�

��

� vpr B

� �
��

cjpeg A

�

�

��

cjpeg B

�

�

��

bzip2 A−F Avg.

�

�
��

��

�
�

� �

Speedup

Figure 8. Conservation core energy efficiency Our patchable c-cores provide up to 15.96× improvement in energy efficiency compared
to a general-purpose MIPS core for the portions of the programs that they implement. The gains are even larger for non-patchable c-cores,
but their lack of flexibility limits their useful lifetime (see Figure 7). Each subgroup of bars represents a specific version of an application
(see Table 3). Results are normalized to running completely in software on an in-order, power-efficient MIPS core (“SW”). “unpatchable”
denotes a c-core built for that version of the application but without patching support, while “patchable” includes patching facilities. Finally,
“patched” bars represent alternate versions of an application running on a patched c-core. For all six versions of bzip2 (A-F), the c-core’s
performance is identical.

Structure Area Replaced by Area
(µm2) (µm2)

adder 270 AddSub 365subtractor 270
comparator (GE) 133 Compare6 216
bitwise AND, OR 34 Bitwise 191bitwise XOR 56

constant value ∼ 0 32-bit register 160

Table 5. Area costs of patchability The AddSub unit can perform
addition or subtraction. Similarly, Compare6 replaces any single
comparator (e.g.,≥) with any of (=, 6=,≥, >,≤, <). Constant val-
ues in non-patchable hardware contribute little or even “negative”
area because they can enable many optimizations.

efficiency factor of 3.4×, but it remained there until March 2009.
For djpeg and bzip2, the results are even more impressive: Those
c-cores deliver 10× and 6.4× energy efficiency improvements for
covered execution over 15 and 9 year periods, respectively.

7.2 Patching overhead
Although patching provides significant benefits, it incurs additional
overhead. Below we examine the impacts of patching on area and
energy consumption in more detail.

Area overhead Patching area overhead comes in four forms. The
first is the increase in area caused by replacing simple, fixed-
function datapath elements (e.g., adders, comparators) with config-
urable ones. The second form comes from the conversion of hard-
wired constant values to configurable registers. Third, there is extra
area in the scan chains that allow us to insert, remove, and mod-
ify arbitrary values in the c-core. Finally, patchable c-cores require
additional area in the control path to store edge exception informa-
tion.

Table 5 compares the area requirements for patchable and
non-patchable structures. The costs on a per-element basis vary
from 160 µm2 per configurable constant register to 365µm2 per
add/subtract unit. The standard cell libraries we use include scan
chains in registers automatically, but they are not easily accessible
in the tool flow. Instead, we implement the scan chains explicitly,
which results in additional overhead that could be removed with
proper support from the tool flow.

Figure 9(a) shows the breakdown of area for the patchable c-
cores for the earliest version of each of our 5 target applications.
Patching support increases the area requirements of c-cores by 89%
on average.

Power overhead Patching support also incurs additional power
overhead. Figure 9(b) shows the impact of adding each of the three
components described above. Overall, patching support approxi-
mately doubles the power consumption of the c-cores, with the ma-
jority of the overhead coming from the configurable registers.

Performance overhead In our toolchain, adding patchability does
not change the structure of the datapath, but it does potentially in-
crease the critical path length and, therefore, the achievable clock
speed. On average, patchable systems achieve 90% of the applica-
tion performance of non-patchable systems.

Reducing overheads We can reduce the overhead of patching by
performing a more detailed analysis of changes in stable work-
loads. If it were possible to identify, for instance, which constants
or operators are more likely to change, we could provide patcha-
bility only where it is likely to be useful. This would reduce area
costs, reduce dynamic and static power consumption, and improve
performance.

�d
jp

eg
−

v5

�m
cf

−
20

00

�v
pr

−
4.

22

�c
jp

eg
−

v1

�b
zi

p2
−

1.
0.

0

P
er

ce
nt

ag
e

of
 T

ot
al

0

20

40

60

80

100

(a) Area� � � �

Non−patchable

ALUs

Constant registers

Exception bits

Other

�d
jp

eg
−

v5

�m
cf

−
20

00

�v
pr

−
4.

22

�c
jp

eg
−

v1

�b
zi

p2
−

1.
0.

0

P
er

ce
nt

ag
e

of
 T

ot
al

0

20

40

60

80

100

(b) Power� � � �

Figure 9. Area and power breakdown for patchable c-cores
Adding patchability approximately doubles a c-core’s area (a) and
power (b) requirements.

7.3 Examining Amdahl’s Law
Figures 7 and 8 demonstrate that c-cores can provide large effi-
ciency gains for individual functions throughout a chip’s useful
lifetime. In this section, we examine the impact of Amdahl’s law by
evaluating full-application, full-chip c-core energy efficiency. Fig-
ure 10 shows the energy (top), energy-delay product (middle), and
delay (bottom) for each of the applications. In each group, the first
bar measures the performance of the program without using any
c-cores. The second measures performance with the patchable c-
cores described in the previous section. The data show that, at the
application level, c-cores save between 10% and 47% of energy
compared to running on a MIPS core, and they reduce EDP by be-
tween 1% and 55%. Runtime varies, decreasing by up to 12% and
increasing by up to 22%, but only increasing 1% on average.

While the benefits for these c-core-enabled systems are sizable,
the efficiency improvements from c-cores are moderated by the
fact that the remaining parts of the system are largely untuned for
use in this context. There are two key ways to realize larger full-
application benefits from c-cores that appear particularly promising
for future work. We explore the potential of both of these options
below.

Increasing coverage The first, and most effective, is to increase
the fraction of execution spent on a c-core, or coverage. The amount
of coverage that c-cores can deliver is a function of the applications
the system targets, the c-core toolchain, and the overheads that c-
cores introduce.

For c-cores to achieve high coverage in a reasonable amount
of area, a relatively small fraction of the application’s static in-
structions must account for a large fraction of execution. Figure 11
shows the fraction of dynamically executed x86 instructions (y-
axis) covered by the number of static x86 instructions (x-axis) for
a broad-ranging set of applications, including SPECCPU2006 in-
teger benchmarks astar and hmmer, desktop applications evince,
emacs, grep, gcc, perl, and scp, and the five applications for which
we constructed c-cores. For many applications, the curve is quite
steep. This means that converting a relatively small number of static
instructions into hardware will cover a very large fraction of exe-
cution.

The third bar in each subgroup in Figure 10 shows our pro-
jections assuming that we can achieve a 90% degree of coverage,
which Figure 11 indicates should be possible with a hardware bud-

�
� S

W
� p

at
ch

ab
le

� +
co

ve
ra

ge
� +

lo
w

le
ak ��

�
S

W
�

pa
tc

ha
bl

e
�

+
co

ve
ra

ge
�

+
lo

w
le

ak
��� �
 S

W
�

 p
at

ch
ab

le
�

 +
co

ve
ra

ge
�

 +
lo

w
le

ak
���

� �
 S

W
�

 p
at

ch
ab

le
�

 +
co

ve
ra

ge
�

 +
lo

w
le

ak
���

�� �

S
W

�

pa
tc

ha
bl

e
�

+

co
ve

ra
ge

�

+
lo

w
le

ak
���

���
�

 S

W
�

 p

at
ch

ab
le

�

 +
co

ve
ra

ge
�

 +

lo
w

le
ak

���
���

�
�

 S

W
�

 p

at
ch

ab
le

�

 +
co

ve
ra

ge
�

 +

lo
w

le
ak

���
���

��
�

S
W

�

pa

tc
ha

bl
e

�

+

co
ve

ra
ge

�

+

lo
w

le
ak

���
���

���
�

 S
W

�

 p

at
ch

ab
le

�

 +

co
ve

ra
ge

�

 +

lo
w

le
ak

���
���

���
�

���
���

���
��

�

 S

W
�

 p
at

ch
ab

le
�

 +
co

ve
ra

ge
�

 +
lo

w
le

ak

N
or

m
al

iz
ed

 a
pp

lic
at

io
n

en
er

gy

0

0.2

0.4

0.6

0.8

1

1.2

1.4
1.

00
0.

66
0.

40
0.

30

1.
00

0.
68

0.
42

0.
31

1.
00

0.
71

0.
38

0.
27

1.
00

0.
64

0.
38

0.
27

1.
00

0.
81

0.
60

0.
46

1.
00

0.
90

0.
56

0.
45

1.
00

0.
54

0.
40

0.
29

1.
00

0.
54

0.
40

0.
29

1.
00

0.
53

0.
43

0.
34

1.
00

0.
67

0.
44

0.
33

djpeg A

�

�

�
�

djpeg B

�

�

�
�

mcf A

�

�

�
�

mcf B

�

�

�
�

vpr A

�

�

�
�

vpr B

�
�

�
�

cjpeg A

�

�

�
�

cjpeg B

�

�

�
�

bzip2 A−F Avg.

�

�
�

�

��

�

�

�
�

Conservation Core
Leakage

Core Leakage

D−Cache Leakage

Core Clock

Conservation Core
Dynamic

Core Dynamic

D−Cache Dynamic

�
� S

W
� p

at
ch

ab
le

� +
co

ve
ra

ge
� +

lo
w

le
ak ��

�
S

W
�

pa
tc

ha
bl

e
�

+
co

ve
ra

ge
�

+
lo

w
le

ak
��� �
 S

W
�

 p
at

ch
ab

le
�

 +
co

ve
ra

ge
�

 +
lo

w
le

ak
���

� �
 S

W
�

 p
at

ch
ab

le
�

 +
co

ve
ra

ge
�

 +
lo

w
le

ak
���

�� �

S
W

�

pa
tc

ha
bl

e
�

+

co
ve

ra
ge

�

+
lo

w
le

ak
���

���
�

 S

W
�

 p

at
ch

ab
le

�

 +
co

ve
ra

ge
�

 +

lo
w

le
ak

���
���

�
�

 S

W
�

 p

at
ch

ab
le

�

 +
co

ve
ra

ge
�

 +

lo
w

le
ak

���
���

��
�

S
W

�

pa

tc
ha

bl
e

�

+

co
ve

ra
ge

�

+

lo
w

le
ak

���
���

���
�

 S
W

�

 p

at
ch

ab
le

�

 +

co
ve

ra
ge

�

 +

lo
w

le
ak

���
���

���
�

���
���

���
��

�

 S

W
�

 p
at

ch
ab

le
�

 +
co

ve
ra

ge
�

 +
lo

w
le

ak

N
or

m
al

iz
ed

 a
pp

lic
at

io
n

E
D

P

0

0.2

0.4

0.6

0.8

1

1.2

1.
00

0.
63

0.
39

0.
32

1.
00

0.
68

0.
43

0.
35

1.
00

0.
70

0.
37

0.
29

1.
00

0.
63

0.
38

0.
30

1.
00

0.
99

0.
82

0.
68

1.
00

0.
94

0.
66

0.
57

1.
00

0.
51

0.
39

0.
31

1.
00

0.
51

0.
39

0.
31

1.
00

0.
45

0.
37

0.
32

1.
00

0.
67

0.
47

0.
39

djpeg A

�

�

�
�

djpeg B

�

�

�
�

mcf A

�

�

�
�

mcf B

�

�

�
�

vpr A

� �

�

�

vpr B

�
�

�
�

cjpeg A

�

�

�
�

cjpeg B

�

�
�

�

bzip2 A−F Avg.

�

�
�

�

��

�

�

�
�

Energy−Delay
Product

�
� S

W
� p

at
ch

ab
le

� +
co

ve
ra

ge
� +

lo
w

le
ak ��

�
S

W
�

pa
tc

ha
bl

e
�

+
co

ve
ra

ge
�

+
lo

w
le

ak
��� �
 S

W
�

 p
at

ch
ab

le
�

 +
co

ve
ra

ge
�

 +
lo

w
le

ak
���

� �
 S

W
�

 p
at

ch
ab

le
�

 +
co

ve
ra

ge
�

 +
lo

w
le

ak
���

�� �

S
W

�

pa
tc

ha
bl

e
�

+

co
ve

ra
ge

�

+
lo

w
le

ak
���

���
�

 S

W
�

 p

at
ch

ab
le

�

 +
co

ve
ra

ge
�

 +

lo
w

le
ak

���
���

�
�

 S

W
�

 p

at
ch

ab
le

�

 +
co

ve
ra

ge
�

 +

lo
w

le
ak

���
���

��
�

S
W

�

pa

tc
ha

bl
e

�

+

co
ve

ra
ge

�

+

lo
w

le
ak

���
���

���
�

 S
W

�

 p

at
ch

ab
le

�

 +

co
ve

ra
ge

�

 +

lo
w

le
ak

���
���

���
�

���
���

���
��

�

 S

W
�

 p
at

ch
ab

le
�

 +
co

ve
ra

ge
�

 +
lo

w
le

akN
or

m
al

iz
ed

 a
pp

lic
at

io
n

ex
ec

ut
io

n
tim

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.
00

0.
97

0.
97 1.

07

1.
00

1.
02

1.
04 1.

14

1.
00

1.
00

0.
99 1.

09

1.
00

1.
00

1.
00 1.

10

1.
00

1.
22

1.
37 1.

47

1.
00 1.
04

1.
19 1.

29

1.
00

0.
98

0.
97 1.

07

1.
00

0.
98

0.
97 1.

07

1.
00

0.
88

0.
86 0.

96 1.
00

1.
01 1.
04 1.

14

djpeg A

� � �
�

djpeg B

� � �
�

mcf A

� � �
�

mcf B

� � �
�

vpr A

�

�
�

�

vpr B

� �
�

�

cjpeg A

� � �
�

cjpeg B

� � �
�

bzip2 A−F Avg.

�
� �

�

��

� � �
�

Exception

Argument Transfer

Dispatch Overhead

Initialization

Conservation Core

MIPS

Figure 10. Full application system energy, EDP, and execution time for c-cores, and projected improvements These graphs show
full application system energy, EDP, and execution time for c-cores (lower is better). “SW” and “patchable” are as described in Figure 8.
“+coverage” displays achievable improvements to energy reduction if 90% of the application can run in a c-core. If a slower, lower-leakage
process is used for the MIPS core in addition to improved coverage (“+lowleak”), even further improvements are possible. As in Figure 8,
each subgroup of bars represents a specific version of an application, and for all six versions of bzip2 the c-core’s performance is identical.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

F
ra

ct
io

n
of

 d
yn

am
ic

al
ly

 e
xe

cu
te

d
in

st
ru

ct
io

ns

Static instructions

 % Coverage at
 # static insts
2500 5000 10000

99.6 99.9 99.9 astar
99.4 99.9 99.9 hmmer
99.4 99.8 99.9 djpeg
99.1 99.8 99.9 cjpeg
98.8 99.3 99.7 grep
91.7 96.6 99.2 scp
88.9 97.7 99.7 mcf
87.6 94.5 98.0 gcc
85.0 96.5 99.6 vpr
84.1 95.8 99.1 bzip2
75.6 86.9 94.5 perl
65.5 75.8 83.6 evince
65.0 75.9 86.3 emacs

Figure 11. Dynamic coverage for given static instruction
counts For many x86 programs profiled, a small number of static
instructions cover much of dynamic execution.

get covering less than 5000 static instructions per application for
the applications in question. Energy savings would then range from
40% to 62%, and EDP savings from 18% to 63%.

Several limitations of our toolchain currently prevent us from
achieving this level of coverage. One is our lack of support for float-
ing point functions such as exp and sqrt. For instance, adding better
floating point support would allow us to increase the coverage for
vpr 4.30 from 27% to 54% improving energy savings.

Reducing fixed costs The second approach is to reduce the en-
ergy consumption of the other components in the system. As c-
core coverage increases, the relative importance of the performance
of the general-purpose CPU goes down. This changes the perfor-
mance/efficiency balance point for the CPU, and calls for changes
to the MIPS core. For instance, the contribution of the processor
to leakage could be greatly reduced by switching to high-Vt tran-
sistors. With higher c-core coverage, this would be quite sensible,
as the performance penalties to the processor would only affect
small portions of execution (i.e., 10%). This same approach can be
applied to the instruction cache and other peripheral components.
Shared components still heavily used by c-cores, however, such as
the data cache, could not be as aggressively modified without com-
promising performance.

The final bar in each group in Figure 10 shows the impact of
making these changes to the other system components. Rebalanc-
ing reduces the fixed cost overheads of instruction cache and pro-
cessor leakage at the cost of approximately halving the perfor-
mance of the software component of execution. Reducing these
fixed costs provides an additional 11% savings in energy and in-
creases the total energy savings to 67% and total EDP savings to
61% on average.

8. Related Work
A vast number of specialized processors have been proposed, many
of which provide acceleration for very narrowly defined workloads.
Specialized designs exist for applications and domains such as
cryptography [39], signal processing [12, 16], vector processing [3,
10], physical simulation [2], and computer graphics [4, 28, 30]. A
range of commercial heterogeneous processors and research pro-
totypes are available or have been proposed. These include Sony’s
Cell [20], IRAM [31], and Intel’s EXOCHI [13]. These machines
augment a general purpose core with vector co-processors to accel-

erate multimedia applications. Other vendors, such as Phillips [32]
and Equator [25], provide non-configurable but specialized designs
for media applications. The work in [15] and [41] provide cus-
tomized, yet flexible circuits by building programmable, special-
ized loop accelerators and merging multiple circuits into one, re-
spectively.

In contrast to many of the above examples, our approach is
general, rather than domain-specific. We can target any C codebase
once it reaches a minimal level of code stability, and our patching
mechanisms allow continued utility from c-core hardware even as
codebases change. Additionally, unlike most of the above designs,
we prioritize energy reduction over performance improvement.

Other approaches to hardware specialization (e.g., Tensilica’s
Stenos [38], OptimoDE [7], and PICO [1]) provide easy-to-modify
designs that customers customize either before or after manufac-
turing. Our patch-based post-manufacturing capabilities are more
flexible than hardware customization.

Strozek and Brooks [34] improve the energy efficiency for a set
of applications in the embedded space by automatically selecting
specialized cores from a well-defined design space. The cores are
Pareto-optimal for the target workloads. Our automated approach
admits a much larger range of core designs, but sacrifices formal
guarantees of optimality.

Previous work has proposed combining cores that exhibit mi-
croarchitectural heterogeneity to improve performance or reduce
power consumption on general purpose workloads, and many com-
mercial products target a small class of applications with a highly
tailored set of co-processors. Designs such as Chimaera [40],
GARP [18], PRISC [33], and the work in [6] augment a general-
purpose processor with reconfigurable logic. While the c-core
patching mechanism does provide a degree of reconfigurability
and associated overheads, the application-specific nature of a c-
core still yields an energy efficiency much closer to an ASIC than
to a reconfigurable fabric or co-processor.

Recent work on single-ISA heterogeneous multi-core proces-
sors [5, 14, 17, 22, 24] investigates the power and performance
trade-offs for CMPs with non-uniform cores. They use phase-
transition-driven partitioning to trade 10% of performance for a
nearly 50% reduction in power consumption by moving execution
between aggressive out-of-order cores and simpler, in-order cores.
Conservation core architectures can deliver even larger energy sav-
ings on top of that, as they can reduce energy consumption by up
to 47% over even a simple, in-order core.

9. Conclusion
As we run up against the utilization wall, we enter a regime in
which reducing energy per operation becomes increasingly impor-
tant. We have described conservation cores, a new class of circuits
that aim to increase the energy efficiency of mature applications.
Our toolchain synthesizes c-cores from C code and builds in sup-
port that allows them to evolve when new versions of the software
appear. Our data for 18 fully placed-and-routed c-cores show that
they can reduce energy consumption by 10-47% and energy-delay
by up to 55%. More important, we show that c-cores can provide
enough flexibility to ensure that they will remain useful for up to
15 years, far beyond the expected lifetime of most processors. As
our toolchain matures and coverage improves, we have shown that
c-cores have the potential to become even more effective, with pro-
jected energy savings of 67%, and EDP savings of 61%. To fully
evaluate the potential of Conservation Cores, we are in the process
of implementing a prototype c-core-enabled system in STMicro’s
45 nm technology.

References
[1] S. Aditya, B. R. Rau, and V. Kathail. Automatic architectural synthesis

of VLIW and EPIC processors. In ISSS ’99: Proceedings of the
12th international symposium on System synthesis, page 107. IEEE
Computer Society, 1999.

[2] Ageia Technologies. PhysX by Ageia. http://www.ageia.com/pdf/ds\
product\ overview.pdf.

[3] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das. Eval-
uating the Imagine Stream Architecture. In ISCA ’04: Proceedings of
the 31st Annual International Symposium on Computer Architecture,
pages 14–25. IEEE Computer Society, 2004.

[4] ATI website. http://www.ati.com.
[5] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of

performance asymmetry in emerging multicore architectures. In ISCA
’05: Proceedings of the 32nd annual international symposium on
Computer Architecture, pages 506–517, Washington, DC, USA, 2005.
IEEE Computer Society.

[6] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner. An
architecture framework for transparent instruction set customization in
embedded processors. In ISCA ’05: Proceedings of the 32nd Annual
International Symposium on Computer Architecture, pages 272–283.
IEEE Computer Society, 2005.

[7] N. Clark, H. Zhong, K. Fan, S. Mahlke, K. Flautner, , and K. V.
Nieuwenhove. OptimoDE: Programmable accelerator engines through
retargetable customization. In HotChips, 2004.

[8] CodeSurfer by GrammaTech, Inc.
http://www.grammatech.com/products/codesurfer/.

[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
An efficient method of computing static single assignment form. In
POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 25–35. ACM
Press, 1989.

[10] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn, J. Gummaraju,
M. Erez, N. Jayasena, I. Buck, T. J. Knight, and U. J. Kapasi. Mer-
rimac: Supercomputing with streams. In SC ’03: Proceedings of the
2003 ACM/IEEE conference on Supercomputing, page 35. IEEE Com-
puter Society, 2003.

[11] R. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of Ion-Implanted MOSFET’s with Very Small Phys-
ical Dimensions. In IEEE Journal of Solid-State Circuits, October
1974.

[12] C. Ebeling, D. C. Cronquist, and P. Franklin. RaPiD - reconfigurable
pipelined datapath. In FPL ’96: Proceedings of the 6th International
Workshop on Field-Programmable Logic, Smart Applications, New
Paradigms and Compilers, pages 126–135. Springer-Verlag, 1996.

[13] P. W. et al. Exochi: architecture and programming environment for a
heterogeneous multi-core multithreaded system. In PLDI ’07: Pro-
ceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, pages 156–166, New York, NY,
USA, 2007. ACM Press.

[14] R. K. et al. Core architecture optimization for heterogeneous chip mul-
tiprocessors. In PACT ’06: Proceedings of the 15th international con-
ference on Parallel architectures and compilation techniques, pages
23–32, New York, NY, USA, 2006. ACM Press.

[15] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging the com-
putation gap between programmable processors and hardwired accel-
erators. In HPCA: High Performance Computer Architecture., pages
313–322, Feb. 2009.

[16] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R.
Taylor, and R. Laufer. PipeRench: A Coprocessor for Streaming
Multimedia Acceleration. In ISCA ’99: Proceedings of the 26th
Annual International Symposium on Computer Architecture, pages
28–39. IEEE Computer Society, 1999.

[17] E. Grochowski, R. Ronen, J. Shen, and H. Wang. Best of both latency
and throughput. In ICCD ’04: Proceedings of the IEEE International
Conference on Computer Design (ICCD’04), pages 236–243, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[18] J. R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a
Reconfigurable Coprocessor. In K. L. Pocek and J. Arnold, editors,
FCCM ’97: IEEE Symposium on FPGAs for Custom Computing Ma-
chines, pages 12–21. IEEE Computer Society Press, 1997.

[19] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bern-
stein. Scaling, Power, and the Future of CMOS. In IEDM ’05: IEEE
International Electron Devices Meeting, 2005.

[20] J. Kahle. The CELL processor architecture. In MICRO 38: Proceed-
ings of the 38th annual IEEE/ACM International Symposium on Mi-
croarchitecture, page 3. IEEE Computer Society, 2005.

[21] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff. Energy charac-
terization of a tiled architecture processor with on-chip networks. In
International Symposium on Low Power Electronics and Design, San
Diego, CA, USA, August 2003.

[22] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas. Single-ISA Heterogeneous Multi-Core Architectures for Mul-
tithreaded Workload Performance. In ISCA ’04: Proceedings of
the 31st Annual International Symposium on Computer Architecture,
page 64. IEEE Computer Society, 2004.

[23] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO ’04: Proceedings of
the international symposium on Code generation and optimization,
page 75. IEEE Computer Society, 2004.

[24] J. Li and J. F. Martı́nez. Power-performance considerations of parallel
computing on chip multiprocessors. ACM Trans. Archit. Code Optim.,
2(4):397–422, 2005.

[25] MAP-CA datasheet, June 2001. Equator Technologies.
[26] MIPS Technologies. MIPS Technologies product page. http://www.

mips.com/products/processors/32-64-bit-cores/mips32-24ke , 2008-
2009.

[27] M. Mishra, T. J. Callahan, T. Chelcea, G. Venkataramani, S. C. Gold-
stein, and M. Budiu. Tartan: evaluating spatial computation for whole
program execution. SIGOPS Oper. Syst. Rev., 40(5):163–174, 2006.

[28] nVidia website. http://www.nvidia.com.
[29] OpenImpact Website. http://gelato.uiuc.edu/.
[30] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E.

Lefohn, , and T. J. Purcell. A survey of general-purpose computation
on graphics hardware. In Eurographics 2005, State of the Art Reports,
pages 21–51, August 2005.

[31] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A case for intelligent RAM.
IEEE Micro, 17(2):34–44, April 1997.

[32] TM1000 preliminary data book, 1997. http://www.semiconductors.
philips.com/acrobat/other/tm1000.pdf.

[33] R. Razdan and M. D. Smith. A high-performance microarchitecture
with hardware-programmable functional units. In MICRO 27: Pro-
ceedings of the 27th annual international symposium on Microarchi-
tecture, pages 172–180. ACM Press, 1994.

[34] L. Strozek and D. Brooks. Efficient architectures through application
clustering and architectural heterogeneity. In CASES ’06: Proceedings
of the 2006 international conference on Compilers, architecture and
synthesis for embedded systems, pages 190–200, New York, NY, USA,
2006. ACM Press.

[35] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam,
K. Michelson, M. Oskin, and S. J. Eggers. The wavescalar architec-
ture. ACM Trans. Comput. Syst., 25(2):4, 2007.

[36] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,
H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. Evaluation
of the Raw Microprocessor: An Exposed-Wire-Delay Architecture
for ILP and Streams. In ISCA ’04: Proceedings of the 31st annual
International Symposium on Computer Architecture, page 2. IEEE
Computer Society, 2004.

[37] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. Cacti
5.1. Technical Report HPL-2008-20, HP Labs, Palo Alto, 2008.

[38] A. Wang, E. Killian, D. Maydan, and C. Rowen. Hardware/software
instruction set configurability for system-on-chip processors. In DAC
’01: Proceedings of the 38th conference on Design automation, pages
184–188. ACM Press, 2001.

[39] L. Wu, C. Weaver, and T. Austin. Cryptomaniac: A fast flexible
architecture for secure communication. In ISCA ’01: Proceedings of
the 28th Annual International Symposium on Computer Architecture,
pages 110–119. ACM Press, 2001.

[40] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA:
A High-Performance Architecture with a Tightly-Coupled Reconfig-
urable Functional Unit. In ISCA ’00: Proceedings of the 27th Annual
International Symposium on Computer Architecture, pages 225–235.
ACM Press, 2000.

[41] S. Yehia, S. Girbal, H. Berry, and O. Temam. Reconciling special-
ization and flexibility through compound circuits. In HPCA 15: High
Performance Computer Architecture, pages 277–288, Feb. 2009.

