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Conservation laws in ‘‘doubly special relativity’’
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Motivated by various theoretical arguments that the Planck energy (EPlanck�1019 GeV) should herald de-
partures from Lorentz invariance, and the possibility of testing these expectations in the not too distant future,
two so-called ‘‘doubly special relativity’’ theories have been suggested—the first by Amelino-Camelia �DSR1�
and the second by Smolin and Magueijo �DSR2�. These theories contain two fundamental scales—the speed of
light and an energy usually taken to be EPlanck . The symmetry group is still the Lorentz group, but in both cases
acting nonlinearly on the energy-momentum sector. Since energy and momentum are no longer additive
quantities, finding their values for composite systems �and hence finding appropriate conservation laws� is a
nontrivial matter. Ultimately it is these possible deviations from simple linearly realized relativistic kinematics
that provide the most promising observational signal for empirically testing these models. Various investiga-
tions have narrowed the conservation laws down to two possibilities per DSR theory. We derive unique exact
results for the energy momentum of composite systems in both DSR1 and DSR2, and indicate the general
strategy for arbitrary nonlinear realizations of the Lorentz group.
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BACKGROUND

Observations of very high energy cosmic rays, above the
expected ‘‘Greisen-Zatsepin-Kuz’min �GZK� cutoff’’ due to
the interaction with microwave background radiation �1,2�,
have precipitated a surge of interest in possible violations of
Lorentz invariance. Encouragingly it appears that this phe-
nomenon may furnish experimental tests of some suggested
theories of quantum gravity �3–8�. For a review, see �9�. One
type of Lorentz violating theory is known as ‘‘doubly special
relativity’’ �DSR� after Amelino-Camelia �10�, who has sug-
gested a specific example of a DSR theory �DSR1� �11�.
Smolin and Magueijo have suggested another theory �DSR2�
�12� in a paper in which they argued that any DSR transfor-
mation group must be a nonlinear realization of the Lorentz
group—because that is the only suitable 6 parameter exten-
sion of SO�3�—the group of spatial rotations. Unlike ordi-
nary special relativity, in DSR the transformation properties
of energy and momentum need not be the same as those of
the space-time coordinates. Many investigations have been
limited to the energy-momentum sector �10,11�. One ap-
proach that deals with space-time as well �it is presently
unclear if there are others� is in terms of the �-Poincaré
algebra—a deformation of the Poincaré algebra �13,14�. The
algebras obeyed by the DSR1 and DSR2 Lorentz generators
are known to be just such nonlinear deformations �12,15,16�
of the �-Lorentz subalgebra—DSR1 corresponding to the
so-called ‘‘bi-crossproduct basis.’’ Because there is still some
controversy and uncertainty regarding the issue of whether
or not all DSR theories are necessarily �-Poincaré theories,
we will stay in momentum space and deal only with general

features of arbitrary nonlinear representations of the Lorentz
group �17�.

To find conservation laws, two distinct approaches have
been used. One method �15,16� is to investigate the nature of
the nonlinear realization of the symmetry group instantiated
by the DSR transformations and use its properties as con-
straints on the conservation laws for composite systems. The
alternative �10,11� is to work directly with the transformation
equations and to apply physically intuitive restrictions to de-
duce the laws. Through a combination of these two tech-
niques, the number of possible conservation laws for DSR1
and DSR2 has been reduced to two. We continue along the
lines of the second method, and find that it is possible to
uniquely identify the conservation laws for any DSR theory
by applying seemingly reasonable physical principles. We
give exact results for the total energy and momentum of a
composite system in both DSR1 and DSR2. Because these
formulas implicitly control particle production thresholds
they are critically important in assessing phenomenological
attempts to place observational constraints on the DSR theo-
ries �9,18–21�.

GENERAL RULES

Since a DSR symmetry group is simply a nonlinear real-
ization of the Lorentz group �12,15,16�, we can find func-
tions of the physical energy momentum P4�(E ,p) which
transform like a Lorentz 4-vector. These we will call the
pseudo-energy-momentum P4�(� ,�), but it should not be
thought that these necessarily have immediate physical sig-
nificance. We have

P4�F�P4�, P4�F�1�P4�. �1�

The function F and its inverse F�1 are in general compli-
cated nonlinear functions from R

4 to R
4, but both of course
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reduce to the identity in the limit where energies and mo-
menta are small compared to the DSR scale. The Lorentz
transformations act on the auxiliary variables in the normal
linear manner: (��;��)�L (�;�), where L is the usual Lor-
entz transformation, boosting from the unprimed coordinates
to the primed coordinates. The boost operator for the physi-
cal energy and momentum (E ,p) we call L, and is given by
the composition:

P4��L�P4���F�L�F�1��P4�. �2�

Now L and F uniquely determine the nonlinear Lorentz
transformation L; however, L and L �more precisely, L(L)]
do not uniquely determine the function F—there is an over-
all multiplicative ambiguity which must be dealt with using
the dispersion relation:

���E ,p ��2����E ,p ��2�	0
2 . �3�

Here 	0 is simply the Lorentz invariant constructed from �
and � �the Casimir invariant�; not to be confused with the
rest energy. In terms of the rest energy m0, obtained by going
to a Lorentz frame in which the particle is at rest, 	0
��(m0,0). The combination of L(L) and 	0(m0) is now
sufficient to pin down F completely.

In the linear representation, kinematic quantities such as
total energy can be defined in the usual fashion

P 4
tot�


i
P 4

i . �4�

Calculating the total physical 4-momentum is then straight-
forward:

P4
tot�F� 


i
F�1�P4

i � � . �5�

This is the quantity that will be conserved in collisions. Cal-
culating it is simply a matter of finding F and its inverse.

VARIANT CONSERVATION LAWS

The choice in Eq. �4�, and so implicitly in Eq. �5�, can be
uniquely characterized by saying that the general composi-
tion of 4-momenta is based on iterating an associative sym-
metric binary function.

If the general composition law were not based on iterating
a binary function, then one would need to postulate an infi-
nite tower of distinct composition laws for 2,3,4, . . . ,n , . . .
particles. Such a situation would create serious difficulties in
the interpretation of quantum field theories: For instance,
energy-momentum conservation at each vertex of a Feynman
diagram would now depend in an essentially arbitrary way
on a particular time-slice through the diagram and the
energy-momenta of all other particles in the diagram as they
cross that time-slice. Perhaps worse, every time a dressed
particle were to either emit or absorb a virtual particle one
would have to completely recalculate the energy-momentum
for the entire virtual cloud.

If the binary function were not symmetric, one could

�simply by changing the order in which one chooses to list
the particles� construct symmetric and anti-symmetric com-
binations, leading to two separate conservation laws that
would over-constrain the collision �unless, of course, the
anti-symmetric law happens to be trivial—but that implies a
symmetric binary function�.

Finally, if the binary function were not associative, then
the energy-momentum of a composite system would depend
not only on the constituents of the system, but also on the
manner in which the system is aggregated out of
subsystems—an option that is at best extremely unnatural.

The initial investigations into energy and momentum of
composite systems in DSR �11� proceeded only on the re-
quirement that the law of energy-momentum conservation
had to be covariant with respect to the DSR transformation.
The insufficiency of this requirement is manifest when we
consider that the following definition:

P 4
tot�


i
� iP 4

i . �6�

produces a covariant conservation law for arbitrary � i .
Symmetry, which is required to prevent over-determining the
energy-momentum in a collision, implies that:

P 4
tot��


i
P 4

i . �7�

If this is to arise from iterating a two-particle composition
law we need P 4

�12��(P 4
1�P 4

2). But now for a three-
particle system, associativity implies

����P 4
1�P 4

2��P 4
3����P 4

1���P 4
2�P 4

3�� . �8�

Therefore ���2, implying either ��1 or ��0. This argu-
ment gives the same result as that used by Lukierski and
Nowicki �16� to reduce the number of possible laws to two.
In fact, their ‘‘symmetric’’ and ‘‘non-symmetric’’ laws are
just the ��1 and ��0 cases, respectively. The ��1 solu-
tion is clearly unproblematic. However, what is not evident
from the group theoretic analysis of �16�, and is evident from
the current approach, is the rather odd nature of the case
where ��0. Taken straightforwardly, it must be false, im-
plying that for any number of particles

P 4
tot�0� , P4

tot�F�0� �. �9�

Thus ��0 is clearly unphysical and we are forced to adopt
the intuitive choice of ��1.

We feel that more drastic possibilities �17�, based on
abandoning notions of an iterated associative symmetric bi-
nary composition law are strongly disfavored, and we will
not pursue such options in this paper.

DSR2

This model �12� is completely characterized by the equa-
tion
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P4���;���F�1�P4��
�E;p �

1��E
. �10�

�In model building one typically takes ��1/EPlanck ; but we
will leave � as an arbitrary parameter with dimensions
�E��1.� The inverse mapping is easily established to be

P4��E;p ��F�P4��
��;��

1���
. �11�

The total physical 4-momentum is easily calculated. First
observe that for the pseudomomenta

� tot�

i

Ei

1��Ei
, � tot�


i

pi

1��Ei
. �12�

Then

Etot�



i

Ei � �1��Ei�

1��

i

Ei� �1��Ei�

�13�

and

ptot�



i

pi � �1��Ei�

1��

i

Ei � �1��Ei�

. �14�

Within the framework of DSR2 this result is exact for all
� . To first order in �:

Etot�

i

Ei��

i� j

EiE j�O��2�, �15�

ptot�

i

pi��

i� j

piE j�O��2�. �16�

For the case of two particles, the above formulas reduce to
the so-called ‘‘mixing laws’’—one of the possibilities men-
tioned by Amelino-Camelia et al. �10�.

We also mention in passing that the exact dispersion rela-
tion for DSR2 is

E2�p2

�1��E �2 �	0
2�

m0
2

�1��m0�2 . �17�

This can be rearranged as

p2�E2�m0
2� 1��E

1��m0
� 2

. �18�

Solving the quadratic for E, and choosing the physical root

E�
��1�2�m0��m0

2��1��m0�2p2���2m0
4��m0

2

1�2�m0
.

�19�

DSR1

For DSR1 the basic principles are the same but the alge-
bra is somewhat messier. It is convenient to consider a par-
ticle at rest, with rest energy m0, and then boost using a
rapidity parameter � . The defining relationships for DSR1
can then be put in the form �11�

e�E�e�m0�1�sinh��m0�e��m0�cosh ��1�, �20�

and

p�
1

�

sinh��m0�e��m0 sinh �

1�sinh��m0�e��m0�cosh ��1�
. �21�

�These expressions are equivalent to knowing the nonlinear
Lorentz transformations L as a function of rapidity � .� This
can easily be inverted to give expressions for the rapidity

cosh ��
e�E�cosh��m0�

sinh��m0�
, sinh ��

�pe�E

sinh��m0�
.

�22�

Making use of the identity cosh2 ��sinh2 ��1 gives the
DSR1 dispersion relation in the particularly nice form

cosh��E ��cosh��m0��
1

2
�2p2e�E. �23�

Comparison with the standard form of the dispersion relation
now fixes the rest energy in terms of the Casimir invariant

cosh��m0��1�
1

2
�2	0

2 ,

	0�
2 sinh��m0/2�

�
. �24�

This now fixes the linear representation completely. In terms
of the physical energy momenta

��	0 cosh ��
e�E�cosh��m0�

� cosh��m0/2�
, �25�

and

��	0 sinh ��
pe�E

cosh��m0/2�
. �26�

Conversely, the inverse mappings yielding physical energy
momenta in terms of auxiliary energy momenta are

E�
1

�
ln��� cosh��m0/2��cosh��m0��

�
1

�
ln�1����1�

�2	0
2

4
�

�2	0
2

2 �
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�
1

�
ln�1����1�

�2��2��2�

4

�
�2��2��2�

2 � , �27�

and

p�� cosh��m0/2�e��E

�

��1�
�2	0

2

4

1����1�
�2	0

2

4
�

�2	0
2

2

�

��1�
�2��2��2�

4

1����1�
�2��2��2�

4
�

�2��2��2�

2

. �28�

To calculate the total energy and momentum of a collection
of particles we now first calculate auxiliary quantities

� tot�

i

e�Ei�cosh��m0,i�

� cosh��m0,i/2�
, �29�

� tot�

i

pie
�Ei

cosh��m0,i/2�
, �30�

and then use these to calculate the physical quantities

Etot�
1

�
ln�1��� tot�1�

�2�� tot
2 �� tot

2 �

4

�
�2�� tot

2 �� tot
2 �

2 � , �31�

ptot�
� tot�4��2�� tot

2 �� tot
2 �

2��� tot�4��2�� tot
2 �� tot

2 ���2�� tot
2 �� tot

2 �
.

�32�

These formulas provide explicit �albeit complicated� expres-
sions for the total physical energy and momenta in the DSR1
model in terms of the individual physical energy, momenta,
and rest energies; note that the formulas are exact for arbi-
trary � .

To first order

Etot�

i

Ei�
1

2
�


i� j
pip j�O��2�, �33�

ptot�

i

pi��

i� j

piE j�O��2�. �34�

For two particles, these too reduce to equations already in the
literature �11,16�.

DISCUSSION

The key result of this paper is the identification of appro-
priate laws of conservation of energy and momentum in ge-
neric DSR theories, embodied in the general formula �5�,
together with the specific applications to DSR2 in Eqs. �13�
and �14�, and to DSR1 in Eqs. �29�–�32�. Ultimately the
general formula �5� is more important: There are many ways
of distorting the Lorentz group, and this formula applies to
all of them—this makes it clear that the distortion of disper-
sion relations, the existence of unexpected thresholds, and
the somewhat unexpected subtleties hiding in the conserva-
tion laws are generic to all nonlinear realizations of the Lor-
entz group, no matter how they are obtained. It is these pos-
sible deviations from simple linearly realized relativistic
kinematics that provide the most promising observational
signal for empirically testing these models �9,18,19�.
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