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Abstract The Southern Ocean Islands (SOI) have an

exceptionally high conservation status, and human activity

on the islands is low by comparison with more tropical

islands. In consequence, overexploitation, pollution and

habitat destruction have had little influence on the inver-

tebrate biotas of the islands, although overexploitation of

pelagic species has the potential for an indirect influence

via reduction of nutrient inputs to the terrestrial systems.

By contrast, invasive alien species, the local effects of

global climate change, and interactions between them are

having large impacts on invertebrate populations and, as a

consequence, on ecosystem functioning. Climate change is

not only having direct impacts on indigenous invertebrates,

but also seems to be promoting the ease of establishment of

new alien invertebrate species. It is also contributing to

population increases of invertebrate alien species already

on the islands, sometimes with pronounced negative con-

sequences for indigenous species and ecosystem

functioning. Moreover, alien plants and mammals are also

affecting indigenous invertebrate populations, often with

climate change expected to exacerbate the impacts.

Although the conservation requirements are reasonably

well-understood for terrestrial systems, knowledge of

freshwater and marine near-shore systems is inadequate.

Nonetheless, what is known for terrestrial, freshwater and

marine systems suggests that ongoing conservation of SOI

invertebrates requires intervention from the highest politi-

cal levels internationally, to slow climate change, to local

improvements of quarantine measures to reduce the rates

and impacts of biological invasions.

Keywords Global change-type drought �

Indirect interactions � Insect conservation �

Marine invasions � Rodents

Introduction

Between 30� and 60� latitude the northern and southern

hemispheres differ substantially. In the north, land and

water constitute approximately the same surface area. In

the south, the land:water ratio is a mere 1:15 (Chown et al.

2004). The vast Southern Ocean dominates this part of the

globe. New Zealand, Patagonia and small parts of Australia

and Africa comprise the majority of the land. However,

within and on either side of the Antarctic Polar Frontal

Zone (an area separating two high speed regions of the

Antarctic Circumpolar Current, the sub-Antarctic Front to

the north and the Antarctic Polar Front to the south) a small

number of archipelagos makes up the remainder of the

terrestrial area. These are the Southern Ocean Islands (SOI)

(Fig. 1).

Given their occurrence right around the Southern Ocean,

the islands differ considerably in their geological histories,

past and current glacial extents, current climates and veg-

etation (Table 1). Whilst some of the islands, such as

Prince Edward Island, are entirely volcanic, young

(\500,000 years), and show no signs of glaciation at the

height of the last glacial maximum (LGM), others have a

more complex geology and history. Macquarie Island

constitutes a raised section of seafloor (Selkirk et al. 1990).

The Kerguelen Islands (a large archipelago) are still partly

glaciated, and have a complex history associated with the
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100 ma (million years) geological evolution of the large

igneous province of the Kerguelen Plateau, of which some

parts were sub-aerial (i.e. above sea level) at least as far

back as 93 ma and consistently for at least 40 ma (Hall

2002; Wallace et al. 2002). The geological history of the

Crozet archipelago remains something of a conundrum

(Craig 2003).

In terms of climates, similar variation can be found,

from the temperate, warmer islands, such as Gough Island

and the Auckland Islands, to the north of the Polar Frontal

Zone, to the much colder islands south of the zone, such as

South Georgia and Heard Island. The islands also differ in

the extent to which they are influenced by frontal weather,

and in some cases the considerable height of the islands

means that the climates on the weather and lee sides of the

islands are wholly different (see le Roux 2008 for recent

discussion). Nonetheless, the majority of the SOI have

highly oceanic climates, and the climates of those islands

lying within or to the south of the Polar Frontal Zone are

showing a strong warming, and often drying trend in step

with global climate change (Bergstrom and Chown 1999;

Convey 2006; le Roux and McGeoch 2007).

Given this range of locations, histories and climates, the

vegetation also shows marked dissimilarity among the SOI

(Fig. 2). For example, Heard Island (53� S) has only 12

vascular plant species and closed vegetation communities

only in coastal areas and in some deglaciated valleys (Scott

and Bergstrom 2006). Above approximately 50 m in ele-

vation, vegetation is open, and above about 200 m

comprises cryptogams only. From about 300 m (depending

on position and aspect) the slopes are almost entirely ice-

covered. By contrast, Gough Island (40� S) supports 70

species of vascular plants, including trees (Phylica arbo-

rea, Sophora macnabiana) and tree ferns (Blechnum

palmiforme) at lower elevations, but above ca. 300 m

comprises mostly wet heath and moorland vegetation

(Wace 1961; Hänel et al. 2005). Similarly, a structurally

complex flora can be found at the Auckland Islands

(Anonymous 1997), whereas at South Georgia, closed

vegetation is mostly restricted to the lowlands (Lewis-

Smith and Walton 1975). Whilst differences in the struc-

ture of the vascular flora amongst islands are clear, at the

majority of islands bryophytes dominate in terms of species

richness and have considerable, though perhaps somewhat

Fig. 1 Schematic map of the

position of the Southern Ocean

Islands, which straddle the

Antarctic Polar Frontal Zone. In

this review we have excluded

the Maritime Antarctic islands

such as Bouvetøya, and the

South Orkney, South Shetland

and South Sandwich islands

(see Chown and Convey 2006,

2007 for additional information)
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unappreciated, roles to play in the terrestrial systems,

especially at higher elevations (see e.g. Bergstrom and

Selkirk 1997; Gremmen and Smith 2008).

Patterns and mechanisms: historical and ecological

biogeography

As might be expected, the different geological histories of

the SOI have contributed to the identity of the biotas living

on them, with the degree of influence of isolation and

history depending to some extent on the dispersal abilities

of the taxa involved: mobile species such as seabirds are

less influenced by large ocean barriers than sedentary

species such as insects (Chown 1994; Muñoz et al. 2004;

Greve et al. 2005; Chown and Convey 2007). For these

reasons, the historical biogeography of the region has been

the subject of much contention, with claims both for and

against Udvardy’s (1987) proposal for a single biogeo-

graphic province, ‘Insulantarctica’, including most of the

islands (reviewed in Greve et al. 2005; Chown and Convey

2006). Recent, nestedness and phylogeographic analyses

have begun to resolve the areas of contention, showing that

an ‘either/or’ argument for ‘Insulantarctica’ is too sim-

plistic and ignores important among-taxon variation (e.g.

Greve et al. 2005; Stevens et al. 2006). In consequence,

much remains to be done to clarify the historical bioge-

ography of the region. Phylogenetic and phylogeographic

studies, especially of the arthropods, are likely to help do

so in the near future (see e.g. Allegrucci et al. 2006;

Grobler et al. 2006; Myburgh et al. 2007).

Taking a more ecological perspective, early work iden-

tified glacial extent during the LGM, isolation and

persistently low temperatures as the major factors influ-

encing among-SOI variation in the species richness of

arthropods and vascular plants (e.g. Gressitt 1970; Abbott

1974; Chown 1990a). More recent work (Chown et al.

1998, 2005) has shown that elements of both classic island

biogeography theory (isolation and available area), and the

influence of varying energy availability (measured as sea

surface temperature) explain variation in richness of ter-

restrial vascular plants (see Table 1) in keeping with

Table 1 Location, area, elevation, age, mean annual sea surface temperature, and number of introduced plants and insects on the Southern

Ocean Islands (adapted from Chown et al. 1998)

Island Position

(Decimal degrees)

Area (km2) Altitude (m) Age (ma) SST (�C) Alien Vascular

plants

Alien

insects

West Falkland 51.5 S, 60.5 W 3,500 701 2,500 7.67 66 5

East Falkland 51.5 S, 58.5 W 5,000 705 2,500 7.29 78 22

South Georgia 54.25 S, 37.0 W 3,755 2,950 120 1.49 53 8

Tristan da Cunha 37.1 S, 12.25 W 86 2,060 1 15.32 93 37

Nightingale 37.42 S, 12.5 W 4 400 18 15.32 6 4

Inaccessible 37.25 S, 12.75 W 12 600 6 15.32 20 12

Gough 40.33 S, 9.54 W 57 910 6 12.35 24 71

Marion 46.9 S, 36.75 E 290 1,230 0.45 5.53 17 18

Prince Edward 46.63 S, 37.95 E 44 672 0.21 5.59 3 3

Cochons 46.1 S, 50.23 E 70 775 0.4 4.87 6 3

Apôtres 45.97 S, 50.43 E 3 289 5.5 5.11 2 0

Pinguoins 46.5 S, 50.4 E 3.16 360 1.1 4.87 1 0

Est 46.43 S, 52.2 E 130 1,090 8.75 4.75 5 2

Possession 46.42 S, 51.63 E 150 934 8.1 4.78 101 7

Kerguelen 49.37 S, 69.5 E 7,200 1,840 95 3.46 36 13

Heard 53.1 S, 73.5 E 368 2,745 40 1.74 1 1

McDonald 53.03 S, 72.6 E 2.6 230 0.079 1.85 0 0

Amsterdam 37.83 S, 77.52 E 55 881 0.7 15.17 81 18

St Paul 38.72 S, 77.53 E 8.1 268 0.5 14.59 10 9

Macquarie 54.62 S, 158.9 E 128 433 0.7 5.13 5 5

Snares 48.12 S, 166.6 E 3.28 152 120 10.95 2 8

Auckland 50.83 S, 166.0 E 626 668 18 9.22 33 10

Campbell 52.5 S, 169.17 E 113 567 16 7.83 88 19

Antipodes 49.68 S, 178.77 E 21 366 0.5 7.9 2 13

Bounty 47.72 S, 179.0 E 1.35 89 189 9.63 0 0
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species-energy theory (reviews in Gaston 2000; Hawkins

et al. 2003; Evans et al. 2004). The situation is more

complex for the indigenous insects (Table 1). Depending on

the analysis (i.e. including/excluding spatial autocorrela-

tion), distance to the closest continent, indigenous plant

richness, area, and sea surface temperature (SST—a

surrogate for mean annual land surface temperature) are all

correlates of richness (Chown et al. 1998, 2005). Clearly,

dispersal capabilities of the insects and isolation of the

islands have been significant in influencing the richness

patterns (Greve et al. 2005) and energy is likely to have

influenced richness via the mechanisms usually proposed,

Fig. 2 Vegetation differs profoundly within and across the Southern

Ocean Islands, as a consequence of elevation, manuring effects,

exposure, and water availability. These images illustrate the variety of

landforms and vegetation types found on the islands. (a) Fellfield

above the Neumeyer glacier on South Georgia; (b) Atlas Cove area of

Heard Island showing volcanic sand and a small altitudinal range in

vegetation; (c) Tafelberg at Marion Island showing mire (yellow),

fernbrake (green) and fellfield (grey) areas; two scoria cones are

visible in the middle distance; (d) Lowland vegetation on Campbell

Island with Pleurophyllum speciosum flowering in the foreground; (e)

Phylica arborea in fernbush at Gough Island; (f) a rata (Metrosideros

umbellata) thicket on Enderby Island, Auckland Islands. Image (d)

was taken by Brent Sinclair, the remainder by the authors
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such as increasing numbers of individuals reducing

extinction rates of the rarest species and therefore elevating

richness (Evans et al. 2004). However, the role of indige-

nous plant species richness in influencing insect species

richness is more controversial. More generally, it has long

been maintained that plant richness might have a substantial

influence on herbivore richness (e.g. Gaston 1992; Siemann

et al. 1998). However, this idea is contentious, with some

studies arguing that evidence in favour of a relationship

between plant and herbivore richness is perhaps weaker

than was once thought, at least at large spatial scales

(Hawkins and Porter 2003; Hawkins and Pausas 2004, but

see also Novotný et al. 2006). For the SOI it is difficult to

determine the nature of the relationship between vascular

plant and insect richness. Whilst indigenous plant richness

is a strong correlate of insect richness (irrespective of

analytical approach), one spatially explicit approach sug-

gests that this is a consequence of similar responses of both

groups to island area (Selmi and Boulinier 2001), whilst

another does not support this assertion (Chown et al. 2005).

Irrespective, the modern analyses demonstrate that in terms

of richness variation among islands, SOI plants and insects

follow patterns expected from oceanic islands (see Kalmar

and Currie 2006). That is, large, high energy, less-isolated

islands have the highest richness of insect and plant taxa.

Unfortunately, how diversity in the other components of the

arthropod fauna (such as spiders, mites and springtails)

varies, and what mechanisms might underlie this variation,

are not well known, largely as a consequence of poor

sampling across all islands in the region (see Pugh 1993,

2004; Pugh and Scott 2002; Pugh et al. 2002 for recent

invertebrate faunal catalogues).

Conservation status of the islands

Because the SOI provide the only terrestrial ecosystems at

mid- to high southern latitudes across much of the southern

hemisphere (Bergstrom and Chown 1999), their conserva-

tion value has long been recognized (reviewed in Dingwall

1995; see also Chown et al. 2001; Bergstrom and Selkirk

2007). The island groups discussed here are governed by

five different nations: United Kingdom, South Africa,

Australia, New Zealand, and France. Unlike Antarctica

(which is governed under the Antarctic Treaty System), no

international agreements or treaties apply specifically to the

Southern Ocean Islands. However, more general interna-

tional agreements to which the above states are party, such

as the Convention on Biodiversity, and the Agreement for

the Conservation of Albatrosses and Petrels do apply to the

islands (Hull and Bergstrom 2006; Chown et al. 2006).

Nonetheless, most of the islands enjoy a high conservation

status (de Villiers et al. 2006). The five New Zealand sub-

Antarctic island groups (Snares, Bounty, Antipodes,

Auckland, and Campbell islands), Heard and McDonald

Islands, Gough Island and Macquarie Island are all World

Heritage Areas (at the highest IUCN Reserve Status of

Category Ia). Several other island groups in the region are

also clearly eligible for World Heritage status (Chown et

al. 2001), and a nomination for the Prince Edward Islands

has been submitted. Macquarie Island is listed as a

UNESCO Biosphere Reserve.

At a National level, the New Zealand sub-Antarctic

islands are all National Nature Reserves. Macquarie Island

and Heard and McDonald Islands (Australia) have the

highest reservation status, Nature Reserve and Common-

wealth Reserve, respectively, under their governing

legislations (State and Federal). Marion and Prince Edward

Island (South Africa) are classified as a Special Nature

Reserve under South African legislation (National Envi-

ronmental Management: Protected Areas Act) (Davies et al.

2007). South Georgia has National status (United Kingdom)

as a Protected Area, and the Kerguelen and Crozet Islands

(France) and Gough Island (United Kingdom) are all

National Nature Reserves (de Villiers et al. 2006).

The frequency and intensity of human activity varies

across the SOI. At present many of the SOI are visited

annually by scientific expeditions (comprising scientists

and support staff), and have research and/or meteorological

bases occupied throughout the year. The annual number of

semi-permanent occupants ranges from 0 to 100 (de

Villiers et al. 2006). Unlike most of the islands, the Falk-

land Islands and Tristan da Cunha archipelago have

permanent human settlements and a much more complex

set of governance and conservation arrangements.

Tourist vessels visit many of the islands. However, no

tourists are allowed to land on the Prince Edward Islands,

the Antipodes, Bounty, Snares, Inaccessible or Gough

islands. Visits to all other islands require permits that place

restrictions on operators, but these vary among the different

islands (de Villiers et al. 2006). Permits limit the number

of visits per season, number of visitors permitted ashore at

once, vessel capacity, number of landing sites, nights

ashore, and/or time ashore, and often specify procedures

for decontamination prior to shore transfers (such as boot-

washing). South Georgia receives the most tourist visitors

in a year (5,427 passengers in 2005/2006) (Frenot et al.

2005; de Villiers et al. 2006).

Conservation threats

The Millennium Ecosystem Assessment (MA, 2005)

identified habitat transformation, overexploitation, climate

change, biological invasion and pollution (including N and

P nutrient loading) as the most significant modern drivers
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of biodiversity loss. For the SOI, habitat transformation and

pollution are largely unimportant, and the effects of over-

exploitation indirect. Habitat transformation is significant

only at the permanently inhabited Falkland and Tristan da

Cunha islands, and pollution is important in the sense that

large-scale acidification of the oceans and the long life-

span of many persistent organic pollutants are having

affects around the globe (see e.g. Finizio et al. 1998;

Lawton 2007). Likewise, overexploitation of terrestrial

organisms is negligible. However, because pelagic species

(especially seabirds) contribute large quantities of nutrients

to terrestrial systems (e.g. Smith and Froneman 2008),

overexploitation in marine systems might have an indirect

effect on terrestrial system functioning if seabird popula-

tions are severely reduced. Of much more direct

significance at the majority of the islands are the effects of

biological invasions and climate change, and their

interactions.

Climate change

As we have already noted, temperatures are rising at many

of the SOI in step with global climate change, and in many

cases rainfall is declining (Bergstrom and Chown 1999).

The extent of the change in climate varies among islands as

might be expected from their diverse geographic locations.

For example, the rate of warming over the last 50 years has

been slower at Gough Island than at Marion Island (Jones

et al. 2003a; Smith 2002). Moreover, climate change is

often more subtle than a simple increase in temperature and

decline in rainfall might suggest. For example, at Marion

Island, the increase in temperature is being accompanied

by more clear-sky evenings, leading to an increase in the

number and intensity of freeze-thaw cycles (Smith and

Steenkamp 1990; Smith 2002). Counter-intuitively, a

warming trend is being accompanied by increases in the

number of stressful freezing events. It is these subtleties, as

well as the general trends, that have important conse-

quences for invertebrate faunas.

To date, few studies have documented direct impacts of

changing climates on the indigenous invertebrate faunas of

the SOI. Rather, most investigations have either examined

the physiological tolerances of particular species and pre-

dicted what might be the outcomes of further change, or

have used field experiments to determine what the impact

of ongoing warming and/or drying might be. In the former

case, much work on Marion Island has suggested that

warming and drying are unlikely to compromise many

indigenous insect species, at least based on data showing

considerable desiccation resistance in several species and

high critical thermal maxima in others (e.g. Klok and

Chown 1997, 2003; Slabber and Chown 2005). However,

two investigations suggest that absolute limits are unlikely

to provide a complete picture of the effects of changing

climates. First, an investigation of egg development rates

has demonstrated pronounced thermal sensitivity in the

endemic springtail subspecies (probably a species—see

Stevens et al. 2006), Cryptopygus antarcticus travei, to the

extent that egg development does not proceed above 15�C

(Janion et al. unpublished data). Another study demon-

strated considerable sensitivity of a keystone species,

Pringleophaga marioni (Tineidae), the caterpillars of

which are responsible for promoting nutrient release on the

island (Smith and Steenkamp 1992), to repeated low tem-

perature exposures. Increasing freeze-thaw cycles

associated with increasing numbers of clear-sky evenings

as climates change are likely to have negative conse-

quences for this species (Sinclair and Chown 2005). Later

work also demonstrated that wandering albatrosses act as

thermal ecosystem engineers for the caterpillars, by pro-

moting survival as a consequence of temperature elevation

in the albatross nests (which are occupied for ca.

12 months) where caterpillar densities are high (Sinclair

and Chown 2006).

Open-top chamber, temperature elevation trials on the

Falkland Islands (Bokhorst 2007) and rain-out shelter trials

on Marion Island (McGeoch et al. 2006) have both dem-

onstrated complex responses of the soil arthropod fauna to

either warming, or warming and drying, depending on the

higher taxon in question. For example, at Marion Island, a

drying and warming treatment resulted in a much steeper

decline in springtail abundance than in the abundance of

mites relative to control sites, but even within these groups

responses were individualistic at the species level. Thus,

the response to climate change will likely not be a change

in the relative positions of present communities or assem-

blages across the island, but rather re-arrangement of

species into wholly novel assemblages (McGeoch et al.

2006). Moreover, the trials also revealed that indigenous

and introduced species show different responses to exper-

imental warming and drying treatments. Indeed, the

interaction between climate change and invasion is one of

the most significant threats to the invertebrates of the SOI

islands (see below).

Biological invasions

Southern Ocean Islands are climatically and physically

isolated from the surrounding continental landmasses, and

have comparatively low human visitation compared with

many continental sites (Chown et al. 1998). To a large

extent these factors have hindered the establishment of

alien species (see Pyšek et al. 2004 for definitions—which

include those introduced by humans to one area that have

migrated to a nearby one). Although alien species richness

is relatively low, it varies substantially among the islands
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(Frenot et al. 2005). Some islands, such as McDonald

Island, are pristine with no established alien species, whilst

others are highly invaded. For example, of the 99 insect

species recorded on Gough Island, 71 are established

introductions (Gaston et al. 2003).

Intrinsically, introductions are related to human move-

ments. In the case of the SOI, human visits began in the

late 1600s, but increased in frequency on many islands

from the 1800s with the development of whaling and

sealing. In recent years, scientific research and tourist

operations have become the dominant form of human

activity in the region (Frenot et al. 2005). Whilst contem-

porary human movements and activities are subject to strict

controls to prevent the establishment of non-indigenous

species (de Villiers et al. 2006), historical activities were

not regulated and this likely led to considerable propagule

pressure on occupied islands. Indeed, among the strongest

predictors of the numbers of established alien species

(plants, insects, birds and mammals) across the SOI are

numbers of human occupants per year and energy avail-

ability (Chown et al. 2005). Moreover, the historical lack

of controls has meant that many of the alien species that

established early on have had considerable time to become

established and in some cases to shape contemporary island

assemblages (Chapuis et al. 1994; Frenot et al. 2005;

Greenslade et al. 2007a). In this regard, it is important that

a clear distinction be drawn between alien species that have

established, but are effectively having little or no impact,

and those that are transforming entire ecosystems (see

Richardson et al. 2000).

Given their profound influences on invertebrate species

and ecosystem functioning, it is the invasive alien species

that form the focus of the remainder of this review. We use

several case studies to illustrate the effects of invasive

species on the invertebrates and ecosystems of the SOI. In

some instances, alien invertebrate species are having a

substantial impact on other invertebrate species or on

system functioning. In other cases introduced mammal or

plant species are having an impact on invertebrates, or an

interaction between mammals/plants and an invertebrate

invader is responsible for the impacts. Finally, we show

how climate change is not only exacerbating the impacts of

invasive alien species already present on the islands, but

also how it seems to be enhancing the ability of new spe-

cies to establish (see also Frenot et al. 2005).

Invasive alien species and their impacts

Establishment and impact

No island system is static. Rather, islands are characterized

by extinction, colonization and evolution. Isolated islands,

such as the SOI, typically have low natural colonization

rates (Carlquist 1974). However, human activities have

substantially changed the natural levels of immigration. For

example, it has been estimated that for Gough Island,

background rates of colonization were ca. one species

every 1,000 years. Now the rate is one species every

4 years (Gaston et al. 2003). Although increased propagule

pressure (see Lockwood et al. 2005 for an overview) is

undoubtedly part of the reason for the increase in coloni-

zation rates over background levels, it also seems likely

that the ease of establishment of invertebrates must also be

at least partly responsible. Several studies have demon-

strated that despite large population sizes, introduced

invertebrate species are often characterized by little genetic

variation (e.g. Ernsting et al. 1995a; Greenslade et al.

2007b; Myburgh et al. 2007; Lee et al. 2007), suggesting

that only one or a few individuals founded the population.

Moreover, it has long been argued that parthenogenesis is a

trait promoting establishment on these islands so account-

ing for a relatively high proportion of parthenogenetic

species in the introduced insect fauna (Crafford et al. 1986;

Hullé et al. 2003; Jones et al. 2003b).

Irrespective, whether the rates of successful colonization

are increasing since human occupation of the SOI is much

more difficult to establish because repeated, careful surveys

have typically not been undertaken on a regular basis at the

islands. At Marion Island, this has been done since the mid-

1980s and over the past 20 years five new invertebrate

colonizations have been documented (Table 2). The

Table 2 Invertebrates that have established at Marion Island since regular surveys commenced in the early 1980s (data from Lee et al. 2007)

Species Year established Reference

Plutella xylostella (Lepidoptera, Plutellidae) *1986 Crafford et al. (1986)

Calliphora vicina (Diptera, Calliphoridae) *1988 Chown and Language (1994)

Agrotis ipsilon (Lepidoptera, Noctuidae) *1997 Hänel et al. (1998), Chown et al. (2008)

Aphidius matricariae (Hymenoptera, Braconidae) *2001–2003 Lee et al. (2007)

Porcellio scaber (Crustacea, Porcellionidae) *2001 Slabber and Chown (2002)

Lee et al. (2007) suggested that Trichoplusia orichalcea (Noctuidae) might have become established, but no larvae have been found
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population sizes and infrequency of recording of

Calliphora vicina (Calliphoridae) and Agrotis ipsilon

(Noctuidae) suggest that neither species might establish

permanently. However, both are exceptionally successful

elsewhere. A large population of the fly is established at the

Kerguelen Islands (Chevrier et al. 1997). Be that as it may,

the data are too sparse to detect any trends, though it is

noteworthy that three of the species have established

despite the adoption of the strict quarantine procedures at

the island, in keeping with a predicted increase in the ease

of establishment of introduced species as climates ame-

liorate in the region (Kennedy 1995; Frenot et al. 2005).

Strong relationships between energy availability and alien

insect richness (Chown et al. 1998, 2005), the restriction of

introduced species to low elevations (Gabriel et al. 2001;

Hullé et al. 2003), and the clear demonstration that the

increase of temperature above a threshold value enabled

establishment of C. vicina at the Kerguelen Islands (Frenot

et al. 2005), provide additional evidence in favour of the

prediction. Of course, establishment in no way necessarily

means profound impacts on the recipient system. However,

several species are now having a considerable influence on

terrestrial systems or on other invertebrates.

In 1997, two species of introduced flatworm were found

on Macquarie Island (Greenslade et al. 2007b). The more

narrowly distributed Arthurdendyus vegrandis (Geoplani-

dae) apparently feeds solely on earthworms. Of the six

terrestrial species of earthworm on Macquarie Island,

including those living above the high water mark according

to Greenslade (2006), four species are regarded as alien,

one endemic and one unknown, and all are at least potential

prey for the flatworm. The wider ranging Kontikia ander-

soni (Geoplanidae) likely feeds on a range of arthropods,

annelids and molluscs. Given that relatively few macro-

invertebrate predators occur on Macquarie Island (two

flatworm, three spider and six staphylinid beetle species),

the continuing range expansion of two predatory flatworms

has the potential to exert a profound influence on inverte-

brate populations at the island. Substantial impacts by

introduced invertebrate predators have been documented

on other islands, most notably by an introduced carabid

beetle species Trechisibus antarcticus on indigenous per-

imylopid beetles on South Georgia (Ernsting 1993;

Ernsting et al. 1999; see also below), and by another

introduced carabid Oopterus soledaninus on populations of

indigenous invertebrates at the Kerguelen Islands (Chevrier

et al. 1997).

Slugs have been introduced to several SOI (Pugh and

Scott 2002), and are likely to have significant effects on

system functioning. Deroceras panormitanum was first

documented at Marion Island in the 1970s (Smith 1992). It

has since become widespread and abundant, owing partly

to helicopter-assisted transport (slugs adhere to wooden

packing cases moved by helicopter) around the island

(Smith 1992; Chown et al. 2002). Nutrient cycling in the

terrestrial system is mostly through a detritus chain domi-

nated by caterpillars of the indigenous flightless moth

P. marioni, and by several weevil species (Smith and

Steenkamp 1992). However, slugs also release prodigious

quantities of nutrients as a consequence of their grazing,

but do so such that nutrient release relative to carbon

release differs considerably from that of the indigenous

species. In consequence, different carbon:nutrient ratios are

found in the decomposing substrate, with downstream

effects on primary production (Smith 2007).

A final example concerns increases in food web com-

plexity. At most of the isolated SOI, especially the more

southerly islands, parasitism is uncommon, with only a few

parasitoid species known. Often these are restricted to the

littoral zone, parasitizing small kelp flies (e.g. Crafford

et al. 1986). Recently, a wasp parasitoid, Aphidius matri-

cariae, of an introduced aphid (Rhopalosiphum padi), was

discovered on Marion Island (Lee et al. 2007). Although

the species does utilize an introduced host, the occurrence

of both species has added a level of complexity previously

missing from vegetated areas on the island (Chown 1990a).

Invasive plants, mammals and invertebrates

Although the relationship between plants and insects is

widely acknowledged, few studies have examined these

relationships in detail for invasive species of insects (but

see Hullé et al. 2003), and fewer still for the impacts of

introduced plant species on invertebrate assemblages. One

exception is the effects of dense stands of the grass

Agrostis stolonifera on springtails and mites at Marion

Island. Typically, mite abundances are higher and spring-

tail abundances unaffected in the invaded sites relative to

the control areas (Gremmen et al. 1998). A more complex

interaction between invasive grasses, introduced reindeer

(Rangifer tarandus) and an introduced predatory beetle and

indigenous prey beetle species has been documented for

South Georgia (Chown and Block 1997). The introduced

predatory carabid, Trechisibus antarcticus, appears to be

selecting for larger body sizes in the indigenous prey per-

imylopid Hydromedion sparsutum owing to considerable

predation pressure (Ernsting et al. 1995b, 1999). However,

in those areas where reindeer graze most frequently, size is

smaller in H. sparsutum adults than where reindeer are

absent. In the former areas, reindeer promote the spread of

the grazing-intolerant invasive grass Poa annua (and in

some circumstances the somewhat less tolerant indigenous

Festuca contracta). Despite substantial ingestion of these

grasses, H. sparsustum larvae grow poorly on them by

comparison with other, less grazing-tolerant indigenous

species. In consequence, by promoting the spread of the
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invasive Poa annua, reindeer appear to be selecting indi-

rectly for reduced body size in H. sparsutum, whilst

selection in the opposite direction is being imposed by the

introduced carabid (Chown and Block 1997).

At Macquarie Island, rabbits are likely to be affecting

invertebrate populations indirectly by altering vegetation

communities (in some cases leading to total denudation).

Investigations of invertebrate assemblages has revealed that

Stilbocarpa polaris (Apiaceae)-dominated herbfields have

the highest invertebrate densities, followed by Poa foliosa

(Poaceae)-dominated tall tussock grasslands and Pleuro-

phyllum hookeri (Asteraceae) herbfields (Greenslade 2006),

and that among the species most common in these habitats

are several indigenous to Macquarie Island (Davies and

Melbourne 1999; Greenslade 2006). Recently, the popula-

tion of introduced rabbits on Macquarie Island has greatly

increased, despite early control success (Scott and Kirkpa-

trick 2008). This increase has been attributed to the complex

interactions of several factors including eradication of feral

cats in 2000, and resistance to the myxoma virus that was

introduced to the island in the 1970s. Rabbits particularly

favour the tussock grasses (P. foliosa) and large-leaved

megaherbs (S. polaris and P. hookeri) (Copson andWhinam

1998). In the last 7 years, drastic changes in vegetation

cover across the island have taken place. In many areas

herbfields and tall tussock grasslands have been entirely

removed due to intense grazing (Scott and Kirkpatrick 2008)

(Fig. 3). In addition, large areas of leaf litter and soil have

been reworked by rabbit digging and subsequent (or inci-

dental) erosion. Given the apparent preference of

invertebrates for the herbfield and tussock habitats, it is

likely that substantial change to invertebrate populations has

been effected, although this change has yet to be investi-

gated thoroughly.

The effects of introduced mammals are often more

direct. Introduced rodents, especially house mice, are

having pronounced direct effects on invertebrate (particu-

larly insect) populations on several islands, including

Gough (Jones et al. 2003c), Kerguelen (Le Roux et al.

2002), Macquarie (Copson 1986) and Marion (Crafford and

Scholtz 1987; Smith et al. 2002) islands. At Marion Island,

mice have not only led to substantial declines in popula-

tions of their preferred prey (Crafford and Scholtz 1987;

Chown et al. 2002), but have also altered ecosystem

functioning. By reducing populations of the flightless moth,

whose caterpillars are keystone species for nutrient recy-

cling (Smith and Steenkamp 1992), mice have had

profound effects on nutrient cycling, plant growth and

possibly peat formation (Smith and Steenkamp 1990).

Moreover, because caterpillars constitute an important

component of the diet of overwintering lesser sheathbills

(an indigenous, plover-like bird), populations of these

species are also declining (Huyser et al. 2000). In addition,

by virtue of their size-selective feeding (Fig. 4), mice are

not only changing the size distributions of the weevils on

Marion Island (but not on nearby, mouse-free Prince

Edward Island, Chown and Smith 1993), but may also have

caused introgression of two weevil species that probably

speciated sympatrically via size-based, positive-assortative

mating (Chown 1990b; Grobler et al. 2006).

Invasions and climate change

As we have noted, several studies have predicted increasing

ease of establishment of non-indigenous species as climates

on the SOI islands change and as the frequency of human

Fig. 3 Rabbit-induced vegetation damage on Macquarie Island.

Since the eradication of cats and likely also as a consequence of

changing climates and reduced efficacy of Myxoma virus, rabbit

numbers have increased over the past 5 years (Scott and Kirkpatrick

2008), with effects on vegetation and likely on invertebrate

assemblages
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Fig. 4 Frequency distribution of body lengths of two Ectemnorhinus

weevil species as recorded in 1986/7 on the cushion plant Azorella

selago on Marion Island (grey bars), with mouse, beetle-size

preferences indicated in black bars, which have been estimated from

body lengths from prey remains in mouse scats (data from Chown and

Smith 1993). It appears that the weevil species have now introgressed

(Grobler et al. 2006)
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visits increases (see above). However, changing climates are

likely also to have direct effects on species already present on

the islands in several ways, with important consequences for

ecosystem structure and functioning. Physiological data on

absolute thermal tolerances and on the relationships between

development rate and temperature suggest that not only are

the alien species at the island frequently more thermally

tolerant than their indigenous counterparts (e.g. Slabber et

al. 2007), but also that in response to increasing tempera-

tures, steeper rate-development relationships will mean

faster development for alien than indigenous species

(Barendse and Chown 2000). For these reasons, and because

many of the indigenous species have longer life-cycles

(1 year or more) and those of the alien species (Chown et al.

2002), it is expected that the alien species (many ofwhich are

invasive—see e.g. Gabriel et al. 2001) will be at an advan-

tage relative to their indigenous counterparts.

Other work has suggested that as a consequence of

greater low temperature tolerance, indigenous species are

able to occupy higher elevations than alien species (e.g.

Gabriel et al. 2001; Slabber et al. 2007), and might pos-

sibly have been displaced at lower elevations by large

populations of thermally responsive, fast growing invasive

species (Jones et al. 2003a, b; Convey et al. 1999; Chown

et al. 2002). Increasing temperature may therefore enable

invasive alien species to occupy ever higher elevations,

with likely detrimental consequences for indigenous spe-

cies and possibly also for ecosystem functioning. However,

the picture may also be much more complicated. For

example, currently, the invasive alien slug Deroceras

panormitanum is restricted to elevations below ca. 250 m

(Fig. 5) on Marion Island as a consequence of its inability

to tolerate temperatures below its freezing point (ca.

-3.3�C) (Lee et al. unpublished data). Whilst a warming

trend in mean temperatures might suggest that the slug will

colonize higher elevations (vascular plants on which it

feeds extend to at least 600 m—Gremmen 1981), with

concomitant effects on nutrient cycling, warming is also

being accompanied by larger numbers of freeze-thaw

cycles. These might, in fact, further constrain the distri-

bution of the slug on the island.

The combination of warming, drying and differential

responses to desiccation of indigenous and invasive species

constitute a further way in which global climate change

will affect the invertebrates of the SOI. Global change

type-drought of the kind forecast for many temperate sys-

tems (e.g. Easterling et al. 2000; Breshears et al. 2005) is

typical also of several SOI (Bergstrom and Chown 1999).

On Marion Island, a combination of laboratory studies and

field experiments has shown how global change-type

drought will likely tip the balance in favour of invasive

over indigenous springtails (Chown et al. 2007). In

response to thermal acclimation, the magnitude of pheno-

typic plasticity in the survival of dry (75% relative

humidity) conditions does not differ between indigenous

and invasive springtails. Rather, the invasive species have

longer survival times (at 5 and at 15�C) following accli-

mation to 15�C, whilst in the indigenous species, the

opposite is found (Fig. 6). Field experiments have revealed

that in response to a year of dry and slightly warmer

conditions, simulated by rain-out shelters (McGeoch et al.

2006, see also le Roux et al. 2005), the indigenous species

declined substantially in abundance, whilst the invasive

species showed no change (Fig. 6). The combined labora-

tory and field trials, and data on the distribution of

springtails on Marion Island demonstrating the preference

of invasive species for lowland areas, suggest that ongoing

change of the type forecast for the island (le Roux and

McGeoch 2007) will favour the invasive species. What

remains to be determined is the extent to which interactions

among the indigenous and invasive springtail species will

result in displacement of the indigenous species as has been

suggested for South Georgia (Convey et al. 1999).

Conclusions and prospectus

At first glance, much seems to be known about the ter-

restrial invertebrates of the SOI and the ways in which

climate change and biological invasions are likely to affect

their populations and the ecosystems they form part of.

However, the information is spatially autocorrelated. Some

islands, such as Marion Island, Macquarie Island, and the

Kerguelen Islands are comparatively well investigated. By

contrast, for others the invertebrate faunas remain poorly

surveyed (e.g. mites on most island groups, springtails on

many), and little is known about system functioning. Even

for reasonably well-investigated islands, information is
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inadequate for systems other than the terrestrial. For

example, what the effect of climate change will be on

freshwater systems is poorly known, although it is thought

that the life history of the South Georgian water beetle

Lancestes angusticollis will be affected (Arnold and

Convey 1998). How warming will influence interactions

between freshwater crustaceans and their food resources is

unknown. Similarly, the effects of introduced fish on

aquatic invertebrates has not been investigated (Frenot et

al. 2005), even though it is well known that these species

have considerable impacts on invertebrates elsewhere. For

marine systems, the picture is likewise patchy. Recent

work has demonstrated that ships, smaller marine craft, and

plastic debris can act as vectors for non-indigenous species

in the region (Lewis et al. 2003, 2006; Barnes et al. 2006),

and that species invasive in other parts of the world, reg-

ularly travel to and survive conditions throughout the

Southern Ocean (Lee and Chown 2007). However, the

extent of introductions to marine systems, and how these

species, and those indigenous to a given area, might

respond to climate change is far from clear. Southerly

species living in cold, polar water might be especially

sensitive to rising temperatures given their present intol-

erance of even relatively small acute changes therein (Peck

et al. 2006), but the extent to which responses might evolve

or to which plasticity might be re-expressed is only now

being studied (Seebacher et al. 2005).

These gaps in current information demonstrate that

much remains to be done to document and to understand

the mechanisms underlying variation in the invertebrate

biotas of the SOI. Moreover, they also show that compre-

hension of the impacts of climate change and invasion, the

two major conservation threats to the SOI, is far from fully

developed. Nonetheless, an overview of the work available

quickly reveals that sufficient information exists for clear

initial recommendations to be made concerning mitigation:

International agreements to limit climate change globally

require more active political and societal engagement,

regional quarantine procedures starting at source (i.e.

continental departure points) must be tightened to limit

further introductions, better surveys are required locally for

early detection of new introductions so that eradication can

be implemented, and greater attention should be given to

managing increasing human use interests in the region.

Whilst the ongoing development of protected areas in the

Southern Ocean (including large Marine Protected Areas,

Lombard et al. 2007) is encouraging, increasing marine

exploitation with potential knock-on effects on systems

dependent on nutrient inputs from the sea (e.g. Smith and

Froneman 2008) is worrying. So too is the fact that
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dwindling fossil fuel and mineral resources globally will

mean increasing consideration of previously uneconomic

extractions from ocean plateaus and the seabed. The

Southern Ocean Islands will not escape attention as con-

venient support platforms for such activities. However, it is

abundantly obvious that, as some of the most pristine

systems on earth, representing habitats unique to the planet,

the Southern Ocean Islands have a much greater future

value as conservation areas than as convenient staging

posts for short-term exploitation of a limited resource base.
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