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Abstract

In this manuscript we investigate the time fractional dispersive long wave equation

(DLWE) and its corresponding integer order DLWE. The symmetry properties and

reductions are derived. We construct the conservation laws (Cls) with

Riemann–Liouville (RL) for the time fractional DLWE via a new conservation theorem.

The conformable derivative is employed to establish soliton-like solutions for the

governing equation by using the generalized projective method (GPM). Moreover,

the Cls via the multiplier technique and the stability analysis via the concept of linear

stability analysis for the integer order DLWE are established. Some graphical features

are presented to explain the physical mechanism of the solutions.

Keywords: Time fractional PDEs; RL fractional derivative; Cls; Solitons; Stability

analysis

1 Introduction

Fractional calculus has mesmerizing features due to its pragmatic applications in vari-

ous areas of science, social science, finance, and engineering to mention a few. Owing to

this, a lot of meaningful definitions that have to do with fractional derivatives have been

proposed by different authors in order to fully explain the memory effect [1–4]. Among

the existing derivatives, we mention Grunwald–Letnikov, Marchaud, Riemann–Liouville,

Hadamard, modified Riemann–Liouville, and Caputo [5–10].

Recently, a new definition of derivative has been introduced, and it is called the con-

formable derivative. The newly introduced conformable derivative satisfies a lot of char-

acteristics such as product and quotient formulas, and it is used to model some physical

problems [11]. Several authors have utilized this definition in the real world problems

[12–16].

Cls have originated from the pragmatic phenomena such as energy, mass, and momen-

tum [17]. The Cls have been utilized for developing numerical techniques, proving the

existence and uniqueness of solutions [18], analysis of the internal characteristics like re-

cursion operators, bi-Hamiltonian structures [19]. It should be noted that there have been

numerous generalizations of Noether’s theorem and Euler–Lagrange’s [20] associating to

several definitions of fractional derivative to establish Cls for fractional nonlinear PDEs

possessing fractional Lagrangians [21–23]. Furthermore, nonlinear physical phenomena
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may be explained through establishing exact solutions. This has brought a strong motiva-

tion to authors to obtain exact solutions using different schemes [24–51].

In the present paper, we investigate the Cls and soliton-like solutions of the time frac-

tional DLWS with RL and conformable derivatives, respectively. Moreover, we compute

the Cls via the multiplier technique and the stability analysis via the concept of linear sta-

bility of the integer order DLWS.

2 Basic tools

In this section, some preliminaries pertaining to symmetry analysis for time fractional

PDEs will be highlighted. Let us assume that we have a system of time fractional PDEs

given as

∂αU

∂T
= F(X,T ,U ,V ,UXX ,UXXX , . . .),

∂αV

∂T
= F(X,T ,U ,V ,UXX ,UXXX , . . .).

(1)

Suppose also that a one-parameter Lie group of transformations is given as follows:

X̄ = X + ǫξ1(X,T ,U ,V ) +O
(

ǫ2
)

,

T̄ = T + ǫξ2(X,T ,U ,V ) +O
(

ǫ2
)

,

Ū =U + ǫη1(X,T ,U ,V ) +O
(

ǫ2
)

,

V̄ = V + ǫη2(X,T ,U ,V ) +O
(

ǫ2
)

,

∂αŪ

∂T̄α
=

∂αU

∂Tα
+ ǫη

α,T
1 (X,T ,U ,V ) +O

(

ǫ2
)

,

∂α v̄

∂ t̄α
=

∂αv

∂tα
+ ǫη

α,t
2 (X,T ,U ,V ) +O

(

ǫ2
)

,

∂Ū

∂X̄
=

∂U

∂X
+ ǫηX

1 (X,T ,U ,V ) +O
(

ǫ2
)

,

∂V̄

∂X̄
=

∂V

∂X
+ ǫηX

2 (X,T ,U ,V ) +O
(

ǫ2
)

,

∂2Ū

∂X̄2
=

∂2U

∂X2
+ ǫηXX

1 (X,T ,U ,V ) +O
(

ǫ2
)

,

∂2V̄

∂X̄2
=

∂2V

∂X2
+ ǫηXX

2 (X,T ,U ,V ) +O
(

ǫ2
)

,

∂3Ū

∂X̄3
=

∂3U

∂X3
+ ǫηXXX

1 (X,T ,U ,V ) +O
(

ǫ2
)

,

∂3V̄

∂X̄3
=

∂3U

∂X3
+ ǫηXXX

2 (X,T ,U ,V ) +O
(

ǫ2
)

,

(2)

where ξ1, ξ2, η1, η2 are the infinitesimal operators, ηα,t
1 , ηα,t

2 are the extended infinitesimals

of order α, and ηX
1 , η

X
2 , η

XX
1 , ηXX

2 , ηXXX
1 , ηXXX

1 are the integer order extended infinitesimals.

Surmise that we have vector fields as follows:

X = ξ1
∂

∂X
+ ξ2

∂

∂T
+ η1

∂

∂U
+ η2

∂

∂V
. (3)
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Equation (3) exhibits a point symmetry of Eq. (1) such that

Pα,irX(△)
∣

∣

△=0
= 0, (4)

i exhibits an order Eq. (1). Also, for the invariance condition, we have

ξ2(X,T ,U ,V )
∣

∣

T=0
= 0. (5)

The αth extended infinitesimal related to the RL fractional time derivative with Eq. (7) is

given as in [38, 40, 41].

3 Themodels

The time fractional dispersive long-wave system is given by

∂αU

∂Tα
=

(

U2 –UX + 2V
)

X
,

∂αV

∂Tα
= (2UV +VX)X ,

(6)

where 0 < α ≤ 1. If α = 1, Eq. (6) becomes

∂U

∂T
=

(

U2 –UX + 2V
)

X
,

∂V

∂T
= (2UV +VX)X .

(7)

Equation (7) has well been known as DLWE [52]. In the concept of the spectral transform,

Eq. (7) is analyzed in [52] and thereafter in [53], where it was related to the Schrödinger

equation with linear spectral dependence in the potential. In hydrodynamics it exhibits

the evolution of the horizontal velocity component of water waves propagating in both

directions in an infinite narrow channel of constant depth and could be generated from the

water wave equations by including onemore order of nonlinearity than is done in deriving

the Boussinesq equation. The integrability and derivation for Eq. (7) was presented in [54].

Furthermore, in [55] the authors related it directly to the spectral problem

(

∂X + α + β∂–1
X

)

φ = λφ.

Considering the invariance of Eq. (6) under the group of transformations Eq. (2), we get

the following:

η
α,T
1 – 2UηX

1 + 2ηX
2 + ηXX

1 = 0, (8)

η
α,T
1 – 2UηX

1 + 2VηX
2 + ηXX

2 = 0. (9)

Inserting the prolongations, we obtain determining equations. Solving the obtained de-

termining equations, we acquire

ξ1 = c3αX + c4, ξ2 = C1 + 2Tc3, η1 = –Uc3α, η2 = –2Vc3α, (10)
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and the corresponding Lie algebra is generated by the vector field below:

X1 =
∂

∂X
, X2 =

∂

∂T
, X3 = αX

∂

∂X
+ 2T

∂

∂T
–Uα

∂

∂U
– 2Vα

∂

∂V
. (11)

The solutions of Eq. (11) lead to the following theorem.

Theorem 1 By using the similarity transformations U = T– α
2 f (ξ ) and V = T–αg(ξ ) with

the similarity variable ξ = XT– α
2 , Eq. (6) attains to

(

P
1–α– α

2 ,α
2
α

f
)

(ξ ) –
(

f 2 – fξ + 2g
)

ξ
= 0,

(

P1–2α,α
2
α

g
)

(ξ ) – (2fg + gξ )ξ = 0.
(12)

Proof Similar steps can be found in [41]. �

3.1 Conservation laws for Eq. (6)

Several works involving the procedures for computing Cls of fractional PDEs were pre-

sented in numerous research works [56–60]. In this work, we apply the procedures pre-

sented in [56, 57] to establish Cls for Eq. (6). Surmise that the formal Lagrangian for Eq. (6)

is given as

L = p(X,T)

(

∂αU

∂Tα
– 2UUX +UXX – 2VX

)

+ q(X,T)

(

∂αV

∂Tα
– 2VUX – 2UVX –VXX

)

. (13)

The adjoint equations can be presented as follows:

δL

δU
= F∗

1 =
(

Dα
T

)∗
p – 2upX – pXX + 2Vqx = 0,

δL

δV
= F∗

2 =
(

Dα
T

)∗
q – 2UqX – 2pX + qXX = 0.

(14)

For Eq. (6) to be nonlinearly self-adjoint, Eq. (14)must hold for all solutions of Eq. (6) upon

the following substitution:

p = �1(X,T ,U ,V ), q = �2(X,T ,U ,V ), (15)

such that�i �= 0 for at least one i (i = 1, 2). The conditions for the nonlinear self-adjointness

can be presented as follows:

δL

δU

∣

∣

∣

∣

Eq. (15)

= λ1

(

∂αU

∂Tα
+

(

U2 –UX + 2V
)

X

)

+ λ2

(

∂V

∂T
+ (2UV +VX)X

)

(16)

and

δL

δV

∣

∣

∣

∣

Eq. (15)

= λ3

(

∂αU

∂Tα
+

(

U2 –UX + 2V
)

X

)

+ λ4

(

∂V

∂T
+ (2UV +VX)X

)

. (17)
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Hence, applying Eq. (15) along with its associated derivatives in Eqs. (16) and (17) thereby

solving the resulting expressions, the following solution is obtained:

λ1 = λ2 = λ3 = λ4 = 0,

�1(X,T ,U ,V ) = 0, �2(X,T ,U ,V ) = A2,
(18)

where A2 is an arbitrary constant. Thus, Eq. (15) is nonlinearly self-adjoint.

The characteristic functions are given as follows:

W1 = –Uα – 2TUT – αXUX , W2 = –Vα – 2TVT – αXVX ,

W3 = –UX , W4 = –VXW5 = –UT , W5 = –VT .
(19)

Using Eq. (19) and setting A2 = 1, the conserved vectors are:

The X-components CX
i associated with Eq. (19) are as follows:

CX
1 = 2(U +V )(–Uα – 2TUT – αXUX –Vα – 2TVT – αXVX)

–
(

(UX +VX) + αX(UXX +VXX) + 2T(UXT +VXT )
)

,

CX
2 = 2(U +V )(UX +UVX) +UXX +VXX ,

CX
3 = 2(U +V )(UT +UVT ) +UXX +VXX .

The t-components Ct
i are given as follows:

Case 1.When α ∈ (0, 1), the conserved vectors are

CT
1 = –α

(

I1–α
T (U) + I1–α

T (V )
)

– αX
(

I1–α
T (UX) + I1–α

T (VX)
)

– 2
(

I1–α
T (TUT ) + I1–α

T (TVT )
)

,

CT
2 = –I1–α

T (VX).

Case 2.When α ∈ (1, 2), the conserved vectors are

CT
1 = –α

(

D1–α
T (U) +D1–α

T (V )
)

– αX
(

D1–α
T (UX) +D1–α

T (VX)
)

– 2
(

D1–α
T (TUT ) +D1–α

T (TVT )
)

,

CT
2 = –D1–α

T (VX).

4 Soliton-like solutions

In this section, by means of the conformable derivative [11, 12] and the GPRmethod [61],

some soliton-like solutions will be presented for Eq. (6). Applying the conformable deriva-

tive and plugging the transformation U(X,T)) =U(η), V (X,T) = V (η), η = k(X –�Tα

α
) in

Eq. (6) yields

k2U ′′ – k�U ′ – 2kUU ′ – 2kV ′ = 0,

k2V ′′ + 2kVU ′ + 2kUV ′ + k�V ′ = 0.
(20)
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According to the GPR method [61], applying homogeneous principles in Eq. (20), we can

have the following solutions:

U(η) = A0 +A1σ (η) + B1τ (η),

V (η) = F0 + F1σ (η) +G1τ (η),
(21)

where A0, A1, B1, F0, F1, G1 are constants and will be found later. The functions σ (η) and

τ (η) satisfy the ODE

σ ′(η) = ǫσ (η)τ (η), (22)

τ ′(η) = R + ǫτ 2(η) –μσ (η), ǫ = ±1, (23)

where

τ 2(η) = –ǫ

(

R – 2μσ (η) +
μ2 – 1

R
σ 2(η)

)

, (24)

where R and μ are nonzero constants. Plugging Eq. (21) along with Eqs. (22) and (23)

into Eq. (20), we obtain large algebraic expressions. Collecting terms in (σ (η))3, (σ (η))2,

(σ (η))1, (σ (η))0, (σ (η))2τ (η), (σ (η))τ (η), τ (η) from the obtained algebraic expressions gives

systems of algebraic expressions. Solving the obtained systems yields the following.

Results: ǫ = –1, A0 = A0, � = –2A0, A1 = 0, B1 = B1, F0 = 0, F1 =
1
2
B1μ(2B1 + k), G1 = 0,

μR �= 0. These results give the following soliton-like solutions: For ǫ = –1,R �= 0, we acquire

the soliton-like solution

U(X,T) = A0 + B1

R tanh(
√
Rη)

μ sech(
√
Rη) + 1

,

V (X,T) =
1

2
B1μ(2B1 + k)

R sech(
√
Rη)

μ sech(
√
Rη) + 1

,

(25)

and

U(X,T) = A0 + B1

R coth(
√
Rη)

μ csch(
√
Rη) + 1

,

V (X,T) =
1

2
B1μ(2B1 + k)

R csch(
√
Rη)

μ csch(
√
Rη) + 1

,

(26)

where η = k(X –�Tα

α
). Some physical features of the obtained soliton-like are illustrated

in Figs. 1 and 2.

5 Conservation laws for Eq. (7) bymultiplier

The description for Cls via the multiplier technique was presented in [62]. Here, we apply

the same process to obtain Cls for the integer order of DLWE reported in Eq. (7) by using a

first ordermultiplier that is�1(X,T ,U ,V ,UX ,VX ,UT ,VT ),�
2(X,T ,U ,V ,UX ,VX ,UT ,VT ).

We obtain the first order multiplier for Eq. (7) given by

�1 = uc2,

�2 = –2c1UV + c2U
2 – c1VX – c2UX + 2c2V ,

(27)
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Figure 1 3D plot of (25), with α = 0.75, μ = 1.5, k = 2, A0 = B1 = 1, respectively

Figure 2 3D plot of (26), with α = 0.75, μ = 1.5, k = 2, A0 = B1 = 1, respectively

where c1, c2 are arbitrary constants. Therefore, the multipliers for the non trivial local Cls

involving the cases isolated by free constants can be obtained as follows:

1.

�1 = 0,

�2 = 1,
(28)

which gives the following fluxes:

C
T = 0,

C
X = –2UV –VX .

(29)
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2.

�1 = 1,

�2 = 0,
(30)

which yields the following fluxes:

C
T =U ,

C
X =U2 –UX + 2V .

(31)

5.1 Stability analysis to Eq. (7)

In this subsection, the concept of linear stability analysis [63–65] will be applied to in-

vestigate the stability analysis for the governing equation. Consider the integer order for

DLWE as in Eq. (7). Then, by considering the perturbed solution of the form

U(X,T) = P1 + ǫw(X,T),

V (X,T) = P2 + τ r(X,T),
(32)

it is easy to see that any constants P1 and P2 are a steady state solution of Eq. (7). Plugging

Eq. (32) to Eq. (7), we obtain

–ǫwT + 2τ rX + 2ǫP1wX + 2ǫ2wwX – ǫwXX = 0,

–τ rT + 2τP1rX + 2ǫτwrX + 2ǫτ rwX + 2ǫP2wX + ǫwXX = 0.
(33)

Linearizing (33) in ǫ and τ gives

k2ǫα1 – iǫωα1 + 2ikǫP1α1 + 2ikτα2 = 0,

k2ǫα1 – 2ikǫP2α1 + iτωα2 – 2ikτP1α2 = 0.
(34)

Surmise that Eq. (34) has solutions given by

w(X,T) = α1e
(ikX+iωT),

r(X,T) = α2e
(ikX+iωT),

(35)

k denotes a normalized wave number. Plugging Eq. (35) into Eq. (34) yields

ik2ǫβα1 + ǫωα1 + kǫP1α1 + kτα2 = 0,

–ik3αǫα1 + ikǫP2α1 + k2βτα2 + iτωα2 + ikτP1α2 = 0.
(36)

Collecting terms with α1, α2 gives

(

ǫ(k2 – iω + 2ikP1) 2ikτ

kǫ(k – 2iP2) iτ (ω – 2kP1)

)(

α1

α2

)

=

(

0

0

)

, (37)
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Figure 3 Frequency of the perturbation against the wave number with different parameter values

and taking the determinant of the above yields

–2iα1k
3τǫ – 2ik3P1τǫ – 4α1k

2P2τǫ + 4k2P2
1τǫ + ik2τωǫ – 4kP1τωǫ + τω2ǫ = 0. (38)

Solving for ω yields

ω(k) =
1

2

(

4kP1 – i
(

k2 –
√

k4 + 8ik3 – 16k2P2

))

. (39)

The relations for the dispersion in Eq. (39) will be investigated. The sign of the real part

(Re) of ω suggests that either the solution will become bigger or vanish in a given period of

time. When the sign of Re for ω(k) is negative for all k, thus any superposition of e(iωt+ikx)

will come to vanished. Moreover, if the Re is positive for some k, then with time some

components of a superposition will become much bigger. The former case is said to be

stable, otherwise unstable. If the maximum of the Re is exactly zero, then it is said to be

marginally stable. It is more difficult to assess the long term behavior in this case. Thus,

from Eq. (39) one can observe that the Re is always negative for k < 0, P1 > 0 and k > 0,

P1 < 0, which implies that the dispersion relation is stable. If k < 0, P1 < 0 and k > 0, P1 > 0,

the Re will be positive, hence in this case the dispersion is unstable. When k = 0, the Re

will be zero, which suggests that the dispersion is marginally stable in this case. In order

to see the mechanism of Eq. (39), we plot Fig. 3.

6 Conclusion

We investigated time fractional DLWE and its corresponding integer order. The symmetry

properties and reductions were derived.We constructed the Cls with RL for the time frac-

tional DLWE via new conservation theorem. The conformable derivative was employed

to establish soliton-like solutions for the time fractional DLWE by using the generalized

projective method (GPM). Moreover, the Cls via the multiplier technique and the stabil-

ity analysis via the concept of linear stability analysis for the integer order DLWE were

established. Some graphical features for the obtained results were also presented.
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