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Abstract

Background: Large-scale forest conservation projects are underway in the Brazilian Amazon but little is known regarding
their public health impact. Current literature emphasizes how land clearing increases malaria incidence, leading to the
conclusion that forest conservation decreases malaria burden. Yet, there is also evidence that proximity to forest fringes
increases malaria incidence, which implies the opposite relationship between forest conservation and malaria. We compare
the effect of these environmental factors on malaria and explore its implications.

Methods and Findings: Using a large malaria dataset (,1,300,000 positive malaria tests collected over ,4.5 million km2),
satellite imagery, permutation tests, and hierarchical Bayesian regressions, we show that greater forest cover (as a proxy for
proximity to forest fringes) tends to be associated with higher malaria incidence, and that forest cover effect was 25 times
greater than the land clearing effect, the often cited culprit of malaria in the region. These findings have important
implications for land use/land cover (LULC) policies in the region. We find that cities close to protected areas (PA’s) tend to
have higher malaria incidence than cities far from PA’s. Using future LULC scenarios, we show that avoiding 10% of
deforestation through better governance might result in an average 2-fold increase in malaria incidence by 2050 in urban
health posts.

Conclusions: Our results suggest that cost analysis of reduced carbon emissions from conservation efforts in the region
should account for increased malaria morbidity, and that conservation initiatives should consider adopting malaria
mitigation strategies. Coordinated actions from disparate science fields, government ministries, and global initiatives (e.g.,
Reduced Emissions from Deforestation and Degradation; Millenium Development Goals; Roll Back Malaria; and Global Fund
to Fight AIDS, Tuberculosis and Malaria), will be required to decrease malaria toll in the region while preserving these
important ecosystems.
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Introduction

Deforestation has been a major concern in much of the tropics

because of its detrimental effect on biodiversity, atmospheric

carbon emissions, regional weather patterns, among other

ecosystem services [1]. The Brazilian Amazon in particular has

received considerable attention because a large fraction of tropical

forest clearing has occurred within this region [2]. This fact has

prompted the creation of the world’s largest forest-conservation

initiative to reduce emissions from deforestation and degradation

(REDD+), with an initial pledge of up to $1 billion USD [3], and a

commitment by the Brazilian government to reduce Amazon

deforestation by 80% [4]. However, few conservation scientists

seem to be aware that the Brazilian Amazon also plays an

important role in terms of malaria cases and fatalities; almost half

of the deaths attributed to this disease in the Americas occurred in

Brazil [5,6] and virtually all malaria cases in Brazil originate from

the Brazilian Amazon [7,8]. To reduce malaria morbidity and

mortality in the region, multi-million dollar initiatives focused on

malaria have also been created (e.g., $5 million USD/year from

the Amazon Malaria Initiative [9]; and ,$23 million USD from

the Global Fund to Fight Aids, Tuberculosis, and Malaria [10]).

While it is generally agreed that environmental factors play an

important role in malaria [11], there are mixed evidence regarding

how land cover and deforestation affect malaria in the Amazon

region. For instance, proximity to forest fringes [12–16] and land

clearing [14,17–24] have both been proposed to explain malaria

vector presence, mosquito biting rate and malaria incidence. Yet,

the exact role of these factors on malaria incidence has important

implications regarding land use land cover (LULC) policies. Based

on the evidence of higher malaria risk at recently deforested areas

or in areas with active land clearing, it has been suggested that

forest conservation can decrease disease burden [25–30]. Based on

evidence of higher malaria risk when close to forest fringes, the

opposite conclusion has been reached; it has been suggested that

the long-term effect of land clearing is to increase the distance of

humans to forest edges and thus decrease malaria risk [14,31,32].
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These contrasting effects of deforestation have not been studied

on a large spatial scale. Here we assess the magnitude of both of

these malaria risk factors with a large malaria dataset (totaling

,1.3 million positive malaria tests, gathered over ,4.5 years and

over a 4.5 million km2 region) and evaluate the public health

consequences of current and future land use/land cover (LULC)

scenarios.

Methods

Malaria Data
The malaria data were collected from January 2004 to August

2008 by the Brazilian malaria surveillance system [33] and are

aggregated by month and health facility. A malaria case is defined

as an individual that has fever and that has a positive Plasmodium

spp. detection through microscopy [34]. To the best of our

knowledge, this definition has been consistently used throughout

the entire 2004–2008 period. Because there are no data on the

exact location of each health facility, our approach was to subset

the health facilities that are known to be in the urban area and use

the spatial coordinates of the corresponding cities as proxies for

their location. Determining the approximate location of these

health facilities is important to adequately characterize the

environmental risk factors to which individuals treated at these

health facilities are exposed. We emphasize that despite being

classified as urban areas, these are predominantly small cities (i.e.,

median population size equal to 14,000 people), often surrounded

by a considerable area of forest (i.e., 22% of these cities had.50%

of their catchment area covered by forests). The surrounding

vegetation is critical because it is common for individuals to get

infected in the surrounding area (e.g., while participating on

selective timber logging, non-timber forest products collection,

slash-and-burn agriculture, night fishing, hunting, mining, etc.) but

to be diagnosed in the city [35,36]. We further excluded cities that

had less than two years of data because it would not be possible to

estimate yearly and monthly city-specific random effects for these

cities. The final dataset contained approximately half of the

original malaria cases (,1,300,000 cases) but covered a similar

geographical area (96% of the counties in the original dataset) (a

summary description of these data is available in Table S1).

Catchment Area
We adopt a 20-km radius as the ‘‘catchment area’’ around each

city and use the precipitation, deforestation rate, and forest cover

estimates within this catchment area as our covariates. The size of

this catchment area accounts for the malaria vector flight range

[13,21], population mobility to and from the surrounding

vegetation, and the fact that malaria cases often arise from

multiple urban health facilities within a particular city. The same

radius has been used elsewhere as the area typically under urban

influence in the Brazilian Amazon region [37]. Our results are

robust to the use of different radii (i.e., 10, 20, and 30 km) (File S1

and Figure S2).

Covariates
Population size comes from the 2007 Brazilian National Census,

aggregated at the census tract level, made available by the

Brazilian Institute of Geography and Statistics [38]. Our

environmental covariates come from satellite imagery. We used

annual forest cover and deforestation rate estimates from the

Brazilian Space Agency derived from a semi-automated analysis of

Landsat imagery [39]. Estimates of precipitation were derived

from the Tropical Rainfall Measuring Mission data (‘3B43

Monthly 0.2560.25 degree merged TRMM and other sources

estimates’ product [40]), and average precipitation for a particular

month was calculated over all pixels that fell within each

catchment area. Based on these precipitation estimates, we also

calculated a drought index that has been extensively used to

characterize drought in the region [41–43]. We used a one month

time lag for precipitation and drought index covariates based on

the assumption that water affects the vector mainly through its

breeding habitat. Therefore, changes in precipitation or drought

should only affect infection risk in the following month since this is

the minimum necessary time for the larva to become an adult

mosquito, the adult to be infected and finally become infectious.

Results did not change substantially when using a two month time

lag (data not shown).

Permutation Tests
To compare a particular outcome X (e.g., number of malaria

cases per month, onwards simply malaria incidence) for cities with

characteristic c1 versus cities with characteristic c2 (e.g., high vs.

low forest cover), we first calculate the observed difference in

means Dif (obs)~ �XX
(obs)
c1 { �XX

(obs)
c2 . Then, we estimate the probability

of an outcome equal or more extreme than the observed outcome

under the null hypothesis (i.e., p-value) through a permutation test.

To do this, we randomly assign these characteristics to the cities

and calculate the simulated difference in means

Dif (sim)
~ �XX

(sim)
c1 { �XX

(sim)
c2 . This was done 1,000 times, generating

1,000 values of Dif (sim). We estimate the p-value as

p(Dif (sim)
§Dif (obs))&

P
I(Dif (sim)

§Dif (obs))

1000
, where I() is the indicator

function that takes on the value of 1 if the condition is satisfied and

zero otherwise.

Regression Model Structure
We assessed the effect of forest cover (Fiy, percent of catchment

area) and annual deforestation rate (DEiy~Fiy{Fi,y{1, percent of

catchment area per year) using a Bayesian hierarchical regression

approach (i and y stand for city and year). We adjusted for

potential confounder effect of climate variables on malaria risk,

namely monthly precipitation (Piym) and a drought index (Diym)

(m stands for month within year). All covariates were standardized

(i.e., centered and divided by their standard deviation).

The number of malaria cases per month (i.e., malaria incidence)

is modeled as an over-dispersed Poisson, given by:

Ciym*Poisson( exp (wiym)Ni)

where Ni is the population size within the catchment area, and

wiym is given by:

wiym*N(b0izb1DEiyzb2Fiyzb3Piymzb4Diymzeimzeiy,s
2)

where b1, � � � ,b4 are fixed-effect regression parameters. Additional

socio-economic-environmental covariates (e.g., proportion of

migrants, age distribution, level of urbanization, gross domestic

product, vector ecology, and proximity to large water bodies) tend

to be relatively constant within the short time-frame of our malaria

incidence dataset (,4.5 years). Therefore, we control for these

unspecified city-to-city differences using a city specific random

intercept (b0i). We also include a year-by-city (eiy) and a month-

by-city(eim) random effect. To complete the model specification,

we adopt the usual assumptions regarding the distribution of

random effects:

Conservation May Increase Malaria Burden
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b0i*N(b0,t
2)

eiy*N(0,q2)

eim*N(0,c2)

and we assume vague hyper-priors for the regression coefficients

and variance parameters [44]:

b0, � � � ,b4*N(0,100)

q,s,t,c*Unif (0,100)

We used a Gibbs sampler to iteratively sample from each of the

full conditional distributions. Because of conjugacy between

likelihood and priors, almost all the parameters could be sampled

directly [45]. The only parameters that could not be sampled

directly were the wiym, which were sampled with a Metropolis-

within-Gibbs step.

We assessed model convergence by running three Markov

Chain Monte Carlo (MCMC) chains with over-dispersed initial

parameter values for 200,000 iterations. We discarded the first

10,000 iterations as burn-in and retained 500 iterations, system-

atically sampled from the remaining 190,000 iterations. We

visually assessed convergence by overlaying trace plots of these

three chains. We also assessed convergence by calculating the

convergence statistic R suggested by Gelman and Rubin [46]

(Table S2), where R values much greater than 1 indicate lack of

convergence. Both, our plots and the convergence statistic R,

suggest that convergence has been achieved.

To determine whether our model was over-fitting the data, we

performed a validation exercise. In this exercise, we compared the

out-of-sample predictive ability of our model versus simpler

versions of it, either without the month-by-city random effects

eim or without the year-by-city random effects eiy. We fitted these

models to 90% of the data and used the estimated parameters to

predict the 10% of the data that was left out. The results from the

validation exercise (data not shown) and the comparison between

the data and the predictive posterior distribution for each city

(Figure S1) revealed that our model had an adequate fit. Finally, a

preliminary analysis indicated that the assumption of a linear

relationship between LULC covariates and malaria incidence was

adequate and revealed low temporal and spatial correlation

(correlation on Pearson residuals ,0.2), suggesting that additional

nonlinear terms and parameters to model these correlations do not

need to be included in our model. All analyses and figures were

created using R [47].

Land Use Land Cover (LULC) future scenarios. To

evaluate the long-term effect of conservation strategies in the

Amazon basin, Soares-Filho et al. [48] simulated a governance

(GOV) scenario and compared it to a business-as-usual (BAU)

scenario, revealing that a substantial amount of deforestation (and

its deleterious effects) could be avoided. These projections also

allow us to evaluate the effect of future LULC trends on malaria.

We estimated the ratio of the expected malaria incidence under

the GOV scenario E(CGOV
iy ) and under the BAU scenario

E(CBAU
iy ) for each year and city. This ratio

E(CGOV
iy

)

E(CBAU
iy

)
was calculated

using the posterior distribution for the over-dispersed Poisson

regression parameters, thus fully accounting for their uncertainty

[49].

Results

We find overwhelming evidence that areas with higher forest

cover tend to be associated with higher malaria incidence whereas

no clear pattern could be found for deforestation rates, when

comparing cities with similar population sizes (upper panels in

Figure 1). Similar evidence arises when analyzing malaria

incidence per person across all cities (lower panels in Figure 1).

Using a Hierarchical Bayesian regression, we show that although

forest cover and deforestation rate were both positively associated

with malaria incidence, forest cover effect was ,25 times greater

than that of deforestation rate (Table 1). As a result, the net effect

of higher deforestation rates is to decrease malaria burden by

decreasing forest cover (i.e., increasing the distance to forest

fringes). We also find that the number of malaria cases was

negatively correlated with precipitation and our drought index,

suggesting that drier periods of the year tend to result in higher

malaria incidence. These results were robust to alternative

definitions of catchment area (File S1 and Figure S2). An

alternative model specification, which explores changes in malaria

incidence within each city (rather than within and between cities),

revealed qualitatively similar results in relation to the LULC

variables (File S1 and Table S3).

These findings have important implications regarding LULC

policies in the region. For instance, protected areas (PA’s) are a

cornerstone of current conservation efforts, yet we are unaware of

studies that discuss negative health impacts of these PA’s on the

local population. A simple depiction of our malaria data suggest

that cities close to protected areas (PA’s) tend to have higher

malaria incidence than cities far from these PA’s (Figure 2) after

controlling for population size, a likely consequence of higher

forest cover in these areas. We also evaluated the long-term

implications of our findings by comparing a future scenario with

reduced deforestation (i.e., governance scenario - GOV) to a

future business-as-usual (BAU) scenario. Using our regression

parameter estimates, we find that cities with higher malaria

incidence in the GOV versus the BAU scenario will initially tend

to be concentrated in the south and east portion of the Brazilian

Amazon (Figure 3), where roads slated for paving tend to be

located. However, by 2050, almost all cities will tend to have

higher malaria incidence. A summary of these results indicate that

avoiding deforestation through better governance can substantially

increase malaria incidence in urban health posts; an average of

10% of prevented deforestation resulted in an average 2-fold

increase in the number of malaria cases per month by 2050

(Figure 4). These results raise concern regarding collateral public

health effects of conservation policies.

Discussion

We find that drier periods of the year tended to correlate with

higher malaria incidence. Similar results have been attributed to

decreased survival rate of adult mosquitoes [50] as well as larva

being washed away in rivers [51] during the wet season. We

refrain from further discussing these seasonal patterns here (we will

address them in a separate paper) to focus our discussion on the

LULC findings.

Conservation May Increase Malaria Burden
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Malaria risk at frontier regions in the Amazon region is often

observed to follow a peculiar time trajectory; in the early phases of

human settlement, the number of malaria cases soars as naı̈ve

settlers arrive and engage in forest related extractive activities,

living in precarious conditions. At later stages, as deforestation

increases the distance of settlers to forest fringes and economic

conditions improve, malaria risk tends to decrease through time

[14]. Our findings regarding the LULC covariates agree with this

later stage, suggesting that conservation efforts to decrease

deforestation in places where people are already settled might

inadvertently increase the number of malaria cases. Some would

argue that conservation efforts will also decrease the amount of

forest related extractive activities (e.g., fishing, hunting, extraction

of non-timber forest products), thus decreasing malaria risk. We

Figure 1. Malaria incidence is higher in areas with more forest cover whereas no clear pattern arises regarding deforestation rates.
Upper panels: Data were stratified into 10 percentile population size classes and average number of malaria cases per month for each year and city
was depicted. Within each size class, we compare cities with high (green box-plots) vs. low forest cover (white box-plots) (upper left panel); and cities
with high (grey box-plots ) vs. low deforestation rate (white box-plots) (upper right panel). Cities with high forest cover (or high deforestation rates)
are cities that have forest cover (or deforestation rate) higher than the median for that size class. ‘n.s’, ‘*’, ‘**’, and ‘***’ are non-significant (p.0.05),
significant (0.01,p,0.05), very significant (0.001,p,0.01) and highly significant (p,0.001) difference in means, respectively, based on permutation
tests. Lower panels: Mean number of malaria cases per month for each year and city divided by total population as a function of forest cover (lower
left panel) and deforestation rate (lower right panel). Note: y-axes were truncated to enable a clearer depiction of the bulk of the data (i.e., less than
0.5% observations were excluded from these plots).
doi:10.1371/journal.pone.0057519.g001
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are skeptical; even if forest conservations efforts succeed in

retaining forest cover, hunting and fishing is likely to continue to

occur, even within protected areas [52–54].

We note that our finding directly contradicts the growing body

of literature that suggests that forest conservation can decrease

disease burden [25–30]. This literature often cite the study of

Vittor et al. [21,22] conducted in the Peruvian Amazon, as an

example of how deforested areas favor the main malaria vector,

Anopheles darlingi. However, similar entomological studies in the

Brazilian Amazon region suggest the opposite pattern for the same

vector species [15,16,55,56], strongly supporting our results. This

conflicting evidence might be due to distinct LULC patterns in

these regions. In the Peruvian Amazon, swidden-fallow agriculture

is the primary driver of deforestation and, as a result, deforested

areas are often covered by shrubs and secondary vegetation

growth [21,22], whereas in the Brazilian Amazon, forests tend to

be substituted by pasture and soy plantations [57].

Malaria occurring in urban areas is often attributed to poor

housing and drainage conditions of slums [58,59]. Furthermore,

because slums are often located at the periphery of cities and thus

closer to forests, this may give rise to a spurious association

between forests and malaria incidence. We believe this hypothesis

does not explain the malaria patterns we find in the Brazilian

Amazon for several reasons. First, slums are rare in Brazilian

Amazon cities because these cities are typically very small (i.e., as

mentioned earlier, the median population size is 14,000) whereas

slums tend to occur in bigger cities where a growing population in

limited space gives origin to dense housing, often in hazardous

sites. Using the Brazilian government census from 2010, we find

that only 12% of the cities in our analysis had slums and that our

results in Figure 1 do not change substantially after we exclude the

cities with slums (data not shown). Second, the slum effect

hypothesis predicts higher malaria incidence in bigger and poorer

Table 1. Summary of regression parameter estimates.

Parameter Covariate description Mean LCI UCI

b1 Annual deforestation rate 0.04 0.00 0.08

b2 Forest Cover 1.03 0.87 1.20

b3 Precipitation 20.07 20.08 20.05

b4 Drought index 20.06 20.07 20.04

LCI and UCI: lower and upper limit of the 95% credible interval.
doi:10.1371/journal.pone.0057519.t001

Figure 2. Malaria incidence tends to be higher for cities close to protected areas (PA’s). Data were stratified into 10 percentile population
size classes and average number of malaria cases per month for each city was depicted. Within each size class, we compare cities close (green box-
plots) vs. distant from PA’s (white box-plots). Cities close to PA’s (i.e., indigenous lands, state and federal parks) are those whose catchment area
intersected one or more PA’s. ‘n.s’, ‘*’, ‘**’, and ‘***’ are non-significant (p.0.05), significant (0.01,p,0.05), very significant (0.001,p,0.01) and
highly significant (p,0.001) difference in means, respectively, based on permutation tests.
doi:10.1371/journal.pone.0057519.g002
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cities, contrary to the results depicted in Figure 1 and Figure S3.

Finally, even after taking into account gender imbalances in the

population of each city, we find that the average number of

malaria cases per month per person tends to be higher in men

than in women, a phenomenon that occurred in 96% of the cities

in our dataset. This gender difference in malaria incidence agrees

with our hypothesis that forest related activities in the surrounding

areas, mostly conducted by men, are the cause of higher malaria

rates rather than housing conditions.

Unfortunately, policies that have large effect on LULC in the

region (e.g., road opening/paving, creation of rural settlement

areas, and the establishment of protected areas) are traditionally

perceived to lie in the realm of the Ministries of Environment,

Infra-structure, Agriculture, and/or Energy, while the Ministry of

Health typically focuses on the delivery of health services [7].

Similarly, global efforts are typically compartmentalized into

conservation (e.g., REDD+) and public health (e.g., Roll Back

Malaria and GFATM) initiatives. Few studies identify, or discuss

how to address, trade-offs between these global efforts and

governmental policies, probably because of the interdisciplinary

nature of these trade-offs and the associated ethical issues. For

instance, how can one reconcile potential conflicts between the

Millenium Development Goals (e.g., goal of combating malaria

and the goal of ensuring environmental sustainability)? Although

we do not have an answer to this question, acknowledging that

these tradeoffs exist is a critical first step towards finding a solution.

Current research and resulting policy recommendations regard-

ing LULC in the Amazon ignore potential public health impacts.

For instance, the most frequent policy action to decrease

deforestation rates is to create protected areas [60–62]. Several

studies suggest, however, that many of these protected areas are

established in areas with small deforestation risk [61,63],

effectively averting few of the impacts of deforestation. These

observations have resulted in recommendations to place these

parks in areas more prone to deforestation [4,63,64], which often

imply areas with larger human populations, disregarding the

Figure 3. Predicted malaria incidence in urban health posts is higher in the governance scenario than in the business-as-usual
scenario. Maps depict the ratio of the expected number of malaria cases per month for each year and city under the governance (GOV) and the

business-as-usual (BAU) future LULC scenarios (i.e.,
E(CGOV

iy
)

E(CBAU
iy

)
), where values .1 indicate that the GOV scenario results in more malaria cases than the

BAU scenario. Areas that were deforested in the BAU scenario but not in the GOV scenario (i.e., prevented deforestation) are depicted in the

background for reference. Circles represent the cities in our original malaria dataset.
doi:10.1371/journal.pone.0057519.g003
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potential for increased malaria morbidity for the local population.

Similarly, research acknowledging the negative effects of conser-

vation efforts typically emphasize restrictions on agricultural

development rather than the detrimental impact on public health

[62,65,66].

One possible interpretation of our findings is that we are

promoting deforestation. This is not the case. For instance, large-

scale settlement projects in heavily forested areas have resulted in

substantial deforestation and major malaria outbreaks in the past

[14]. Here we argue that deforestation has both negative and

positive effects in places where people are already settled, and that

the knowledge of these effects is essential for proper LULC and

public health planning, particularly in light of the recent ambitious

REDD+ targets set by the Brazilian government and four of the

Brazilian Amazon states [4]. If conservation efforts (e.g., REDD+)

are to avoid this rapid land cover change and its associated adverse

effects on several regional-global environmental services (e.g.,

atmospheric carbon emission, climate and biodiversity), these

conservation efforts should, at a minimum, include proper malaria

mitigation strategies (e.g., creation of more malaria detection and

treatment outposts, distribution of long-lasting insecticidal bed

nets, indoor residual spraying) to alleviate their local detrimental

effects. Similarly, opportunity costs of reduced carbon emissions

through conservation initiatives should take into account their

local impact on malaria burden.

Our study has five important limitations. First, we do not take

into account potential differences between cities in terms of main

malaria vector species, vector ecology and infection efficiency.

However, it is well known that collection of entomological data is

extremely laborious [67] and therefore logistically impossible to

collect over the same geographical scale as our malaria data. Yet,

finding the same overall result over such a vast area by using a

separate regression for each city (File S1 and Table S3) gives us

confidence that our results are robust to these potential city-to-city

differences. Second, in the absence of spatial coordinates of the

individual health facilities, we rely on data from urban health

facilities aggregated at the city level. Yet, we note that even if

individual level data had been available, we would still not have

been able to consider many individual-level factors that are known

to be important for malaria risk (e.g., mobility, socio-economic

status, housing conditions, and occupation) because only a few

basic demographic characteristics, such as age and gender, are

routinely collected by the malaria surveillance system. Third, in

the absence of detailed information for a more accurate modeling

of catchment area (e.g., network of unofficial roads [68], origin

and mode of transportation of patients, treatment seeking

behavior), we relied on relatively arbitrary radii to delimit the

catchment area. Fortunately, our results were robust to changes in

these radii. We emphasize that these three limitations are typical

limitations of studies conducted over large geographical scales

(e.g., the area of a single Brazilian Amazon state, Para, is

equivalent to the combined area of France and Spain), illustrating

the inherent tradeoff between local detail-rich studies, whose

results may or may not be generalizable to a wider region, and

large-scale detail-poor studies, which reveal broad scale relation-

ships while ignoring many of the local complexities in malaria

transmission. Importantly, while site-specific studies have been

critical in shaping our knowledge regarding malaria in the region,

they may be ill-suited to compare the effect of land clearing to the

effect of forest cover because these covariates are often spatially

correlated at this scale (i.e., land clearing often occurs in areas with

high forest cover). On the other hand, over a large spatial scale,

land clearing and forest cover are not highly correlated, allowing

us to separately evaluate their effects.

The fourth limitation of our study is that, to avoid spatial

extrapolation, our future scenario analysis only considers what

would happen to malaria incidence in areas close to where

humans are already settled (i.e., the vicinity of urban areas). In

these areas, we assume that forests will give place to low intensity

cattle ranching and soybean plantations [69,70], thus increasing

the distance between people and forest fringes. On the other hand,

had we considered new human settlements (e.g., due to human

migration to new agricultural frontiers), the BAU scenario might

have indicated an initial higher malaria incidence due to an initial

decrease in distance to forest fringes. Finally, as with any

simulation study, our simulation results critically depend on the

implicit assumption that everything else (e.g., age distribution,

migratory patterns, patterns of natural resource extraction,

climate, etc.) remains constant.

The clear pattern in the data (Figures 1 and 2), the consistency

of our findings using alternative model specifications, and the

evidence from detailed entomological and epidemiological studies

in the region [12–16,55,56], suggest that the association between

forest cover and malaria incidence we found is not spurious.

Indeed, vegetation management has long been an important

strategy to reduce the incidence of malaria [31]. Here we a) show

that the effect of forest cover substantially outweighs the effect of

deforestation rate (the often cited culprit for malaria in the region)

and other climatic variables with a malaria dataset spanning an

unprecedented geographical scale; and b) discuss the large-scale

multi-sector (i.e., public health, development, and conservation)

implications of these findings. Our results suggest caution

regarding the widespread assumption that pristine ecosystems will

always have beneficial effects for human health [25–30,71–73].

We believe there are undoubtedly numerous ecosystem services

Figure 4. Malaria incidence increase at urban health posts in
the governance scenario is predicted to be a direct conse-
quence of prevented deforestation. We depict the relationship
between future prevented deforestation under the governance
scenario (green line), and the ratio of the expected malaria incidence
for each year and city under the governance (GOV) and business-as-
usual (BAU) future LULC scenarios (red line) (i.e., E(CGOV

iy )=E(CBAU
iy )),

averaged across all cities. The red polygon represents the 95% credible
interval of the average ratioE(CGOV

iy )=E(CBAU
iy ).

doi:10.1371/journal.pone.0057519.g004
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from pristine environments; however, ecosystem disservices also

exist and need to be acknowledged. Coordinated actions from

apparently disparate science fields (e.g., epidemiologists and

environmental scientists), government ministries (e.g., Ministry of

Health and Ministry of Environment), and the ongoing multi-

million dollar conservation and public health efforts in the region,

will be required to decrease malaria toll in the region while

preserving these important ecosystems.
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